Vis enkel innførsel

dc.contributor.authorKhan, Umer Amir
dc.contributor.authorKhan, Noman Mujeeb
dc.contributor.authorZafar, Muhammad Hamza
dc.date.accessioned2024-04-15T12:07:00Z
dc.date.available2024-04-15T12:07:00Z
dc.date.created2024-01-02T13:19:40Z
dc.date.issued2023
dc.identifier.citationKhan, U. A., Khan, N. M., Zafar, M. H. (2023). Resource efficient PV power forecasting: Transductive transfer learning based hybrid deep learning model for smart grid in Industry 5.0. Energy Conversion and Management: X, 20, Article 100486.en_US
dc.identifier.issn2590-1745
dc.identifier.urihttps://hdl.handle.net/11250/3126567
dc.description.abstractThis paper presents an innovative approach for enhancing power output forecasting of Photovoltaic (PV) power plants in dynamic environmental conditions using a Hybrid Deep Learning Model (DLM). The hybrid DLM employs a synergy of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) network, and Bidirectional LSTM (Bi-LSTM), effectively capturing spatial and temporal dependencies within weather data crucial for accurate predictions. To optimize the DLM’s performance efficiently, a unique Kepler Optimization Algorithm (KOA) is introduced for hyperparameter tuning, drawing inspiration from Kepler’s laws of planetary motion. By leveraging KOA, the DLM attains optimal hyperparameter configurations, elevating power output prediction precision. Additionally, this study integrates Transductive Transfer Learning (TTL) with the deep learning models to enhance resource efficiency. By leveraging knowledge gained from previously learned tasks, TTL enables the DLM to improve its forecasting capabilities while minimizing resource utilization. Datasets encompassing environmental parameters and PV plant-generated power across diverse sites are employed for DLM training and testing. Three hybrid models, amalgamating KOA, CNN, LSTM, and Bi-LSTM techniques, are introduced and evaluated. Comparative assessment of these models across distinct PV sites yields insightful observations. Performance evaluation, focused on short-term PV power forecasting, underscores the hybrid DLM’s superiority over individual CNN and LSTM models. This hybrid approach achieves remarkable accuracy and resilience in predicting power output under varying weather conditions, showcasing its potential for efficient PV power plant management.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleResource efficient PV power forecasting: Transductive transfer learning based hybrid deep learning model for smart grid in Industry 5.0en_US
dc.title.alternativeResource efficient PV power forecasting: Transductive transfer learning based hybrid deep learning model for smart grid in Industry 5.0en_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Author(s)en_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.source.volume20en_US
dc.source.journalEnergy Conversion and Management: Xen_US
dc.identifier.doi10.1016/j.ecmx.2023.100486
dc.identifier.cristin2218966
dc.source.articlenumber100486en_US
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal