Vis enkel innførsel

dc.contributor.authorMehmood, Arshad
dc.contributor.authorSalah, Bashir
dc.contributor.authorSajid Ullah, Syed
dc.contributor.authorKhan, Shahbaz
dc.contributor.authorKhan, Razaullah
dc.date.accessioned2024-04-12T09:10:59Z
dc.date.available2024-04-12T09:10:59Z
dc.date.created2023-09-25T13:41:16Z
dc.date.issued2023
dc.identifier.citationMehmood, A., Salah, B., Sajid Ullah, S., Khan, S. & Khan, R. (2023). Exploring synchronization and lift suppression in fluid flow around vibrating cylinder: a parallel CFD and global optimization investigation. Frontiers in Physics, 11, Article 1213274.en_US
dc.identifier.issn2296-424X
dc.identifier.urihttps://hdl.handle.net/11250/3126240
dc.description.abstractIn this study, we employ a parallel Computational Fluid Dynamics (CFD) code integrated with the VTDIRECT95 algorithm, a parallel deterministic global optimization method, to conduct global optimization for an oscillating circular cylinder. We conduct numerical simulations for the flow at a Reynolds number of 500 within the parameter range of 0.1≤Ax≤0.3 and 0.5fst≤fex≤2.5fst where Ax represents the inline oscillating amplitude, fex denotes the forcing oscillation frequency, and fst corresponds to the frequency of a stationary cylinder. To enhance computational efficiency, a combination of VTdirect and a CFD solver is utilized to efficiently identify the synchronization region, thereby reducing computational resources. The results reveal a significant reduction in the lift coefficient within the synchronized region compared to unsynchronized regimes. Furthermore, the study delves into the underlying flow physics behind synchronization and lift suppression. By synchronizing the shedding of vortices, their detrimental effects are nullified, resulting in a reduction in lift. Moreover, the research examines the influence of three-dimensional (3-D) flow by comparing 2-D and 3-D simulations at two different Reynolds numbers. It demonstrates that accounting for 3-D effects yields more accurate predictions of fluid behavior. Synchronization maps and root mean square (rms) lift coefficient plots illustrate the impact of Reynolds number and movement frequency on lift suppression. The findings indicate that achieving synchronization in 3-D flow necessitates stronger amplitudes and higher frequencies. At higher Reynolds numbers, the wake structures become unstable, leading to intricate vortical patterns. Consequently, the synchronization curve shifts towards higher amplitudes and frequencies in 3-D simulations. Understanding these phenomena is vital for reducing lift force in practical applications. This research significantly contributes to knowledge regarding synchronization and lift suppression in fluid flow around vibrating cylinders.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleExploring synchronization and lift suppression in fluid flow around vibrating cylinder: a parallel CFD and global optimization investigationen_US
dc.title.alternativeExploring synchronization and lift suppression in fluid flow around vibrating cylinder: a parallel CFD and global optimization investigationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Author(s)en_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.source.volume11en_US
dc.source.journalFrontiers in Physicsen_US
dc.identifier.doihttps://doi.org/10.3389/fphy.2023.1213274
dc.identifier.cristin2178601
dc.source.articlenumber1213274en_US
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal