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Abstract: Explainability is one of the key factors in Natural Language Processing (NLP) specially
for legal documents, medical diagnosis, and clinical text. Attention mechanism has been a popular
choice for such explainability recently by estimating the relative importance of input units. Recent
research has revealed, however, that such processes tend to misidentify irrelevant input units when
explaining them. This is due to the fact that language representation layers are initialized by pre-
trained word embedding that is not context-dependent. Such a lack of context-dependent knowledge
in the initial layer makes it difficult for the model to concentrate on the important aspects of input.
Usually, this does not impact the performance of the model, but the explainability differs from
human understanding. Hence, in this paper, we propose an ensemble method to use logic-based
information from the Tsetlin Machine to embed it into the initial representation layer in the neural
network to enhance the model in terms of explainability. We obtain the global clause score for each
word in the vocabulary and feed it into the neural network layer as context-dependent information.
Our experiments show that the ensemble method enhances the explainability of the attention layer
without sacrificing any performance of the model and even outperforming in some datasets.

Keywords: NLP; interpretability; explainability; Tsetlin Machine; Bi-GRUs; attention

1. Introduction

In natural language processing, text categorization is a crucial task (NLP) [1,2] and
neural network models are the ones to dominate state-of-the-art approaches. However,
these models are often assumed to be blackbox in nature. The models’ opacity has become
a serious impediment to their creation, implementation, and improvement, especially in
crucial tasks like medical diagnosis [3] and legal document inspection [4]. As a result,
explainable text classification has become a major topic, with the objective of providing
end-users with human-readable descriptions of the classification logic [1,5–7].

The attention mechanism is a prominent technique among current explainability ap-
proaches that identify essential sections of the input for the prediction job by offering
a distribution across attended-to-input units [8]. Many NLP tasks, such as text catego-
rization, question answering, and entity identification, have shown outstanding results
using attention-based models [2,8,9]. In particular, in many NLP systems, the self-attention
mechanism that underpins the Transformer design has played a key role [10,11]. Despite
this, recent research has revealed that learned attention weights are frequently unrelated
to the relevance of input components as judged by various explainability approaches [12],
and that alternative attention distributions can provide identical predictions [13,14].

Various alternative approaches could replace attention-based neural networks for
explainable NLP such as decision tree and logistic regression. However, they suffer from
low performance compared to neural networks. In addition to this logistic regression
does not provide a logical explanation but provides mathematical weights for selected
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inputs [15]. On the other hand, decision trees are only suited for a limited dataset size.
It becomes extremely difficult to get the explainability once the trees get more complex.
Due to these limitations, there has been a limited study in obtaining a logical explanation
for NLP classification. A recent study has found that Tsetlin Machine (TM) has been
a promising tool for rule-based explanation in image, text, and numerical data [16–19].
TM is an interpretable rule-based model that uses conjunctive clauses to learn basic and
complicated correlations. Unlike Deep Neural Netowrks (DNNs) and basic rule-based
systems, TM learns rules in the same way that humans do, using logical reasoning, and
it does so in a visible and interpretable manner [16,20]. TM has shown that it obtains a
good trade-off between accuracy and interpretability on many NLP tasks [21,22]. However,
there lie some limitations such as boolean bag-of-words input and incapable of using
pre-trained information.

One efficient way to deal with the above-mentioned problem is to use prerequisite
knowledge to enhance the input layer for better interpretation. Integrating human ratio-
nales as supplementary supervision information for attention learning is a promising way
to enhance the explainability of attention-based models. Human rationales have previously
been found to be useful input for increasing model performance and discovering explain-
able input in model prediction [1,23]. However, obtaining such human rationales is an
expensive and time-consuming process. Hence, to make it more easy and efficient, we use
a logic-based model TM that mimics human-level understanding to generate prerequisite
information to initialize the input layer of the neural network. Since TM can be explained
by logic and rules, the information it provides can be easily explained to make the attention
layer focus on important input tokens.

In this paper, we train TM on two movie review datasets and leverage the clause score
of TM for each word in the vocabulary. We then use this prerequisite information of each
word as initial information for the input layer in the neural network. We use Bidirection
Gated Recurrent Unit (Bi-GRU) [24] for language representation for neural networks and
Glove [25] to initialize the word embedding. In addition to this, we multiply the input
embedding layer with prerequisite information of each word from TM. This makes the
attention layer on top of Bi-GRU focus on important words.

2. Related Works

Machine learning explainability has lately received a lot of attention, owing to the
necessity for transparency [5,26]. Existing explainability approaches may be divided into
two types: post-hoc and intrinsic explainability. The goal of post-hoc explainability is to
provide explanations for a model that already exists. In the feature space, a representative
technique approximates decisions of the model with an explainable technique (e.g., a linear
model) [5]. Generative Explanation Framework (GEF) [27] is a recent development in
this field that aims to explain a generic encoder-predictor architecture by concurrently
generating explanations and classification results. The goal of intrinsic explainability is to
create self-explanatory models. This can be accomplished by enforcing feature sparsity [28],
representation disentanglement [29], or sensitivity to input characteristics through explain-
ability requirements in model learning. Attention mechanisms, that identify sections of
the input that are considered by the model for specific output predictions, are a more
prevalent technique to explain individual predictions [8,30]. These attention processes
have long been essential in NLP, not just because of their explainability, but also because
of the improvements they provide to model performance [10,11]. An empirical study
recently questioned their effectiveness in explaining model performance, pointing out that
attention distributions are contrary with the importance of input features measured by
gradient-based methods, and those adversarial distributions can be found yielding similar
model performance [13]. These discoveries have sparked heated debates, such as how
attention mechanisms provide larger weights to key input features for a specific task even
when the model for prediction changes [14].
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The concept of adding human rationales for improvement of the model may be traced
back to a situation in which a human teacher highlights sections of text in a document
as a justification for label annotation [23]. By restricting the prediction labels, the logic is
integrated into the loss function of SVM classifier. Similar concepts have been investigated
for neural network models [1] and various methods of human reason integration, such
as learning a mapping between human rationales and machine attention [31] or assuring
variety among hidden representations learned at different time steps [32]. Even though
recent studies in human computation [33] have shown that asking workers to provide
human annotation rationales—by headlining the supporting text excerpts from the given
context—requires no additional annotation effort, reassigning human rationales in the
previous datasets requires additional time and cost. Hence, there is the need for a human
explainable model that can substitute the human-in-loop system as prerequisite knowledge
for the neural network model.

In this paper, we propose an alternative for human rationales by using Tsetlin Machine
and its explainability. TM consists of several clauses in the form of propositional logic.
Each feature in TM represents the collection of the clauses for a particular classification
model. Such clause score also represents the weightage of each feature in the model. Since
TM is easily explainable, it makes sense to use this explanation as ensemble information for
the neural network.

3. Proposed Architecture: TM Initialized Attention Model

Here, we discuss the architecture of the model that ensemble the information from
TM into neural network. First we explain the architecture of TM and then process to obtain
the clause score.

3.1. Clause Score from Tsetlin Machine Architecture

A revolutionary game-theoretic strategy that organizes a collection of decentralized
team of Tsetlin Automata is at the heart of the TM (TAs). Based on disjunctive normal
form, the strategy directs the TAs to learn arbitrarily complicated propositional formula in
the form of conjunctive form [34,35]. A TM is interpretable in a way that it decomposes
issues into self-contained sub-patterns that may be interpreted separately, notwithstanding
its ability to learn complicated nonlinear patterns. Each sub-pattern is represented by a
conjunctive sentence, which is a series of literals, each of which represents an input bit or
its negation. As a result, sub-pattern representation and evaluation are both Boolean. In
comparison to other approaches, this makes the TM computationally efficient and hardware
friendly [36,37].

TM is a new classification approach based on a team of Tsetlin Automata that manipu-
lates phrases in propositional logic. TA is a deterministic automaton with a fixed structure
that learns the best action from a collection of actions provided by the environment. A
two-action TA with 2N states is shown in Figure 1. The states from 1 to N are referred to as
Action 1, whereas the states from (N + 1) to 2N are referred to as Action 2. TA conducts
the action depending on the current state and interacts with the environment during each
iteration. This, in turn, causes the environment to issue a random reward or penalty based
on an unknown probability distribution. If TA is rewarded, it advances deeper into the state;
if it is penalized, it moves closer to the center of the state, weakening the preformed action,
and finally jumping to the side of the other action. Each input bit in TM is represented
by two TAs, TAand TA’. The original bit of the input sample is controlled by TA, while
the negation is controlled by TA’. As a result, the TM, which is made up of clauses, will
eventually converge to the desired pattern. There are two sorts of feedback (reward or
penalty) supplied to the TM: Type I and Type II feedback. The TA for the training samples
is given rewards or penalties based on these feedback types. The both feedbacks are shown
in Tables 1 and 2 respectively.
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Table 1. The Type I Feedback [16].

Input Clause 1 0

Literal 1 0 1 0

Include Literal
P(Reward) s−1

s NA 0 0
P(Inaction) 1

s NA s−1
s

s−1
s

P(Penalty) 0 NA 1
s

1
s

Exclude Literal
P(Reward) 0 1

s
1
s

1
s

P(Inaction) 1
s

s−1
s

s−1
s

s−1
s

P(Penalty) s−1
s 0 0 0

Table 2. The Type II Feedback [16].

Input Clause 1 0

Literal 1 0 1 0

Include Literal
P(Reward) 0 NA 0 0
P(Inaction) 1.0 NA 1.0 1.0
P(Penalty) 0 NA 0 0

Exclude Literal
P(Reward) 0 0 0 0
P(Inaction) 1.0 0 1.0 1.0
P(Penalty) 0 1.0 0 0

Figure 1. The two-action TA and its transition in TM.

In regards to NLP, TM heavily relies on the Boolean Bag-of-words (BOW) given by
X = [x1, x2, x3, . . . , xn]. Let l be the number of clauses that represent each class of the TM,
covering q classes altogether. Then, the overall learning problem is solved using l × q
clauses. Each clause Cj

i , 1 ≤ j ≤ q, 1 ≤ i ≤ l of the TM is given by :

Cj
i =

∧
k∈I j

i

xk

 ∧
∧

k∈ Ī j
i

¬xk

, (1)

where I j
i and Ī j

i are non-overlapping subgroup of the input variable indices, Ii
j , Īi

j ⊆
{1, . . . , m}, Ii

j ∩ Īi
j = ∅. The subgroup decide that which of the input variables to par-

ticipate in the clause, and whether they are in the original form or the negated. The indices
of input features in Ii

j represent the literals that are included as original form of the literals,

while the indices of input features in Īi
j correspond to the negated ones. Among the q

clauses of each class, clauses that are indexed with odd number are assigned positive
polarity (+) whereas those with even indexed are assigned negative polarity (−). The
clauses with positive polarity vote for the true target class and those with negative polarity
vote against it. A summation operator aggregates the votes by subtracting the total number
of negative votes from positive votes, as shown in Equation (2).

f j(X) = Σl−1
i=1,3,...C

j
i (X)− Σl

i=2,4,...C
j
i (X). (2)
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For q number of classes, the predicted output y is given by the argmax operator
which classifies the input features based on the highest sum of votes obtained, as shown in
Equation (3).

ŷ = argmaxj

(
f j(X)

)
. (3)

Once the model is trained with a particular dataset, we can explore the clauses that
holds information of combination of literals in propositional form. Such information is
humanly interpretable and can be used for downstream applications of NLP. Here, we
explore the weightage of each word in the model. We pass each word in the vocabulary
into the TM and obtain the clause score. The clause score is calculated by:

SCxk = | f
κ=tp(Xxk=1)− Σ f κ= f p(Xxk=1)| (4)

Here tp refers to true prediction, fp refers to false prediction, |.| refers to the absolute
value, and k = 1, 2, . . . , n where n is the number of vocabulary. We then create the input
map for each input sentence with the score obtained for each word which will then fed to
neural network initial embedding layer.

3.2. Attention Based Neural Network

Here we explain the attention-based neural network for text classification where we
use conventional Bi-GRU as the language representation layer and attention on top of it.

Because of its linked hidden layers, where the internal states are used to process
data in a sequential fashion, recurrent neural networks (RNNs) [38] have lately become
the standard for NLP. RNNs, on the other hand, have several drawbacks that have led
to the creation of versions like LSTM and GRU. The GRU, like the LSTM unit, regulates
the flow of information without using a memory unit, making it more efficient with near-
lossless performance [39]. GRU also overcomes the issue of vanishing gradients and
gradient explosions in vanilla RNN. Our selected model consists of a Bi-GRU layer on top
of embedding layer initialized with Glove embedding. This layer consists of a attention
layer on top of Bi-GRU. The overall architecture of proposed model is shown in Figure 2.

Consider a sentence “This is wonderful movie.” which is fed to the embedding layer
initialized by Glove embedding. On the other hand, we obtain the clause score for each
word in the sentence and feed to the embedding layer to match the dimension of input
sentence embedding. Then both the embedding layer is passed to multiplication layer,
where both are multiplied element wise. The output of the multiplication layer is then fed
to the Bi-GRU having multiple hidden layers. Let us assume that the input to Bi-GRU is
given by X = [x1, x2, x3, . . . , xk] where k is the padded length of the input sentence. This
information is passed to Bi-GRU layer. In GRU, there are two types of gates: update gates
and reset gates. The update gate determines how much previous data must be brought into
the current state and how much new data must be introduced.

On the other hand, reset gate decides how much information from the previous steps
is passed into the current state ht. Here, ht is the output from the GRU at time step t and zt
means the update gate. At a specific time step t, the new state ht is given by:

ht = (1− zt)� ht−1 + zt � ht, (5)

where � represents the element-wise multiplication. To update zt, we have

zt = σ(Wzt xt + Uzt ht−1 + bzt). (6)

Here, xt is each word of the sentence at time step t that is passed into the network unit
which is then multiplied with its own weight Wzt . Similarly, ht−1 represents the information
of previous unit and is multiplied with its own weight Uzt and bzt is the bias associated
with update state. The current state ht is updated using reset gate rt by
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ht = tanh
(
Wht xt + rt �

(
Uht

)
+ bht

)
. (7)

At rt, the candidate state of step t can get the information of input xt and the status of
ht−1 of step t− 1. The update function of rt is given by

rt = σ(Wrt xt + Urt ht−1 + brt), (8)

where Wrt and Urt are the weights associated with the reset state and brt is the bias.

The Bi-GRU consists the forward GRU layer (
→
ht) that models the input sentence from

step 0 to t and the backward GRU (
←
ht) from t to 0.

→
ht =

→
GRU(xt), t ∈ [1, T], (9)

←
ht =

←
GRU(xt), t ∈ [T, 1], (10)

ht =

[→
ht,
←
ht

]
. (11)

Figure 2. The two-action TA and its transition in TM.



Algorithms 2022, 15, 143 7 of 13

As we all know, not all of the words in the context contribute equally to text catego-
rization. As a result, an attention layer is allocated to the context to prioritize significant
words. Attention layer is fed on top of Bi− GRU to learn the weight αt for each hidden
state ht obtained at time step t. Since there are k inputs in the padded sequences, time step
t will be from 1 to k. The weighting vector α = (α1, α2, α3, . . . , αk) is calculated based on
the output sequence H = (h1, h2, h3, . . . , hk). The attention vector s1 for AL1 is calculated
based on the weighted sum of these hidden states, as:

s1 =
k

∑
t=1

(αtht), (12)

where the weighted parameter α1
t is calculated by:

αt =
exp

(
uT

t uw
)

∑t exp
(
uT

t uw
) , (13)

where ut = tanh(Wwht + bw). Here Ww and ht are the weight matrices and bw represents
the bias. The parameter uw demonstrates context vector that is different at each time step,
which is randomly initialized and learned jointly during the training process.

4. Experiments and Results

Here, we demonstrate the experiments and the result on the proposed model for
enhancing the explanation of attention layer in text classification. We use two sentiment
classification datasets for evaluation. They are:

• MR is a movie review dataset for binary sentiment classification with just one sentence
per review [40]. There are 5331 positive reviews and 5331 critical reviews in the corpus.
In this study, we used a training/test splitfrom [41] (https://github.com/mnqu/PTE/
tree/master/data/mr (accessed on 24 February 2022).).

• Reuters The Reuters 21,578 dataset has two subsets: R52 and R83 (all-terms version).
R8 is divided into eight categories, including 5485 training and 2189 exam papers. R52
is divided into 52 categories and 6532 training and 2568 test papers.

We employ Keras [42] to implement our model. Adam [43] is used as the models’ opti-
mization method with the learning rate of 1× e−3. Additionally, we adopted Dropout [44]
as the regularization strategy and the probability of Dropout was kept to be 0.25. Words
are initialized with Glove [25] of 300-dimension word embedding. The batch size was 128
and was run for 100 epochs in the test datasets for obtaining the best results.

Since, the main purpose of this paper is to enhance the explanation of the attention
layer, we demonstrate the performance of the proposed model with the relatable models to
show the impact of each model. The comparable state-of-the-arts are explained below:

• TF-IDF+LR: Bag-of-words model with inverse document frequency weighting for
term frequency. The classifier is based on logistic regression.

• CNN: CNN-rand uses arbitrarily initialized word embeddings [45].
• LSTM: The LSTM model that we employ here is from [46], representing the entire

text using the last hidden layer. We used both the model that is using pretrained
embeddings and without using.

• Bi-LSTM: Bi-directional LSTMs are widely used for text classification that models
both forward and backward information.

• PV-DBOW: PV-DBOW is a paragraph vector model where the word order is not
considered and is trained with Logistic Regression used as a softmax classifier [47].

• PV-DM: PV-DM is a paragraph vector model, with word ordering taken into consid-
eration [47].

• fastText: This baseline uses the average of the word embeddings provided by fastText
as document embedding. The embedding is then fed to a linear classifier [48].

https://github.com/mnqu/PTE/tree/master/data/mr
https://github.com/mnqu/PTE/tree/master/data/mr
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• SWEM: SWEM applies simple pooling techniques over the word embeddings to
obtain a document embedding [49].

• Graph-CNN-C: A graph CNN model uses convolutions over a word embedding
similarity graph [50], employing a Chebyshev filter.

• Tsetlin Machine: Simple BOW model for Tsetlin Machine without feature enhancement.
• Bi-GRU+Attn: Bi-directional GRUs are widely used for text classification. We com-

pare our model with Bi-GRU fed with pre-trained word embeddings along with
attention layer on top of it.

• TM+Bi-GRU+Attn: Proposed model with Bi-GRU model with pretrained word em-
bedding initialized with pretrained TM score in its input layer.

4.1. Performance Comparison with State-of-the-Arts

Table 3 shows the comparison of performance for selected datasets. As we can see
that traditional method such as TF-IDF with Logistic Regression (TF-IDF+LR) performs
decently in MR with 74.59, R8 with 93.74, and R8 with 86.95. Some sophisticated language
model such as CNN, and LSTM performs quite similarly. The only improvement seen
among them is Bi-LSTM which incorporates both past and future information for better
input representation thereby reaching 77.06% in MR, 96.68% in R8, and 90.54% in R52.
Slightly different than language models PV-DBOW and PV-DM performs poorly in all three
datasets. Similarly, Graph-based CNN and SWEM perform on par with the state-of-the-arts
baselines. On the other hand, the rule-based method TM performs quite comparable to
baseline by reaching 75.14% in MR, 96.16% in R8, and 84.62% in R52. The performance
is slightly below Bi-LSTM/GRU-based model because of its restriction to use pre-trained
word embedding. However, Yadav et al. [22] show that embedding similar words using a
pre-trained word embedding significantly enhances the performance and outperforms the
baselines. However, our proposed model only uses TM explainability to generate prerequi-
site word weightage to replace human attention input into neural network language models.
Hence, this is demonstrated in the table as well. Even though the motive of this task does
not necessarily impact the accuracy but there is a slight increase in performance anyway.
This is due to the fact that the TM score gives additional weightage to the model’s input
thereby reaching 77.95% in MR, 97.53% in R8, and 95.71% in R52 for TM+Bi-GRU+Attn.
This shows an increment of about 1% in average throughout the selected datasets.

Table 3. Performance of the proposed model (TM+Bi-GRU+Attn) with selected baselines.

Models MR R8 R52

TF-IDF+LR 74.59 93.74 86.95
CNN 74.98 94.02 85.37
LSTM 75.06 93.68 85.54

Bi-LSTM 77.68 96.31 90.54
PV-DBOW 61.09 85.87 78.29

PV-DM 59.47 52.07 44.92
SWEM 76.65 95.32 92.94

Graph-CNN-C 77.22 96.99 92.75
Tsetlin Machine 75.14 96.16 84.62
Bi-GRU+Attn 77.15 96.20 94.85

TM+Bi-GRU+Attn 77.95 97.53 95.71

In addition to this, we also evaluate some more metrics that supports the performance
of the proposed model. Since MR is only binary classification dataset, R8 and R52 is
multiclass dataset. Hence, there is need of the evaluation of the performance of each class.
Usually unbalanced or multiclass datasets sometimes suffers with low F-scores because the
model greedily learns the majority classes. Hence to have a clear picture of our proposed
model, we evaluate precision, recall, and f-scores of main baseline TM, Bi-GRU+Attn with
our proposed model TM+Bi-GRU+Attn as shown in Tables 4–6 respectively. The results
clearly indicate the our proposed model also performance superior on all three selected
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metrics for macro, micro, and weighted form of measurement compared to baselines TM
and Bi-GRU+Attn. The performance of our proposed model is significantly higher in case
of R8 and MR across all metrics. However the difference in performance for R52 is very
marginal. In case of comparison with TM, our proposed outperforms all the measures for
all three datasets.

Table 4. Performance of TM for various evaluation metrics.

Models MR R8 R52

Precision (macro) 73.22 86.12 79.18
Recall (macro) 70.42 87.44 75.44

F-Score (macro) 69.32 88.32 76.66

Precision (micro) 70.42 94.82 85.28
Recall (micro) 70.42 94.82 85.28

F-Score (micro) 70.42 94.82 85.28

Precision (weighted) 73.22 95.02 85.51
Recall (weighted) 70.42 95.12 85.12

F-Score (weighted) 69.32 95.02 85.28

Table 5. Performance of Bi-GRU+Attn for various evaluation metrics.

Models MR R8 R52

Precision (macro) 75.21 88.69 82.32
Recall (macro) 72.20 90.66 79.26

F-Score (macro) 71.34 89.26 79.87

Precision (micro) 72.20 95.52 95.63
Recall (micro) 72.20 95.52 95.63

F-Score (micro) 72.20 95.52 95.63

Precision (weighted) 75.21 95.60 95.33
Recall (weighted) 72.20 95.23 95.63

F-Score (weighted) 71.34 95.49 95.34

Table 6. Performance of TM+Bi-GRU+Attn for various evaluation metrics.

Models MR R8 R52

Precision (macro) 75.63 94.70 83.81
Recall (macro) 74.62 93.32 80.23

F-Score (macro) 74.61 93.39 80.67

Precision (micro) 74.62 96.52 96.82
Recall (micro) 74.62 96.52 96.82

F-Score (micro) 74.62 96.52 96.85

Precision (weighted) 75.63 96.58 96.51
Recall (weighted) 74.62 96.52 96.52

F-Score (weighted) 74.61 96.51 96.49

4.2. Explainability

Here, we explore the proposed model’s explainability by visualizing the respective
attention weight. The attention weight usually gives the impact of each individual feature
for a particular prediction. However, such weight usually gives the relationship between
input and the output, such method of interpreting model can be beneficial for system to
understand the impact of each features. Since neural network are already an established
blackbox models, one can use this interpretation to generate explainability for the under-
standing the context of prediction. Hence we define interpretation of the model as the
weights obtained from attention layer and explainability as use-case of interpretation to
design the reasoning for a particular prediction that is easily understandable to humans.
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For ease of illustration, we visualize the attention weight of the Bi-GRU model and the
attention weight of the Bi-GRU model initialized with TM’s word score. We use the red
color gradient to demonstrate the weightage of each input word in the context. Dark color
represents the higher weightage with light color representing lower weightage. As we can
see from Figure 3, only using Bi-GRU, the model recognizes mostly important words for
predicting correct sentiment class. However, it is not perfect as the human level. However,
Figure 4 shows the visualization of attention weight using Bi-GRU and TM’s score.

Here we can see that the model focus on more significant words than the previous
model. For instance, in the first example, the later model captures “look”, “away” with
higher weightage which is an important context for negative sentiment than “directing”
and “attempt”. This is more clearly seen in the third sample as the first model focus on
“easily”, “best”, and “film” however our proposed model shifts the higher weightage to
“best”, “Korean”, “film” for predicting the positive sentiment. One of the most peculiar
cases where there are ambiguities in the context consisting of both positive and negative
sentiment words as in the last example. Here using only Bi-GRU, the model captures
“forgettable”, “rip”, and “work” as thigh-impact words. However, it does not give high
weightage to the word “cheerful” which is also sentiment carrying word. However, using
our proposed model, the weightage changes drastically and the model assigns higher
weightage to “forgettable”, “cheerful”, “but”, and “earlier”. This makes more sense to
human understanding because the context the has word “cheerful” and it is contradicted
with the word “but” which eventually leads to a negative sentiment the carrying word
“forgettable” thereby making the whole context negative sentiment.

Figure 3. Visualization of attention weights with Bi-GRU only. Dark red to light red color represents
the color gradients based on the attention weights in descending order.

Figure 4. Visualization of attention weights with Bi-GRU and TM Score. Dark red to light red color
represents the color gradients based on the attention weights in descending order.

5. Conclusions

Recently, attention weights have been a great tool for visualization of the weightage of
input rationales in the model. However, their weightage sometimes gives higher weightage
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to unwanted tokens that did not make sense to humans. This led to the requirement
of human-annotated rationales that are embedded into the models. Even, such human
annotators are not a very extensive task to obtain while annotating new datasets, the
problems come annotating human rationales to existing datasets. It takes high time and
cost to re-annotate human rationales for explainability. Hence, in this paper, we propose
an alternative approach to get human explainable rationales using interpretable Tsetlin
Machine (TM). Since TM can be explained using logical rules, it provides human-level inter-
pretation and is used as a prerequisite annotation of input rationales. The proposed model
shows that embedding such information in attention-based models not only increases
the accuracy but also enhances the weightage of attention layer for each input rationales
thereby making the explanation more sensible to humans. The visualization also shows
that the proposed model is capable of capturing the ambiguity of the context much better
than traditional models.

However, the concern with current study of explainability in AI is the subjectivity of
explainability. Even though the mode of interpreting a model has been very sophisticated
with proof of concept. It still fails to align with human understanding because of the subjec-
tivity of opinion. Hence, as a future work, one can collect the human rationales annotation
while manually labelling the particular datasets. This can be used as an evaluation criteria
on how explainability of ML models align with various human understanding.

Author Contributions: Conceptualization, R.K.Y. and D.C.N.; methodology, R.K.Y.; software, R.K.Y.;
validation, R.K.Y. and D.C.N.; formal analysis, R.K.Y. and D.C.N.; investigation, R.K.Y.; resources,
R.K.Y.; writing—original draft preparation, R.K.Y.; writing—review and editing, R.K.Y. and D.C.N.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: https://github.com/mnqu/PTE/tree/master/data/mr accessed on
24 March 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, Y.; Marshall, I.J.; Wallace, B.C. Rationale-Augmented Convolutional Neural Networks for Text Classification. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016;
Volume 2016, pp. 795–804

2. Wang, W.; Yang, N.; Wei, F.; Chang, B.; Zhou, M. Gated Self-Matching Networks for Reading Comprehension and Question
Answering. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada,
30 Junly–4 August 2017; Association for Computational Linguistics: Stroudsburg, PA, USA, 2017; Volume 1, pp. 189–198.

3. Lakkaraju, H.; Bach, S.H.; Leskovec, J. Interpretable Decision Sets: A Joint Framework for Description and Prediction. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), San
Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1675–1684.

4. Mahoney, C.J.; Zhang, J.; Huber-Fliflet, N.; Gronvall, P.; Zhao, H. A Framework for Explainable Text Classification in Legal
Document Review. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12
December 2019; pp. 1858–1867.

5. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA,
13–17 August 2016.

6. Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. In Proceedings of the 34th International Conference
on Machine Learning JMLR (ICML’17), Sydney, Australia, 6–11 August 2019; Volume 70, pp. 3319–3328.

7. Camburu, O.M.; Rocktäschel, T.; Lukasiewicz, T.; Blunsom, P. e-SNLI: Natural Language Inference with Natural Language
Explanations. In Proceedings of the NeurIPS, Montréal, QC, Canada, 3–8 December 2018.

8. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2015,
arXiv:1409.0473.

9. Parikh, A.; Täckström, O.; Das, D.; Uszkoreit, J. A Decomposable Attention Model for Natural Language Inference. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing; Austin, TX, USA, 1–5 November 2016; pp. 2249–2255.

https://github.com/mnqu/PTE/tree/master/data/mr


Algorithms 2022, 15, 143 12 of 13

10. Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need.
arXiv 2017, arXiv:1706.03762.

11. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics: Stroudsburg, PA,
USA, 2019; Volume 1, pp. 4171–4186.

12. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps. arXiv 2014, arXiv:1312.6034.

13. Jain, S.; Wallace, B.C. Attention is not Explanation. In Proceedings of the Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Association
for Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume 1, pp. 3543–3556.

14. Wiegreffe, S.; Pinter, Y. Attention is not not Explanation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics: Stroudsburg, PA,
USA, 2019; pp. 11–20.

15. Lipton, Z.C. The Mythos of Model Interpretability. Queue 2018, 16, 31–57. [CrossRef]
16. Granmo, O.C. The Tsetlin Machine—A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Proposi-

tional Logic. arXiv 2018, arXiv:1804.01508.
17. Granmo, O.C.; Glimsdal, S.; Jiao, L.; Goodwin, M.; Omlin, C.W.; Berge, G.T. The Convolutional Tsetlin Machine. arXiv 2019,

arXiv:1905.09688.
18. Yadav, R.K.; Jiao, L.; Granmo, O.C.; Goodwin, M. Human-Level Interpretable Learning for Aspect-Based Sentiment Analysis. In

Proceedings of the AAAI, Vancouver, BC, Canada, 2–9 February 2021.
19. Bhattarai, B.; Granmo, O.C.; Jiao, L. Explainable Tsetlin Machine framework for fake news detection with credibility score

assessment. arXiv 2021, arXiv:2105.09114.
20. Abeyrathna, K.D.; Bhattarai, B.; Goodwin, M.; Gorji, S.R.; Granmo, O.C.; Jiao, L.; Saha, R.; Yadav, R.K. Massively Parallel and

Asynchronous Tsetlin Machine Architecture Supporting Almost Constant-Time Scaling. In Proceedings of the ICML, PMLR,
Online, 2021; pp. 10–20.

21. Yadav, R.K.; Jiao, L.; Granmo, O.C.; Goodwin, M. Interpretability in Word Sense Disambiguation using Tsetlin Machine. In Pro-
ceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART), Vienna, Austria, 4–6 February 2021.

22. Yadav, R.K.; Jiao, L.; Granmo, O.C.; Goodwin, M. Enhancing Interpretable Clauses Semantically using Pretrained Word
Representation. In Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP,
Punta Cana, Dominican Republic, 11 November 2021; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021;
pp. 265–274.

23. Zaidan, O.; Eisner, J.; Piatko, C. Using Annotator Rationales to Improve Machine Learning for Text Categorization. In Proceedings
of the Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational
Linguistics, Rochester, NY, USA, 22–27 April 2007; Association for Computational Linguistics: Stroudsburg, PA, USA, 2007;
pp. 260–267.

24. Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the EMNLP, Doha, Qatar, 25–29 October 2014.

25. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global Vectors for Word Representation. In Proceedings of the EMNLP, Doha,
Qatar, 25–29 October 2014; pp. 1532–1543.

26. Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608.
27. Liu, H.; Yin, Q.; Wang, W.Y. Towards Explainable NLP: A Generative Explanation Framework for Text Classification. In

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019;
Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 5570–5581.

28. Freitas, A.A. Comprehensible classification models: A position paper. SIGKDD Explor. 2014, 15, 1–10. [CrossRef]
29. Zhang, Q.; Wu, Y.N.; Zhu, S.C. Interpretable Convolutional Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018; pp. 8827–8836.
30. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.C.; Salakhutdinov, R.; Zemel, R.S.; Bengio, Y. Show, Attend and Tell: Neural Image

Caption Generation with Visual Attention. In Proceedings of the ICML, Lille, France, 6–1 July 2015.
31. Bao, Y.; Chang, S.; Yu, M.; Barzilay, R. Deriving Machine Attention from Human Rationales. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31October–4 November 2018; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 1903–1913.

32. Mohankumar, A.K.; Nema, P.; Narasimhan, S.; Khapra, M.M.; Srinivasan, B.V.; Ravindran, B. Towards Transparent and
Explainable Attention Models. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
Seattle, WA, USA, 5–10 July 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 4206–4216.

33. McDonnell, T.; Lease, M.; Kutlu, M.; Elsayed, T. Why Is That Relevant? Collecting Annotator Rationales for Relevance Judgments.
In Proceedings of the HCOMP, Austin, TX, USA, 30 October–3 November 2016.

34. Zhang, X.; Jiao, L.; Granmo, O.C.; Goodwin, M. On the Convergence of Tsetlin Machines for the IDENTITY- and NOT Operators.
IEEE Trans. Pattern Anal. Mach. Intell. 2021. [CrossRef] [PubMed]

http://doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1145/2594473.2594475
http://dx.doi.org/10.1109/TPAMI.2021.3085591
http://www.ncbi.nlm.nih.gov/pubmed/34077353


Algorithms 2022, 15, 143 13 of 13

35. Sharma, J.; Yadav, R.; Granmo, O.C.; Jiao, L. Human Interpretable AI: Enhancing Tsetlin Machine Stochasticity with Drop Clause.
arXiv 2021, arXiv:2105.14506.

36. Lei, J.; Wheeldon, A.; Shafik, R.; Yakovlev, A.; Granmo, O.C. From Arithmetic to Logic Based AI: A Comparative Analysis of
Neural Networks and Tsetlin Machine. In Proceedings of the 27th IEEE International Conference on Electronics Circuits and
Systems (ICECS2020), Online, 2020.

37. Lei, J.; Rahman, T.; Shafik, R.; Wheeldon, A.; Yakovlev, A.; Granmo, O.C.; Kawsar, F.; Mathur, A. Low-Power Audio Keyword
Spotting Using Tsetlin Machines. J. Low Power Electron. Appl. 2021, 11, 18. [CrossRef]

38. Mikolov, T.; Karafi, M.; Khudanpur, S. Recurrent neural network based language model. In Proceedings of the Interspeech,
Makuhari, Japan, 6–30 September 2010.

39. Chung, J.; Gülçehre, Ç.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

40. Pang, B.; Lee, L. Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales. In Pro-
ceedings of the Association for Computational Linguistics, Ann Arbor, MI, USA, 26–31 July 2005; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2005; pp. 115–124.

41. Tang, J.; Qu, M.; Mei, Q. PTE: Predictive Text Embedding through Large-Scale Heterogeneous Text Networks. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August
2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1165–1174.

42. Chollet, François and Others: Keras. 2015. Available online: https://keras.io (accessed on 1 March 2022).
43. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980.
44. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
45. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2014; pp. 1746–1751.

46. Liu, P.; Qiu, X.; Huang, X. Recurrent Neural Network for Text Classification with Multi-Task Learning. In Proceedings of the
IJCAI, Manhattan, CA, USA, 9–16 July 2016; pp. 2873–2879.

47. Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the 31st International Conference
on Machine Learning, PMLR, Bejing, China, 21–26 June 2014; Volume 32, pp. 1188–1196.

48. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of Tricks for Efficient Text Classification. In Proceedings of the EACL,
Valencia, Spain, 3–7 April 2017; ACL: Stroudsburg, PA, USA, 2017; Volume 2, pp. 427–431.

49. Shen, D.; Wang, G.; Wang, W.; Min, M.R.; Su, Q.; Zhang, Y.; Li, C.; Henao, R.; Carin, L. Baseline Needs More Love: On Simple
Word-Embedding-Based Models and Associated Pooling Mechanisms. In Proceedings of the ACL,Melbourne, Australia, 26–28
March 2018; ACL: Stroudsburg, PA, USA, 2018; Volume 1, pp. 440–450.

50. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.
In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016, Volume 29.

http://dx.doi.org/10.3390/jlpea11020018
https://keras.io

	Introduction
	Related Works
	Proposed Architecture: TM Initialized Attention Model
	Clause Score from Tsetlin Machine Architecture
	Attention Based Neural Network

	Experiments and Results
	Performance Comparison with State-of-the-Arts
	Explainability

	Conclusions
	References

