Thermo-piezo-rheological characterization of asphalt concrete
Journal article, Peer reviewed
Published version
Permanent lenke
https://hdl.handle.net/11250/3047324Utgivelsesdato
2022Metadata
Vis full innførselSamlinger
Originalversjon
Alamnie, M. M., Taddesse, E. & Hoff, I. (2022). Thermo-piezo-rheological characterization of asphalt concrete. Construction and Building Materials, 329: 127106. https://doi.org/10.1016/j.conbuildmat.2022.127106Sammendrag
The linear viscoelastic (LVE) properties of asphalt concrete is investigated in this paper using a controlled-strain triaxial dynamic modulus test over wide frequency, temperature, and confining pressure ranges. The time–temperature-pressure superposition principle (TTPSP) is applied to validate the thermo-piezo-rheological simplicity of the tested materials using triaxial master curves. The LVE response is found highly stress-dependent at intermediate and high temperatures. The Prony series modeling of time-domain properties ascertains that confining pressure strongly correlates with long-term relaxation modulus, the absolute maximum slope of the relaxation modulus, and viscoelastic damage parameter. The stress triaxiality ratio concept is applied, and a new shift model is proposed that takes the triaxiality ratio as an internal state variable in the TTPSP. The model prediction agrees well with the experimental data. Moreover, a relationship between the long-term relaxation modulus and the triaxiality ratio is established. The triaxiality ratio coupled with TTPSP can accurately describe the stress-dependent response of asphalt concrete in the LVE domain.