Vis enkel innførsel

dc.contributor.authorRysstad, Asbjørn
dc.date.accessioned2017-09-13T07:36:36Z
dc.date.available2017-09-13T07:36:36Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/11250/2454410
dc.descriptionMaster's thesis Renewable Energy ENE500 - University of Agder 2017nb_NO
dc.description.abstractWith an increasing focus on the environment and moving from fossil to renewable energy, there has and is an increasing interest in zero energy buildings. Zero energy buildings often utilize local intermittent renewable energies such as wind and solar energy, and are going to play an important role in the smart grid development with their distributed generation and energy storage etc. In Southern Norway, the smart village Skarpnes is utilizing building integrated photovoltaic systems and is developed for studying zero energy buildings and its impact on electricity demand and power quality. Power electronic based equipment such as uninterruptible power supplies, adjustable speed drives, personal computers and more have all enhanced our daily lives by providing an efficient and reliable way of utilizing the electrical energy. Because of their non-linear behaviour, they are responsible for harmonic currents causing additional losses and harmful effects. In this thesis, a shunt active power filter based on the instantaneous power theory used for power quality improvement is studied. This involves harmonic current, reactive power and neutral current compensation, where load data is obtained from the smart village Skarpnes project. Investigating the operation of the shunt active power filter during import and export of power, during load changes and operation during distorted and unbalanced utility voltage. Based on simulations using MATLAB/Simulink the three-phase, four-wire shunt active power filter is able to compensate the harmonic currents, reactive power and neutral current. The total harmonic distortion in the source current after compensation is below limits proposed by the Institute of Electrical and Electronics Engineers Standard 519-2014 for all test casesnb_NO
dc.language.isoengnb_NO
dc.publisherUniversitetet i Agder ; University of Agdernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectENE500nb_NO
dc.titleActive Power Filters in Zero Energy Buildingsnb_NO
dc.typeMaster thesisnb_NO
dc.subject.nsiVDP::Teknologi: 500::Elektrotekniske fag: 540::Elkraft: 542nb_NO
dc.source.pagenumberXIII, 80 p.nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal