Vis enkel innførsel

dc.contributor.authorGuntupalli, Lakshmikanth
dc.date.accessioned2016-09-05T09:09:08Z
dc.date.available2016-09-05T09:09:08Z
dc.date.issued2016
dc.identifier.isbn978-82-7117-828-4
dc.identifier.issn1504-9272
dc.identifier.urihttp://hdl.handle.net/11250/2404216
dc.descriptionDoktorgradsavhandling, Fakultet for teknologi og realfag, Universitetet i Agder, 2016nb_NO
dc.description.abstractEnergy efficiency is one of the major goals for achieving green wireless communications. The recent growth in ubiquitous wireless connections and multimedia applications demands higher energy efficiency for wireless communications. As a part of this picture, wireless sensor networks (WSNs) need to be more energy efficient since the battery capacity of nodes in such networks is limited in the absence of energy harvesting sources. In general, an energy efficient protocol should perform as few as possible operations when delivering user information successfully across the network. Energy efficient data transmission schemes could utilize network resources more effectively to lower down the energy consumption level. In this dissertation research, we focus on improving energy efficiency for data transmission and medium access control (MAC) protocols in WSNs. While energy consumption is inevitable for transmitting and receiving data in a WSN, the other typical and dominant energy consumption activities are idle listening, overhearing, and retransmissions due to unsuccessful transmission attempts. An energy efficient MAC protocol conserves energy by minimizing all these auxiliary operations in order to prolong network lifetime. On the other hand, balanced energy consumption among nodes which mitigates energy hole across a WSN also helps to extend network lifetime. In this context, we propose two cooperative transmission (CT) based energy balancingMAC protocols for the purpose of WSN lifetime prolongation. The first one is an asynchronous cooperative transmission MAC protocol, in which nodes generate their own wakeup schedules based on their level number in a WSN topology. The second one is a receiver initiated cooperative transmission MAC protocol in which the CT is initiated by a relay node. It is demonstrated that both proposed CT MAC protocols are able to achieve significantly extended network lifetime. In addition, an energy conserving sleeping mechanism for synchronous duty cycling MAC protocols is also proposed in this thesis. It is an eventtriggered sleeping (ETS) mechanism, which triggers the sleep mode of a node based on the incoming traffic pattern to that node. The ETS mechanism eliminates overhearing in a WSN and achieves higher energy efficiency. Furthermore, we apply packet aggregation at the MAC layer in WSNs for achieving more energy efficient data transmission. In aggregated packet transmission (APT), multiple packets are transmitted as a batch in a frame within a single duty cycle instead of transmitting merely one packet per cycle. Numerical results demonstrate that APT achieves higher throughput and shorter delay, in addition to higher energy efficiency. To evaluate the performance of the proposed MAC protocols and transmission schemes, we develop discrete time Markov chain (DTMC) models and verify them by comparing the results obtained from both analysis and discrete-event based simulations. The analytical and simulation results match precisely with each other, confirming the effectiveness of the proposed protocols and schemes as well as the accuracy of the developed models.nb_NO
dc.language.isoengnb_NO
dc.publisherUniversitet i Agder / University of Agdernb_NO
dc.relation.ispartofseriesDoctoral dissertations at University of Agder;
dc.rightsNavngivelse-Ikkekommersiell-DelPåSammeVilkår 3.0 Norge*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/no/*
dc.titleEnergy Efficiency inWireless Sensor Networks: Transmission Protocols and Performance Evaluationnb_NO
dc.typeDoctoral thesisnb_NO
dc.typePeer reviewednb_NO
dc.subject.nsiVDP::Technology: 500::Information and communication technology: 550nb_NO
dc.source.pagenumberxiii, 205 s.nb_NO
dc.source.issue135nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell-DelPåSammeVilkår 3.0 Norge
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell-DelPåSammeVilkår 3.0 Norge