Show simple item record

dc.contributor.authorKetelsen, Søren
dc.contributor.authorMichel, Sebastian
dc.contributor.authorAndersen, Torben Ole
dc.contributor.authorEbbesen, Morten Kjeld
dc.contributor.authorWeber, Jürgen
dc.contributor.authorSchmidt, Lasse
dc.date.accessioned2023-06-06T11:45:16Z
dc.date.available2023-06-06T11:45:16Z
dc.date.created2021-04-27T19:59:58Z
dc.date.issued2021
dc.identifier.citationKetelsen, S., Michel, S., Andersen, T. O., Ebbesen, M. K., Weber, J. & Schmidt, L. (2021). Thermo-Hydraulic Modelling and Experimental Validation of an Electro-Hydraulic Compact Drive. Energies, 14 (9), 1-29. doi:en_US
dc.identifier.issn1996-1073
dc.identifier.urihttps://hdl.handle.net/11250/3070138
dc.description.abstractElectro-hydraulic compact drives (ECDs) are an emerging technology for linear actuation in a wide range of applications. Especially within the low power range of 5–10 kW, the plug-and-play capability, good energy efficiency and small space requirements of ECDs render this technology a promising alternative to replace conventional valve-controlled linear drive solutions. In this power range, ECDs generally rely on passive cooling to keep oil and system temperatures within the tolerated range. When expanding the application range to larger power classes, passive cooling may not be sufficient. Research investigating the thermal behaviour of ECDs is limited but indeed required for a successful expansion of the application range. In order to obtain valuable insights into the thermal behaviour of ECDs, thermo-hydraulic simulation is an important tool. This may enable system design engineers to simulate thermal behaviour and thus develop proper thermal designs during the early design phase, especially if such models contain few parameters that can be determined with limited information available. Our paper presents a lumped thermo-hydraulic model derived from the conservation of mass and energy. The derived model was experimentally validated based on experimental data from an ECD prototype. Results show good accuracy between measured and simulated temperatures. Even a simple thermal model containing only a few thermal resistances may be sufficient to predict steady-state and transient temperatures with reasonable accuracy. The presented model may be used for further investigations into the thermal behaviour of ECDs and thus toward proper thermal designs required to expand the application range.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.urihttps://www.mdpi.com/1996-1073/14/9/2375
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThermo-Hydraulic Modelling and Experimental Validation of an Electro-Hydraulic Compact Driveen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021 The Author(s)en_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.source.pagenumber29en_US
dc.source.volume14en_US
dc.source.journalEnergiesen_US
dc.source.issue9en_US
dc.identifier.doi10.3390/en14092375
dc.identifier.cristin1906796
dc.relation.projectNorges forskningsråd: 237896en_US
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal