Vis enkel innførsel

dc.contributor.authorYadav, Rohan Kumar
dc.contributor.authorNicolae, Dragoş Constantin
dc.date.accessioned2022-11-08T13:49:11Z
dc.date.available2022-11-08T13:49:11Z
dc.date.created2022-10-10T13:41:29Z
dc.date.issued2022
dc.identifier.citationYadav, R. K. & Nicolae, D. C. (2022). Enhancing Attention’s Explanation Using Interpretable Tsetlin Machine. Algorithms, 15 (5): 143, 1-13.en_US
dc.identifier.issn1999-4893
dc.identifier.urihttps://hdl.handle.net/11250/3030688
dc.description.abstractExplainability is one of the key factors in Natural Language Processing (NLP) specially for legal documents, medical diagnosis, and clinical text. Attention mechanism has been a popular choice for such explainability recently by estimating the relative importance of input units. Recent research has revealed, however, that such processes tend to misidentify irrelevant input units when explaining them. This is due to the fact that language representation layers are initialized by pretrained word embedding that is not context-dependent. Such a lack of context-dependent knowledge in the initial layer makes it difficult for the model to concentrate on the important aspects of input. Usually, this does not impact the performance of the model, but the explainability differs from human understanding. Hence, in this paper, we propose an ensemble method to use logic-based information from the Tsetlin Machine to embed it into the initial representation layer in the neural network to enhance the model in terms of explainability. We obtain the global clause score for each word in the vocabulary and feed it into the neural network layer as context-dependent information. Our experiments show that the ensemble method enhances the explainability of the attention layer without sacrificing any performance of the model and even outperforming in some datasets.en_US
dc.language.isoengen_US
dc.publisherMDPI AGen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEnhancing Attention’s Explanation Using Interpretable Tsetlin Machineen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Author(s).en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420en_US
dc.source.pagenumber1-13en_US
dc.source.volume15en_US
dc.source.journalAlgorithmsen_US
dc.source.issue5en_US
dc.identifier.doihttps://doi.org/10.3390/a15050143
dc.identifier.cristin2060088
dc.source.articlenumber143en_US
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal