• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Engineering and Science
  • Department of Natural Sciences
  • Scientific Publications in Natural Sciences
  • View Item
  •   Home
  • Faculty of Engineering and Science
  • Department of Natural Sciences
  • Scientific Publications in Natural Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental warming had little effect on carbon-based secondary compounds, carbon and nitrogen in selected alpine plants and lichens

Nybakken, Line; Sandvik, Sylvi M.; Klanderud, Kari
Journal article, Peer reviewed
Thumbnail
View/Open
Sandvik_2011_Experimental.pdf (238.0Kb)
URI
http://hdl.handle.net/11250/138260
Date
2011
Metadata
Show full item record
Collections
  • Scientific Publications in Natural Sciences [232]
Original version
Nybakken, L., Sandvik, S. M., & Klanderud, K. (2011). Experimental warming had little effect on carbon-based secondary compounds, carbon and nitrogen in selected alpine plants and lichens. Environmental and Experimental Botany, 72(3), 368-376. doi: 10.1016/j.envexpbot.2011.04.011  
Abstract
Global warming is expected to change plant defence through its influence on plant primary resources. Increased temperature (T) will increase photosynthesis, and thus carbon (C) availability, but may also increase soil mineralization and availability of nitrogen (N). More access to C and N is expected to mainly increase plant growth, and, according to hypotheses on resource based defence, this could lower plant concentrations of carbon-based secondary compounds (CBSCs). We used two already established warming experiment with open top chambers (OTCs) and control plots in alpine south-western Norway, one on a ridge (8 years' treatment) and a one in a leeside (3 years' treatment), to study the effects of warming on plant and lichen defensive compound concentrations. The study included five vascular plant and six lichen species. One vascular plant species had lower concentration of CBSCs under elevated T, while the others did not respond to the treatment. In lichens there were no effects of warming on CBSCs, but a tendency to reduced total C concentrations. However, there were effects of warming on nitrogen, as the concentration decreased inside OTCs for three species, while it increased for one lichen species. Lichens generally had higher CBSC and total C concentrations on the ridge than in the leeside, but no such pattern were seen for vascular plants. No elevated temperature effect on CBCSs is most probably a result of high constitutive defence under the limiting alpine conditions, suggesting that chemical defence is little subject to change under climate warming, at least on a short-term basis. We suggest that the driving forces of plant defence in the arctic-alpine should be tested individually under controlled conditions, and suggest that competition from other plants may be a greater threat under climate warming than increased herbivory or disease attacks.
Description
Accepted version of an article published in the journal: Environmental and Experimental Botany. Published version available on Science Direct: http://dx.doi.org/10.1016/j.envexpbot.2011.04.011
Publisher
Elsevier
Journal
Environmental and Experimental Botany

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit