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Abstract: It is still challenging to accurately localize unmanned
aerial vehicles (UAVs) from a ground control station (GCS) using various
sensors. The mmWave frequency modulated continuous wave (FMCW)
radars offer excellent performance for target detection and localization in
harsh environments and low lighting conditions. However, the estimated
angle of arrival (AoA) of targets in the captured scene is quite poor.
This article focuses on improving AoA estimation by combining cutting-
edge machine learning algorithms with a mechanical radar rotor setup. A
mmWave FMCW radar system is mounted on a programmable rotor to
capture range-angle maps of targets at various locations. The range-angle
images are then labeled and trained further with the Yolov3 algorithm.
Subsequent testing reveals that for detected target objects, the centroid
of the bounding boxes from the detected objects provides accurate AoA
estimation with very low root mean square error (RMSE). The results
show that the proposed approach outperforms traditional methods in
terms of performance and estimation accuracy.
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Figure E.1: Block diagram of the proposed multi-target AoA estimation approach.
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E.1 Introduction

As the popularity of unmanned aerial vehicles (UAV) increases, there is a growing
demand for better detection, localization and tracking techniques. Ground control
stations (GCS) are equipped with sophisticated sensor technologies for improved
UAV localization. Some of these sensors are RGB cameras, ultrasonic sensors, Li-
DARs, etc. However most of these sensors fail in adverse weather and lighting condi-
tions. In this regard, the mmWave frequency modulated continuous wave (FMCW)
radars have shown superior performance compared to other sensors. The mmWave
FMCW radars are small, lightweight, and compact radars that offer excellent per-
formance for target detection. The radars provide a radial distance measurement
range from 0.2 meters to 300 meters in addition to excellent velocity estimation
performance. Additionally, they offer high range and velocity resolutions. Further,
their performance in adverse weather and environmental conditions makes them a
suitable choice for UAV and GCS applications.

Despite the above-mentioned advantages, the mmWave FMCW radars suffer
from poor angle of arrival (AoA) estimation and AoA resolutions [1]. Accurate AoA
estimation from a single target requires atleast one transmitter and two receivers for
the radar. Increasing the number of transmitter and receiver pairs can effectively
improve the AoA estimation, however this results in a tradeoff with increased size
and hardware complexity. Furthermore, estimation of AoA from multiple objects
for better target localization is even more challenging and hence it is still an ongoing
research topic.

There has been several attempts in the literature to improve the AoA estima-
tion. The authors in [2] propose an adaptive radar signal processor for detection
of multiple UAVs in the range-Doppler domain. The radar signal processor op-
erates by initially performing pulse compression (PC), FFT and beamforming on
the received signal samples. The processed signal is then evaluated for a possible
detection based on constant false alarm rate (CFAR) logic for each range-Doppler
angle bin. Both single and multi-target scenarios are considered and the angular
parameters of the targets are retrieved. Simulated and real-world experiment results
indicate that the proposed method is able to detect and resolve two UAVs placed
≈ 8◦ apart with satisfactory performance. In [3], Aubry et al. attempt to solve the
problem of adaptive radar detection in the presence of limited training data. The
proposed method consists of three generalised likelihood ratio test (GLRT) based
detection schemes that is based on the assumption of linear combination for in-
verse covariance matrices. Reported results show that the proposed GLRT-1 and
GLRT-3 exhibit significant performance gain over conventional adaptive detectors
in presence of limited training samples. In [4], a novel DoA estimation algorithm
based on 2-D spectrum sensing is developed. The proposed approach exploits the
intrinsic block-sparsity of the 2-D space-frequency profile to obtain 2-D occupancy
awareness. By including a term to account for the block-sparsity, a non-convex reg-
ularized maximum likelihood (RML) estimation problem is solved using the block
sparse learning via iterative minimization (BSLIM) algorithm to obtain the space-
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frequency profile. The BSLIM algorithm exhibits superior performance in terms
of detection rate and false alarms over traditional approaches. In [5], the authors
devise a novel set of covariance matrix estimators called median matrices that are
independent of the probability distribution of the samples. The matrices are con-
structed by exploiting its positive definite attributes. Based on the output from the
new estimators, a generalised inner product (GIP) selection criteria is utilized to
discard the secondary outliers in the training data. Reported results indicate that
the log-Euclidean median-based estimator outperforms other estimators in terms of
selection probability of secondary outliers in the training data. Other covariance
estimators that can also be utilized to infer radar disturbances and aid in accurate
UAV detection and localization include the fast maximum likelihood (FML) covari-
ance estimator [6] and the multi-class inverse Wishart mixture (MC-IWM) filter
[7].

The work by [8], uses a fast iterative adaptive algorithm employing a time-
shared method to accurately estimate the AoA. The first phase of the technique
involves a coarse azimuth angle estimation that is performed using just a single
mmWave FMCW radar. The obtained intermediate results are then fed into a more
refined iterative algorithm to accurately determine the direction of arrival (DOA)
estimations within a small region. However, this method relies on multiple mmWave
FMCW radars during the second phase making it computationally intensive. An-
other approach by [9] uses linear algebraic techniques to jointly calibrate the anten-
nas and estimate the AoA. The iterative optimization technique provides excellent
performance when there is an effective coupling between the antennae elements.
Additionally, the algorithm is shown to work well in presence of several sensors and
transmitter-receiver pairs. Daegun et al. in [10] proposed a joint angle and delay
estimation algorithm which utilizes the dual-shift-invariant structure of the received
signal to extend the one-dimensional pseudospectrum searching. Monte Carlo sim-
ulations were used to gauge the performance of the proposed method. Reported
results show that the proposed technique exhibited superior performance with re-
spect to state-of-the-art algorithms. However, the technique is computationally
intensive and requires further experimentation with complex real-world scenarios.
In [11], the authors combine the advantages of the 2D-FFT and MUSIC algorithms
to develop a low complexity estimation method to approximate the various FMCW
radar parameters such as AoA. However, this method fails to provide any perfor-
mance insight when used to detect multiple targets. In [12] and [13], the authors
use the notion of rotating the radar about its axis to scan an area. The signals
obtained in each frame of the rotating radar are used to construct the range profile
for the respective field of view. All the range profiles are then stitched and combined
together to get the range-angle maps that offer a 180◦ view of the scene. However,
the work by [12] focuses on target detection and classification and doesn’t provide
enough information for AoA estimation. Linga et al. in their work [13], has provided
a novel AoA estimation technique with relatively good performance, however this
can be further improved using machine learning techniques. Our work will be an ex-
tension to this work, where we will use state-of-the-art machine learning techniques
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to estimate the AoA from the range-angle maps. We will be using convolutional
neural networks (CNN) based algorithms which will serve to be useful for embedded
and internet-of-things (IoT) related applications.

Hence, in this work, we propose a multi-target AoA estimation method that uti-
lizes rotating mmWave FMCW radars. The proposed method employs a mechanical
rotor setup for rotating the mmWave FMCW radar along the azimuthal axis fol-
lowed by Yolov3 for post-processing the range-angle heatmaps. The AoA estimate
is calculated from the centroid of the detected bounding box.

The remaining sections of this paper is structured as follows. Section II gives
an overview of mmWave FMCW radars and signal processing aspects. Section III
gives a brief overview of the machine algorithm that is used on the collected dataset.
Section IV defines the various metrics used to measure the performance of the pro-
posed method. Section V provides a high level system description along with the
measurement and dataset details. Section VI summarizes the obtained results using
the proposed method. And finally, Section VII concludes the paper by providing a
brief summary and potential future research directions.

E.2 mmWave FMCW Radars and Signal Processing

The mmWave FMCW radars operate by transmitting high frequency chirp signals
on to the scene. The transmitted chirp signal is reflected back upon encountering
obstacles in its path. The reflected chirp is captured by the receiving antennae for
further processing. The transmitted and received chirp signals are then fed into a
mixer to obtain the intermediate frequency (IF) signal. The IF signal is further fed
into an ADC which samples the analog signal and provides digital values. The raw
IF samples then undergo additional processing to obtain the radial range, radial
velocity and AoA estimation of the target [14].

Range estimation involves performing an FFT transform over the captured IF
signal samples [15]. The range R is calculated as,

R =
cfIF
2S

, (E.1)

where fIF is the frequency of the IF signal, c is the velocity of light in vacuum (3x108

m/s), and S is the slope of the radar.
Velocity estimation exploits the phase of the IF signal. Change in distance

within a short time may not be accurately captured by the range estimation (due to
limitations in range resolution) procedure. However, these changes can be captured
by utilizing the phase difference between the received chirps. To obtain the velocity
estimation, we initially compute the range profile. Next, we perform a second FFT
across the received chirp signals to capture the small phase changes that can provide
the velocity estimation values.

AoA estimation involves utilizing the number of receiver antennas on the
mmWave FMCW radar. A differential distance exists from an object to each of the
receiving antennas. This differential distance corresponds to a phase change that
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Figure E.2: Angle of arrival estimation.

can be obtained by performing a second FFT on the output of the range profile.
The second FFT is applied across the different receiver antennas so as to obtain the
angle-FFT. The angle-FFT can then be used to obtain AoA estimation of target
objects in the scene. Note that in angle-FFT, the 2D-FFT is performed over the
different receiver antennas separated in space whereas for velocity estimation the
2D-FFT utilizes the phase difference between the different chirps that are separated
in time [16]. If ϕ is the phase difference between the received chirp signals and d

the distance between adjacent receiving antennas, then the following holds true,

ϕ =
2πd sin θ

λ
, (E.2)

where λ is the wavelength of the chirp signal. Thus the AoA estimation θ is given
as,

θ = sin−1(
λϕ

2πd
) (E.3)

Fig E.2. gives a pictorial representation of the estimation of AoA. As seen from
(E.2) and (E.3), when θ = 0◦, ϕ is more sensitive to changes in θ. As θ increases,
the sensitivity of ϕ to θ decreases. This is due to the fact that ϕ and θ share a
non-linear relationship as ϕ ∝ sin θ and sensitivity of sin θ decreases as θ increases.
Thus AoA estimation is more accurate when the target is placed perpendicular to
the radar [16].

Similar to AoA estimation, calculation of AoA resolution is also important to
correctly distinguish between targets placed close to each other with a small AoA
difference. The AoA resolution is defined as the least angle required between two
targets so that they can be easily distinguished as separate objects in the angle-FFT
[17]. The AoA resolution for mmWave FMCW radars is given as,

θres =
λ

Nd cos θ
, (E.4)
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Figure E.3: Yolov3 Darknet Architecture

where N is the number of receiver antennas on the radar. If it is assumed that
d = λ/2 and θ = 0, then the expression for θres reduces to,

θres =
2

N
, (E.5)

implying that the AoA resolution improves with increased number of receiver an-
tennas. For example, with 4 receiver antennas, the AoA resolution is 0.5 radians
which is equivalent to 28◦, a relatively high value. Since increasing the number of
antennas can also increase space and hardware complexity, there is active research
to improve the AoA resolution with minimum constraints.

E.3 You Look Only Once (Yolo) Architecture and
Working

The Yolov3 is a state-of-the-art multi-scale object detection algorithm that can
detect and classify objects from images and video with very fast inference time [18].
Just as the name suggests, the algorithm performs only a single-stage forward pass
over the whole image to determine the class probabilities and predictions. In this
work, we are using the Yolov3 version for our AoA estimation from range-angle
maps.

The Yolov3 algorithm is based on the Darknet-53 architecture [19] that uses
a combination of convolution layers and skip connections as shown in Fig. E.3.
Inspired by ResNet and other architectures [20], Darknet-53 primarily consists of
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feature extraction and feature detection stages. The feature extraction stage com-
prises of 53 convolution layers that are arranged as 3x3 and 1x1 consecutive layers
followed by a skip connection. On the other hand, the feature detection stage is made
up of 53 layers that helps to enhance the accuracy of the predictions as compared
to previous versions. Thus the algorithm employs a sum total of 106 convolutional
layers, both for feature extraction and feature detection.

Table E.1: Yolov3 configuration parameters

Parameter Value
Batch Size 64

Number of classes 3

Max Batches 6000

Sub division 16

Learning rate 0.001

Momentum 0.9

Decay 0.0005

Filters 24

GPU version Tesla V100-SXM3
CUDA version 11.4

The Yolov3 algorithm operates by initially passing the input image through the
feature extractor to obtain multi-scale feature embeddings. Yolov3 supports three
different feature scales namely, 13x13, 26x26, and 52x52. The obtained feature
maps are then fed into the feature detection stage to predict bounding boxes on
the detected object. To predict bounding boxes, the each feature map is divided
into a collection of grid cells. Each grid cell is capable of predicting three bounding
boxes. Each bounding box ’B’ consists of ’5 +C’ attributes and class probabilities.
Here, ’C’ represents the number of classes in the dataset. In this work, C = 3,
as we are using the model to detect three classes: UAV, car, and humans. The
class probabilities provide the probability of existence of a particular class in the
respective grid cell. The ’5’ represents bounding box attributes (tx, ty, th, tw) and the
objectness scores. Bounding box dimensions in Yolov3 are computed relative to the
anchor box dimensions. Anchor boxes are prior boxes that have predefined aspect
ratios. The predefined aspect ratios are determined by running a k-means algorithm
on the entire dataset prior to training. Lastly, the objectness score denotes the
presence of an object in the corresponding grid cell. Feature detection is performed
by convolving the downsampled feature maps with a 1x1 detection kernel whose
shape is given by 1x1x(B ∗ (5+C)). In Yolov3, feature detection occurs at the 82th,
94th, and 106th layers.

Once the object is detected, a maximum of three bounding boxes per grid can
be drawn based on the relative position of the object within the grid cell. To
avoid multiple bounding boxes for the same object, a non-maximum suppression
is performed. In non-maximum suppression, the bounding box that has the most
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overlapping area with the detected object is retained while the other bounding boxes
are discarded. A high level Yolov3 architecture diagram is given in Fig E.3. Table
E.1 further lists the various parameters used for the Yolov3 algorithm to detect the
various classes from the range-angle maps.

E.4 Performance Metrics

In this section, the various metrics used to quantify the performance of the machine
learning model are discussed [21]. A machine learning model can predict the class
of an object as either true (positive) or false (negative). When the model predicts
the class as true and the actual class is positive, then the observation is defined as a
true positive (TP). Similarly, when the model predicts the class correctly as negative,
then the observation is a true negative (TN). However, when the predicted class is
true and the actual class is negative, then the observation is a false positive (FP).
Similarly, the observation is defined as a false negative (FN) when the predicted
class is false and the actual class is positive.

E.4.1 Precision

Precision represents the fraction of total number of positively classified classes to
the total number of positively predicted classes. Precision is given as:

Precision =
TP

TP + FP
(E.6)

where TP and FP represents the true positives and false positives from the predicted
result.

E.4.2 Recall

Recall is calculated as the ratio of true positive to the total number of positive
classes. Recall is computed as:

Recall =
TP

TP + FN
(E.7)

where FN is the false negatives in the predicted results.

E.4.3 F1-score

F1-score provides a means to measure the performance of a machine model by uti-
lizing both precision and recall metrics. F1-score is calculated as follows:

F1-score =
2 ∗ Precision ∗Recall
Precision+Recall

(E.8)
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E.4.4 Accuracy

The accuracy metric provides an indication of the performance of the model across
all the classes. It is defined as follows:

Accuracy =
TN + TP

TN + FP + TP + FN
(E.9)

E.4.5 Root mean square error (RMSE)

The RMSE value provides a measure of how much the estimated value has deviated
from the actual true value. It is given as follows:

RMSE =

√∑P
i=1(xestimate − xactual)2

P
(E.10)

where P is the sample size, xestimate is the estimated value, and xactual is the actual
or true value in the experiment. Lower RMSE value implies that the estimated
measurement is closer to the true value and hence better model prediction.

E.5 System Overview and Dataset Details

E.5.1 System Description

The AoA estimation of multiple targets using mmWave FMCW radar is challenging.
As described in Section E.2, accurate AoA estimation requires an increased number
of transmitter and receiver antennas. This can lead to increased hardware complex-
ity. Hence in our setup, the system at the GCS is made up of mmWave FMCW
radar that utilizes only one transmitter-receiver antenna to estimate the AoA.

Our setup consists of a mmWave FMCW radar that is mounted firmly on a
rotor. The rotor in itself is mounted on a static tripod. The rotor is battery-
powered, programmable, and highly portable. The mmWave radar is mounted on
the head of the rotor. The head of the rotor can rotate the radar through the entire
360◦ in the azimuth direction based on requirements.

The parameters of the rotor that can be programmed include the rotational
direction, the rotational velocity, and the rotational angle. The rotational velocity
of the rotor can be set according to the number of chirp frames transmitted by
the radar per second. Here the chirp frame or simply frame is defined as a set
of K equally spaced chirp waveforms that are transmitted by the radar [14]. The
performance of the AoA estimation is directly influenced by the rotational velocity
of the rotor. If the rotational velocity of the rotor is high, then the number of frames
per second that are captured will be less. Similarly, if the rotational velocity is low,
then the captured number of frames per second from the radar is high. Improved
AoA estimation performance requires higher number of frames per second, as higher
number of frames can capture more information from multiple targets present in the
scene. Hence in our setup, we have programmed the rotational velocity of the rotor
to be low so as to capture at least one frame per degree of rotation of the radar.
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Table E.2: mmWave FMCW radar AWR1843 and AWR2243 Parameters

Radar Parameter Value
No. of frames (AWR2243) 200

No. of frames (AWR1843) 800

Frame periodicity 40 ms
No. of Tx antennas 3

No. of Rx antennas 4

No. of ADC samples 256

Sampling Rate 10 MSPS
Frequency Range (RF) 77− 81 GHz

Bandwidth (RF) 1798.92 MHz
No. of Chirps 128

Chirp Slope 29.982 MHz/µs
Rx Noise Figure 14 dB (76 to 77 GHz)

15 dB (77 to 81 GHz)
Transmission Power 12 dBm

Table E.3: Experiment Parameters

Experiment Parameter Value
UAV Size 32.24× 24.2× 8.4 cm3

Human Height 172 cm
Car Size 431.5× 178.0× 160.5 cm3

Measurement Range upto 26 meters

Based on the adjusted rotational velocity, let the desired FoV to be covered by
the rotor in t seconds be θFoV . In a t second duration, the radar transmits nf frames.
By considering that the entire θFoV is divided into smaller angle bins (θb), we obtain
the following relation,

θb =
θFoV

nf

(E.11)

In our experiment scenario, the desired FoV is 180◦. The nf is 800 and 200 frames
for the radars AWR2243 [22] and AWR1843 [23] respectively. Each frame is made
up of 128 chirp waveforms transmitted by the radar. This corresponds to 0.225◦ per
frame for AWR2243 and 0.9◦ per frame for AWR1843. To increase the FoV in the
elevation, the radar is placed vertical to the ground plane in our setup.

The two mmWave FMCW radars, AWR2243 [22] and AWR1843 [23] that we
use in our experiment are manufactured from Texas Instruments. Both radars have
identical frequency range spanning between 77 − 81 GHz. Additionally, they have
identical number of transmitter and receiver pairs, RF bandwidth, chirp slope, sam-
pling rate, and ADC samples. However, the number of frames employed is 800 for
the AWR1843 and 200 for the AWR2243. A detailed list of the key parameters of
the radars can be found in Table. E.2.
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Table E.4: Measurement cases for Set1_UavCarHumans (Range in meters and angle
in degrees)

Range (m) → 5 7 9 11 13 15 17 19 21 23 25
Cases ↓

AA U(0◦) H1(30◦) H2(60◦) H3(90◦) H4(120◦) H5(150◦) C(0◦)
BB U(30◦) H5(180◦) H1(60◦) H2(90◦) H3(120◦) H4(150◦) C(30◦)
CC U(60◦) H1(0◦) H2(30◦) H3(90◦) H4(120◦) H5(150◦) C(60◦)
DD U(90◦) H1(0◦) H2(30◦) H3(60◦) H4(120◦) H5(150◦) C(90◦)
EE U(120◦) H1(60◦) H2(90◦) H3(150◦) H4(0◦) C(180◦) H5(30◦)
FF U(150◦) H5(0◦) C(150◦) H1(30◦) H2(60◦) H3(90◦) H4(120◦)
GG H1(60◦) H2(90◦) U(180◦) H3(150◦) C(120◦) H4(0◦) H5(30◦)
HH U(30◦) H4(0◦) H3(150◦) H2(120◦) H1(90◦) C(180◦) H5(60◦)
II H1(90◦) H2(120◦) U(30◦) H3(180◦) H4(60◦) H5(0◦) C(150◦)
JJ U(150◦) H3(180◦) H1(120◦) H2(60◦) H4(90◦) C(30◦)
KK H3(150◦) U(60◦) H4(90◦) H5(30◦) H1(180◦) H2(0◦) C(120◦)
LL H2(180◦) H1(120◦) U(30◦) H3(60◦) H4(90◦) H5(150◦) C(0◦)
MM H2(0◦) U(90◦) H3(30◦) H4(120◦) H1(180◦) H5(150◦) C(180◦)
NN U(90◦) H1(30◦) H3(60◦) H4(120◦) H5(150◦) H2(0◦) C(180◦)

U - UAV, C - Car, H1 - Human 1, H2 - Human 2, H3 - Human 3, H4 - Human 4, H5 - Human 5.

Table E.5: Measurement cases for Set2_UavCar (Range in meters and angle in
degrees)

Range (m) → 5 7 9 11 13 15 17 19 21 23 25
Cases ↓

AA U(0◦) C(60◦)
BB U(0◦) C(60◦)
CC U(0◦) C(90◦)
DD U(60◦) C(120◦)
EE U(60◦) C(150◦)
FF U(60◦) C(180◦)
GG U(90◦) C(180◦)
HH U(120◦) C(150◦)
II U(120◦) C(0◦)
JJ U(120◦) C(0◦)
KK U(150◦) C(0◦)
LL U(150◦) C(90◦)
MM U(180◦) C(60◦)
NN U(180◦) C(120◦)
OO U(180◦) C(30◦)

U - UAV, C - Car.

The measurement scenario is an outdoor parking setting with UAV, car, and
humans placed at varying locations with respect to the radar. Each measurement
is taken by positioning UAV, car, and humans at different locations within a radial
distance of ≈ 26 meters and 180◦ FoV in front of the radar. We limit the radial
distance to ≈ 26 meters to remain within the permissible measurement area. How-
ever, the mmWave FMCW radars can measure targets with range upto 300 meters
[22],[23]. Depending upon the radar version used (AWR1843/AWR2243), a total
of 800/200 frames containing the raw IF signal is captured for each measurement.
Each frame of the radar has a duration of about 40 ms and consists of 128 chirps.
Further, each frame of the radar provides raw IF signal data corresponding to a
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Table E.6: Measurement cases for Set3_OnlyHumans (Range in meters and angle
in degrees)

Range (m) → 5 7 9 11 13 15 17 19 21 23 25
Cases ↓

AA H1(0◦) H2(30◦) H3(60◦) H4(90◦) H5(120◦)
BB H3(0◦) H4(30◦) H5(60◦) H1(150◦) H2(180◦)
CC H5(0◦) H1(90◦) H2(120◦) H3(150◦) H4(180◦)
DD H1(30◦) H2(60◦) H3(90◦) H4(120◦) H5(150◦)
EE H2(0◦) H3(30◦) H4(60◦) H5(90◦) H1(180◦)
FF H4(0◦) H5(30◦) H1(120◦) H2(150◦) H3(180◦)
GG H1(60◦) H2(90◦) H3(120◦) H4(150◦) H5(180◦)
HH H1(0◦) H2(30◦) H3(60◦) H4(90◦) H5(120◦)
II H2(0◦) H3(30◦) H4(60◦) H5(90◦) H1(150◦)

JJ H2(0◦) H3(30◦) H4(60◦) H5(90◦),
H1(120◦)

KK H4(150◦) H5(180◦) H1(0◦) H2(30◦) H3(60◦)
LL H3(120◦) H4(150◦) H5(180◦) H1(0◦) H2(30◦)
MM H2(90◦) H3(120◦) H4(150◦) H5(180◦) H1(0◦)
NN H1(60◦) H2(90◦) H3(120◦) H4(150◦) H5(180◦)
OO H1(30◦) H2(60◦) H3(90◦) H4(120◦) H5(150◦)

H1 - Human 1, H2 - Human 2, H3 - Human 3, H4 - Human 4, H5 - Human 5.

Figure E.4: The rotating mmWave FMCW radar measurement setup.

0.225◦/0.9◦ FoV depending upon the radar model. The collected raw IF signal data
is post-processed in MATLAB [24] to obtain the range-profile for each frame. Fi-
nally, the range profiles for all the frames are stitched together so as to obtain a 180◦

FoV range-angle map of the whole measurement scenario that comprises of multiple
targets [12]. Fig. E.4 shows the experimental setup of the rotating mmWave FMCW
radar that is used to capture the raw IF signals. Other relevant parameters related
to the experiment can be found in Table. E.3.

The range-angle images obtained from MATLAB is fed into the Yolov3 algo-
rithm for training. We implement a 10-fold scheme for validation. In this scheme,
the training is performed for 10 folds of the experiment. In each fold, only 80%

of the dataset images are used for training and the remaining are assigned as test
images. We utilize the pretrained weights available from the Darknet-53 repository
to initiate the training. Upon training, the optimum weights are obtained indepen-
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Figure E.5: Measurement setup for case AA from Set3_OnlyHumans.

dently for each fold. Thus the weights of the 1st fold are independent of the 2nd

fold, and so on. By using this approach, we are implicitly removing any bias that
is associated with the training. The weights obtained after training are used on the
test images to obtain the predictions. The predictions from the Yolov3 algorithm
are range-angle images that contain bounding boxes on the detected object. It is
to be noted that each pixel dimension in the range-angle image corresponds to a
specific range and angle in the measurement setup. Hence, the centroid coordinates
of the detected bounding box correspond to the target object’s estimated range and
AoA in the measurement setup. Once the AoA estimation is obtained, the algorithm
performance can be calculated by computing the root mean square error between
the AoA estimation and the ground truth angle of the target.

E.5.2 Dataset Details

Based on the above measurement setup, we have collected the raw IF signal data
from two mmWave FMCW radars, the AWR2243 and the AWR1843 for different
target objects. The target objects include combinations of UAV, car, and humans
positioned at various locations in front of the radar. We used the AWR2243 mmWave
FMCW radar to capture the raw IF signals of UAV, car, and humans. Similarly, we
used the AWR1843 mmWave FMCW radar to collect the raw IF signals of humans.
The collected raw IF signals are processed in MATLAB to obtain the range profile
for each frame. The range profiles for each frame are stitched together to obtain the
radar range-angle images. We have created three datasets based on these range-angle
images. The first dataset contains UAV, car, and humans while the second dataset
comprises of only UAV and car combination. The third dataset contains range-angle
images of only human targets. The first, second, and third datasets are named
as Set1_UavCarHumans, Set2_UavCar, and Set3_OnlyHumans respectively. The
range-angle images obtained after processing from MATLAB have a resolution of
875× 656 pixels for Set1_UavCarHumans and Set2_UavCar. Similarly, the range-
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Table E.7: RMSE and accuracy values for 10 folds

Sl No. UAV Car Human Accuracy
(RMSE) (RMSE) (RMSE) (%)

1 1.4746◦ 1.3234◦ 0.9644◦ 99.3902

2 0.7869◦ 1.4576◦ 0.8635◦ 98.4939

3 1.3661◦ 1.0667◦ 1.0702◦ 97.9166

4 0.8700◦ 1.3807◦ 1.2312◦ 98.6111

5 0.9305◦ 1.2518◦ 1.1380◦ 98.7012

6 0.7274◦ 1.2540◦ 0.8898◦ 98.4423

7 0.8963◦ 1.6049◦ 1.1868◦ 96.8838

8 1.4128◦ 1.2237◦ 1.1005◦ 98.6413

9 1.3441◦ 1.2035◦ 0.9511◦ 95.5882

10 0.9922◦ 1.1559◦ 0.8297◦ 99.3569

angle images in Set3_OnlyHumans have a resolution of 1167× 875 pixels.
The dataset measurement cases are detailed in Table. E.4, E.5, and E.6 respec-

tively. The different cases are labelled as AA, BB, CC ....OO depending upon the
dataset. The entries inside the table are represented as an object that is positioned
at a specified distance and angle with respect to the radar. The abbreviation for
the labels used in the table entries are given towards the bottom of the respective
tables. Hence, the first entry in case AA of Table. E.6 depicts a person at 5 m and
0◦ with respect to the radar. The rest of the entries can be interpreted as follows: a
second person at 7 m and 30◦, the third person at 9 m and 60◦, the fourth person
at 11 m and 90◦, and the fifth person positioned at 13 m and 120◦ with respect
to the radar. Fig. E.5 shows one particular entry of the measurement setup for
Set3_OnlyHumans.

The range-angle images depict the signatures of the different target objects, UAV,
car, and humans. To train using the Yolov3 algorithm, we draw bounding boxes on
the range-angle images using the LabelImg software [25]. The bounding boxes are
drawn such that the centroid of the boxes represents the AoA of the target object.

E.6 Results

The labeled range-angle images are used to train the Yolov3 algorithm for optimum
weight parameters. The training is performed for 10 folds of the experiment. In each
fold of the experiment, the training is executed for 6000 iterations so that the average
loss is minimized. The average loss vs iterations for the 7th fold of the experiment
can be observed in Fig E.6. Further, the accuracy for each fold of the experiment is
listed in Table E.7. As observed and calculated from Table E.7, we obtain a relatively
high average classification accuracy of 98.20%, demonstrating the reliability of our
approach. The predicted classification can be observed on the range-angle image as
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Table E.8: Comparing the advantages of this work with other techniques

Method Number of antennas Targets with
same range

or angle

Target
classification

2D-ESPRIT
[26]

1 Tx, 2 Rx ✗ ✗

DFT-ESPRIT
[27]

1 Tx, 2 Rx ✗ ✗

Dual-
Smoothing
[28]

1 Tx, 2 Rx ✗ ✗

Clustered
ESPRIT [29]

1 Tx, 2 Rx or more. Rx
antennas could be less than

number of targets

✓ ✗

Rotating
Radar [13]

1 Tx, 1 Rx ✓ ✗

Ours 1 Tx, 1 Rx ✓ ✓

Figure E.6: Average loss vs iteration curve for the 7th fold

shown in Fig. E.7. The prediction statistics can also be visualized with the help of
a confusion matrix as shown in Fig E.8. The confusion matrix shows that UAV, car,
and humans are classified 97.89%, 99.85%, and 99.28% respectively. The average
precision, recall, and F1-score for 10 folds of the experiment are 0.991, 0.992, and
0.991 respectively.

The performance of the algorithm to estimate the AoA is calculated using the
RMSE value. Table E.7 lists the different RMSE values obtained for each fold of the
algorithm for different test scenarios. It can be seen that the average AoA RMSE
value for UAV, car, and humans are 1.0800◦, 1.2922◦, and 1.0225◦ respectively.
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(a) Set1_UavCarHumans (b) Set2_UavCar

(c) Set3_OnlyHumans

Figure E.7: Images depicting Yolov3 class prediction for range-angle images from
all three datasets.

Class UAV Car Human None Total 

UAV 650 0 0 14 664 

Car 0 669 0 1 670 

Human 0 0 1955 14 1969 

 
 
 
 
 

Figure E.8: Confusion matrix

Interestingly, the average RMSE value of cars is greater than that of UAV and
humans. This is expected as it aligns with the fact that the car has more AoA
spread due to its large size. The proposed method implies that it is difficult to
accommodate the car to a single AoA due to its large size as compared to UAV and
human.

Table E.8 shows the advantages of the proposed method over other similar tech-
niques such as 2D-ESPRIT [26], DFT-ESPRIT [27], dual-smoothing [28], clustered
ESPRIT [29], and rotating radar [13] in terms of number of antennas, and target
classification. It is observed that the proposed method is similar to the rotating radar
technique as both utilize just a single transmitter-receiver antenna for detecting mul-
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tiple non-interacting targets. However, our method provides an added advantage of
target classification along with AoA estimation. Additionally, the proposed method
also has a lower RMSE error as compared to the rotating radar technique.

E.7 Conclusion

The AoA estimation using mmWave FMCW radars is not accurate due to limited
number of antennas. As a result, target localization is imperfect in critical appli-
cations involving UAVs and GCS. This work demonstrated that the FoV and AoA
estimation of mmWave FMCW radars can be improved by combining a mechanical
rotor setup with cutting-edge computer vision techniques such as Yolov3. The radar
setup’s range-angle images were fed into the Yolov3 algorithm, which detected, clas-
sified, and localized multiple targets in the scene. The proposed method achieved
very high accuracy for target classification with low AoA estimation error outper-
forming traditional techniques. Evaluating the proposed approach’s real-time per-
formance on UAVs and GCSs to reduce latency in target detection and localization
could be a potential future research direction.
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