Vis enkel innførsel

dc.contributor.authorChelli, Ali
dc.contributor.authorPätzold, Matthias Uwe
dc.date.accessioned2019-04-17T08:32:10Z
dc.date.available2019-04-17T08:32:10Z
dc.date.created2018-10-01T14:08:02Z
dc.date.issued2018
dc.identifier.issn2166-9570
dc.identifier.urihttp://hdl.handle.net/11250/2594884
dc.description.abstractA robust fall detection system is essential to support the independent living of elderlies. In this context, we develop a machine learning framework for fall detection and daily living activity recognition. Using acceleration data from public databases, we test the performance of two algorithms to classify seven different activities including falls and activities of daily living. We extract new features from the acceleration signal and demonstrate their effect on improving the accuracy and the precision of the classifier. Our analysis reveals that the quadratic support vector machine classifier achieves an overall accuracy of 93.2% and outperforms the artificial neural network algorithm.nb_NO
dc.description.abstractRecognition of Falls and Daily Living Activities Using Machine Learningnb_NO
dc.language.isoengnb_NO
dc.titleRecognition of Falls and Daily Living Activities Using Machine Learningnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.journalIEEE International Symposium on Personal, Indoor, and Mobile Radio Communications workshopsnb_NO
dc.identifier.doi10.1109/PIMRC.2018.8580874
dc.identifier.cristin1616798
dc.relation.projectNorges forskningsråd: 261895nb_NO
dc.description.localcodeNivå1nb_NO
cristin.unitcode201,15,4,0
cristin.unitnameInstitutt for informasjons- og kommunikasjonsteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel