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Abstract: with the exponential growth in unmanned aerial vehicle
(UAV)-based applications, there is a need to ensure safe and secure op-
erations. From a security perspective, detecting and localizing intruder
UAVs is still a challenge. It is even more challenging to accurately esti-
mate the number of intruder UAVs on the scene. In this work, we propose
a simple acoustic-based technique to detect and estimate the number of
UAVs. Our method utilizes acoustic signals generated from the motion
of UAV motors and propellers. Acoustic signals are captured by flying an
arbitrary number of 10 UAVs in different combinations in an indoor set-
ting. The recorded acoustic signals are trimmed, processed, and arranged
to create a UAV audio dataset. The UAV audio dataset is subjected to
time-frequency transformations to generate audio spectrogram images.
The generated spectrogram images are then fed to a custom lightweight
convolutional neural network (CNN) architecture to estimate the number
of UAVs in the scene. Following training, the proposed model achieves an
average test accuracy of 93.33% as compared to state-of-the-art bench-
mark models. Furthermore, the deployment feasibility of the proposed
model is validated by running inference time calculations on edge com-
puting devices such as the Raspberry Pi 4, NVIDIA Jetson Nano, and
NVIDIA Jetson AGX Xavier.

D.1 Introduction

Advancements in chip miniaturization and wireless connectivity have made un-
manned aerial vehicle (UAV) based solutions attractive in various applications such

as agriculture [1], disaster management [2], aerospace [3], law enforcement [1], etc.
Their widespread popularity can be attributed to their unparalleled maneuverabil-
ity, decreasing cost, and increased sophistication [5]. However, the advantages of
UAVs are also exploited for improper and illegal use [6]. Further, as UAVs are com-

pact and small in size, concerns regarding collisions with other air-borne entities,
privacy, security, delivery of dangerous payloads, etc. should also be addressed.
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Ground control stations should be well-equipped with systems that can detect and
monitor UAV activity based on requirements.

There have been multiple attempts throughout the literature pertaining to the
detection and tracking of small-size UAVs. Some of these approaches include the use
of WiFi signals, RF radiations, vision-based sensors, radar-based approaches, and
acoustic signatures [7], [3]. However, compared to other sensors, utilizing acoustic
sensors for UAV detection has been shown to exhibit a number of advantages. Acous-
tic sensors are low-cost compact devices that detect pressure fluctuations created by
sound waves. Unlike traditional vision and radar-based sensors, acoustic sensors
are typically omnidirectional in nature. This allows them to sense disturbances in
all directions making them an ideal choice for collision-avoidance systems. Fur-
ther, passive acoustic sensors do not emit any radiation and hence it is environment
friendly. As acoustic signals are independent of the UAV form factor, it fairs well in
comparison to radar systems that require a threshold radar cross-sectional area to
enable detection. The output data rate for acoustic sensors is comparatively low as
compared to vision and radar-based systems facilitating seamless data acquisition
and processing. However, the limitation of acoustic systems is their low detection
range. For small inexpensive acoustic sensors, the detection range is typically less
than 300 m facilitating only short-range detection [9]. In this effort, we address the
problem of detecting and estimating multiple UAVs in an indoor environment using
acoustic sensors and machine learning techniques.

D.2 Related Work

In this section, we provide a brief overview of the various works in the literature
pertaining to UAV detection using acoustic signatures. It was observed that small
multi-rotor UAVs can produce complex acoustic fields due to UAV motorization
and propeller motion. The acoustic field thus produced contains complex harmonics
and is arguably a unique characteristic of the UAV. Investigations related to the
study of the UAV acoustic field can be found [10], [L 1], [12] in the literature. In [10]
investigated the effect of UAV acoustics on human subjects in an indoor occupational
environment. They concluded that the ability to accurately identify and record UAV
acoustic signatures primarily depends upon the sound pressure level of the UAV. The
study also found that an efficient redesign of multi-rotor UAVs is essential to lower
noise levels and regulate the noise frequency spectrum produced by UAVs. A similar
study [11] utilizes a large-aperture scanning microphone array to measure the sound
pressure level of a hovering UAV. The obtained results are then used to determine
a better design of UAV acoustics and analyze the UAV acoustic field. In [12], the
authors utilize the experimental data obtained from |1 1] to model the sound pressure
level of a UAV acoustic field using a physics-infused machine learning algorithm. The
physics-infused model is developed utilizing the interference from sound pressure
waves that are produced from acoustic monopole sources. The above-mentioned
works indicate that UAV acoustic signatures are unique and depend on a number
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of factors. Our work utilizes these unique acoustic harmonic signatures generated
by multiple UAVs to detect and estimate their presence in an indoor setting. In the
following subsections we provide a brief account of the various techniques used for
UAV detection based on acoustic signatures.

D.2.1 Conventional approach

The conventional approach relies on correlation and other signal-processing tech-
niques to detect UAVs from acoustic signatures. One early approach by [13], uses a
stationary microphone array to detect and track the flight trajectory of low-altitude
UAVs using their engine sound. UAV detection is performed by exploiting the
Doppler shift of the engine sound. On the other hand, tracking is carried out by
estimating the direction of arrival of the UAV. The direction of arrival is obtained
by utilizing the acoustic phase shift over the microphone array. The real-time per-
formance of the proposed approach was evaluated by performing field experiments.
It was found that the propagation delay of the acoustic delay impacts the UAV
detection and tracking performance. Another approach in [14], utilized a modified
cross-correlation technique for UAV detection. The proposed approach leverages the
differential Doppler shift that is created due to the high-speed UAV motion and mi-
crophone array separation. Using the differential Doppler shift property, the received
signals are successfully decorrelated from the ambient noise to enable UAV detec-
tion. Measurements were carried out in a controlled area with little noise. Ambient
noise was later added to the obtained data to evaluate the performance. Another
work [9] for UAV detection and classification involved the development of a drone
acoustic detection system (DADS) using microphone nodes. In the DADS, the detec-
tion of UAVs is performed using the steered-response phase transform (SRP-PHAT)
method while classification is obtained by utilizing the propeller frequencies from
the spectrogram of the measured acoustic signatures. It is reported that the SRP-
PHAT method provides reliable performance with real UAVs in real-world scenarios.
However, the classification algorithm requires the UAVs to obtain a threshold dis-
tance to achieve better performance. The work by [15], utilizes the Barlett, Capon,
and cross-correlation method to study and analyze the acoustic spectrum generated
from UAVs. The proposed approach utilizes additional high-pass filters to obtain
performance similar to the mel-frequency cepstral coefficients (MFCC) method for
UAV detection. Further experiments also reveal that the cross-correlation method
exhibited superior performance when followed by low-pass filtering to remove noise.
In comparison, [16], utilizes the intrinsic harmonics inherent in the acoustic field
signatures for detection and 3D localization. The acoustic signal’s fundamental
frequency and a few relevant harmonics are extracted using a pitch detection algo-
rithm coupled with zero-phase bandpass filters. Experimental measurements have
been carried out in anechoic and outdoor environments for performance evaluation.
It was observed that the proposed approach fairs well when the UAV traverses in
simple vertical trajectories. However, for complex trajectories with multiple UAVs,
the performance was low and required additional research. The study by [17] also
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provides insights into utilizing acoustic information to detect UAVs. In this work,
the authors measure the noise level using a sound level meter in a controlled en-
vironment containing only one UAV. After obtaining the noise-free measurements,
anthropogenic noise of people and background music was generated in the environ-
ment along with the UAV. Spectral methods were used to analyze the frequency
spectrum and it was reported that UAV detection was confirmed upon observing a
5000 Hz frequency in the spectrum. The research however fails to reproduce and
verify the results in a real-world environment with multiple UAVs. In [18], the au-
thors have addressed the problem of UAV detection through a biologically inspired
vision approach. The spectrogram signals obtained after performing time-frequency
analysis on the audio signals provide meaningful information that is embedded in
noise. By preprocessing these spectrogram images through a hoverfly vision model,
useful representations of these audio signals can be retrieved. The extracted repre-
sentations can be utilized for UAV detection. It was shown through outdoor field
trials that the bioinspired technique can improve the maximum UAV detectable
distance between 30% and 50% with respect to traditional narrowband and broad-
band techniques. However, the proposed approach requires additional verification
by using more UAV experiments and flight scenarios.

D.2.2 Machine learning approach

The advent of machine learning has bought new capabilities for UAV detection and
classification [19], [20]. Machine learning techniques identify the inherent hidden
patterns from the data that aid in UAV detection and classification |21]. By uti-
lizing these techniques with additional preprocessing techniques such as short-time
Fourier transform (STFT), principal component analysis (PCA), etc., a significant
improvement in detection and classification accuracy has been reported [22]. In the
subsequent sections, we explore some of the existing literature that uses machine
learning techniques for UAV detection and classification in terms of unsupervised
and supervised learning algorithms.

D.2.2.1 Unsupervised learning

In unsupervised learning [23], the algorithm learns to extract the hidden patterns
from the data. These algorithms work primarily on unlabeled data and learn the
inherent structure of the data without the need for any human intervention. They
are mainly used for tasks such as clustering, association, and dimensionality re-
duction. In [24], the authors study the acoustic fields generated by various small
quadcopter UAVs. The data thus obtained is used along with simulation software
such as COMSOL Multiphysics to perform numerical simulations and analysis. The
study determined the influence of blade defects, directional patterns, and pressure
variations caused by UAV propellers on UAV acoustic fields. The collected acoustic
signatures were further provided to a neural network that is trained on the cepstrum
coefficients to obtain UAV detection. In [25] the authors used multiple microphone
nodes to detect and track a UAV in a real-world environment with background noise.
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The work used MFCC and STFT for preprocessing the data. This was followed by
using support vector machines (SVM) and convolutional neural networks (CNN)
for training. Reported results indicate that the STFT-SVM model exhibited bet-
ter performance to detect a single UAV when the UAV approaches the vicinity of
a microphone node. Future work can include experimenting with multiple UAVs
and also reducing background noise during preprocessing. The work in [26] uti-
lizes a multi-class SVM for identifying UAVs in diverse environmental conditions. A
dataset is created that contains five 70 minute audio from nature during the day-
time, street traffic, train, crowd, and flying UAVs. The audio files are trimmed to
5 second and 20 millisecond segments for analysis. Preprocessing is then performed
to extract temporal centroid, spectral roll-off, spectral centroid, zero crossing rate
(ZCR), MFCCs, etc., as features. The extracted features are then fed to the SVM
classifier to obtain a high UAV detection accuracy of 96.4%. In [27], the authors
perform UAV detection using two classifiers, plotted image learning (PIL) and k
nearest neighbors (KNN). Sound clips with a 1 second duration of DJI Phantom 1
and 2 are recorded separately both indoors and outdoors in a noise-free environment.
Later, outdoor environment sounds are added to simulate real-world scenarios. The
FFT is applied to the sound clips which are then fed to the different classifiers. The
authors reported that PIL showed 83% accuracy in UAV detection as compared
to KNN which accounted for 61%. In [28], the authors developed a distributed
system using acoustic wireless sensor network for UAV detection and localization.
Through trial experiments, it was observed that the power spectral density (PSD)
of UAV sound differed significantly from the background spectrum. On the basis
of this concept, an acoustic dataset was created. The dataset consisted of UAV
sounds that were augmented with background environment sounds. The sound clips
are low pass filtered at 15 kHz, after which the PSD is obtained using FFT. PCA
is further performed for dimension reduction. The preprocessed signals are then
divided for training, testing, and additional testing with overlapped signals and
subsequently fed to the SVM classifier. It was reported that UAV detection was
successful when the introduced signal-to-interference ratio (SIR) was greater than
10 dB. In this work [29], the authors use the blind source separation (BSS) method
to detect UAVs in the presence of multiple source interference. Three different UAVs
are used separately to capture the audio signatures. The proposed method works by
first estimating the number of sources. After source estimation, three methods ICA,
PCA, or variational mode decomposition (VMD) are applied based on the type of
source separation (overdetermined, positive-definite, or underdetermined) required.
The features extracted are then fed to different machine learning algorithms such as
SVM, KNN; and decision trees to evaluate the performance. It was reported that
SVM and KNN showed similar performance with SVM exhibiting slightly better
performance. Both algorithms exhibited an accuracy of more than 90% for UAV
detection outperforming traditional filtering and mixed-signal methods. Another
approach for acoustic-based UAV detection was performed by [22]. In this work,
the sounds of amateur UAVs, birds, airplanes, and thunderstorms are recorded in a
noisy environment. The authors use MFCC and linear predictive cepstral coefficients
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(LPCC) for feature extraction. The extracted features are then fed to SVMs with
linear, cubic, and quadratic kernels to detect and identify UAV acoustics. Results
show that SVM with the cubic kernel when coupled with MFCC features outper-
formed LPCC with a UAV detection accuracy of around 96.7%.

D.2.2.2 Supervised learning

In contrast to unsupervised learning, supervised learning [23] utilizes labeled
datasets as inputs and outputs. The labeled data serves as a kind of supervision
to help the model learn the structure of the data. Supervised algorithms can learn
over time and improve its accuracy based on the amount of labeled data and its
inherent structure. In [30], the authors perform a comparative study to determine
the best classifier for acoustic UAV detection. Acoustic signatures from various
UAVs are recorded individually and augmented with diverse environmental noise to
simulate real-world UAV scenarios. The MFCCs from these signals are extracted
and fed to different classifiers and their performance is evaluated. It was reported
that RNN provided the best performance with an F-score of 80%, followed by the
Gaussian mixture model (GMM) with 68% and CNN at 58%. The study in [31]
uses normalized STFT on UAV acoustic signals. The UAV acoustic signatures are
recorded using DJI Phantom 3 or 4 models. The recorded sound clips are trimmed
to a length of 20 ms with 50% overlapping. Normalized STFT is performed on these
sound clips to obtain 41958 non-UAV and 68931 UAV sound frames. The non-UAV
sound frames contained acoustic signatures from scooters and motorcycles. The
output obtained after performing the STFT is then fed to the proposed CNN
architecture after adding additive white Gaussian noise (AWGN). Results reported
a 98.97% UAV detection accuracy and 1.28 false alarm rate (FAR). In this work [32],
the sensory substitution of pre-existing and ambient microphones along with CNN
is used to detect remotely piloted aircraft systems (RPAS) in urban environments.
Indoor and outdoor experiments were carried out individually with a diverse set
of RPASs. Spectrogram images are generated from the recorded audio clips. The
spectrogram images are then further used to train the Inception CNN model via
transfer learning. Results showed an RPAS detection accuracy of greater than 90%
for all RPAS classes. The work in [33] uses mel-spectrograms to extract the features
from the audio signals of UAVs. The extracted features are then used with CNNs
and CRNNs for UAV classification. It was concluded that CNNs exhibited superior
performance in the classification of UAVs from the obtained mel-spectrograms.
Further, the study also investigated the use of late fusion methods with ensemble
techniques to improve UAV detection performance. Another work by [31] also
utilizes the audio spectrograms along with CNN, recurrent neural network (RNN),
and convolutional recurrent neural network (CRNN) to identify and detect UAVs.
The authors conducted two experiments using two different UAVs in a controlled
environment. Real-world background noises were augmented to obtain realistic
audio information that can be used for inference. Reported results indicate that
CNN and CRNN showed better performance over RNN in accurately detecting and
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Table D.1: Summary of the latest works on machine learning-based acoustic detec-

tion of UAVs

Reference

Method

Results

Limitations

[30]

MFCC coefficients are fed
to RNN, GMM, and CNN.

RNN showed best F-score
with 80% followed by
GMM with 68% and CNN
with 58%.

Augmented environmental

noise.

Multi-UAV detection is absent.

Preprocessing using ZCR,
MFCC, spectral centroid,

etc. Extracted features are
fed to multi-class SVM.

UAV detection accuracy -
96%

Single UAV case.

Lacks real-world experiments
and background noise.

Preprocesing using FFT.
Trained using PIL and
KNN.

PIL - 83% and KNN - 61%
accuracy

Sound 2 UAVs
recorded separately.

clips from

PSD using FFT followed
by PCA for dimension
reduction. Output fed to

Best accuracy when SIR
was greater than 10 dB.

SVM is more sensitive to bit er-
ror rate.

SVM.
[31] Normalized STFT features | UAV detection accuracy of Considered only single UAV
with CNN. 98.97% scenario.

AWGN is added to simulate a

noisv _environment.

Preprocessing with MFCC
and STFT. Obtained
features fed to SVM and
CNN.

eSTFT-SVM reported best
performance.

Considered only single UAV
case.

Model accuracy is low.

Audio spectrograms with
CNN, RNN, CRNN.

CNN reported best
detection accuracy with
96.38% followed by CRNN
with 94.72%.
Experimented with two
different types of UAVs.

Lacks
scenarios.

real-world experiment

Doesn’t estimate the number of
UAVs.

Audio spectrograms with
CNN. Used different RPAS
classes individually for
measurements.

Greater than 90%
detection accuracy.

Multiple RPAS scenario is ab-
sent.

MFCC and LPCC for
feature extraction.
Features are fed to SVM
with linear, cubic, and
quadratic kernels.

MFCC with SVM cubic
kernel achieves 96.7%

detection accuracy.

Considers only single UAV sce-
nario.

Trains neural network on
cepstrum coefficients.

Relatively high UAV
detection rate.

Multiple UAV scenarios are ab-
sent.

Mel-spectrograms for
feature extraction followed

by CNN and CRNNs.

CNN (94.7% accuracy)
outperformed CRNN
(94.1% accuracy).
Experimented with
real-world scenarios.

Multiple UAV scenarios are ab-
sent.

BSS using ICA, PCA, or
VMD features. Obtained
features are fed to SVM,
KNN;, and Decision trees

SVM and KNN reported
more than 90% accuracy

Lacks real-world scenarios with
background noise.

classifying UAVs. Our work also revolves around a similar approach in which we

utilize audio spectrograms to perform multiple UAV detection.

Table D.1 summarizes the latest works in the literature related to machine
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learning-based acoustic detection of UAVs. As seen from Table D.1, the majority
of the literature focuses on detection for a single UAV scenario [25], [20], [30], [31],
[32], [22], [33]. The results obtained for detecting a single UAV can widely vary in
a multiple UAV scenario. Similarly, the scenarios considered in the literature more
or less replicate controlled and well-defined UAV trajectories [26], [34], [30], [31],
[29]. Such scenarios may not completely provide a realistic UAV flight trajectory
and may affect detection accuracy. Furthermore, some of the techniques described
require the use of high-end sophisticated computing infrastructure which may not
be always feasible and available [28]. Our work differs from the previous works in
detecting multiple UAVs rather than a single UAV. To the best of our knowledge,
this is the first time acoustic signatures have been employed to estimate the detec-
tion of maximum 10 UAVs in a scene. The scenarios considered comprise multiple
UAVs maneuvering in random directions and speeds. Our work also uses the inher-
ent background noise while performing detection. We have included one outdoor
measurement that includes background noise from wind and birds chirping. We use
supervised learning techniques in this work due to their superior performance in
the detection and classification of targets. Although unsupervised techniques have
the advantage of extracting the inherent features from unlabeled data, it fails in
performance when the requirement calls for the ability to identify specific classes
of targets. Further, our custom CNN architecture outperforms the current state-of-
the-art machine learning models in terms of accuracy and model size. Owing to the
relatively less model size, the custom CNN architecture consumes fewer resources
thereby enabling it to be deployed on lightweight edge-computing devices such as
Raspberry Pi 4, NVIDIA Jetson Nano, etc. We test the model on these devices and
also provide inference time for the same. As such the major contributions of this
paper are as follows:

e An UAV acoustic-based dataset is created by utilizing a total of 10 UAVs. An
arbitrary number of UAVs are flown randomly within the measurement area
and the acoustic field signatures are captured using a cardioid unidirectional
microphone.

e Time-frequency algorithms such as continuous wavelet transform (CWT) are
applied to transform the recorded acoustic field signatures to spectrogram
images.

e A custom lightweight CNN architecture is designed to estimate the number of
UAVs in the scene. The performance of the proposed model is compared with
state-of-the-art benchmark machine learning models in terms of accuracy and
model size.

The remaining sections of this paper are organized as follows: Section D.3 pro-
vides the methodology of the proposed approach. Section D.4 describes the mea-
surement setup and details regarding dataset creation. Section D.5 focuses on the
data preprocessing and the machine learning algorithm that is used. Section D.6
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summarizes the standard benchmark machine learning models that are used to com-
pare the performance of the proposed model. Section D.7 provides an overview of
the edge computing devices on which the proposed model is executed. Section D.8
summarizes the results obtained with the proposed approach. Section D.9 discusses
the implications of the proposed approach along with limitations and future work.
Finally, the paper is concluded in Section D.10.

D.3 Methodology

CwT Training Inference UAV Count
UAV Acoustic Spectrogram Proposed CNN Hardware Estimated number
signatures (.wav) images model Deployment of UAVs

Figure D.1: Block diagram of the proposed work.

The proposed work utilizes the acoustic field generated from UAV rotors and pro-
pellers. The high-speed motion of rotors and propellers produces pressure differences
leading to the generation of an acoustic field. In the proposed work, these acoustic
field signatures are captured with the help of a cardioid microphone. Acoustic sig-
natures from 10 UAV combinations are captured and processed to generate audio
spectrogram images. These images are then used to train CNN models to estimate
the number of UAVs in the scene. A simplified flow diagram of the methodology is
shown in Fig. D.1.

D.4 Measurement setup and dataset

D.4.1 Measurement setup

The primary measurement area is an indoor lab environment that covers a semi-
circular area of 5 meters in radius. Experiments were designed to capture acoustic
signatures from a total of 10 UAV combinations that are flown in a random fashion
within the prescribed area. The UAV models employed for the experiment include
the DJI Mavic 2 Enterprise [35], DJI Mini 2 [36], DJI Mini SE [37], DJI Mini 3
Pro [35], DJI Tello EDU [39], and SYMA X30 [10]. Except for the DJI Mavic 2
Enterprise, all the other UAVs fall into the 250 grams category and have relatively
smaller dimensions (approximately 251 x 362 x 70 mm [38]). The small size of the
UAVs makes them an excellent choice for testing the estimation performance in a
multi-UAV scenario. The DJI Tello UAVs were operated programmatically to follow
a prescribed trajectory. The remaining UAVs were operated manually to fly in a
random fashion to simulate a near real-time scenario. Further details regarding the
experiment are provided in Table D.2.

The UAV acoustic signatures are recorded using the Shure MV7 microphone [11].
The microphone has a unidirectional (cardioid) type polar pattern with an output
impedance of 314 ohms. It has a frequency response ranging from 50 Hz to 16000
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Table D.2: Measurement setup and experiment details

Experiment Parameters Details
Semicircular area Radius: 5 meters
Measurement duration 5 minutes
Microphone Shure MV7
Frequency response 50 Hz - 16000 Hz
Output impedance 314 ohms
Sampling rate 48000 Hz
Total UAVs 10
DJI Mavic 2 Enterprise 1
DJI Mini 2 1
DJI Mini SE 2
DJI Mini 3 Pro 1
DJI Telllo EDU 4
SYMA X30 1

Hz with an adjustable gain spanning between 0 and +36 dB [12|. Additional details
regarding the microphone are provided in Table D.2. The microphone is mounted
on a tripod stand and faced toward the measurement area. As the microphone has
a unidirectional cardioid polar pattern, the acoustic disturbances originating from
UAVs flying in front of the microphone are captured and amplified. However, the
disturbances that originate from the rear end of the microphone are attenuated and
hence do not contribute to the output signal. Fig. D.2 shows the microphone setup
that was used to capture the acoustic signatures from UAVs.

Each measurement of the experiment consisted of flying an arbitrary number
of UAVs in the prescribed area for a duration of 5 minutes. For example, the
fifth measurement captured acoustic field signatures from 5 randomly flown UAVs.
The sixth measurement involved flying 6 UAVs in a random manner. To improve
variability, each measurement of the experiment has been designed to use different
types of UAVs as much as possible. However, due to availability constraints we
resorted to similar UAV models for measurements that required more number of
UAVs. Fig. D.3 depicts a 5 UAV measurement case. To provide additional variability
in the acoustic field measurements, we performed the 2nd measurement outdoors.
The outdoor measurement area is roughly the same semicircular area of radius 5
meters with additional noise related to wind, birds chirping, etc. Further, the first
measurement has been taken independently using 3 different UAV models to increase
the number of samples.

D.4.2 Dataset details

The acoustic signatures that are recorded and captured from the experiment are used
to create a dataset comprising UAV audio clips. Each recorded acoustic signature is
of 5 minute duration. The recorded signatures are carefully trimmed to retain only
the portion pertaining to UAV audio. Each trimmed audio signal is of 4 minutes
and 45 seconds (285 seconds) with a sample rate of 48000 Hz. To reduce latency and
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Figure D.2: Shure MV7 setup used for measuring the UAV acoustic signals

Figure D.3: Capturing acoustic signals for a 5 UAV scenario.

ensure smooth processing, we divide each trimmed signal (285 second duration) into
95 equal parts. Each one of the 95 parts is a 3 second audio clip with a sampling
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rate of 48000 Hz. In total, the dataset contains 1140 UAV audio clips of 3 second
duration.

D.5 Preprocessing and algorithm details

In the preprocessing stage of the proposed approach, various signal processing trans-
formations are applied on the prepared UAV audio dataset. After preprocessing, the
resulting spectrogram images are then fed to lightweight CNN models to estimate
the number of UAVs present in the scene.

D.5.1 Continuous Wavelet Transform (CWT)

The CWT is a wavelet transform that decomposes a signal into its time and fre-
quency components [13]. Just like the STFT [11], the CWT measures the correlation
between the original signal f(¢) and the analyzing wavelet v). Depending upon the
correlation with the original signal, the analyzing wavelet is scaled and dilated by
parameters p and q respectively. Assuming the scaling parameter p > 0, and dilation
parameter ¢, then the CWT for a signal f(t) is computed as,

Cloas S 00) = [ s (20 (D.1)
—c0 p p

where the * represents the complex conjugate [15]. If the CWT is applied to a real
signal, then the obtained output is also real-valued. By varying the parameters p
and ¢ continuously, we obtain the C(p, q) coefficients which are subsequently used
to plot the spectrogram of the signal. In the proposed method, CWT is applied
over the trimmed audio clips. As each audio clip is 3 seconds long with a sample
rate of 48000 Hz, the resulting spectrogram exhibits time and frequency compo-
nents corresponding to these parameters. The acoustic signatures along with their
corresponding spectrogram outputs are plotted in Fig. D.4 and D.5.

D.5.2 Convolutional Neural Network (CNN)

CNNs are unique deep-learning architectures that utilize artificial neural networks
to detect and classify objects from images. In the proposed approach, we develop a
custom CNN architecture to extract feature information from spectrogram images.

While designing the custom CNN architecture, we first checked the performance
by varying the number of layers as 5, 10, 15, and 20 layers. We used 10-fold cross-
validation with a data set split of (80, 10, 10) for training, testing, and validation.
It was observed that CNNs with 20 layers or more provided better performance
as compared to the ones with a lower number of layers. Subsequently, we varied
the number of layers along with the image resolution to obtain the best-performing
architectures. Table D.3 provides the performance of the CNN architectures with
18 layers and more. The change in performance is also noted with respect to the
change in image resolution. It can be observed from Table D.3 that the performance
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Figure D.4: UAV acoustic signatures for scenarios with (a) 1 UAV (b) 2 UAVs (c)
4 UAVs (d) 6 UAVs (e) 8 UAVs (f) 10 UAVs.

Figure D.5: Spectrogram images of scenarios with (a) 1 UAV (b) 2 UAVs (c) 4 UAVs
(d) 6 UAVs (e) 8 UAVs (f) 10 UAVs.

gradually increases from 18 layers and peaks around 22 and 24 layers and then
gradually decreases. Out of the five CNN architectures (shown in bold in Table
D.3) that exhibited greater than 94% average test accuracy, we chose the CNN
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Table D.3: Comparison of CNN architectures based on number of layers and image

resolution
Sl. No. Ilja ;e(z_i Image resolution Ai‘:liaires(z %)
1 18 300 x 200 x 3 92.29
2 18 400 x 300 x 3 92.40
3 18 500 x 400 x 3 86.05
4 18 600 x 500 x 3 94.73
5 18 700 x 600 x 3 93.55
6 20 300 x 200 x 3 89.37
7 20 400 x 300 x 3 88.50
8 20 500 x 400 x 3 89.56
9 20 600 x 500 x 3 88.89
10 20 700 x 600 x 3 88.00
11 22 300 x 200 x 3 92.19
12 22 400 x 300 x 3 94.24
13 22 500 x 400 x 3 94.74
14 22 600 x 500 x 3 93.86
15 22 700 x 600 x 3 94.05
16 24 300 x 200 x 3 92.98
17 24 400 x 300 x 3 92.98
18 24 500 x 400 x 3 93.56
19 24 600 x 500 x 3 93.86
20 24 700 x 600 x 3 94.24
21 26 300 x 200 x 3 91.13
22 26 400 x 300 x 3 91.61
23 26 500 x 400 x 3 89.76
24 26 600 x 500 x 3 86.34
25 26 700 x 600 x 3 88.11

architecture (22 layers, 500 x 400 x 3) for further analysis after considering other
performance metrics and parameters.

The proposed CNN architecture that is made of 22 layers is shown in Fig. D.6 and
Table D.4. The spectrogram image obtained after performing CW'T on the audio
clips have a resolution of 836 x 716 x 3 pixels. To be trained by the custom CNN
architecture, these spectrogram images are resized to 500 x 400 x 3 pixels. The resized
images are then fed to the proposed CNN architecture through the input layer. The
proposed architecture consists of convolutional layers with kernel dimensions 4 x 4.
We primarily use 8 or 16 convolutional kernels to extract the feature embeddings.
The final convolutional layer however additionally uses dilation by a factor of 2.
The process of dilation intentionally expands the kernel size by introducing holes
between adjacent elements as shown in Fig. D.7. This provides a larger field of view
that in turn helps in capturing intrinsical sequence information [16].

To expand the network with additional layers without compromising on perfor-
mance, our model employs residual blocks. Our model uses a total of 2 residual
layers. The architecture of the residual blocks used in the proposed architecture

201



’Skip connection

Dilation Flatten , 9

Input Residual blocks rate = 2
spectrogram layer
image Output
,  Dense layer

| layer
@ Addition MaxPooling layer Convolutional layer '

Figure D.6: Proposed CNN architecture.

Table D.4: Layerwise architecture details of the proposed CNN model

No. Layer Output Size Parameter

1 Input [(None, 500, 400, 3)] 0

2 Batch Normalization (1) [(None, 500, 400, 3)] 12

3 Conv2D (1) [(None, 500, 400, 8)] 392
4 MaxPooling2D (1) [(None, 166, 133, 8)] 0

5 Conv2D (2) [(None, 166, 133, 8)] 1032
6 Batch Normalization (2) [(None, 166, 133, 8)] 32
7 Conv2D (3) [(None, 166, 133, 8)| 1032
8 Batch Normalization (3) [(None, 166, 133, 8)] 32
9 Add (1) [(None, 166, 133, 8)| 0
10 Activation (1) [(None, 166, 133, 8)] 0
11 Conv2D (4) [(None, 166, 133, 16)] | 1032
12 Batch Normalization (4) [(None, 166, 133, 8)] 32
13 Conv2D (5) [(None, 166, 133, 16)] 1032
14 Batch Normalization (5) [(None, 166, 133, 8)] 32
15 Add (2) [(None, 166, 133, 8)] 0
16 Activation (2) [(None, 166, 133, 8)] 0
17 Conv2D (6) [(None, 166, 133, 16)] 2064
18 MaxPooling2D (2) [(None, 55, 44, 16)] 0
19 | Conv2D (7), Dilation rate = 2 | [(None, 55, 44, 64)] 16448
20 MaxPooling2D (3) [(None, 18, 14, 64)] 0
21 Flatten [(None, 16128)] 0
22 Dense [(None, 10)] 161290

is depicted in Fig. D.6. Additionally, 3 x 3 max pooling is used throughout the
architecture. Max pooling downsamples the input feature representation [17]. It
essentially removes translational invariances from the input representation thereby
improving computational efficiency for further layers. The proposed model also uti-
lizes batch normalization at the input layer and residual layers as observed from
Table D.4. Batch normalization resolves the problem of internal covariate shift
[18] by standardization of the input distribution that involves re-centering and re-
scaling. The final layers comprise the flatten layer and the dense layer. The flatten
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Figure D.7: Effect of dilated convolution for a 3x3 kernel on a 9x9 feature map.

layer transforms the input vector to a 1-dimensional output which is subsequently
fed into the dense layer. The dense layer outputs class probabilities which are finally
used for detection and classification tasks. In the proposed architecture, since we
are estimating a maximum number of 10 UAVs, there are 10 outputs from the dense
layer.

The proposed CNN model is trained using the Adam optimizer [19] with the tanh
activation function. We have adjusted the learning rate to 0.001 and batch size to
16 to reduce fluctuations in the accuracy/loss curve during training. Training is
performed using the Keras deep learning library [50] on two Tesla V100-SXM3 GPU
with 32 GB RAM [51].

D.6 Benchmark Models

Benchmark models are state-of-the-art models that have distinct architectural fea-
tures. For example, DenseNets [52] are special CNNs where the feature maps from
each layer are fed to all the subsequent layers thereby preserving the feed-forward
nature of the network. ResNet architecture 53] introduces residual blocks to im-
prove performance. The residual blocks are made up of skip connections that retain
the abstractions lost in the standard path. The efficientNet family of CNNs utilizes
uniform scaling of the depth, width, and resolution of the network to achieve better
accuracy. MobileNet [541] models on the other hand are optimized to provide faster
operations on mobile and embedded devices. These models have a low memory
footprint and offer a better tradeoff between resource utilization and accuracy. We
assess the performance of the proposed model by comparing it with these existing
benchmark models. We compare it with 23 benchmark models that include mod-
els from DenseNet [52], EfficientNet [55], Inception [56], MobileNet [541]|, ResNet
[53], NASNetMobile [57], VGG [58], and Xception [59]. The benchmark models are
pre-trained on the ImageNet dataset [60]. The input image resolution fed to the
benchmark models has a resolution of 224 x 224 x 3. We compare the proposed
model with benchmark models in terms of total parameters, model size, average
test accuracy, and number of floating point operations per second (FLOPs). The
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benchmark models are also further deployed on edge computing devices to measure
inference time.

D.7 Hardware Deployment

To obtain real-time performance with edge computing devices, we deploy the pro-
posed model on three embedded devices, namely, the Raspberry Pi 4 Model B, the
NVIDIA Jetson AGX Xavier, and the NVIDIA Jeton Nano. The Raspberry Pi 4
Model B board contains a quad-core ARM Cortex-A72 processor with 1/2/4/8 GB
of RAM. The board is well equipped with various communication interfaces such as
Bluetooth 5.0, BLE, and 2.4/5.0 GHz wireless LAN for wireless information trans-
fer. Additionally, the board also provides two USB 3.0, two USB 2.0, and a Gigabit
Ethernet port to ensure seamless interfacing with other devices [61]. As compared
to Raspberry Pi 4, the NVIDIA Jetson Nano comes with a 128-core Maxwell GPU
architecture and quad-core ARM Cortex A5 CPU. With 4 GB RAM and support
for multiple interfaces such as USB 2.0 Micro-B, USB 3.0, Gigabit Ethernet, 12C,
12S, SPI, and UART, the Jetson Nano serves to be an excellent choice for high com-
puting edge computing devices [62]. For edge applications that require even more
computing capability, the NVIDIA Jetson AGX Xavier is preferred. The Jetson
AGX Xavier houses a 512-core Volta GPU architecture and an 8-core Carmel ARM
CPU along with 32 GB RAM. It has dedicated deep learning and vision accelerators
for various machine learning and computer vision tasks. To interface with other pe-
ripheral devices, the Jetson AGX Xavier provides standards such as USB-C, USB
2.0, UART, and RJ45 [63]. To obtain the inference time on the various edge com-
puting devices, the proposed model and benchmark models are first converted to
their equivalent Tensorflow Lite versions. TensorFlow Lite [(4] is an open-source
software developed by Tensorflow to deploy pre-trained models on edge computing
devices. By converting the model to its equivalent TensorFlow Lite format, the
model is optimized for inference time and model size allowing seamless deployment
on various embedded devices. After converting to TensorFlow Lite versions, the
proposed model and benchmark models are deployed on these embedded devices to
obtain the inference time. The time taken to predict the exact number of UAVs from
the spectrogram images is collected and the average inference time is calculated.

D.8 Results

The spectrogram images obtained after applying the CWT transform are used to
train the proposed CNN model. We utilize 80% of the dataset for training, 10% for
validation, and the remaining 10% for testing. We used 10-fold cross-validation [65]
where each fold is trained for 50 epochs with a batch size of 16 and a learning rate
of 0.001. The 10-fold cross-validation utilizes 80% of the dataset for training and
10% for validation. The testing is performed on the remaining 10% of the dataset
to obtain detection accuracy. Fig. D.8a and D.8b show the loss and accuracy curves
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Figure D.8: Loss and accuracy curves.

obtained during training. It can be observed from Fig. D.8a that the training and
validation loss decrease significantly after 10 epochs. Correspondingly, the accuracy
curves for training and validation converge close to 1 after 10 epochs indicating that
the proposed model requires less training time.
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Figure D.9: Confusion matrix for the proposed model.

Upon training, the model performance was evaluated on the test set. Fig. D.9
depicts the confusion matrix obtained after evaluating the proposed model on the
test set. It can be observed that the proposed model is able to correctly predict the
number of UAVs for more than 90% of the cases. In the remaining cases, the model
incorrectly estimates the number of UAVs present in the scene. This might be due
to the superposition of acoustic signatures from similar UAV models that can render
the obtained signal unresolvable. The performance of the proposed model is also
compared with standard benchmark machine learning models as shown in Table D.5.
We used the same data set split while calculating the performance metrics on the
benchmark models. The spectrogram images are resized to 224 x 224 x 3 pixels before
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Table D.5: Performance metrics comparison between proposed CNN model and
benchmark models

Sl. No. Model Pari?rzziers Ai‘lllgrac’];/es(f%) Mo((li\flll?jlze Opef:t)iasrllzg(g;?gPs)
1 DenseNet121 [52] 7,047,754 83.77 28.98 2.88
2 DenseNet169 [52] 12,659, 530 87.28 51.76 3.42
3 DenseNet201 [52] 18,341,194 88.68 74.68 4.37
4 EfficientNetB0 [55] 4,062, 381 83.85 16.74 0.4
5 EfficientNetB1 [55] 6, 588,049 81.05 27.01 0.59
6 EfficientNetB2 [55] 7,782,659 80.08 31.80 0.68
7 EfficientNetB3 [55] | 10,798,905 84.21 43.94 0.99
8 EfficientNetB4 [55] 17,691,753 78.24 71.66 1.54
9 EfficientNetB5 [55] 28,534,017 79.73 115.20 241
10 EfficientNetB6 [55] 40,983,193 82.45 165.18 3.43
11 EfficientNetB7 [55] 64,123,297 81.40 257.98 5.27
12 InceptionResnetV2 [66] | 54,352,106 77.63 218.77 6.55
13 InceptionV3 [56] 21,823,274 78.42 87.97 2.89
14 MobileNetV2 [54] 2,270,794 86.75 9.49 0.32
15 MobileNetV3Large [67] | 4,239,242 86.92 17.42 0.23
16 MobileNetV3Small [67] | 1,540,218 81.84 6.55 0.06
17 NASNetMobile [57] 4,280, 286 77.71 18.48 0.27
18 ResNet101V2 [53] 42,647,050 89.64 171.37 8.28
19 ResNet152V2 [53] 58,352,138 87.63 234.50 12.5
20 ResNet50V2 [53] 23,585,290 90.35 94.82 3.97
21 VGG16 [58] 14,719,818 87.98 58.98 15.5
22 VGG19 [58] 20,029,514 87.98 80.22 19.6
23 Xception [59] 20,881,970 82.89 83.96 0.36
24 Proposed model 184,462 93.3 2.34 0.25

providing it as input to the standard benchmark models. As observed in Table D.5,
the proposed model achieves a relatively high test accuracy of 93.33% as compared
to the benchmark models. It can also be observed from Table D.5, that the pro-
posed model requires just 2.34 MB of storage space as compared to the benchmark
models ensuring seamless portability and deployability on various edge computing
devices. Additionally, the total parameters employed by our model are less as com-
pared to other benchmark models. Moreover, the majority of the total parameters
used by the proposed model are trainable parameters showing efficient utilization of
parameters. Table D.5 also lists the computational performance of our model with
respect to other benchmark models in terms of the number of floating point opera-
tions (FLOPs) [68]. The FLOP count is measured as GFLOPs where 1 GFLOP is
equal to 10° FLOPs. The FLOP count is obtained by using standard open-source
software available from PyTorch [69] and TensorFlow [70]. It can be observed that
our model has a relatively less number of FLOPs as compared to most of the bench-
mark models. Specifically, MobileNetV3Small and MobileNetV3Large have lower
FLOP counts compared to the proposed model. This reduction in computational
cost might be due to the width and resolution multiplier parameter introduced in
the MobileNet series [54].

The proposed model has also been deployed on edge computing devices such as
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Raspberry Pi 4 Model B, NVIDIA Jetson Nano, and NVIDIA Jetson AGX Xavier.
We perform inference time calculation of the proposed model on all these devices.
The inference time calculation can serve as a useful reference when deciding the
deployment feasibility of the proposed model for time-critical applications. In all
three devices, we used a randomly selected test set which is 10% of the overall
dataset. The trained model was executed on the Raspberry Pi 4 board to obtain an
average inference time of about 127 milliseconds over 10 iterations. On the other
hand, the execution on the Jetson Nano reported an average inference time of about
219 milliseconds. This is expected as the TensorFlow Lite models are not utilizing
the GPU resources onboard the Jetson Nano. TensorFlow Lite does not support
CUDA for GPU operations |71]. However, the Jetson devices only support CUDA for
GPU operations [72| and hence the observed increase in inference time is expected.
Similarly, the trained model was able to provide an average inference time of about
81.4 milliseconds, when executed on the NVIDIA Jetson AGX Xavier. The Jetson
AGX Xavier showcased faster inference time as compared to the Raspberry Pi 4 and
Jetson Nano. Even though the GPU is not utilized, the faster inference time can be
attributed to the availability of increased RAM of about 32 GB which can increase
the performance of the system. Further, the Jetson AGX Xavier also has access to
additional computing resources as compared to the other two devices. Table D.6
lists the inference time obtained for the proposed model along with the benchmark
models on various edge computing devices. We used the same data set split while
calculating the inference time on the benchmark models. It can be observed that the
proposed model is faster than most of the benchmark models on all three embedded
devices. The MobileNet series of models however have a lower inference time than
the proposed model. This might be due to the width and resolution multiplier
parameter in the MobileNet series that reduces the computational cost of the model.

D.9 Discussion

In this work, we have provided a robust solution to estimate the number of UAVs in a
scene. The current setup employs only one unidirectional cardioid-type microphone
to estimate the number of UAVs. It is to be noted that since the polar pattern of the
microphone follows a cardioid pattern, the acoustic disturbances originating from
UAVs flying at the rear of the microphone are attenuated. This can severely impact
the estimated UAV number. A more practical approach to overcome this limitation
is to position multiple cardioid microphones such that the acoustic disturbances
originating from the full 360° of the scene are captured. Employing microphones
that exhibit an omnidirectional polar pattern can also be utilized so that acoustic
disturbances from all directions are captured without significant signal attenuation.

It can be observed from Table D.5 and Table D.6, that the proposed CNN ar-
chitecture provides relatively high accuracy and fast inference time on embedded
hardware all the while consuming fewer resources. The proposed model can thus be
employed for time-critical and resource-constrained UAV detection scenarios. High
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Table D.6: Inference time calculation on various edge computing devices

Inference time (seconds
SI. No Model Raspberry Pi | Jetson Nano( J etson) AGX Xavier
1 DenseNet121 [52] 0.692 0.841 0.413
2 DenseNet169 [52] 0.832 1.009 0.483
3 DenseNet201 [52] 1.088 1.275 0.614
4 EfficientNetB0 [55] 0.389 0.372 0.116
) EfficientNetB1 [55] 0.591 0.546 0.178
6 EfficientNetB2 [57)] 0.624 0.592 0.180
7 EfficientNetB3 [55] 0.843 0.794 0.248
8 EfficientNetB4 [55] 1.162 1.147 0.359
9 EfficientNetB5 [55] 1.724 1.672 0.528
10 EfficientNetB6 [55] 2.339 2.173 0.832
11 EfficientNetB7 [55] 3.252 2971 1.158
12 InceptionResNet V2 [66] 1.637 1.828 0.797
13 InceptionV3 [50] 0.700 0.819 0.378
14 MobileNetV2 [54] 0.088 0.112 0.046
15 MobileNetV3Large [(7] 0.072 0.090 0.036
16 MobileNetV3Small [67] 0.022 0.028 0.011
17 NASNetMobile [57] 0.320 0.256 0.125
18 ResNet50V2 [53] 0.912 1.008 0.440
19 ResNet101V2 [53] 1.879 2.053 0.858
20 ResNet152V2 [51] 2.820 3.159 1.285
21 VGG16 58] 3.903 4.042 1.699
22 VGG19 [74] 5.031 6.981 2.184
23 Xception [59] 1.236 2.206 0.520
24 Proposed model 0.127 0.219 0.081

detection performance coupled with real-time scenarios also suggests that the pro-
posed technique can be deployed in practical ground control stations to function as
an anti-UAV detection system. It can be inferred from the obtained results that
the proposed technique is capable of detecting more than 10 UAVs in a dynamic
real-time scenario given additional UAV information. In the future, the accuracy of
the proposed technique can be improved by utilizing other sensor modalities. With
the help of additional sensors, the work can also be extended to identify the UAV
model and/or type.

D.10 Conclusion

In this article, we addressed the problem of accurately estimating the total number
of UAVs present in a scene. We developed a UAV acoustic dataset to recreate a
real-world scenario comprising of 10 UAV combinations flown in a random manner.
The acoustic information from the dataset was preprocessed using time-frequency
transformations to obtain their respective spectrogram images. The generated spec-
trogram images are then fed into a custom lightweight CNN model to estimate the
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number of UAVs in the scene. The proposed model provides a high average test
accuracy in accurately estimating the number of UAVs. Subsequently, the proposed
model has also been executed on various edge computing devices to measure infer-
ence time performance. In the future, this work can be extended to identify the
UAV model and/or type by utilizing information from additional sensors.
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