Show simple item record

dc.contributor.authorHusebø, Arild Bergesen
dc.descriptionMaster's thesis Renewable Energy ENE500 - University of Agder 2019nb_NO
dc.description.abstractOut of all the components in rotating electrical machinery, bearings have the highest failure rate. Bearingdegradation is a seemingly random process which is hard to both model and predict. Countless of con-dition based methods and algorithms have been proposed in order to accurately diagnose incipient faultsand estimate the remaining useful lifetime of bearings. These methods are often complex and hard to im-plement. In this thesis, a data-driven method of estimating a linear lifetime based health indicator (HI)using convolutional neural networks (CNNs) is proposed. The idea behind the method is to train a CNNmodel to recognize the shapes and distributions of vibration data in order to predict a HI with minimalpre-processing. Two models are presented: A CNN that takes time-series vibration data as input and aCNN that takes vibration frequency spectrum data as input. Finally, HIs are predicted on unique datasetsand their respective remaining useful lifetimes (RULs) are estimated as part of the model validation process.The results show that the models are able to recognize relevant fault features to a certain degree. However, accurate predictions have proven difficult in many cases.nb_NO
dc.publisherUniversitetet i Agder ; University of Agdernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.titleLifetime Based Health Indicator for Bearings using Convolitional Neural Networksnb_NO
dc.typeMaster thesisnb_NO
dc.subject.nsiVDP::Teknologi: 500::Elektrotekniske fag: 540nb_NO
dc.source.pagenumber48 p.nb_NO

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal