• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Engineering and Science
  • Department of Natural Sciences
  • Scientific Publications in Natural Sciences
  • View Item
  •   Home
  • Faculty of Engineering and Science
  • Department of Natural Sciences
  • Scientific Publications in Natural Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conservation, spillover and gene flow within a network of northern European marine protected areas

Huserbråten, Mats Brockstedt Olsen; Moland, Even; Knutsen, Halvor; Olsen, Esben Moland; André, Carl; Stenseth, Nils Chr.
Journal article, Peer reviewed
Thumbnail
View/Open
Knutsen_2013_Conservation.pdf (570.5Kb)
URI
http://hdl.handle.net/11250/138275
Date
2013
Metadata
Show full item record
Collections
  • Scientific Publications in Natural Sciences [231]
Original version
Huserbråten, M. B. O., Moland, E., Knutsen, H., Olsen, E. M., André, C., & Stenseth, N. C. (2013). Conservation, spillover and gene flow within a network of northern European marine protected areas. PLoS ONE, 8(9), 1-10. doi: 10.1371/journal.pone.0073388   10.1371/journal.pone.0073388
Abstract
To ensure that marine protected areas (MPAs) benefit conservation and fisheries, the effectiveness of MPA designs has to be evaluated in field studies. Using an interdisciplinary approach, we empirically assessed the design of a network of northern MPAs where fishing for European lobster (Homarus gammarus) is prohibited. First, we demonstrate a high level of residency and survival (50%) for almost a year (363 days) within MPAs, despite small MPA sizes (0.5-1 km2). Second, we demonstrate limited export (4.7%) of lobsters tagged within MPAs (N = 1810) to neighbouring fished areas, over a median distance of 1.6 km out to maximum 21 km away from MPA centres. In comparison, median movement distance of lobsters recaptured within MPAs was 164 m, and recapture rate was high (40%). Third, we demonstrate a high level of gene flow within the study region, with an estimated FST of less than 0.0001 over a ≈ 400 km coastline. Thus, the restricted movement of older life stages, combined with a high level of gene flow suggests that connectivity is primarily driven by larval drift. Larval export from the MPAs can most likely affect areas far beyond their borders. Our findings are of high importance for the design of MPA networks for sedentary species with pelagic early life stages.
Description
Published version of an article in the journal: PLoS ONE. Also available from the publisher at: http://dx.doi.org/10.1371/journal.pone.0073388 Open access
Publisher
Public Library of Science
Journal
PLoS ONE

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit