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Abstract—A robust fall detection system is essential
to support the independent living of elderlies. In this
context, we develop a machine learning framework for
fall detection and daily living activity recognition. Using
acceleration data from public databases, we test the
performance of two algorithms to classify seven different
activities including falls and activities of daily living. We
extract new features from the acceleration signal and
demonstrate their effect on improving the accuracy and
the precision of the classifier. Our analysis reveals that the
quadratic support vector machine classifier achieves an
overall accuracy of 93.2% and outperforms the artificial
neural network algorithm.

I. INTRODUCTION

Nowadays, most European countries are witnessing

an ever-growing percentage of elderlies in the society.

According to the World Health Organization (WHO),

the frequency of fall incidents and fall related injuries

increases from 28% to 42% as the age increases from

65 to over 70 years [1]. Falls represent a major public

health problem worldwide and were the leading cause

of death for people aged over 65 years in 2013 [2].

On average, the WHO estimates the number of fatal

falls per year at 420,000 [3]. Falls can cause fatal and

non-fatal injuries. If these injuries are treated quickly,

the potential damage related to these injuries can be

significantly reduced which results in a higher survival

rate. Therefore, it is highly important to develop fall

detection systems which can report fall events as

quickly as possible.

Existing fall detection systems can roughly be

classified into two main categories, namely, context-

aware systems and wearable device-based systems [4].

Context-aware systems include video surveillance sys-

tems, floor sensors, microphones, and pressure sensors.

For instance, if video surveillance is used to detect

a fall [5], a series of images are first captured by a

camera and then processed by a classification algorithm

to determine whether a fall has occurred or not. The

literature contains several articles [6]–[8] dealing with

fall detection and human activity recognition by means

of video surveillance. The major drawback of context-

aware systems is that they can compromise users’

privacy. Note that in some countries, the use of video

camera for surveillance is legally restricted for privacy

reasons [9]. In addition, context-aware systems have

a limited monitoring range, are susceptible to external

events (e.g., changes in illuminance), and have high

installation costs.

The second main category of fall detection systems

is based on wearable devices. These latter are equipped

with an accelerometer, which allows measuring ac-

celeration changes of a moving person. By analyz-

ing the acceleration data, it is possible to recognize

human activities. In particular, a sharp increase in

the acceleration within a short time interval implies

that it is highly probable that a fall has occurred.

Unlike context-aware fall detection systems, this cat-

egory of fall detection systems can determine user

activity without compromising privacy. Moreover, the

widespread of smartphones which inherently integrate

accelerometers can significantly reduce the cost of

wearable fall detection systems.

In the literature, several datasets are publicly avail-

able which provides an opportunity for testing fall

detection methods and assessing their performance on

real-world data. In [10], the authors provide an activity

database that comprises acceleration and angular ve-

locity data. This data was collected with a smartphone

attached to the waist of each participant. A total of 30

participants contributed to this experiment. They were

performing activities of daily living (ADL) including:

walking, walking upstairs, walking downstairs, stand-

ing, sitting, and lying. On average, the total time of

acceleration recoding per participant was 192 seconds.

Note that the dataset in [10] includes only ADL activ-

ities, not fall related data. Public databases containing

acceleration data for falls can be found in [11]–[14].

In [11], the authors present a dataset for mimicked

falls. In fact, it is difficult to collect data of actual

falls, especially from elderly. Most of the collected

fall data in the literature involves young healthy adults.

In general, these participants imitate a planned fall by

plummeting on a mattress that can be different from

unexpected falls in real life. In [11], the data was

collected from the fall activities of 42 participants.

Four types of falls were simulated, namely, forward

fall, backward fall, lateral left fall, and lateral right

fall.

In this paper, our main objective is to develop an

accurate and robust fall and ADL classification method.

We use the fall data from [11] together with the ADL

data from [10] to evaluate the performance of our

proposed machine learning solution. Since we combine

data from two databases, it is difficult to compare
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our results to existing work in the literature. Previous

studies mainly used statistical features of the acceler-

ation signal, such as the mean and standard deviation

[15] to recognize human activities. Compared to these

studies, our main contribution consists in using signal

processing techniques to extract new features based

on frequency domain properties of the acceleration.

These new features are referred to as frequency domain

features and allow a more accurate distinction between

different activities. We utilize 70% of the data to train

the classifier, while 30% of the data is used to test the

trained classifier. The number of features used in our

proposed solution is 66, which is much smaller than the

number of features used in existing baseline solutions,

whereas the accuracy of our solution is comparable to

existing algorithms. We achieve an overall accuracy

of 93.2% for the classification of ADL and falls.

Moreover, the precision of our fall detection system

reaches 100%.

The remainder of the paper is structured as follows.

Section II describes the machine learning framework,

the different blocks in this framework, and their role.

The time domain and frequency domain features are

presented and discussed in Section III. In Section IV,

we evaluate the accuracy and the precision of our

proposed solution and discuss the obtained results.

Finally, Section V provides concluding remarks.

II. FRAMEWORK DESCRIPTION

Our objective is to determine the user’s activity

based on measured acceleration data. In this section,

we explain the activity recognition strategy and provide

an overview of the framework used for classifying

ADLs and fall events. The activity recognition frame-

work and its different building blocks are illustrated

in Fig. 1. This framework comprises mainly: (i) the

input acceleration data obtained from the smartphone

accelerometer, (ii) the feature extraction block, and

(iii) the classification algorithm. In the following, we

discuss each component in this framework.

Fig. 1. Activity recognition framework.

A. Data Description and Preprocessing

The triaxial acceleration data is obtained from two

public databases. The first database in [10] contains

six classes of activities: walking, walking upstairs,

walking downstairs, sitting, standing, and lying. The

acceleration data was collected with a smartphone

attached to the waist of the participants. A total of

30 participants were involved in this experiment. The

collected acceleration data has been sampled at a

sampling frequency of 50 Hz. The acceleration data

has then been divided into buffers of 2.56 s length with

50% overlap. Each of these buffers is labeled with the

corresponding actual activity using the ground truth. In

addition to the ADL data set, we acquired acceleration

data for fall events from the public database in [11].

Our objective is to have a system that can distinguish

between seven kinds of activities: falling, walking,

walking upstairs, walking downstairs, sitting, standing,

and lying. Therefore, the data obtained from the two

databases in [10] and [11] should be homogenous,

since this acceleration data is provided as an input for

the classification algorithm. To this end, we select the

fall data from [11] associated with 30 subjects. This

data is organized into buffers of length 2.56 s to make

it consistent with the data from the first database [10].

The collected triaxial acceleration data can be written

as

ax(t) = agx(t) + abx(t) (1)

ay(t) = agy(t) + aby(t) (2)

az(t) = agz(t) + abz(t) (3)

where ax(t), ay(t), and az(t) stand for the acceleration

data measured along the x-axis, y-axis, and z-axis, re-

spectively. Note that the acceleration ax(t) is expressed

as a sum of two terms: (i) the gravity contribution to

the acceleration along the x-axis denoted by agx(t) and

(ii) the body acceleration along the x-axis referred to

as abx(t). Similarly, ay(t) and az(t) are written as a

sum of two terms as shown in (2) and (3).

Intuitively, it would be easier to classify the activity

based on the acceleration data that reflects the impact

of the body movement on the measured acceleration.

Therefore, it is of interest to eliminate the impact of

gravity on the measured acceleration. In general, the

contribution of gravity to the acceleration varies slowly

and can even be considered constant relatively to the

contribution of the body movement to the acceleration.

This implies that it is possible to eliminate the gravity

impact by applying a high-pass filter to the acceleration

data. We use a Chebyshev filter of Type II [16] with a

stopband frequency of 0.4 Hz and a stopband attenua-

tion of 60 dB. Compared to Butterworth filters, Type II

Chebyshev filters are sharper, which allows us to filter

out the gravity contribution [16]. Moreover, Type II

Chebyshev filters have no ripples for frequencies larger



than the passband frequency [16] which allows us to

extract the contribution of the body movement in the

acceleration signal without distortions.

B. Feature Extraction

In this section, we provide an overview of the feature

extraction and highlight its importance in obtaining an

accurate classification. As illustrated in Fig. 1, the ac-

celeration signal is fed to the feature extraction block,

whose output is used by the classification algorithm

to recognize the activity performed by the user. Note

that if the classification algorithm directly uses the raw

acceleration signal to predict the user activity, it will

be very difficult for the classifier to find a pattern

allowing us to distinguish between different classes

of activities, and thus the accuracy of the classifier

would be very poor. Therefore, it is highly important to

extract a finite set of measures which can characterize

the underlying activity carried out by the user. This

process is known as feature extraction in the realm

of machine learning. The set of extracted features

should capture quantitative descriptions allowing us

to differentiate between different classes of activity.

Typical features include statistical quantities extracted

from the acceleration signal, such as the mean value,

the standard deviation, and high-order moments.

In order to understand how feature extraction can

help to determine the type of activity performed by the

user, let us consider the following example. Suppose

that the data collected pertains to two activities: lying

and standing, and the aim is to classify these two

activities correctly. By examining the acceleration data

az(t) associated with lying, it is found that the mean

value of the acceleration is close to 0 ms−2, whereas

for standing the mean value of the acceleration is

around 10 ms−2. Now assume that we receive a new

acceleration data buffer and that this acceleration data

was obtained while the user was lying or standing.

The objective now is to determine which activity

was performed by the user: lying or standing? The

feature extraction block evaluates the mean value for

the received data buffer and forwards the value of

this feature to the classification algorithm. This latter

would decide that the performed activity is lying if

the mean value of the acceleration data az(t) is close

to 0 ms−2. Otherwise, if the mean value of the

acceleration data az(t) is close to 10 ms−2, then

the classification algorithm decides that the performed

activity is standing. In this example, we classified the

data pertaining to two activities: lying and standing.

The utilized feature vector has a length equal to one

and comprises the mean value of the acceleration az(t).
However, in our problem, we must distinguish between

seven types of activities. Therefore, more features are

required to obtain a good classification accuracy in our

case. In Section III, we discuss in detail all the features

used in our proposed solution in order to achieve a high

classification accuracy.

C. Classification Algorithm

The objective of the classification algorithm is to

recognize the user activity based on the acceleration

data. To achieve this objective, the classification al-

gorithm has been exposed to a large set of labeled

data1 and trained to recognize the different classes as

accurately as possible. Afterwards, this trained classi-

fication algorithm has been run on new data and can

recognize to which class the new data belongs.

First, we recall that the data is organized in buffers

of length 2.56 s. Each of these buffers is labeled

with an activity identity (ID) indicating to which

class the data buffer belongs. The activity IDs are

numbered from 1 to 7. The activity IDs 1, 2, 3, 4,

5, 6, and 7 correspond to walking, walking upstairs,

walking downstairs, sitting, standing, lying, and falling,

respectively. For instance, if the acceleration buffer was

recorded while the participant is standing, the buffer

is labeled with the activity ID 5. For each buffer, we

extract the set of features introduced in Section. III.

After extracting the values of each feature from the

acceleration signal, these features are stacked in a

vector of length 66.

In a first step, the classification algorithm learns

the pattern of each activity from the training data.

During the training phase, the classification algorithm

optimizes its internal parameters such that the classifi-

cation error is minimized. Afterwards, the performance

of the trained algorithm is assessed using the test

data. For each new buffer of data, we first extract its

features and generate the feature vector. The trained

classification algorithm uses the feature vector as an

input and determines the likelihood that this buffer

belongs to one of the seven possible classes. The class

with the highest score will be chosen by the algorithm

as the one to which the buffer belongs. For instance,

for a given buffer, if class 1 has the highest score, then

the algorithm declares that the performed activity is

walking. Using the ground truth (the label of the data),

we can determine if the decision of the algorithm is

correct or wrong. The classification algorithm predicts

the performed activity for each buffer in the test

data. Subsequently, we generate a confusion matrix

that illustrates the accuracy of the classifier and the

precision of its predictions. In our proposed solution,

we test the performance of two different classification

algorithms, namely, artificial neural network (ANN)

and quadratic support vector machine (QSVM). Prin-

ciples and background information about the ANN and

the QSVM algorithms can be found in [17].

1The class of the data is given to the classification algorithm.



III. FEATURE EXTRACTION

In this section, we discuss the features which are

extracted from the triaxial acceleration data. We ex-

plain the methods used to extract these features and

highlight the impact of each feature on improving

the classification accuracy. The set of features can be

divided into two main categories: time domain features

and frequency domain features of the acceleration

signal. The time domain features include the mean

value, the root mean square, the main maxima and

minima, and the peaks of the autocorrelation function

(ACF) of the acceleration signal. The frequency do-

main features comprise the main peaks of the power

spectral density and the location of the spectral peaks

of the acceleration signal.

The first statistical feature that we extract is the

sample mean of the acceleration. This quantity is

computed from the raw acceleration data without ap-

plying any filtering. Investigating the raw acceleration

data for different activities, it can be noticed that

for activities where the human body is in a vertical

position, such as standing and walking, the mean value

of the acceleration ax(t) is equal to 10 ms−2, whereas

for lying the mean value of ax(t) is equal to 0 ms−2.

This allows us to distinguish lying from other activities.

In Fig. 2, we show the histogram of the accelerations

ax(t) and az(t) for the activities standing and lying.

From this figure, we notice that the mean value of

ax(t) equals 10 ms−2 for standing, while the mean

value of ax(t) is 0 ms−2 for lying. On the other hand,

the mean value of the acceleration az(t) for standing

and lying equals 0 ms−2 and 5 ms−2, respectively.

Fig. 2. Histogram of the accelerations ax(t) and az(t) for the
activities standing and lying.

It is worth mentioning that for activities with vertical

body posture, the orientation of the accelerometer

axes is different compared to the axes orientation

for lying. This fact leads to different mean values

of ax(t) depending on the body posture (vertical or

horizontal). Note first that for both standing and lying

the contribution of the body acceleration is negligible

compared to the gravity. For standing, the contribution

of the body acceleration is zero along all axes, whereas

the gravitational field contribution equals 10 ms−2

along the x-axis of the accelerometer2. However, for

lying the impact of the gravitational field is equal to

10 ms−2 along the z-axis of the accelerometer and

0 ms−2 along the x- and y-axes. From Fig. 2, we

observe that the mean value of az(t) is 5 ms−2 for

lying because in the collected data, the acceleration

is recorded while the user is performing lying and

during lying which makes the mean value of az(t)
smaller than 10 ms−2. But even with this error, the

extraction of the mean value of the acceleration allows

an accurate classification of the lying activity. Note

that this feature has not been considered in previous

studies.

The second feature that we extract is the root mean

square (RMS), also known as the quadratic mean.

Before determining the RMS, the acceleration data is

first preprocessed by a high-pass filter to remove the

contribution of the gravitational field. Let us denote

by ãx(t) the filtered acceleration obtained from ax(t).
The RMS of the acceleration can be expressed as

ãrms
x =

√

1

T

∫ T

0

[ãx(t)]
2
dt (4)

where T is the length of the buffer which is equal to

2.56 s.

The third feature is the main maxima and minima of

the triaxial acceleration data. The acceleration data is

filtered to remove the impact of gravity using a Type II

Chebyshev filter. Afterwards, we apply a Savitzky-

Golay filter to smooth the data and reduce the impact

of noise [18]. The advantage of the Savitzky-Golay

smoothing method is that it does not remove the peaks

in the data, preserves the underlying pattern in the data,

and reduces the noise. A closer look at the histogram

of the different activities shows that the range of

acceleration value depends on the performed activity.

For example, the activities walking and standing have

the same mean value, but the dynamic range of the

accelerations is different. Thus, by using the maxima

and minima of the acceleration, we can improve the

classification accuracy for walking and standing. Note

that the use of this feature allows enhancing the clas-

sification of other activities as well.

It is worth to mention that the above features al-

low distinguishing between activities that exhibit very

different acceleration patterns, i.e., activities with dif-

ferent acceleration mean values and variances. How-

ever, for activities with similar statistical properties,

the classification based on the above features would

2The x-axis of the accelerometer corresponds to the z-axis of
the earth-centered coordinate system.



result in poor accuracy. For instance, for the activities

walking, walking upstairs, and walking downstairs, we

notice that they have similar mean and variance. If

the activity recognition algorithm uses only the above

features, we observe a misclassification error larger

than 15% for the activities walking, walking upstairs,

and walking downstairs. To discriminate acceleration

signals associated with these activities, we must inves-

tigate how these acceleration signals vary over time. In

particular, we need to measure the rate of oscillations

of the acceleration. In fact, people tend to move faster

when walking downstairs compared to walking upstairs

which implies a higher rate of oscillations would be

observed if the person is walking downstairs. We can

measure the rate of oscillation of the acceleration

signal and capture a quantitative description of the

shape of these oscillations by exploring the signal

power spectral density (PSD).

Our forth feature quantifies the rate of change and

shape of the oscillation of the acceleration signal.

This feature is extracted from the PSD of the body

acceleration, which can be obtained as follows. First,

we compute the ACF Rab
x
(τ) of the body acceleration

abx(t) as

Rab
x
(τ) =

1

2T

∫ T

−T

abx(t+ τ)
[

abx(t)
]∗

dτ. (5)

Then, the PSD Sab
x
(f) of the body acceleration abx(t)

can be obtained by applying the Fourier transform to

the ACF Rab
x
(τ) as

Sab
x
(f) =

∫

∞

−∞

Rab
x
(τ)e−j2πfτdτ. (6)

In Fig. 3, we illustrate the PSD Sab
x
(f) of the

acceleration for the activities walking and walking

upstairs. We notice from this figure that most of the

information is confined to the range from 0 to 10 Hz.

The pattern of the peaks in this range holds useful

information on the rate and shape of time domain

oscillations. In the PSD curve for walking, we observe

a fundamental frequency f0 around 1 Hz and a number

of harmonics at positions that are multiples of f0. The

spacing between the peaks in the frequency domain

indicates the rate of oscillation of the signal while the

relative amplitudes of the peaks are closely related to

the shape of the oscillations. By comparing the PSD

associated with the activities walking, and walking

upstairs, it can be observed that the peaks for walking

upstairs are closer together and pushed to the left.

This implies that the rate of oscillation is lower for

walking upstairs. In addition, for the activity walking

upstairs, the amplitude of the peaks to the right of

the fundamental decreases quickly, which implies that

the shape of the oscillation is smoother compared to

walking. By extracting the values of the peaks and their

locations from the PSD, we can distinguish between

walking, walking downstairs, and walking upstairs. We

recall that the use of other features, such as the mean,

the RMS, and the maxima does not yield an accu-

rate classification for these activities. The proposed

frequency domain feature enhances the accuracy of

the classification algorithm, especially for the activities

walking, walking downstairs, and walking upstairs.

The fifth feature is extracted from the ACF of the

acceleration signal. More specifically, we estimate the

values and the location of the first maximum and the

second peak of the acceleration ACF. These features

hold information pertaining to the rate and shape of

change of the oscillation of the acceleration signal.

Such features can improve the classification of activi-

ties that have similar statistical properties (i.e., similar

mean values and variances) but have a different rate

and shape of oscillations.
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Fig. 3. PSD of the acceleration pertaining to the activities walking
and walking upstairs.

IV. EXPERIMENTAL RESULTS

In this section, we assess the performance of the

proposed activity recognition framework. The dataset

is divided into two random independent sets: the train-

ing set and the test set. We use 70% of the data for

training and 30% for testing. In our investigation, we

evaluate the performance of the ANN and the QSVM

classification algorithms. To illustrate the importance

of the proposed features in improving the accuracy of

the classification, we arrange the features into three

subsets: Subset A, Subset B, and Subset C. Subset

A includes the mean value of the triaxial acceleration

which is referred to as the first feature in Section III.

Subset B encompasses the features from Subset A

augmented with the features extracted from the PSD

and the ACF of the acceleration which represent the

fourth and the fifth features as described in Section III.

Finally, Subset C comprises the features from Subset B

as well as the RMS and the main maxima and minima



of the acceleration. In other words, the feature vector

for Subset C has a length of 66 and contains all the

features extracted from the acceleration data.

We consider an ANN classification algorithm having

one hidden layer. This latter comprises 25 nodes. The

performance of this ANN algorithm is assessed using

the features of the Subsets A, B, and C. The results

for the classification accuracy of the ANN algorithm

are presented in Table. I. From this table, we notice

that as we use a larger set of features, the overall

accuracy of the classifier is enhanced. For instance,

for the walking activity the accuracy of the classifier

is equal to 25.2% if we use the features from Subset

A. By including the features stemming from the PSD

and the ACF of the acceleration signal (i.e., using the

feature from Subset B), the accuracy of the classifier

for the walking activity is improved by more than

60%. The features related to the shape and rate of the

oscillation of the acceleration signal allow improving

the classification accuracy for most activities. From

Table. I, we notice that the classification accuracy for

the activities walking upstairs, walking downstairs, and

standing is enhanced by 11.8%, 39.2%, and 43.7%,

respectively, if we use the features from Subset B

instead of those from Subset A. The classification

accuracy is improved furthermore by using the features

in Subset C. For falling events, the probability of fall

detection using the Subset C of features is equal to

96.8%, whereas for lying the accuracy of the ANN

algorithm is 100%. In Table. II, we illustrate the

TABLE I
ACCURACY OF THE ANN CLASSIFIER FOR VARIOUS ACTIVITIES

AND DIFFERENT FEATURE SUBSETS.

Accuracy %
Features Wal. Up. Dow. Sit. Sta. Ly. Fal. Overall
Subset A 25.2 67 33.4 85.2 41.7 100 96.8 62.4
Subset B 85.6 78.8 72.6 80.8 85.4 100 93.8 85.1
Subset C 88.4 81.3 84.1 84.8 83 100 96.8 87.8

precision of the ANN classification algorithm when

using the features from the Subsets A, B, and C.

This table shows that all fall events predicted by the

algorithm are real falls and there is no false alarm

in this case regardless of whether we use Subset A,

B, or C. However, for the walking activity, the rate

of false alarm decreases as the set of features used

increases. For instance, the classification precision of

walking increases by 48.2% by using the features from

Subset B instead of those from Subset A. The precision

for recognizing the activities walking upstairs, walking

downstairs, sitting, and standing is enhanced by 28.6%,

28.1%, 8.3%, and 47.2%, respectively, if we use the

features from Subset C instead of the features from

Subset A. Fig. 4 represents the confusion matrix for

the ANN classifier obtained using the features from

TABLE II
PRECISION OF THE ANN CLASSIFIER FOR VARIOUS ACTIVITIES

AND DIFFERENT FEATURE SUBSETS.

Precision %
Features Wal. Up. Dow. Sit. Sta. Ly. Fal. Overall
Subset A 29.4 56.1 57.9 75.5 36.3 99.5 100 62.4
Subset B 77.6 79.9 80.8 83.7 82 99.8 100 85.1
Subset C 84.2 84.7 86 83.8 83.5 99.8 100 87.8

Subset C. In this figure, the diagonal cells show the

number and the percentage of correct classification by

the trained ANN network. For instance, in 459 cases

the classifier correctly predicts the walking activity.

These 459 cases represent 14.3% of the total number

of buffers that are being classified during the test

phase by the trained ANN classifier. Similarly, the

ANN algorithm successfully predicted the class of 370,

332, 476, 450, 603, and 121 data buffers as pertaining

to the activities walking upstairs, walking downstairs,

sitting, standing, and falling, respectively. By looking
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Fig. 4. Confusion matrix obtained using the ANN algorithm.

at a given row of the confusion matrix in Fig. 4, we

can evaluate the prediction precision for a given class.

For instance, let us consider the fourth row which

corresponds to sitting. The activity sitting is correctly

predicted in 476 cases and wrongly predicted in 92

cases, which implies a precision of 83.8% for the

predictions of sitting activity. The activities standing

and walking upstairs are misclassified as sitting, in 90

and 2 cases, respectively. Out of 568 sitting predictions,

92 predictions are wrong which represents 16.2%.

By observing a given column of the confusion

matrix in Fig. 4, it is possible to assess the accuracy

of the algorithm for a given class. For example, con-

sidering the falling events which are represented over

the seventh column. In total there are 125 fall events

in the considered test data. In 121 cases, the fall events

are correctly recognized by the classifier which yields

an accuracy of 96.8%. The classifier fails to recognize

fall events in 4 cases which implies that 3.2% of the

classifications for fall events are unsuccessful. Overall

the ANN classifier was able to successfully predict the



user activity in 87.8% of the cases.

In Fig. 5, we present the confusion matrix for the

QSVM classifier. By comparing the confusion matrix

for the ANN algorithm to that of the QSVM algorithm,

we notice that the QSVM algorithm outperforms the

ANN algorithm in terms of the overall accuracy. An

improvement of 5.4% in overall accuracy is achieved

when using the QSVM algorithm instead of the ANN

algorithm. Moreover, the QSVM algorithm enhances

the accuracy of the classification for walking, walking

upstairs, walking downstairs, sitting, standing, and

falling by 7.5%, 14.6%, 5.7%, 4.7%, 3.5%, and 0.4%,

respectively. In terms of precision, the QSVM algo-

rithm performs better than the ANN algorithm. More

specifically, for the activities walking, walking upstairs,

walking downstairs, sitting, and standing a precision

improvement of 9.2%, 8.6%, 9.2%, 2.3%, and 6.5%,

respectively, has been achieved by using the QSVM

algorithm.
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Fig. 5. Confusion matrix obtained using the QSVM algorithm.

V. CONCLUSION

In this paper, we have proposed a machine learning

approach for fall detection and ADL recognition. We

have tested the performance of two algorithms in clas-

sifying the acceleration data pertaining to the activities

falling, walking, walking upstairs, walking downstairs,

sitting, standing, and lying. We have proposed new

features which are extracted from the acceleration

signal. We have demonstrated the importance of these

features and their positive impact on enhancing the

accuracy of the classifier. Moreover, we have tested the

performance of the ANN and the QSVM classification

algorithms on real-world acceleration data obtained

from public databases. The internal parameters of these

algorithms have been optimized using the training data.

Afterwards, the performance of the trained algorithms

is assessed using the test data. Our investigation re-

veals that the QSVM algorithm outperforms the ANN

algorithm in terms of overall accuracy. Both algorithms

yield more than 95% accuracy in terms of fall detec-

tion.
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