Vis enkel innførsel

dc.contributor.authorBjørni, Fredrik Andersen
dc.contributor.authorLien, Sverre
dc.contributor.authorMidtgarden, Torjus Aasrum
dc.contributor.authorKulia, Geir
dc.contributor.authorVerma, Amrit
dc.contributor.authorJiang, Zhiyu
dc.date.accessioned2022-01-28T09:09:59Z
dc.date.available2022-01-28T09:09:59Z
dc.date.created2022-01-04T17:08:18Z
dc.date.issued2021
dc.identifier.citationBjørni, F. A., Lien, S., Midtgarden, T. A., Kulia, G., Verma, A. & Jiang, Z. (2021). Prediction of dynamic mooring responses of a floating wind turbine using an artificial neural network. IOP Conference Series: Materials Science and Engineering, 1201, Artikkel 012023.en_US
dc.identifier.issn1757-899X
dc.identifier.urihttps://hdl.handle.net/11250/2929965
dc.description.abstractNumerical simulations in coupled aero-hydro-servo-elastic codes are known to be a challenge for design and analysis of offshore wind turbine systems because of the large number of design load cases involved in checking the ultimate and fatigue limit states. To alleviate the simulation burden, machine learning methods can be useful. This article investigates the effect of machine learning methods on predicting the mooring line tension of a spar floating wind turbine. The OC3 Hywind wind turbine with a spar-buoy foundation and three mooring lines is selected and simulated with SIMA. A total of 32 sea states with irregular waves are considered. Artificial neural works with different constructions were applied to reproduce the time history of mooring tensions. The best performing network provides a strong average correlation of 71% and consists of two hidden layers with 35 neurons, using the Bayesian regularisation backpropagation algorithm. Sea states applied in the network training are predicted with greater accuracy than sea states used for validation of the network. The correlation coefficient is primarily higher for sea states with lower significant wave height and peak period. One sea state with a significant wave height of 5 meters and a peak period of 9 seconds has an average extreme value deviation for all mooring lines of 0.46%. Results from the study illustrate the potential of incorporating artificial neural networks in the mooring design process.en_US
dc.language.isoengen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePrediction of dynamic mooring responses of a floating wind turbine using an artificial neural networken_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021 Institute of Physics and IOP Publishing Limited 2019.en_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.source.volume1201en_US
dc.source.journalIOP Conference Series: Materials Science and Engineeringen_US
dc.identifier.doihttps://doi.org/10.1088/1757-899X/1201/1/012023
dc.identifier.cristin1974651
dc.source.articlenumber012023en_US
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal