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Abstract: The lifetime of a UAV-assisted wireless network is de-
termined by the amount of energy consumed by the UAVs during flight,
data collection, and transmission to the ground station. Routing proto-
cols are commonly used for data transmission in a communication net-
work. However, because of the mobility of UAVs, using a routing protocol
with a single communication technology results in higher delay and more
energy consumption in a UAV-assisted wireless network. To overcome
this, we propose two reinforcement learning (RL) algorithms, Q-learning
and deep Q-network (DQN), for energy-efficient data transmission over a
hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network. We con-
sider BLE, LTE, Wi-Fi, and LoRa for communication over a UAV-GS
link. The RL algorithms take any random network as input and learn
the best policy to output the network with less energy consumption. The
reward/penalty is chosen in such a way that the network with the highest
energy consumption is penalized and the one with the lowest is rewarded,
thereby minimizing total network energy consumption. Based on learn-
ing, it creates a hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless
network by assigning the best communication technology to a UAV-GS
link. Further, we compare the performance of proposed RL algorithms
with a rule-based algorithm and random hybrid scheme. In addition, we
propose a theoretical framework for constructing hybrid network for both
free space and free space multipath path loss models. We demonstrate
the performance comparison of the proposed work with the conventional
shortest path routing algorithm in terms of network energy consumption
and average network delay using extensive results. Finally, the effect of
the velocity of the UAV and the number of packets on the performance
of the proposed framework is analyzed.





G.1 Introduction

Technological advances and ease of regulations in today’s world have helped un-
manned aerial vehicle (UAV) technology to serve the ever-growing demand of mod-
ern applications. UAVs are used in a number of applications that include precision
agriculture [1], space exploration [2], providing connectivity to terrestrial networks
[3], and public safety [4]. Their ability to maneuver and access remote locations
has made them suitable for remote sensing and disaster management applications
[5]. UAV swarms with high precision control have recently paved the way for UAV
light-shows in various events thereby reducing pollution due to explosives [6].

To ensure safe and secure UAV operations, UAV communication plays a vital
role. UAVs are equipped with various communication modules such as Bluetooth
Low Energy (BLE), Long Term Evolution (LTE), Wireless Fidelity (Wi-Fi), and
Long Range (LoRa). These communication technologies ensure that UAVs are trans-
mitting the required control and telemetry data to the ground control stations (GS).
UAV health and trajectory are monitored by continuously sending signals to the GS
and if required, to other UAVs.

Various works have been proposed in this regard. A dual radio internet-of-
things (IoT) architecture has been proposed in [7] for the application of wildlife
monitoring systems. The proposed approach in [7] leverages BLE in low power
wide area network (LPWAN) based on the proximity among the wildlife animal
herd. Finally, an analytical model for energy consumption has been presented to
evaluate the performance of the proposed approach [7]. It has been shown that the
proposed dual radio network improves energy efficiency when compared to a network
utilizing LPWAN alone [7]. In [8], the authors have proposed an indoor hybrid
RF/PLC/VLC communication system to switch the device connections among the
RF, PLC, and VLC in order to improve the sum rate capacity. Further, the transmit
power minimization problem has been formulated and analyzed in [9]. However, no
literature is presented focusing on the hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted
wireless network for energy-efficient data transmission.

Further, many works have been presented in the literature focusing on the ap-
plication of reinforcement learning (RL) in UAV-assisted wireless networks. A deep
learning (DL) algorithm has been proposed in [10] for the collection of data in a
UAV-assisted wireless network. In [11], several DL-based artificial intelligence (AI)
methods such as point learning, multi-agent deep deterministic policy gradient, and
federated DL have been proposed to solve the optimization problem of energy ef-
ficiency in a UAV-assisted wireless network. In [12], a combination of echo state
learning and RL is used to solve the joint flight control and spectrum access prob-
lem in TeraHertz-band for UAV-assisted wireless networks. A deep reinforcement
learning (DRL) approach has been proposed in [13] for resource allocation in terms of
throughput, bandwidth, and power consumption in UAV-assisted wireless networks.
In [14], the authors utilize the stochastic learning automata (SLA) algorithm to
perform joint optimization of channel and relay selection in UAV-aided device-to-
device (D2D) networks. However, none of these works focused on utilizing RL al-





gorithms for energy-efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa
UAV-assisted wireless network. Motivated by this, we propose two RL algorithms
for energy-efficient data transmission over a hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network. The main contributions of this paper are:

• A hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network is formed
with free space (FS) and free space multipath (FSMP) energy models.

• Analytical expressions corresponding to network energy consumption and av-
erage network delay are derived for the data transmission over the hybrid
BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network.

• Further, two RL algorithms namely, Q-learning and deep Q-network (DQN)
are proposed for energy-efficient data transmission over hybrid BLE/LTE/Wi-
Fi/LoRa UAV-assisted wireless network. The performance of the proposed
RL algorithms is compared with the rule-based algorithm and random hybrid
scheme.

• Through extensive numerical results, we show that the proposed RL algorithms
result in energy-efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa
UAV-assisted wireless network. We also compare the performance of the pro-
posed hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network in terms
of the network energy consumption and average network delay with conven-
tional shortest path routing algorithm considering individual communication
technology.

The remaining sections of this article are structured as follows: Section G.2
discusses the system model and problem formulation. The proposed theoretical
framework for energy-efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa
UAV-assisted wireless network is presented in Section G.3. The analytical expres-
sions corresponding to network energy consumption and average network delay for
FS and FSMP models are derived in Section G.4. Section G.5 describes the proposed
RL algorithms for energy-efficient data transmission over hybrid BLE/LTE/Wi-
Fi/LoRa UAV-assisted wireless network. Evaluation metrics are described in Sec-
tion G.6 and the numerical results are discussed in Section G.7. Finally, Section G.8
concludes the paper by providing a summary and possible future research directions.

G.2 System model and problem formulation

We consider a UAV-assisted wireless network wherein, N UAVs are deployed ran-
domly over B2 area over l layers of height h1, h2, · · · , hl, respectively, as shown in
Fig. G.1. These UAVs collect the data and send it to the GS which is situated
on the ground at (B/3, B/3). We consider GS to have access to all communication
technologies to collect the data and process it. Here, the data arrival at each UAV is
assumed to follow the Poisson process. After a successful transmission of data from
one location, the UAV moves to another location randomly to collect the data.





Table G.1: Summary of important parameters used in this work.

Notation Definition

C Cost of the network in terms of en-
ergy consumption

N Number of UAVs present in the net-
work

hi Height of the ith layer
l Total number of layers
B2 Area of each layer over which UAVs

are deployed
PT Transmit power
R Data rate over the transmission

link
dg Radial distance
k Number of bits
Ee Energy consumed by the electronic

circuit for transmitting one bit
Efs Free space power amplification en-

ergy
Emp Power amplification energy in the

multipath fading model
ETr Energy consumed for transmitting

k bits of data
Ed Energy consumed for transmitting

k bits of data over dg distance
τ Communication technology
rτ Range of the communication tech-

nology
λ Learning rate for the proposed RL

algorithms
γ Reward parameter for the proposed

RL algorithms
∆ Discount parameter for the pro-

posed RL algorithms
TTr Transmission delay
Tprop Propagation delay
Aτ Area occupied by the communica-

tion technology
Ppr Probability that a UAV present Aτ

W1 Weighing parameter corresponding
to ETr

W2 Weighing parameter corresponding
to Ed

EN/W Total energy consumed by the net-
work

w Weights of the policy neural net-
work

ŵ Weights of the target neural net-
work

ζ Interval after which target network
weights are updated (in terms of
number of steps)

ϕ Denotes if terminal state is reached

A UAV-GS link is considered to select one of the four communication technologies
from BLE, LTE, Wi-Fi, and LoRa. Once a communication link is established to a
UAV-GS link, the data will be transmitted with a transmit power of PT and a
data rate of R. This will incur a delay of Td seconds. Further, two path loss models
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Figure G.1: System model for the hybrid BLE/LTE/Wi-Fi/LoRa scheme for two
layers.

such as FS and FSMP are considered for inserting a communication technology for a
UAV-GS link. In the FS model, a UAV-GS link can select one of the communication
technologies, if the radial distance of the link is less than rτ where τ represents one of
the four communication technologies BLE, LTE, Wi-Fi, or LoRa. In the FS model,
the energy consumption follows d2 model. In the FSMP model, a UAV-GS link
can select any of the communication links irrespective of its distance. However, the
energy consumption follows d2 model if the radial distance is less than rτ , else, the
energy consumption follows d4 model.

G.2.1 Problem Formulation

In this work, our aim is to minimize the network energy consumption. Thus, we
first obtain the overall network energy consumption. The total network energy con-
sumption is obtained as the sum of the energy consumption at each UAV-GS link.
The energy consumption at a UAV-GS link is the sum of the energy consumption
for transmitting the data with a transmit power and the energy consumed for trans-
mitting this data over a radial distance dg. With PT being the transmit power and
R as the data rate, the energy consumed for transmitting k bits of data is obtained
as [15]

ETr =
kPT

R
. (G.1)

As mentioned earlier, the energy consumption depends on the path loss model
and the radial distance. Next, we derive the energy consumption for the FS model
and FSMP model.





G.2.1.1 FS Model

In the FS model, a link can be connected to a communication technology in case
the radial distance is less than the threshold distance, rτ , of that communication
technology. With dg being the radial distance, the energy consumed for transmission
of data over a distance dg is obtained as [16]

Ed,fs = kEe + kEfsd2g, (G.2)

where Ee is the energy consumed by the electronic circuit for transmitting one bit
and Efs denotes the free space power amplification energy.

G.2.1.2 FSMP Model

In the FSMP model, a UAV-GS link will be assigned with any of the communication
technologies irrespective of its radial distance. The energy consumed for transmit-
ting k bits of data over a radial distance of dg is obtained as [16]

Ed,fsmp =

{
kEe + kEfsd2g, when dg < rτ ;

kEe + kEmpd
4
g, when dg ≥ rτ .

(G.3)

Here, Emp = Efs/r2τ denotes the power amplification energy in the multipath fading
model. We consider Ee = 25 × 10−9 J/bit and Efs = 10 × 10−12 J/bit/m2 for the
simulation evaluation [17].

Finally, the total cost of the UAV-assisted wireless network in terms of energy
consumption is obtained as

C =
N∑
i=1

(ETr,i + Ed,i). (G.4)

The aim of this work is to minimize the cost, defined in (G.4), of the network in
terms of energy consumption.

G.3 Energy-Efficient Data Transmission over Hy-
brid BLE/LTE/Wi-Fi/LoRa UAV-Assisted
Wireless Network Formation

The proposed scheme aims at the creation of a hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network for energy-efficient data transmission. We consider two
path loss models for generating the network which are described below.

G.3.1 FS model

In the FS model, a UAV-GS link can select a communication technology in case the
radial distance is less than the threshold distance rτ .





Algorithm 6: Algorithm to obtain the FS model-based Hybrid
BLE/LTE/Wi-Fi/LoRa UAV-Assisted Wireless Network.
Input: N , dg
Output: Network energy consumption and average network delay

1 if dg < rBLE then
2 Calculate the energy consumed over a UAV-GS link using (G.1) and

(G.2) for all communication protocols;
3 Emin = min{EBLE, ELTE, EWi-Fi, ELoRa};
4 Choose the communication protocol with Emin;

5 else if dg < rLTE then
6 Calculate the energy consumed over a UAV-GS link using (G.1) and

(G.2) for LTE, Wi-Fi, and LoRa;
7 Emin = min{ELTE, EWi-Fi, ELoRa};
8 Choose the communication protocol with Emin;
9 else if dg < rWi-Fi then

10 Calculate the energy consumed over a UAV-GS link using (G.1) and
(G.2) for Wi-Fi and LoRa;

11 Emin = min{EWi-Fi, ELoRa};
12 Choose the communication protocol with Emin;
13 else
14 Choose the LoRa communication protocol;
15 end
16 Obtain network energy consumption and average network delay

Table G.2: Transmit power, data rate, and the path loss reference distance for all
the communication protocols considered in this work.

Protocol PT (W) R (Mbps) PT/R rτ
BLE [18], [19] 0.01 1.36 0.007× 10−6 200

LTE [20], [21] 0.1 1 0.1× 10−6 400

Wi-Fi [22], [23] 2 10 0.2× 10−6 600

LoRa [23], [24], [25] 0.025 0.050 0.5× 10−6 1500

Algorithm 6 describes the steps involved in the selection of a communication
protocol for a UAV-GS link. From Table G.2, it is observed that the threshold
distance of BLE is less than that of LTE. This will be followed by Wi-Fi and LoRa.
When the radial distance of a link is less than rBLE, the link will be assigned to one
of the four communication technologies that consume less energy. When the radial
distance is less than rLTE, the link will be assigned to one of the communication
technologies from LTE, Wi-Fi, and LoRa based on minimum energy consumption.
When the radial distance is less than rWi-Fi, the link will be assigned with one of
the communication technologies from Wi-Fi and LoRa based on minimum energy
consumption. Else, it will be connected to LoRa.





Algorithm 7: Algorithm to obtain the FSMP model-based Hybrid
BLE/LTE/Wi-Fi/LoRa UAV-Assisted Wireless Network.
Input: N , dg
Output: Network energy consumption and average network delay

1 Calculate the energy consumed over a UAV-GS link using (G.1) and (G.3)
for all communication protocols

2 Emin = min{EBLE, ELTE, EWi-Fi, ELoRa}
3 Choose the communication protocol with Emin

4 Obtain network energy consumption and average network delay

G.3.2 FSMP model

In the FSMP model, a link will be assigned with one of the communication links
based on the energy consumption irrespective of its radial distance.

Algorithm 7 describes the procedure for the creation of hybrid BLE/LTE/Wi-
Fi/LoRa UAV-assisted wireless network to evaluate the energy consumed over a
link for different communication technologies. Assign the communication technology
that consumes less energy for transmission.

G.4 Analytical model for Energy-Efficient Data
Transmission over Hybrid BLE/LTE/Wi-
Fi/LoRa UAV-Assisted Wireless Network

In this section, we derive the mathematical expressions for the network energy con-
sumption for both FS and FSMP models.

G.4.1 FS Model

In the FS model, a link can be assigned to a communication technology in case the
radial distance is less than the threshold distance. This implies that the energy
consumption follows d2 model. Thus, the connection to a communication protocol
completely depends on the ETr as the Ed is the same for all the communication
protocols. From Table G.2, it can be observed that the PT/R ratio is less for BLE,
followed by LTE, Wi-Fi, and LoRa. Thus, the number of UAV-GS links connected
to any of the communication technologies depends on the presence of the UAV in
its communication range. For example, if a UAV is present in the BLE range, it will
be connected to BLE. In case the UAV is present in the LTE range and not in the
BLE range, then it will be connected to LTE. The same applies for Wi-Fi. In case
the UAV is not present in the Wi-Fi range, it will be connected to LoRa. Thus,
each communication technology occupies a circular range for its connection. Thus,
the circular area over which each communication technology occupies in a layer of





height hi is obtained as

Aτ =


πx2BLE,fs, for BLE

πx2LTE,fs − πr2BLE,fs, for LTE

πx2Wi-Fi,fs − πr2LTE,fs, for Wi-Fi

B2 − πx2Wi-Fi,fs, for LoRa

(G.5)

where, τ represents the different communication technologies and xτ is given as

xτ =


√
r2τ − h2i , if rτ > hi;

0, otherwise,
(G.6)

Let Ppr represent the probability that a UAV is present in the area corresponding
to a communication technology which is obtained as

Ppr,τ =
Aτ

B2
. (G.7)

Thus, the number of UAV-GS links connected to a communication technology is
obtained as

nτ = Ppr,τN (G.8)

The energy consumed by communication technology is obtained as

Eτ = Ppr,τN(ETr + Ed,fs,avg) (G.9)

Finally, the total energy consumed by the network is obtained as

EN/W =
∑
τ

Ppr,τN(ETr,τ + Ed,fs,τ,avg) (G.10)

Here, Ed,fs,τ,avg represents the average energy consumption incurred by the commu-
nication technology τ . The average energy Ed,fs,τ,avg over an area D can be obtained
as [26]

Ed,fs,τ,avg =
1

D

∫∫
D

f(r, θ) r dr dθ (G.11)

Evaluating the above integral over the region D defined as the area between two
concentric circles with radius ra and rb (rb > ra) gives

Ed,fs,τ,avg =
1

π(r2b − r2a)

∫ 2π

0

∫ rb

ra

(kEe + kEfsr2)r dr dθ (G.12)

Upon solving, we obtain the generalized closed form expression for Ed,fs,τ,avg as

Ed,fs,τ,avg = kEe +
kEfs
2

(r2a + r2b ) (G.13)





where ra and rb are defined as

ra =


0, for BLE

rBLE,fs, for LTE

rLTE,fs, for Wi-Fi

rWi-Fi,fs, for LoRa

(G.14)

and

rb =


rBLE,fs, for BLE

rLTE,fs, for LTE

rWi-Fi,fs, for Wi-Fi

rLoRa,fs, for LoRa

(G.15)

Similarly the average delay of the network Tavg,fs can be derived as,

Tavg,fs =
1

π(r2b − r2a)

∫ 2π

0

∫ rb

ra

(Ttrans + Tprop)r dr dθ (G.16)

where the expressions for Ttrans and Tprop are detailed in Section G.6. On solving,
we obtain the expression for the average network delay Tavg,fs as,

Tavg,fs =
k

R
+

2(r2a + r2b + rarb)

3c(ra + rb)
(G.17)

where ra and rb are defined as above. The parameter c is the speed of light in vaccum
which is equal to 3× 108 m/s.

G.4.2 FSMP Model

In contrast to the FS model, a link can be assigned with any of the communication
technology irrespective of its radial distance. Thus, the connection to a communica-
tion technology depends on both ETr and Ed. As described in the previous section,
the link will be connected to a communication protocol if the UAV is present in the
range of that communication protocol. Now we need to obtain the range beyond
which a communication protocol extends for energy-efficient data transmission over
hybrid UAV-assisted wireless network. For example, the BLE can be assigned to a
link even if the radial distance is greater than the threshold distance. The require-
ment is that the total energy consumed with d4 model of BLE should be less than
the total energy consumed with d2 model of LTE which is defined as

ETr,BLE + Ed,fsmp,BLE < ETr,LTE + Ed,fs,LTE (G.18)

We need to derive the range of BLE, rBLE by considering equality in (G.18).

kPT,BLE

RBLE

+ kEe + kEmpd
4
g =

kPT,LTE

RLTE

+ kEe + kEfsd2g (G.19)





Solving the above equation, we get the threshold distance corresponding to BLE
which is defined as

rBLE =

√√√√Efs ±√
E2fs − 4(

PT,BLE

RBLE
− PT,LTE

RLTE
)

2Emp

(G.20)

Similarly, we can obtain the range for LTE, Wi-Fi, and LoRa. With the new range,
we can obtain the area over which BLE, LTE, Wi-Fi, and LoRa exist.

Aτ =


πx2BLE,fsmp, for BLE

πx2LTE,fsmp − πr2BLE,fsmp, for LTE

πx2Wi-Fi,fsmp − πr2LTE,fsmp, for Wi-Fi

B2 − πx2Wi-Fi,fsmp, for LoRa

(G.21)

where, τ represents the different communication technologies and xτ is given as

xτ =


√
r2τ − h2i , if rτ > hi;

0, otherwise,
(G.22)

Let Ppr represents the probability that a UAV is present in the area corresponding
to a communication technology which is obtained as

Ppr,τ =
Aτ

B2
. (G.23)

Thus, the number of UAV-GS links connected to a communication technology is
obtained as

nτ = Ppr,τN (G.24)

The energy consumed by communication technology is obtained as

Eτ = Ppr,τN(ETr + Ed,fsmp,avg) (G.25)

Finally, the total energy consumed by the network is obtained as

EN/W =
∑
τ

Ppr,τN(ETr,τ + Ed,fsmp,τ,avg) (G.26)

Similar to (G.12) for the FS model, the average FSMP energy consumption
Ed,fsmp,τ,avg for a communication technology τ is obtained as

Ed,fsmp,τ,avg =
1

π(r2b − r2a)

∫ 2π

0

[∫ rc

ra

(kEe + kEfsr2)r dr dθ+∫ rb

rc

(kEe + kEmpr
4)r dr dθ

]
(G.27)





Solving the above equation, the expression for the average energy consumption
Ed,fsmp,τ,avg is given as

Ed,fsmp,τ,avg = kEe +
k

(r2b − r2a)

[
kEfs
2

(r4c − r4a) +
kEmp

3
(r6b − r6c )

]
(G.28)

where ra, rb, and rc are defined as

ra =


0, for BLE

rBLE,fsmp, for LTE

rLTE,fsmp, for Wi-Fi

rWi-Fi,fsmp, for LoRa

(G.29)

rb =


rBLE,fsmp, for BLE

rLTE,fsmp, for LTE

rWi-Fi,fsmp, for Wi-Fi

rLoRa,fsmp, for LoRa

(G.30)

and

rc =


rBLE,fs, for BLE

rLTE,fs, for LTE

rWi-Fi,fs, for Wi-Fi

rLoRa,fs, for LoRa

(G.31)

Similarly the average delay of the network Tavg,fsmp can be derived as,

Tavg,fsmp =
1

π(r2b − r2a)

∫ 2π

0

∫ rb

ra

(Ttrans + Tprop)r dr dθ (G.32)

where the expressions for Ttrans and Tprop are detailed in Section G.6. Solving the
above equation, we obtain the expression for the average network delay Tavg,fsmp as,

Tavg,fsmp =
k

R
+

2(r2a + r2b + rarb)

3c(ra + rb)
(G.33)

where ra, rb, and c are defined as above. It can be observed that the average network
delay for both the hybrid FS and FSMP schemes is equal. This is expected as the
delay in both cases is directly proportional to dg. This is also verified through
simulations in the subsequent sections.

G.5 RL-Based Energy-Efficient Data Transmission
over Hybrid BLE/LTE/Wi-Fi/LoRa UAV-
Assisted Wireless Network Formation

RL is a branch of machine learning in which an agent learns the optimal policy
strategy through a set of actions. In a RL framework, the agent is the entity that
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Figure G.2: An illustration of Q-learning.

Table G.3: Q-table corresponding to state-action pairs.

St
at
es

Actions

tries to learn and model the environment that it interacts with. The agent interacts
with the environment through a set of trial-and-error actions. Based on these actions
the environment either rewards or penalizes the agent. The feedback thus obtained
allows the agent to navigate the environment by transitioning to new states, thereby
updating its optimal policy strategy. RL is generally used to solve problems involving
Markov Decision Process (MDP) where the state transition probability of moving
to the next state is dependent only on the present state and not the previous other
states. In this paper, we consider two RL algorithms such as Q-learning and DQN
which are described next.





G.5.1 Q-Learning

In this section, we describe the proposed Q-learning approach for energy-efficient
data transmission over hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless net-
work. Q-learning is a model-free reinforcement learning algorithm in which the
agent directly interacts with the environment to achieve the optimal policy. The
algorithm is value-based and finds the value function without any prior knowledge
of the state transition probabilities [27]. Compared to model-based algorithms, Q-
learning offers relatively less execution time and storage cost, provided the state
and action space are not large. Since the algorithm operation is reward-dependent,
proper design of the reward function is crucial for the algorithm’s performance and
conduct [28, 29]. In this work, the goal of the Q-learning algorithm is to transmit the
data from UAV to GS with minimum energy consumption. In our hybrid system,
the states, actions, and rewards as shown in Fig. G.2 are detailed as follows:

G.5.1.1 States

Let S = {sn} represent a set of N states for the Q-learning algorithm where n =

1, 2, ..., N . In this work, each state represents the communication link between the
UAV and GS. Since there are N UAVs in the network, the number of UAV-GS
communication links is N , and hence the number of states is N .

G.5.1.2 Action

Let each state sn ∈ S be associated with a set of M actions A = {am}, where
each action represents the agent choosing a communication technology to assign to
a UAV-GS link. In our hybrid system, there are four communication technologies
and hence, there are four actions i.e., M = 4 in our Q-learning algorithm.

G.5.1.3 Reward/Penalty

Based on the action, the agent receives a reward/penalty from the environment. If
γ is denoted as the reward/penalty, then γ = γ(sn, am) is the reward/penalty that
an agent obtains when it is present in state sn and performs an action am. In our
hybrid system, the agent will receive the reward/penalty after selecting the commu-
nication technology for the UAV-GS link. Since the objective of the proposed work
is energy-efficient data transmission over a hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network, γ is considered in terms of the network energy consump-





tion. The expression for γ is defined as

γ =



10−6

EN/W

1

EN/W

e−EN/W

W1

E1,N/W

+
W2

E2,N/W

,

(G.34)

(G.35)

(G.36)

(G.37)

where, E1,N/W and E2,N/W denote the network energy consumed for transmitting
k-bits of information and the network energy consumed for transmitting over a
distance. Further, W1 and W2 are the weights assigned for E1,N/W and E2,N/W ,
respectively. Since a higher reward translates to an optimized network, we consider
γ as the inverse function of energy.

G.5.1.4 Updating the Q-value

The reward/penalty from the agent is used to update the Q-value corresponding to
a state-action pair as given in Table G.3. When a UAV-GS link is assigned to a
communication protocol, it results in a reward. The new Q-value is obtained as

Q(st, at)← (1− λ)Q(st, at) + λ(γ +∆max
a
Q(st+1, a)), (G.38)

where, λ and ∆ are the learning rate and discount corresponding to the Q-learning
approach, respectively. Here, maxaQ(st+1, a) takes the maximum of the future
reward and applies it to the reward for the current state.

Algorithm 8 describes the Q-learning approach proposed in this work. In the
proposed Q-learning algorithm, initialize the Q-matrix with the number of UAV-
GS links as rows and the communication protocols as columns. The UAV-GS links
are ordered as rows in decreasing order of their distance to the ground station.
Now, starting from the first row of the Q-matrix, randomly select a communication
protocol. With the selected communication protocol, calculate the network energy
consumption. Calculate the reward using (G.34), (G.35), (G.36), and (G.37) and
update the Q-value of the link using (G.38). Next, transition to the next state based
on the decreasing distance to the ground station. The state transition rule employed
in this work is partially motivated by [30], where the authors have used decreasing
channel state information as a means to transition to the next state. Repeat the
above procedure until the UAV-GS link closest to the ground station is updated.
The above steps are repeated again for a large number of iterations such that all links
and communication protocols are covered. Once the training is completed, connect
the UAV-GS link with a communication protocol which results in the highest Q-
value. Calculate the network energy consumption and average network delay for
the energy-efficient data transmission over a hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network. With the increase in the number of state-action pairs, the





Algorithm 8: Q-learning approach to determine the optimized hybrid
UAV-assisted communication network
Input: N UAVs, M communication technologies, Maximum number of

episodes Kmax, λ, ∆, exploration-exploitation factor ε
Output: Network energy consumption and average network delay

1 Initialize the rows and columns of the Q-matrix with zeros;
2 Assign the UAV-GS links to the rows of the Q-matrix in descending order of

distance to the ground station;
3 Assign the communication technologies to the columns of the Q-matrix;
4 Training
5 for i = 1 to Kmax do
6 Select the first state s0;
7 for t = 1 to N do
8 Generate a random number u ∈ (0, 1);
9 if u > ε then

10 Select action from Q-matrix which has maximum Q-value
at = maxaQ(st, at);

11 else
12 Select a random communication technology as action at;
13 end
14 Calculate the network energy consumption using (G.1), (G.3), and

(G.4);
15 Obtain γ using (G.34), (G.35), (G.36), and (G.37);
16 Update the Q-value using (G.38);
17 if st == sN then
18 break;
19 else
20 Update to next state st = st+1 in the order of decreasing distance

to ground station;
21 end
22 end
23 end
24 Validation
25 In each row of the Q-matrix, select the indices with maximum Q-value;
26 Assign the communication technology with the highest Q-value to the

UAV-GS link;
27 Calculate the network energy consumption and average network delay;

Q-matrix employed in the Q-learning algorithm would require additional memory
to store the Q-values. This can often lead to increased memory overhead thereby
affecting the performance of the algorithm [30]. The DQN algorithm is set to resolve
these issues by using a neural network to approximate the Q-values [31]. By using
a neural network, the DQN algorithm essentially preserves the relative significance
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Figure G.3: Neural network model used in DQN.

between the Q-values and hence provides similar results as that of Q-learning [32].
Next, we discuss the details of the proposed DQN algorithm.

G.5.2 Deep Q-Network (DQN)

In this section, we present the DQN algorithm for energy-efficient data trans-
mission over hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network.

The DQN algorithm when applied to this work follows a similar construct as the
Q-learning algorithm. States and actions follow the same descriptions as defined for
Q-learning. Hence, for a UAV-assisted wireless network with N UAVs, the number
of UAV-GS communication links is N , and hence the number of states is N . As
there are four communication technologies to choose from, there are four actions.
For a state st, the DQN algorithm follows a ε-greedy policy to select an action at.
This means that a random action is selected (exploration) with a probability ε and
the action corresponding to maximum Q(st, at) is selected with probability (1 − ε)
(exploitation). Thus an exploration-exploitation tradeoff is provided so that the
DQN algorithm is able to train successfully without falling into a local optima [30].
At any step t, the reward/penalty γt for state st and action at is calculated based
on (G.35).

The DQN network is primarily made up of two neural network models, a policy
network and a target network. Each UAV-GS link with its corresponding length is
given as input to the neural networks. As shown in Fig. G.3, a fully connected neural
network with two hidden layers forms the policy network. The first hidden layer
consists of 256 neurons while the second hidden layer contains 128 neurons. All the
layers are activated using the ReLu activation function during training. The target
network is a cloned replica of the policy network. It has the same architecture as the
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Figure G.4: Block diagram for the DQN algorithm.

policy network and serves the purpose of providing stability to the DQN algorithm
while training. The output layer of the policy network consists of 4 outputs with
a linear activation. The outputs correspond to the prediction of the state-action
values Q(st, at) at step t.

As shown in Fig. G.4, the action at for state st is selected based on ε-greedy
policy. Choosing action at results in a state transition from state st to state st+1

and a reward γt. The state transition follows the same distance-based rule used
in Q-learning. The tuple K = {st, γt, at, st+1, ϕt} is then stored as a deque in the
experience replay memory. Here, ϕt is a variable that indicates the final state. In
the next step, a random mini-batch sample (s′t, γ

′
t, a

′
t, s

′
t+1, ϕ

′
t) is selected which is

used for training the policy network. The intention of selecting a random sample
is to reduce the correlations between states and provide stability to the training
process. The training is now carried out and the loss function is minimized. The
loss function for step t is obtained as [30]

Lt = E

[(
γt +∆max

a
Q̂(st+1, a, ŵ)−Q(st, at, w)

)2
]

(G.39)

where ∆ represents the discount factor (∆ ∈ [0, 1]), Q(st, at, w) represents the Q-
value predicted using the policy network when trained with weights w, and (γt +

∆maxa Q̂(st+1, a, ŵ) represents the output from the target network that is trained
with weights ŵ. It is to be noted that the weights of the target network ŵ are copied
from the policy network every ζ step. Both the policy network and target network
are trained using the Adam optimizer. The policy network is updated using the





below equation [30]

Q∗(st, at)← Q(st, at) + λ(γt +∆max
a
Q̂(st+1, a)−Q(st, at)) (G.40)

where λ is the learning rate and Q∗(st, at) is the new updated Q-value. The detailed
steps of the proposed DQN algorithm are described in Algo. 9.

G.6 Evaluation Metrics

In this section, we derive the expressions for the performance metrics such as network
energy consumption, and average network delay considered for the evaluation of the
performance of the proposed method.

G.6.1 Average Network Delay

It is defined as the ratio of the sum of the delays incurred for transmitting the data
in each UAV-GS link, to the total number of UAVs. The total delay of a UAV-GS
link is the sum of the propagation delay and the transmission delay of the link.

G.6.1.1 Propagation delay

It is the delay incurred over a UAV-GS link for propagating the data over a radial
distance dg [33]. The expression for propagation delay is obtained as

Tprop =
dg
c
, (G.41)

where c is the velocity of the light which is equal to 3× 108 m/s.

G.6.1.2 Transmission delay

It is the delay incurred for transmitting k bits of information over a UAV-GS link
[33]. The expression for transmission delay is obtained as

TTr =
k

R
. (G.42)

Thus, the average network delay is obtained as

Tavg =
1

N

N∑
i=1

Ttotal,i, (G.43)

where Ttotal = Tprop + TTr.

G.6.2 Network Energy Consumption

It is the total energy consumed for transmitting the data from each UAV to the GS.
It is expressed as

Etotal =
N∑
i=1

(ETr,i + Ed,i). (G.44)





Algorithm 9: DQN approach to determine the optimized hybrid UAV-
assisted wireless network
Input: N UAVs, M communication technologies, Number of episodes

Kmax, λ, ∆, ε, ζ
Output: Network energy consumption and average network delay

1 Initialize the experience replay memory, policy network weights w, and
target network weights ŵ;

2 Arrange the UAV-GS links (states) in decreasing order of distance to the
ground station;

3 Training
4 for i = 1 to Kmax do
5 Select the first state s0 (first UAV-GS link) from the sorted list;
6 ϕ0 = 0, j = 0;
7 for t = 1 to N do
8 Generate a random number u ∈ (0, 1);
9 if u > ε then

10 Select action at = maxaQ(st, at, w);
11 else
12 Select a random action at;
13 end
14 Calculate the network energy consumption using (G.1), (G.3), and

(G.4);
15 Obtain reward γt, using (G.35) ;
16 Obtain next state st+1 in order of decreasing distance to ground

station;
17 if st+1 == sN then
18 ϕt = 1, j = j + 1;
19 end
20 Update experience replay memory with K = (st, γt, at, st+1, ϕt) ;
21 if ϕt = 1 then
22 break;
23 end
24 When replay memory is full, randomly select a minibatch sample

(s′t, γ
′
t, a

′
t, s

′
t+1, ϕ

′
t) ;

25 Predict Q(st, at, w) from policy network;
26 Predict (γt +∆maxa Q̂(st+1, a, ŵ) from target network;
27 Compute loss using (G.39);
28 Update weights w of policy network using (??);
29 if j == ζ then
30 Update the weights of target network ŵ;
31 end
32 end
33 Decrease ε with a decay rate;
34 end





35 Validation
36 For each UAV, obtain the Q-values from the trained policy network;
37 Assign the communication technology with the highest Q-value to the

UAV-GS link;
38 Calculate the network energy consumption and average network delay;

G.6.3 Energy Consumption for UAV Movement

The energy consumed by a UAV (in joules) to move a distance d is given by [34]

Ev = T · d (G.45)

where T represents the thrust force to move forward that is measured in Newtons
(kg-m/sec2). The thrust force is obtained as

T =
m× g
r

(G.46)

where m is the total weight of the aircraft (in kg), g is the acceleration due to
gravity (9.8 m/sec2), and r is a unitless parameter defined as the lift-to-drag ratio
[34]. The lift-to-drag ratio essentially denotes the efficiency of aircraft design. A
recommended lift-to-drag ratio is required to keep the aircraft airborne during steady
flight. Commercial passenger aircraft have a lift-to-drag ratio between 10-20 whereas
r for cruising helicopters is about 4. Typical lift-to-drag value for small and large
scale UAVs is 3 [34].

G.7 Numerical Results

In this section, we first present the simulation setup considered for generating the
simulation results. Then, we present the simulation results corresponding to both
FS and FSMP models to verify the analytical derivations. We also present the
simulation results to show the effect of the velocity of UAVs and packet size on the
network energy consumption and average delay. Finally, the simulation results are
presented to compare the performance of the proposed RL algorithms with other
models.

G.7.1 Simulation Setup

The simulation setup is considered over a 1500 × 1500 m2 area where the GS is
located at (500, 500, 0). A total of 500 UAVs are deployed over the area with varying
heights of 100, 200, 300, and 400 meters. Each UAV is equipped with four different
communication technologies such as BLE, LTE, Wi-Fi, and LoRa. The packet
arrival rate follows Poisson distribution with randomly chosen mean taken from the
set {1, 2, · · · , 100}. Each packet contains 128 bits and hence the total number of
bits received for each UAV follows a random distribution. The various simulation





Table G.4: The values of the parameters used for the performance evaluation and
comparison of different methods.

Parameter Value
Horizontal area 1500× 1500

Hovering heights {100, 200, 300, 400}
Number of UAVs, N 500
Location of GS (500, 500, 0)

Velocity of UAV, ν 2

Packet length, k 128 bits
The parameter of Poisson distribution, λ 100

Speed of the transmission, c 3× 108

Ee 25 nJ/bit
Efs 10 pJ/bit/m2

Initial energy at a UAV E 10 Joules
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Figure G.5: An illustration of the UAV-assisted wireless network topology for (a)
FS configuration and (b) FSMP configuration. Here, GS is considered to be located
at (500, 500, 0) which is the center of the terrestrial area. The colors green, yellow,
orange, and red depict BLE, LTE, Wi-Fi, and LoRa communication protocols re-
spectively.

parameters utilized for the different runs are listed in Table G.4. Additionally, the
communication parameters for each specific technology are also provided in Table
G.2.

G.7.2 Simulation Results (FS and FSMP)

Based on the above simulation parameters, we discuss the various numerical results
obtained.

Fig. G.5a depicts the topology of the proposed hybrid BLE/LTE/Wi-Fi/LoRa
UAV-assisted wireless network following the FS energy model. It can be observed
from Fig. G.5a that the majority of the UAVs utilize the LoRa protocol (depicted
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Figure G.6: Variation of network energy consumption for (a) free space and (b) free
space and multipath model for random UAV configurations. The analytical plots
are obtained using equations (G.10) and (G.26), respectively. The ground station is
located at (500, 500, 0) for all the random configurations.

in red) to connect to the GS. The UAVs at medium range utilize Wi-Fi (yellow) and
LTE (orange) to establish the UAV-GS link. The UAVs that are closer to the GS are
connected via the BLE (green) communication protocol. When UAVs are closer to
the GS, the BLE communication protocol consumes minimum energy as compared
to other protocols. Hence, a small concentration of UAVs connected to BLE can be
observed closer to the GS in Fig. G.5a. For UAVs situated farther than the path loss
distance of BLE, the communication protocol with minimum energy consumption
is connected. When the UAV-assisted wireless network follows the proposed hybrid
scheme according to the FSMP energy model, the UAV-GS link connections are
switched as shown in Fig. G.5b. It can be observed from Fig. G.5b that a small
number of UAVs switch their communication protocol from LTE to BLE. This is
due to the fact that the energy consumption of BLE while following the d4 energy
model is less than the energy consumption of LTE that is following the d2 energy
model. Similar changes can be observed between other communication protocols.

In Fig. G.6a, the network energy consumption for the proposed hybrid approach
is compared with the conventional shortest path routing algorithm with individual
communication technology while considering the FS path loss model. It can be
observed from Fig. G.6a that the energy consumption exhibited by the proposed
hybrid approach matches the energy consumption of the conventional approach for
Wi-Fi protocol. However, the energy consumption is greater than that of BLE. This
is due to the lower transmit power of BLE as compared to the average transmit
power in the proposed hybrid scheme. The conventional approach for individual
communication technology utilizes the hop-based shortest path algorithm to send
packets from the UAV to GS. It is observed from Fig. G.6a that the energy con-
sumption from the analytical model is equal to that of the simulation results, which
is as expected. In Fig. G.6b, the proposed hybrid approach is compared to the
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Figure G.7: Variation of average network delay for (a) free space and (b) free space
and multipath energy models for random UAV configurations. The analytical plots
are obtained using equations (G.17) and (G.33), respectively. For all the configura-
tions, the GS is located at (500, 500, 0).
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Figure G.8: Variation of (a) network energy consumption and (b) average network
delay for the proposed hybrid network. The plots corresponding to the analytical
results are obtained using equations (G.10), (G.17), (G.26), and (G.33), respectively.
In all these configurations, the GS is located at (500, 500, 0).

conventional shortest path routing algorithm with individual communication tech-
nology in terms of network energy consumption. Here, we consider the FSMP path
loss model. It can be observed from Fig. G.6b that the energy consumption with
the proposed hybrid approach is lower than the conventional approach. It is also
observed that the conventional approach utilizing BLE consumes more energy as
compared to other approaches. This is due to the fact that rτ is very low for BLE,
resulting in a higher number of UAV-GS links following the d4 model. Further, Fig.
G.6b also illustrates the variation of the analytical results of the proposed approach.





It is observed from Fig. G.6b that the analytical results are matching with the
simulation results verifying the analytical derivations.

Figs. G.7a and G.7b provide the variation of average network delay for the
proposed hybrid scheme with the conventional shortest path routing algorithm for
individual communication technology. It can be observed from Figs. G.7a and G.7b
that there is no significant variation in the delay for the proposed hybrid scheme
that is following the FS and FSMP energy models. This can be attributed to the
delay parameter that primarily depends on the transmission delay. The transmission
delay depends on the data rate of the communication protocol. As LoRa has a low
data rate compared to other communication protocols, LoRa has a higher delay.
Thus, as observed from Figs. G.6b and G.7b, the proposed hybrid scheme following
the FSMP energy model offers superior performance in terms of minimum energy
consumption and low average network delay compared to the conventional shortest
path routing algorithm with individual communication technology.

The variation of network energy consumption for the proposed hybrid scheme
following the FS and FSMP energy models is depicted in Fig. G.8a. It is observed
from Fig. G.8a, that the network energy consumption for the proposed hybrid
scheme is similar across both the FS and FSMP energy models. Fig. G.8b shows the
average network delay for the proposed hybrid scheme following the FS and FSMP
energy models. It can be observed from Fig. G.8b that the proposed hybrid scheme
with the FSMP energy model exhibits lower delay as compared to the proposed
hybrid scheme following the FS energy model. This can be explained by observing
the individual connections for each communication technology in both schemes. In
the proposed hybrid scheme following the FS energy model, the distribution of UAVs
connected to the different communication technologies are as follows: 14 connected
to BLE, 153 connected to LTE, 279 connected to Wi-Fi, and 54 connected to LoRa.
This distribution is altered when the proposed hybrid scheme with the FSMP energy
model is used. The connections are switched with 21 UAVs connected to BLE and
162 UAVs connected to LTE. Moreover, the number of UAVs connected to LoRa
reduces to 38. This change in the connection distribution decreases the delay in the
proposed hybrid scheme utilizing the FSMP energy model. As BLE and LTE offer
higher data rates as compared to the LoRa protocol, a lower delay is observed in
the proposed hybrid scheme following the FSMP energy model. Thus the proposed
hybrid scheme with FSMP energy model offers minimum energy consumption and
reduced delay for the overall connected network.

G.7.2.1 Effect of UAV Velocity

In this section, we show the effect of UAV velocity on the performance of the pro-
posed hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network. To obtain the
variation of network energy consumption and average network delay, the velocity of
each UAV is increased linearly from 0 to 3.8 m/s in steps of 0.2 m/s.

Figs. G.9a and G.9b show the variation of the network energy consumption and
average delay with increasing velocity of the UAV. Here, the time of travel (moving
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Figure G.9: Effect of UAV velocity on (a) network energy consumption and (b)
average network delay for both FS and FSMP model for random UAV configurations.
GS is located at (500, 500, 0) for all the random configurations.
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Figure G.10: Effect of increasing the number of packets on (a) network energy con-
sumption and (b) average network delay for both FS and FSMP model for random
UAV configurations. GS is located at (500, 500, 0) for all the random configurations.

time) for each UAV is considered to be 1 second. It is observed from Fig. G.9a
that the energy consumption increases linearly with velocity. This is because, for
a fixed time of travel, the distance traveled increases with increased velocity which
consumes more energy. From Fig. G.9b, it can be observed that the velocity has a
constant effect on the average delay as the time of travel is fixed for all velocities of
UAVs.

G.7.2.2 Effect of Packet Size

In this section, we show the effect on the performance of the proposed hybrid system
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Figure G.11: Effect of increasing the mean of the packet arrival rate on (a) network
energy consumption and (b) delay for both FS and FSMP model for random UAV
configurations. GS is located at (500, 500, 0) for all the random configurations.

when the number of packets is increased. First, we consider a constant number of
packets at each UAV which we increase from 1 to 600. Thereafter, we vary the mean
of the Poisson distribution (packet arrival distribution) from 1 to 600.

Figs. G.10a and G.10b show the variation of the network energy consumption
and average delay, respectively, for increasing values of the available packets at each
UAV. Here, we varied the number of packets from 1 to 600. It is observed from Fig.
G.10b that the energy consumption and average delay increase linearly with the
number of packets. Further, Fig. G.10b also shows that the average delay is more
for the FS model as compared to the FSMP model. This is due to the presence
of multi-hop communication in the FS model which adds the queuing delay and
processing delay at each hop.

Figs. G.11a and G.11b show the variation of the network energy consumption
and average delay, respectively, for increasing values of the mean of the packet
arrival rate. It is observed that an increase in the mean linearly increases the
energy consumption and average delay as can be seen from Figs. G.11a and G.11b,
respectively. Further, it is observed from Fig. G.11b that the average delay is more
for the FS model as compared to the FSMP model. This is due to the presence
of multi-hop communication in the FS model which adds the queuing delay and
processing delay at each hop.

G.7.3 Performance Evaluation of the Proposed RL Algo-
rithms

In this section, we present the numerical results comparing the performance of the
proposed Q-learning (Algorithm 8) and DQN (Algorithm 9) algorithms with rule-
based algorithm and hybrid random approach in which UAV-GS links are selected
uniformly at random from BLE, LTE, Wi-Fi, and LoRa. Further, we show the
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Figure G.12: An illustration of hybrid UAV-assisted wireless network topology
formed with (a) random hybrid scheme, (b) rule-based algorithm, (c) proposed Q-
learning algorithm, and (d) proposed DQN algorithm. Here, GS is considered to
be located at (500, 500, 0) which is the center of the terrestrial area. The colors
green, yellow, orange, and red depict BLE, LTE, Wi-Fi, and LoRa communication
protocols, respectively.

effectiveness of the proposed algorithms, by considering the PHY layer parameter,
which denotes the number of transmissions required for a packet to get successfully
delivered. The simulation setup is similar to the previous scenario wherein an area
of 1500× 1500 m2 is considered and the GS is placed at (500, 500, 0). We consider a
total of 100 UAVs deployed randomly over the considered area with varying heights
of 100, 200, 300, and 400 meters. All other simulation parameters remain the same
as defined in the previous section.

To study the behavior of Q-learning parameters we carried out extensive simula-
tions using the learning rate and discount with different reward/penalty expressions
defined in (G.34), (G.35), (G.36), and (G.37). When the reward is chosen from
(G.34), (G.35), and (G.36), the Q-learning algorithm results in the optimized hy-
brid network at λ = 0.7 and ∆ = 0.7.

For the reward defined in (G.34), (G.35), and (G.36), we varied the Q-learning
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Figure G.13: Performance comparison of the proposed Q-learning algorithm, pro-
posed DQN algorithm, rule-based algorithm, and random hybrid scheme in terms of
(a) network energy consumption and (b) average delay for random UAV configura-
tions. The ground station is located at (500, 500, 0) for all the random configurations.

Table G.5: Variation of network energy consumption as a weighted sum of individual
energy components E1,N/W and E2,N/W . Here, W1 and W2 represent the weights.

W1 W2 Etotal (J)
0.1 0.9 0.0204
0.2 0.8 0.0287
0.3 0.7 0.0392
0.4 0.6 0.0512
0.5 0.5 0.0650
0.6 0.4 0.0797
0.7 0.3 0.1002
0.8 0.2 0.1430
0.9 0.1 0.2589

parameters λ and ∆ from 0.1 to 0.9 in intervals of 0.1. It is observed that the
Q-learning algorithm started to attain the hybrid network with minimum energy
consumption when λ is between 0.4 to 0.9 for all ∆. Table G.5 lists the network
energy consumed for different weights when the reward is chosen as (G.37). Here,
the weights are chosen from {0.1, 0.2, · · · , 0.9}. We consider λ = 0.7 and ∆ = 0.6

which are best fit for the proposed Q-learning algorithm. As seen from Table G.5,
W1 = 0.1 and W2 = 0.9 lowers the energy consumption. This means that E2,N/W

has a higher impact than E1,N/W to attain the hybrid network with minimum energy
consumption. This is due to the fact that for a UAV-GS link with k-bits of data, the
energy consumed for transmission, E1,N/W , is fixed, whereas, the energy consumed
for the propagation, E2,N/W varies with the radial distance of the link. The DQN
algorithm is trained under the same simulation setting as that of Q-learning. The





Table G.6: Parameters used for the DQN algorithm.

Parameter Value
Number of hidden layers 2

Number of neurons in first layer 256

Number of neurons in first layer 128

Learning rate (neural network) 0.01

Discount factor 0.4

Batch size 64

Replay memory size 50000

Number of episodes 6400

Minibatch size 64

Epsilon 1 to 0.001

policy and target network are made up of fully-connected neural networks each with
two hidden layers that contain 256 and 128 neurons, respectively. The exploration-
exploitation factor ε is set to vary from 1 to 0.001. Other parameters related to
the DQN algorithm are provided in Table G.6. We achieved the best performance
when the learning rate and discount factor were set to 0.01 and 0.4, respectively.
The DQN algorithm converged after 6400 episodes resulting in the formation of the
hybrid UAV-assisted wireless network with minimum network energy consumption.

Fig. G.12a depicts the topology of the hybrid random network. Here, BLE is
represented with green lines, LTE with yellow lines, Wi-Fi with orange lines, and
LoRa with red lines. It can be observed from the figure that the connections are
evenly distributed among the four protocols irrespective of any criteria due to the
random distribution. Fig. G.12b shows the UAV-assisted wireless network obtained
with the rule-based algorithm. From Fig. G.12b, it can be noticed that UAVs
further away from the GS with high radial distance are connected to the LoRa
protocol while the ones closer to the GS are connected to BLE. Figs. G.12c and
G.12d show the hybrid network obtained with the proposed Q-learning and DQN
algorithms, respectively. From Fig. G.12c and G.12d, it can be noticed that a
UAV-GS link is connected to a communication technology that consumes minimum
energy with the number of transmissions required.

We compare the performance of the proposed algorithms with the rule-based
algorithm [35] and random hybrid scheme in terms of network energy consumption
and average network delay as shown in Figs. G.13a and G.13b, respectively. The Q-
learning algorithm utilizes the reward defined in (G.35) for generating these results.
It is observed that the Q-learning and DQN algorithms outperform the rule-based
algorithm in terms of both energy consumption and average delay as shown in Figs.
G.13a and G.13b, respectively. This is primarily due to the learning characteristic
of RL algorithms. In RL algorithms, the environment characteristics are learned
during the training or exploration phase by which an accurate estimation of the
network energy consumption is obtained. However, the rule-based algorithm assigns
the communication technology based on the distance irrespective of the PHY layer





characteristics. The unknown PHY layer characteristics increase the number of re-
transmissions required for successful transmission of bits which in turn will further
increase the energy consumption and delay. The proposed RL algorithms thus ex-
hibit an edge over other schemes in learning and incorporating additional parameters
that can affect the communication link in a seamless manner. It is also observed that
the random hybrid scheme consumes a large amount of energy when compared to
the proposed and rule-based algorithms. This is due to the fact that the number of
UAVs connected with BLE for hybrid random network configuration is higher than
the RL-based hybrid network as can be observed from Figs. G.12a and G.12c. This
increases energy consumption as most of these links’ geographical distance is greater
than r which leads to d4 energy consumption. Since the BLE offers a higher data rate
than other communication technologies, the transmission delay is much less, which
lowers the average network delay as can be observed from Fig. G.13b. To provide
additional clarity on the performance of all the schemes, we provide explicit values
from the simulation. In the 10-th iteration, the hybrid random network exhibits a
network energy consumption of 1160 Joules and the rule-based algorithm expends
190 Joules of energy. The proposed algorithms however outperform all the schemes
with the minimum network energy consumption of about 151 Joules as can be seen
from Fig. G.13a. In terms of average network delay, the rule-based algorithm offers
an average delay of about 0.71 seconds, the random hybrid scheme offers an average
delay of about 0.344 seconds, and the proposed RL algorithms exhibit 0.5 seconds
at 10-th iteration as can be seen from Fig. G.13b. From Figs. G.13a and G.13b,
it can be observed that the DQN algorithm displays similar performance as that
of the Q-learning algorithm. This is expected as DQN essentially follows the same
mathematical principles as that of Q-learning. Compared to Q-learning, the DQN
algorithm utilizes a neural network to learn features from the input and provide an
approximate Q-value. If the amount of data increases, storing and searching for
Q-values using Q-learning can lead to performance degradation. In this scenario,
DQN outperforms Q-learning in terms of reduced memory consumption and compu-
tational efficiency. However, the DQN algorithm requires significantly large training
time and fine-tuning as compared to Q-learning. For example, the simulation time
required to train Q-learning is 20 minutes whereas DQN requires approximately 6

hours.

G.8 Conclusion and Future Work

In this work, we have proposed two RL algorithms such as Q-learning and DQN for
energy-efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted
wireless network. The proposed RL algorithms take any random network as an input
and learn it. Based on the learning, a hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted
wireless network is formed by assigning the best communication technology to a
link based on learning. We have also proposed the theoretical framework for energy-
efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wire-
less network for both free space and free space multipath path loss models. Further,
we have derived the analytical expressions for the network energy consumption and





average network delay. Through extensive results, we verified the analytical expres-
sions. We have also analyzed the effect of the velocity of UAVs and the number of
packets on the performance of the proposed framework. Finally, it has been shown
that the proposed RL algorithms result in better performance in terms of network
delay and energy consumption when compared to rule-based algorithm and random
hybrid scheme. In the future, we plan to incorporate the dataset obtained from
physical layer parameters to evaluate the performance of the proposed algorithms.
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