Vis enkel innførsel

dc.contributor.authorRomero, Daniel
dc.contributor.authorShrestha, Raju
dc.contributor.authorTeganya, Yves
dc.contributor.authorPrabhakar Chepuri, Sundeep
dc.date.accessioned2024-09-04T12:51:02Z
dc.date.available2024-09-04T12:51:02Z
dc.date.created2020-09-21T13:13:29Z
dc.date.issued2020
dc.identifier.citationRomero, D., Shrestha, R., Teganya, Y., & Prabhakar Chepuri, S. (2020). Aerial spectrum surveying: Radio map estimation with autonomous UAVs. In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP)en_US
dc.identifier.isbn978-1-7281-6662-9
dc.identifier.issn2378-928X
dc.identifier.urihttps://hdl.handle.net/11250/3150158
dc.descriptionPersonal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.description.abstractRadio maps are emerging as a popular means to endow next-generation wireless communications with situational awareness. In particular, radio maps are expected to play a central role in unmanned aerial vehicle (UAV) communications since they can be used to determine interference or channel gain at a spatial location where a UAV has not been before. Existing methods for radio map estimation utilize measurements collected by sensors whose locations cannot be controlled. In contrast, this paper proposes a scheme in which a UAV collects measurements along a trajectory. This trajectory is designed to obtain accurate estimates of the target radio map in a short time operation. The route planning algorithm relies on a map uncertainty metric to collect measurements at those locations where they are more informative. An online Bayesian learning algorithm is developed to update the map estimate and uncertainty metric every time a new measurement is collected, which enables real-time operation.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleAerial Spectrum Surveying: Radio Map Estimation with Autonomous UAVsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2020 IEEEen_US
dc.subject.nsiVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550en_US
dc.source.journalIEEE Workshop on Machine Learning for Signal Processing (MLSP)en_US
dc.identifier.doihttps://doi.org/10.1109/MLSP49062.2020.9231595
dc.identifier.cristin1831658
dc.relation.projectNorges forskningsråd: 280835en_US
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal