dc.contributor.author | Abrahamsen, Trond Arnold | |
dc.contributor.author | Lima, Vegard | |
dc.contributor.author | Martiny, Andre | |
dc.contributor.author | Perreau, Yoël | |
dc.date.accessioned | 2022-11-03T10:15:58Z | |
dc.date.available | 2022-11-03T10:15:58Z | |
dc.date.created | 2022-08-11T13:51:46Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Abrahamsen, T.A., Lima, V., Martiny, A. & Perreau, Y. (2022). Asymptotic geometry and Delta-points. Banach Journal of Mathematical Analysis, 16 (4), 1-33. | en_US |
dc.identifier.issn | 1735-8787 | |
dc.identifier.uri | https://hdl.handle.net/11250/3029816 | |
dc.description.abstract | We study Daugavet- and Δ-points in Banach spaces. A norm one element x is a Daugavet-point (respectively, a Δ-point) if in every slice of the unit ball (respectively, in every slice of the unit ball containing x) you can find another element of distance as close to 2 from x as desired. In this paper, we look for criteria and properties ensuring that a norm one element is not a Daugavet- or Δ-point. We show that asymptotically uniformly smooth spaces and reflexive asymptotically uniformly convex spaces do not contain Δ-points. We also show that the same conclusion holds true for the James tree space as well as for its predual. Finally, we prove that there exists a superreflexive Banach space with a Daugavet- or Δ-point provided there exists such a space satisfying a weaker condition. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Birkhäuser Verlag | en_US |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.title | Asymptotic geometry and Delta-points | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | © 2022 The Author(s) | en_US |
dc.subject.nsi | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.source.pagenumber | 1-33 | en_US |
dc.source.volume | 16 | en_US |
dc.source.journal | Banach Journal of Mathematical Analysis | en_US |
dc.source.issue | 4 | en_US |
dc.identifier.doi | https://doi.org/10.1007/s43037-022-00210-9 | |
dc.identifier.cristin | 2042450 | |
dc.source.articlenumber | 57 | en_US |
cristin.qualitycode | 1 | |