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Preface

This dissertation marks the culmination of my research performed at the University
of Agder, Grimstad campus between January 2021 and January 2024. I acknowl-
edge the encouragement and assistance provided by my supervisors Professor Linga
Reddy Cenkeramaddi (lead advisor), Associate Professor Ajit Jha, and Associate
Professor Abhinav Kumar. I would also like to acknowledge all other collaborators
and participants for their valuable contributions and support that have helped bring
this dissertation to fruition.

This thesis is based on seven publications that are provided in the Appendix
section. Papers A and B are literature surveys that have been carried out in con-
junction with the research presented in subsequent publications. Papers C, D, and
E provide practical approaches to realize reliable sensing for UAVs and ground con-
trol stations. The remaining publications, Papers F and G involve the design of an
adaptively optimized switching for communication modules on board UAVs. The
dissertation comprises of five chapters. Chapter 1 provides an introduction to the
research presented in the thesis. Chapter 2 discusses necessary background mate-
rial and state-of-the-art. Chapter 3 focuses on the proposed approaches concerning
UAV sensing. Chapter 4 summarizes the design of an adaptive switching scheme for
UAV communication. Finally, Chapter 5 marks the conclusion of the dissertation,
providing a summary and holistic view of the research, and future directions.

This Ph.D. dissertation is a testament to the hardships, endurance, and sacrifice
that I faced during the tenure of the Ph.D. journey. It also serves as a reminder that
strict discipline enforced with hard work, dedication, and proper planning are crucial
to achieving one’s dreams. I am deeply grateful for all the lessons I have acquired
throughout this journey and wish to rely on them in my future endeavours.

I believe that the outcomes of this research that is forged with hard work, ded-
ication, and commitment will serve to be meaningful contributions to the scientific
community.
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Sammendrag
Pålitelig sensing og energieffektiv kommunikasjon er en integrert del av UAV-baserte
applikasjoner. Det er imidlertid utfordrende å sikre pålitelig sensing under alle
værforhold. Dessuten er det like krevende å muliggjøre robust og energieffektiv
kommunikasjon for sømløse autonome operasjoner. Lav-kompleksitet og lette al-
goritmer spiller en viktig rolle i denne forbindelse. Som et resultat av dette ble
målet for denne Ph.D. Forskningsprosjektet er å designe, utvikle og implementere
pålitelige sensing og energieffektive kommunikasjonsteknikker for å gi sømløse au-
tonome operasjoner for UAV-er og bakkekontrollstasjoner. For å oppnå det tiltenkte
målet, vil et av målene være rettet mot å utvikle nye lette, lavkompleksitets smarte
sensoralgoritmer som oppnår forbedret deteksjonsytelse under ugunstige vær- og
lysforhold. I denne forbindelse fokuserer denne forskningen på å bruke termiske,
akustiske og mmWave FMCW-radarsensorer med lette maskinlæringsalgoritmer for
å oppnå forbedret deteksjons- og lokaliseringsytelse. Den registrerte informasjo-
nen sammen med telemetridata må overføres til andre UAV-er eller bakkekontroll-
stasjoner for å lette effektiv og sikker koordinering av autonome UAV-er. Derfor vil
et tilleggsmål med forskningen innebære utformingen av en dynamisk og adaptivt
optimalisert svitsjalgoritme for de forskjellige kommunikasjonsprotokollene utstyrt
på UAV-er. Forskningen vil først og fremst ta for seg utfordringen rundt energief-
fektiv dataoverføring for et UAV-assistert trådløst nettverk.
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Abstract

Reliable sensing and energy-efficient communication are an integral part of un-
manned aerial vehicle (UAV)-based applications. However, it is challenging to en-
sure reliable sensing under all weather conditions. Furthermore, enabling robust
and energy-efficient communication of this sensed data for seamless autonomous
operations is equally demanding. Low-complexity and lightweight algorithms play
a vital role in this regard. As a result, the goal of this Ph.D. research project is
to design, develop, and implement reliable sensing and energy-efficient communica-
tion techniques to provide seamless autonomous operations for UAVs and ground
control stations. To achieve the intended goal, one of the objectives is directed
toward developing novel lightweight low-complexity smart sensing algorithms that
attain improved detection performance in adverse weather and lighting conditions
too. In this regard, this research focuses on utilizing thermal, acoustic, and mmWave
frequency-modulated continuous wave (FMCW) radar sensors with lightweight ma-
chine learning algorithms to obtain improved detection and localization performance.
The sensed information along with telemetry data is required to be transmitted to
other UAVs or ground control stations to facilitate efficient and secure coordination
of autonomous UAVs. Hence, the secondary objective of this research addresses the
challenge of achieving energy-efficient data transmission for a UAV-assisted wireless
network. The research for attaining energy-efficient data transmission focuses on the
design of a dynamic and adaptively optimized switching algorithm that leverages
the distinct features of the various onboard communication modules.

This thesis is a compendium of seven publications that are organized into five
chapters. Overall the primary objective is to develop reliable smart sensing algo-
rithms along with energy-efficient communication schemes to enable seamless au-
tonomous UAV operations. The first chapter briefly introduces the various chal-
lenges dealt in the thesis and provides an overview of the thesis structure. Chap-
ter 2 provides the necessary literary material to navigate the subsequent chapters.
Chapter 3 discusses three sensing approaches using thermal, acoustic, and mmWave
FMCW radar sensors to achieve improved detection and localization performance.
In chapter 4, the notion of an adaptively optimized switching algorithm for energy-
efficient communication is conceived. Two approaches to form the hybrid commu-
nication switching network are discussed. Finally, chapter 5 concludes the Ph.D.
dissertation by summarizing the proposed approaches and providing avenues for
future research.

ix



Publications

The following publications are included in this dissertation and are provided in
Appendices, A-G at the end of the Ph.D. Thesis.

• PAPER A: A. N. Wilson, A. Kumar, A. Jha and L. R. Cenkeramaddi,
“Embedded Sensors, Communication Technologies, Computing Platforms and
Machine Learning for UAVs: A Review,” IEEE Sensors Journal, vol. 22, no.
3, pp. 1807-1826, Feb. 2022.

• PAPER B: A. N. Wilson, K. A. Gupta, B. H. Koduru, A. Kumar, A.
Jha and L. R. Cenkeramaddi, “Recent Advances in Thermal Imaging and its
Applications Using Machine Learning: A Review,” IEEE Sensors Journal, vol.
23, no. 4, pp. 3395-3407, Feb. 2023.

• PAPER C: W. A. N., A. Jha, A. Kumar and L. R. Cenkeramaddi, “Estima-
tion of UAV Count Using Thermal Imaging and Lightweight CNN,” in Proc.
ICCMA, Grimstad, Norway, 2023, pp. 92-96.

• PAPER D: Wilson A. N., Ajit Jha, Abhinav Kumar, Linga Reddy Cenkera-
maddi, “Estimation of number of unmanned aerial vehicles in a scene utilizing
acoustic signatures and machine learning,” J. Acoust. Soc. Am., vol. 154, no.
1, pp. 533–546, Jul. 2023.

• PAPER E: A. N. Wilson, A. Kumar, A. Jha and L. R. Cenkeramaddi,
“Multitarget Angle of Arrival Estimation Using Rotating mmWave FMCW
Radar and Yolov3,” IEEE Sensors Journal, vol. 23, no. 3, pp. 3173-3182,
Feb. 2023.

• PAPER F: W. A. N., Y. S. Reddy, A. Jha, A. Kumar and L. R. Cenkera-
maddi, “Hybrid BLE/LTE/Wi-Fi/LoRa Switching Scheme for UAV-Assisted
Wireless Networks,” in Proc. IEEE ANTS, Hyderabad, India, 2021, pp. 78-83.

• PAPER G: W. A. Nelson, S. R. Yeduri, A. Jha, A. Kumar and L. R.
Cenkeramaddi, “RL-Based Energy-Efficient Data Transmission Over Hybrid
BLE/LTE/Wi-Fi/LoRa UAV-Assisted Wireless Network,” IEEE/ACM Trans-
actions on Networking.

x



Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Components of a UAV System: Sensors, Communication, and
Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background Theory and Literature Survey 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Hardware Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Communication Technologies . . . . . . . . . . . . . . . . . . 10
2.2.3 Edge Computing Platforms . . . . . . . . . . . . . . . . . . . 11

2.3 You Look Only Once (Yolo) Architecture and Working . . . . . . . . 12
2.4 Benchmark Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Continuous Wavelet Transform (CWT) . . . . . . . . . . . . . . . . . 14
2.6 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 UAV Count Estimation Using Thermal Imaging and
Lightweight CNN . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.2 Acoustic and Machine Learning Based UAV Count Estimation 16
2.6.3 Angle of Arrival Estimation and Classification of Targets Us-

ing Rotating mmWave FMCW Radar and Yolov3 . . . . . . . 21
2.6.4 Hybrid Communication Switching Scheme for UAV-Assisted

Wireless Networks . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Smart Sensing for UAV Networks 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 UAV Count Estimation Using Thermal Imaging and Lightweight CNN 25

3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.5 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.6 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.7 Proposed CNN Architecture . . . . . . . . . . . . . . . . . . . 30

xi



CONTENTS xii

3.2.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Acoustic and Machine Learning Based UAV Count Estimation . . . . 32

3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.5 Measurement Setup and Dataset . . . . . . . . . . . . . . . . 34
3.3.6 Proposed CNN Architecture . . . . . . . . . . . . . . . . . . . 36
3.3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Angle of Arrival Estimation and Classification of Targets Using Ro-
tating mmWave FMCW Radar and Yolov3 . . . . . . . . . . . . . . . 44
3.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.3 System Model and Problem Formulation . . . . . . . . . . . . 45
3.4.4 Measurement Setup and Dataset . . . . . . . . . . . . . . . . 47
3.4.5 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Hybrid Communication Switching Scheme for UAV-Assisted Wire-
less Networks 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 FS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.2 FSMP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Analytical Model for Hybrid BLE/LTE/Wi-Fi/LoRa UAV-Assisted
Wireless Network with Energy-Efficient Data Transmission . . . . . . 63
4.6.1 FS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.2 FSMP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Proposed Approach I: Hybrid BLE/LTE/Wi-Fi/LoRa UAV-Assisted
Wireless Network with Energy-Efficient Data Transmission using FS
and FSMP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.1 FS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.2 FSMP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Proposed Approach II: Hybrid BLE/LTE/Wi-Fi/LoRa UAV-Assisted
Wireless Network with Energy-Efficient Data Transmission using RL
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.2 Deep Q-Network (DQN) . . . . . . . . . . . . . . . . . . . . . 71

4.9 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.9.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 73



CONTENTS xiii

4.9.2 Simulation Results (FS and FSMP) . . . . . . . . . . . . . . . 75
4.9.3 Performance Evaluation of the Proposed RL Algorithms . . . 81

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Concluding Remarks 89
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 93

A PAPER A 107
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.2 UAV System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.3 Embedded Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.3.1 Vision-based Sensors . . . . . . . . . . . . . . . . . . . . . . . 114
A.3.1.1 RGB-D Camera . . . . . . . . . . . . . . . . . . . . . 114
A.3.1.2 Thermal Camera . . . . . . . . . . . . . . . . . . . . 115

A.3.2 Position-based Sensors . . . . . . . . . . . . . . . . . . . . . . 115
A.3.2.1 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.3.2.2 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3.3 Proximity Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.3.3.1 Ultrasonic Sensor . . . . . . . . . . . . . . . . . . . . 118

A.3.4 Radar-based Sensor . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3.4.1 mmWave FMCW Radar . . . . . . . . . . . . . . . . 119

A.3.5 LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.3.6 Radio-Frequency Identification (RFID) Sensor . . . . . . . . . 122
A.3.7 Ultra-Wideband (UWB) Sensor . . . . . . . . . . . . . . . . . 123

A.4 Communication Modules . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.4.1 LoRa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.4.2 Bluetooth Low Energy (BLE) . . . . . . . . . . . . . . . . . . 125
A.4.3 Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.4.4 Long-Term Evolution for Machine-Type Communication

(LTE-M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.5 Computing Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.5.1 Hardware Platforms . . . . . . . . . . . . . . . . . . . . . . . 126
A.5.1.1 FPGA-based Platforms . . . . . . . . . . . . . . . . 126
A.5.1.2 ARM-based Platforms . . . . . . . . . . . . . . . . . 127
A.5.1.3 GPU-based Platforms . . . . . . . . . . . . . . . . . 129
A.5.1.4 Atmel-based Platforms . . . . . . . . . . . . . . . . . 129
A.5.1.5 Intel-based Platforms . . . . . . . . . . . . . . . . . . 130

A.5.2 Software Platforms . . . . . . . . . . . . . . . . . . . . . . . . 130
A.5.2.1 ArduPilot . . . . . . . . . . . . . . . . . . . . . . . . 130
A.5.2.2 PX4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.6 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . 131
A.6.1 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



CONTENTS xiv

A.6.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.7 Open Research Areas and Future Directions . . . . . . . . . . . . . . 138
A.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B PAPER B 151
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
B.2 Principle of thermal sensing . . . . . . . . . . . . . . . . . . . . . . . 154
B.3 Recent Advances in Thermal Imaging . . . . . . . . . . . . . . . . . . 156

B.3.1 Latest Developments in Thermal Cameras . . . . . . . . . . . 158
B.3.2 Future work in Thermal Imaging . . . . . . . . . . . . . . . . 161

B.4 Applications of Thermal Imaging . . . . . . . . . . . . . . . . . . . . 161
B.5 Machine Learning Techniques for Thermal Imaging Applications . . . 162
B.6 Conclusion and Future work . . . . . . . . . . . . . . . . . . . . . . . 169
B.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C PAPER C 179
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
C.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
C.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
C.3.2 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . 185
C.3.3 Convolution neural network (CNN) . . . . . . . . . . . . . . . 185

C.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
C.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 188
C.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D PAPER D 191
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
D.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

D.2.1 Conventional approach . . . . . . . . . . . . . . . . . . . . . . 194
D.2.2 Machine learning approach . . . . . . . . . . . . . . . . . . . . 195

D.2.2.1 Unsupervised learning . . . . . . . . . . . . . . . . . 195
D.2.2.2 Supervised learning . . . . . . . . . . . . . . . . . . . 197

D.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
D.4 Measurement setup and dataset . . . . . . . . . . . . . . . . . . . . . 200

D.4.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . 200
D.4.2 Dataset details . . . . . . . . . . . . . . . . . . . . . . . . . . 201

D.5 Preprocessing and algorithm details . . . . . . . . . . . . . . . . . . . 203
D.5.1 Continuous Wavelet Transform (CWT) . . . . . . . . . . . . . 203
D.5.2 Convolutional Neural Network (CNN) . . . . . . . . . . . . . 203

D.6 Benchmark Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
D.7 Hardware Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 208
D.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
D.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211



CONTENTS xv

D.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
D.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

E PAPER E 221
E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
E.2 mmWave FMCW Radars and Signal Processing . . . . . . . . . . . . 225
E.3 You Look Only Once (Yolo) Architecture and Working . . . . . . . . 227
E.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

E.4.1 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
E.4.2 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
E.4.3 F1-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
E.4.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
E.4.5 Root mean square error (RMSE) . . . . . . . . . . . . . . . . 230

E.5 System Overview and Dataset Details . . . . . . . . . . . . . . . . . . 230
E.5.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . 230
E.5.2 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . 234

E.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
E.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
E.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

F PAPER F 243
F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
F.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . 246

F.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 247
F.2.1.1 Free space model . . . . . . . . . . . . . . . . . . . . 248
F.2.1.2 Free space and multipath model . . . . . . . . . . . . 248

F.3 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
F.3.0.1 For the case of free space model . . . . . . . . . . . . 249
F.3.0.2 For the case of free space and multipath model . . . 249

F.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
F.4.1 Average Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

F.4.1.1 Transmission delay . . . . . . . . . . . . . . . . . . . 249
F.4.1.2 Propagation delay . . . . . . . . . . . . . . . . . . . 250

F.4.2 Network Energy Consumption . . . . . . . . . . . . . . . . . . 251
F.4.3 Packet Arrival Rate . . . . . . . . . . . . . . . . . . . . . . . . 251

F.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
F.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 251
F.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

F.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
F.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

G PAPER G 261
G.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
G.2 System model and problem formulation . . . . . . . . . . . . . . . . . 264

G.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 266



CONTENTS xvi

G.2.1.1 FS Model . . . . . . . . . . . . . . . . . . . . . . . . 267
G.2.1.2 FSMP Model . . . . . . . . . . . . . . . . . . . . . . 267

G.3 Energy-Efficient Data Transmission over Hybrid BLE/LTE/Wi-
Fi/LoRa UAV-Assisted Wireless Network Formation . . . . . . . . . 267
G.3.1 FS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
G.3.2 FSMP model . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

G.4 Analytical model for Energy-Efficient Data Transmission over Hybrid
BLE/LTE/Wi-Fi/LoRa UAV-Assisted Wireless Network . . . . . . . 269
G.4.1 FS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
G.4.2 FSMP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

G.5 RL-Based Energy-Efficient Data Transmission over Hybrid
BLE/LTE/Wi-Fi/LoRa UAV-Assisted Wireless Network Formation . 273
G.5.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

G.5.1.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . 275
G.5.1.2 Action . . . . . . . . . . . . . . . . . . . . . . . . . . 275
G.5.1.3 Reward/Penalty . . . . . . . . . . . . . . . . . . . . 275
G.5.1.4 Updating the Q-value . . . . . . . . . . . . . . . . . 276

G.5.2 Deep Q-Network (DQN) . . . . . . . . . . . . . . . . . . . . . 278
G.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

G.6.1 Average Network Delay . . . . . . . . . . . . . . . . . . . . . . 280
G.6.1.1 Propagation delay . . . . . . . . . . . . . . . . . . . 280
G.6.1.2 Transmission delay . . . . . . . . . . . . . . . . . . . 280

G.6.2 Network Energy Consumption . . . . . . . . . . . . . . . . . . 280
G.6.3 Energy Consumption for UAV Movement . . . . . . . . . . . . 282

G.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
G.7.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 282
G.7.2 Simulation Results (FS and FSMP) . . . . . . . . . . . . . . . 283

G.7.2.1 Effect of UAV Velocity . . . . . . . . . . . . . . . . . 286
G.7.2.2 Effect of Packet Size . . . . . . . . . . . . . . . . . . 287

G.7.3 Performance Evaluation of the Proposed RL Algorithms . . . 288
G.8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 292
G.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294



List of Figures

1.1 Components of a UAV system: Sensors, communication, and com-
puting [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Search and rescue operation with the help of a multi-UAV system . . 5

2.1 Plots obtained from mmWave FMCW radar [7] as (a) range plot, (b)
range-doppler plot, and (c) range-azimuth plot. . . . . . . . . . . . . 8

2.2 Thermal camera operating principle [7]. . . . . . . . . . . . . . . . . . 9
2.3 The Darknet architecture for Yolov3 [7]. . . . . . . . . . . . . . . . . 13

3.1 Experimental setup used for collecting thermal images of UAVs. . . . 28
3.2 The RGB images obtained by using Picamera with the configured

experimental setup for measurement scenarios [11] with (a) 6 UAVs
and (b) 8 UAVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 The thermal images obtained by using FLIR Lepton with the con-
figured experimental setup for measurement scenarios [11] with (a) 6
UAVs and (b) 8 UAVs. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Proposed CNN architecture for predicting the number of UAVs based
on thermal images [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Plots depicting the curves for training loss and validation loss [11]. . . 31
3.6 Classification performance depicted with the confusion matrix [11]. . 31
3.7 Schematic representation of the proposed methodology [12]. . . . . . 33
3.8 Shure MV7 mounted on a tripod to measure UAV acoustic signals [12]. 35
3.9 Recording UAV acoustic signals for a scenario with 5 UAVs [12]. . . . 36
3.10 Recorded UAV acoustic signatures for (a) 1 UAV, (b) 2 UAVs, (c)

4 UAVs, (d) 6 UAVs, (e) 8 UAVs, and (f) 10 UAVs measurement
scenarios [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.11 Plotted spectrogram images for (a) 1 UAV, (b) 2 UAVs, (c) 4 UAVs,
(d) 6 UAVs, (e) 8 UAVs, and (f) 10 UAVs measurement scenarios [12]. 37

3.12 The proposed CNN architecture [12]. . . . . . . . . . . . . . . . . . . 39
3.13 Loss curve and accuracy curve obtained after training [12]. . . . . . . 41
3.14 Classification performance depicted with the confusion matrix for the

proposed model [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.15 Estimating the angle of arrival [13]. . . . . . . . . . . . . . . . . . . . 46
3.16 mmWave FMCW radar mounted on the rotating rotor [13]. . . . . . . 48
3.17 Measurement case AA from Set3_OnlyHumans [13]. . . . . . . . . . 49
3.18 Block diagram of the proposed AoA estimation approach [13]. . . . . 51

xvii



LIST OF FIGURES xviii

3.19 Inference images after executing Yolov3 on all three range-angle image
datasets [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.20 Plot depicting the average loss vs iteration for the 7th fold [13]. . . . . 55
3.21 Confusion matrix depicting the classification performance [13]. . . . . 55

4.1 Pycom communication module. . . . . . . . . . . . . . . . . . . . . . 60
4.2 System model for the proposed hybrid BLE/LTE/Wi-Fi/LoRa

scheme for two layers [15]. . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Block diagram illustration of Q-learning [15]. . . . . . . . . . . . . . . 68
4.4 Neural network employed in the proposed DQN algorithm [15]. . . . . 71
4.5 Schematic representation of the proposed DQN algorithm [15]. . . . . 72
4.6 Topological representation of the UAV-assisted wireless network for

(a) FS and (b) FSMP configurations. For all topologies, the GCS is
situated at coordinates (500, 500, 0). The communication technologies
BLE, LTE, Wi-Fi, and LoRa are represented by the colors green,
yellow, orange, and red, respectively [15]. . . . . . . . . . . . . . . . . 76

4.7 Change in the energy consumption of the network for the models (a)
FS and (b) FSMP for all random UAV settings. The curves for the
analytical results are plotted using equations (4.5) and (4.10). For all
configurations, the GCS is situated at coordinates (500, 500, 0) [15]. . 77

4.8 Change in the average delay of the network when based on (a) FS and
(b) FSMP models for all random UAV settings [15]. The curves rep-
resenting the analytical results are plotted by utilizing equations (4.9)
and (4.15). In all configurations, the GCS is situated at coordinates
(500, 500, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Plots representing the change in (a) energy consumption and (b) av-
erage delay for the proposed hybrid network [15]. The curves repre-
senting the analytical results are plotted by utilizing the equations
(4.5), (4.9), (4.10), and (4.15). For all settings, the GCS is situated
at coordinates (500, 500, 0). . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 Topological representation of the hybrid UAV-assisted wireless net-
work that is formed by utilizing (a) random hybrid scheme, (b) rule-
based algorithm, (c) proposed Q-learning algorithm, and (d) proposed
DQN algorithm. For all topologies, the GCS is situated at coordinates
(500, 500, 0). The communication technologies BLE, LTE, Wi-Fi, and
LoRa are represented by the colors green, yellow, orange, and red, re-
spectively [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Performance evaluation of the rule-based algorithm, random hybrid
scheme, proposed Q-learning algorithm, and proposed DQN algo-
rithm. The performance is compared for random UAV settings with
respect to the (a) energy consumption of the network and (b) average
network delay. For all random configurations, the GCS is situated at
coordinates (500, 500, 0) [15]. . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



LIST OF FIGURES xix

A.1 Diagramatic overview of the survey . . . . . . . . . . . . . . . . . . . 109
A.2 Structure of the article. . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.3 UAV system overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.4 UAV embedded sensor applications. . . . . . . . . . . . . . . . . . . . 114
A.5 Working principle of thermal camera. . . . . . . . . . . . . . . . . . . 115
A.6 Working principle of GPS. . . . . . . . . . . . . . . . . . . . . . . . . 116
A.7 Operating principle of ultrasonic sensor. . . . . . . . . . . . . . . . . 118
A.8 Range plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.9 Range-doppler heatmap. . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.10 Range-azimuth heatmap. . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.11 LiDAR scanning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.1 Diagramatic overview about the recent advances in thermal imaging . 152
B.2 Working of bolometer-based thermal sensor . . . . . . . . . . . . . . . 155
B.3 Components, selection criteria, and classification of thermal cameras . 157
B.4 Applications of thermal imaging . . . . . . . . . . . . . . . . . . . . . 161

C.1 Experimental setup used for collecting thermal images of UAVs. . . . 183
C.2 Proposed CNN architecture for estimating the UAV count from ther-

mal images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
C.3 RGB images from Picamera for (a) 6 UAV measurement scenario, (b)

8 UAV measurement scenario. . . . . . . . . . . . . . . . . . . . . . . 186
C.4 Thermal image from FLIR Lepton for (a) 6 UAV measurement sce-

nario, (b) 8 UAV measurement scenario. . . . . . . . . . . . . . . . . 186
C.5 Training and validation loss curve. . . . . . . . . . . . . . . . . . . . 187
C.6 Confusion matrix obtained on the test data set. . . . . . . . . . . . . 187

D.1 Block diagram of the proposed work. . . . . . . . . . . . . . . . . . . 200
D.2 Shure MV7 setup used for measuring the UAV acoustic signals . . . . 202
D.3 Capturing acoustic signals for a 5 UAV scenario. . . . . . . . . . . . . 202
D.4 UAV acoustic signatures for scenarios with (a) 1 UAV (b) 2 UAVs (c)

4 UAVs (d) 6 UAVs (e) 8 UAVs (f) 10 UAVs. . . . . . . . . . . . . . . 204
D.5 Spectrogram images of scenarios with (a) 1 UAV (b) 2 UAVs (c) 4

UAVs (d) 6 UAVs (e) 8 UAVs (f) 10 UAVs. . . . . . . . . . . . . . . . 204
D.6 Proposed CNN architecture. . . . . . . . . . . . . . . . . . . . . . . . 206
D.7 Effect of dilated convolution for a 3x3 kernel on a 9x9 feature map. . 207
D.8 Loss and accuracy curves. . . . . . . . . . . . . . . . . . . . . . . . . 209
D.9 Confusion matrix for the proposed model. . . . . . . . . . . . . . . . 209

E.1 Block diagram of the proposed multi-target AoA estimation approach. 222
E.2 Angle of arrival estimation. . . . . . . . . . . . . . . . . . . . . . . . 226
E.3 Yolov3 Darknet Architecture . . . . . . . . . . . . . . . . . . . . . . . 227
E.4 The rotating mmWave FMCW radar measurement setup. . . . . . . . 233
E.5 Measurement setup for case AA from Set3_OnlyHumans. . . . . . . . 234
E.6 Average loss vs iteration curve for the 7th fold . . . . . . . . . . . . . 236



LIST OF FIGURES xx

E.7 Images depicting Yolov3 class prediction for range-angle images from
all three datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

E.8 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

F.1 System model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
F.2 (a) Total network energy consumption for free space energy model and

(b) total network energy consumption for free space and multipath
energy model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

F.3 (a) Average network delay for free space energy model and (b) average
network delay for free space and multipath energy model. . . . . . . . 254

F.4 Total network energy comparison with proposed method for free space
and free space and multipath energy models. . . . . . . . . . . . . . . 255

F.5 Average network delay comparison with proposed method for free
space and free space and multipath energy models. . . . . . . . . . . 255

G.1 System model for the hybrid BLE/LTE/Wi-Fi/LoRa scheme for two
layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

G.2 An illustration of Q-learning. . . . . . . . . . . . . . . . . . . . . . . 274
G.3 Neural network model used in DQN. . . . . . . . . . . . . . . . . . . 278
G.4 Block diagram for the DQN algorithm. . . . . . . . . . . . . . . . . . 279
G.5 An illustration of the UAV-assisted wireless network topology for (a)

FS configuration and (b) FSMP configuration. Here, GS is considered
to be located at (500, 500, 0) which is the center of the terrestrial area.
The colors green, yellow, orange, and red depict BLE, LTE, Wi-Fi,
and LoRa communication protocols respectively. . . . . . . . . . . . . 283

G.6 Variation of network energy consumption for (a) free space and (b)
free space and multipath model for random UAV configurations. The
analytical plots are obtained using equations (G.10) and (G.26), re-
spectively. The ground station is located at (500, 500, 0) for all the
random configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 284

G.7 Variation of average network delay for (a) free space and (b) free
space and multipath energy models for random UAV configurations.
The analytical plots are obtained using equations (G.17) and (G.33),
respectively. For all the configurations, the GS is located at (500, 500, 0).285

G.8 Variation of (a) network energy consumption and (b) average network
delay for the proposed hybrid network. The plots corresponding to
the analytical results are obtained using equations (G.10), (G.17),
(G.26), and (G.33), respectively. In all these configurations, the GS
is located at (500, 500, 0). . . . . . . . . . . . . . . . . . . . . . . . . . 285

G.9 Effect of UAV velocity on (a) network energy consumption and (b)
average network delay for both FS and FSMP model for random
UAV configurations. GS is located at (500, 500, 0) for all the random
configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287



LIST OF FIGURES xxi

G.10 Effect of increasing the number of packets on (a) network energy
consumption and (b) average network delay for both FS and FSMP
model for random UAV configurations. GS is located at (500, 500, 0)
for all the random configurations. . . . . . . . . . . . . . . . . . . . . 287

G.11 Effect of increasing the mean of the packet arrival rate on (a) network
energy consumption and (b) delay for both FS and FSMP model for
random UAV configurations. GS is located at (500, 500, 0) for all the
random configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 288

G.12 An illustration of hybrid UAV-assisted wireless network topology
formed with (a) random hybrid scheme, (b) rule-based algorithm, (c)
proposed Q-learning algorithm, and (d) proposed DQN algorithm.
Here, GS is considered to be located at (500, 500, 0) which is the
center of the terrestrial area. The colors green, yellow, orange, and
red depict BLE, LTE, Wi-Fi, and LoRa communication protocols,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

G.13 Performance comparison of the proposed Q-learning algorithm,
proposed DQN algorithm, rule-based algorithm, and random hybrid
scheme in terms of (a) network energy consumption and (b) average
delay for random UAV configurations. The ground station is located
at (500, 500, 0) for all the random configurations. . . . . . . . . . . . . 290



List of Tables

2.1 Key metrics for communication technologies [7]. . . . . . . . . . . . . 11
2.2 Overview of recent research on machine learning-based acoustic de-

tection of UAVs [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Various parameters used for the experiment [11]. . . . . . . . . . . . . 27
3.2 Specifications of thermal camera [11]. . . . . . . . . . . . . . . . . . . 27
3.3 Details on the architecture of the proposed CNN model [11]. . . . . . 30
3.4 Experiment details and measurement settings [12]. . . . . . . . . . . . 34
3.5 Various CNN architectures obtained by varying image resolution and

number of layers [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Architecture details of the proposed CNN model arranged layerwise

[12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Comparison of various performance metrics between benchmark mod-

els and the proposed CNN model [12]. . . . . . . . . . . . . . . . . . 43
3.8 Computed inference time values when deployed on various edge com-

puting devices [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.9 Specifications for mmWave FMCW radars, AWR1843 and AWR2243

[13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10 Experiment settings [13]. . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.11 Measurement cases for Set1_UavCarHumans [13] (Angle in degrees). 50
3.12 Measurement cases for Set2_UavCar [13] (Angle in degrees). . . . . . 50
3.13 Measurement cases for Set3_OnlyHumans [13] (Angle in degrees). . . 51
3.14 Configuration parameters for Yolov3 [13]. . . . . . . . . . . . . . . . . 52
3.15 Accuracy and RMSE values for 10 folds [13]. . . . . . . . . . . . . . . 53
3.16 Comparison of the proposed work with other methods [13]. . . . . . . 53

4.1 Key parameters for various communication protocols considered in
this work [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Q-table representing the state-action pairs formulated for Q-learning
[15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Simulation parameters employed for the assessment of the perfor-
mance of the proposed approach [15]. . . . . . . . . . . . . . . . . . . 75

4.4 Change in the energy consumption of the network when expressed
as a weighted sum of energy components E1,N/W and E2,N/W . The
variables W1 and W2 denote the assigned weights [15]. . . . . . . . . . 81

4.5 Various parameters used for the DQN algorithm [15]. . . . . . . . . . 84

xxii



LIST OF TABLES xxiii

A.1 Comparison between existing surveys and this survey . . . . . . . . . 111
A.2 Key Performance Metrics for Various On-board Sensors . . . . . . . . 117
A.3 Key Performance Metrics for mmWave FMCW Radar . . . . . . . . . 119
A.4 Key Performance Metrics for Communication Technologies . . . . . . 126
A.5 Commonly Used UAV Flight Controller Boards . . . . . . . . . . . . 128
A.6 Sensor Fusion Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.7 Machine Learning Techniques for UAV-based Communication . . . . 139

B.1 Subbands in the infrared spectrum . . . . . . . . . . . . . . . . . . . 153
B.2 Comparison of previous review articles with our work . . . . . . . . . 154
B.3 Popular thermal sensors and key sensing technology . . . . . . . . . . 156
B.4 Suitable camera model with respect to the applications . . . . . . . . 158
B.5 Popular thermal cameras and their specifications . . . . . . . . . . . . 159
B.6 Machine learning techniques for thermal imaging . . . . . . . . . . . . 165

C.1 Experimental parameters. . . . . . . . . . . . . . . . . . . . . . . . . 182
C.2 Thermal camera specifications. . . . . . . . . . . . . . . . . . . . . . . 182
C.3 Layerwise architecture details of the proposed CNN model . . . . . . 185

D.1 Summary of the latest works on machine learning-based acoustic de-
tection of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

D.2 Measurement setup and experiment details . . . . . . . . . . . . . . . 201
D.3 Comparison of CNN architectures based on number of layers and

image resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
D.4 Layerwise architecture details of the proposed CNN model . . . . . . 206
D.5 Performance metrics comparison between proposed CNN model and

benchmark models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
D.6 Inference time calculation on various edge computing devices . . . . . 212

E.1 Yolov3 configuration parameters . . . . . . . . . . . . . . . . . . . . . 228
E.2 mmWave FMCW radar AWR1843 and AWR2243 Parameters . . . . . 231
E.3 Experiment Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 231
E.4 Measurement cases for Set1_UavCarHumans (Range in meters and

angle in degrees) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
E.5 Measurement cases for Set2_UavCar (Range in meters and angle in

degrees) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
E.6 Measurement cases for Set3_OnlyHumans (Range in meters and an-

gle in degrees) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
E.7 RMSE and accuracy values for 10 folds . . . . . . . . . . . . . . . . . 235
E.8 Comparing the advantages of this work with other techniques . . . . 236

F.1 Various communication protocol attributes . . . . . . . . . . . . . . . 251

G.1 Summary of important parameters used in this work. . . . . . . . . . 265
G.2 Transmit power, data rate, and the path loss reference distance for

all the communication protocols considered in this work. . . . . . . . 268



LIST OF TABLES xxiv

G.3 Q-table corresponding to state-action pairs. . . . . . . . . . . . . . . 274
G.4 The values of the parameters used for the performance evaluation and

comparison of different methods. . . . . . . . . . . . . . . . . . . . . 283
G.5 Variation of network energy consumption as a weighted sum of in-

dividual energy components E1,N/W and E2,N/W . Here, W1 and W2

represent the weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
G.6 Parameters used for the DQN algorithm. . . . . . . . . . . . . . . . . 291



List of Abbreviations

ADC: Analog-to-digital converter
AI: Artificial intelligence
AoA: Angle of arrival
AWGN: Additive white gaussian noise
BLE: Bluetooth low energy
BSLIM: Block sparse learning via iterative minimization
BSS: Blind source separation
CFAR: Constant false alarm rate
CNN: Convolutional neural networks
CRNN: Convolutional recurrent neural networks
CSS: Chirp spread spectrum
CWT: Continuous wavelet transform
D2D: Device-to-device
DADS: Drone acoustic detection system
DL: Deep learning
DOA: Direction of arrival
DQN: Deep Q-network
DRL: Deep reinforcement learning
FAR: False alarm rate
FFT: Fast fourier transform
FLOPS: Floating point operations
FMCW: Frequency modulated continuous wave
FML: Fast maximum likelihood
FoV: Field of view
FS: Free space
FSMP: Free space and multipath
GCS: Ground control station
GIP: Generalised inner product
GLRT: Generalised likelihood ratio test
GMM: Gaussian mixture model
IF: Intermediate frequency
IoT: Internet-of-things
k-NN k-nearest neighbors

xxv



LIST OF ABBREVIATIONS xxvi

LiDAR: Light detection and ranging
LoRa: Long range
LoS: Line-of-sight
LPCC: Linear predictive cepstral coefficients
LPWAN: Low power wide area network
LTE: Long term evolution
MC-IWM: Multi-class inverse wishart mixture
MFCC: Mel-frequency cepstral coefficients
OFDM: Orthogonal frequency division multiplexing
PC: Pulse compression
PCA: Principal component analysis
PIL: Plotted image learning
PSD: Power spectral density
RCNN: Region-based convolutional neural network
RF: Radio frequency
RL: Reinforcement learning
RML: Regularized maximum likelihood
RMSE: Root mean square error
RNN: Recurrent neural network
RPAS: Remotely piloted aircraft systems
SIR: Signal-to-interference ratio
SLA: Stochastic learning automata
SRP-PHAT: Steered-response phase transform
STFT: Short-time fourier transform
SVM: Support vector machine
UAV: Unmanned aerial vehicles
V2X: Vehicle-to-everything
VMD: Variational mode decomposition
VoIP: Voice over internet protocol
Wi-Fi: Wireless fidelity
YOLO: You look only once
ZCR: Zero crossing rate



Chapter 1

Introduction

The increasing demand for unmanned aerial vehicle (UAV) or drone-based appli-
cations has been significantly influenced by growing technological advancements in
sensor miniaturization, ubiquitous wireless connectivity, and greater processing ca-
pacity. According to market forecasts, it is anticipated that the revenue generated
by UAV-based applications will surpass 8.5 billion dollars by the year 2027 [1]. This
anticipated rise can be attributed to the relaxation of restrictions pertaining to UAVs
and their subsequent availability for commercial applications.

Initially employed in military applications for surveying and targeting hostile
areas, UAVs have since been utilized in a diverse range of applications, spanning from
agriculture to space research. UAVs are employed in agriculture for irrigation and
monitoring crop vitality [2]. They are employed in defense for detecting intruders
and launching attacks [3]. UAVs are utilized extensively in surveillance applications
to map large regions of land [4]. UAVs equipped with remote sensing capabilities are
valuable for surveying large geographical regions for archaeological studies [5]. In the
e-commerce sector, Amazon has showcased a package delivery system called Prime
Air [6], which utilizes UAVs to transport products to clients in remote locations
within a designated time frame. Furthermore, there is an ongoing exploration of
architectures based on UAVs to develop and implement advanced technologies such
as 5G and vehicle-to-everything (V2X) communications.

The widespread use of UAVs across varied applications can be attributed to a
multitude of factors. UAVs offer advanced airborne inspection, better line-of-sight
(LoS) connectivity, reliable data acquisition, and seamless mobility. The superiority
and flexibility of UAVs over ground-based systems can be attributed to their capa-
bility to access remote locations and capture images. Furthermore, the availability
of advanced processing units, easily accessible components, and cost-effectiveness
have further solidified the suitability of UAVs for a diverse array of applications.

Thus it can be perceived that the growing appeal for UAVs can be attributed
to their capacity to effortlessly sense information from their surrounding environ-
ment. UAVs are outfitted with a diverse array of onboard sensor modules, enabling
them to effectively detect and comprehend their surroundings. The sensor modules
encompass a range of technologies, such as red-green-blue (RGB) cameras, infrared
cameras, global positioning system (GPS) modules, radar sensors, acoustic sensors,
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Figure 1.1: Components of a UAV system: Sensors, communication, and computing
[7].

and others. Each sensor module possesses distinct features that enable them to per-
ceive the surroundings from different perspectives. In a similar vein, UAVs transmit
the acquired data to other UAVs or ground control station (GCS) to guarantee safe
and secure UAV operations. The seamless connectivity is facilitated by various com-
munication modules such as bluetooth low energy (BLE), long term evolution (LTE),
wireless fidelity (Wi-Fi), Sigfox, and long range (LoRa). Hence, it is apparent that
sensing and communication are of utmost importance in the functioning of a UAV
system. This thesis examines the challenges related to sensing and communication
in UAVs and proposes various approaches to tackle them.

1.1 Overview

In this section, a brief overview of the thesis is presented. First, we provide some
background information relevant to navigate the subsequent chapters. Next, a sum-
mary of the research undertaken in this dissertation is outlined. This is followed
by defining the overall structure of the thesis. Finally, in the later part of this sec-
tion, we provide insight into the various challenges addressed in the thesis and their
proposed solutions.

1.1.1 Components of a UAV System: Sensors, Communica-
tion, and Computing

To foster a deeper appreciation for the subject matter of this thesis, it is important to
acquire a comprehensive understanding of the UAV system and its diverse modules,
particularly concerning sensing and communication aspects. The UAV system can
be conceptualized abstractly, as depicted in Fig. 1.1. This perspective is derived by
considering the adaptability and mobility offered by different UAV components in
accommodating a wide range of applications.

UAVs are outfitted with hardware sensor modules that enable them to detect
and interpret the environment. Temperature and vision-based sensors play a crucial
role in monitoring crop health in agricultural applications, whereas camera and light
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detection and ranging (LiDAR)-based modules are typically utilized in surveillance
and remote sensing. Every sensor possesses distinct characteristics in terms of its
functionality, physical structure, cost, and performance. The data collected from
each of these sensors is distinct and provides us with unique insights into the ob-
served surroundings. Utilizing the data obtained from these hardware sensors and
extracting essential information about the observed surroundings is a key aspect
that can be found throughout the chapters of this thesis.

Onboard communication modules for UAVs aid in transmitting the sensed infor-
mation and telemetry data to other UAVs or GCS. Each individual communication
module functions within a predetermined frequency, bandwidth, power, and coverage
range. The selection of an appropriate communication technology is determined by
the application requirements, taking into account the diverse capabilities and char-
acteristics of the technology. Wi-Fi modules are employed to transmit data between
UAVs in scenarios necessitating a high data transmission rate. Conversely, LoRa
modules are utilized in search and rescue operations that demand the transfer of
information across long distances. The later part of the thesis examines the optimal
utilization of several onboard communication systems to facilitate energy-efficient
data transmission.

The integration of sensor and communication modules into UAVs is facilitated
through the utilization of hardware computing platforms. Hardware computing
platforms are computational devices that facilitate the processing of data from dif-
ferent sensors and communication modules. Further, they establish connection and
serve as a medium for processing the acquired data. The selection of a computing
platform is mostly decided by the specific requirements of the application. When
selecting a hardware computing unit for UAV-based applications, several aspects
such as processing power, interface choices, form factor, weight, and other relevant
considerations are taken into account. Computing systems host a diverse range of
algorithms that play a crucial role in guaranteeing the safe and secure operation
of UAVs. These algorithms require low power consumption and low computational
complexity. The algorithms are specifically developed to address a range of appli-
cation scenarios, such as collision avoidance, control and stabilization procedures,
and interference mitigation. Furthermore, computing systems have showcased to
accommodate a diverse range of machine learning algorithms, which have played a
crucial role in enhancing the efficiency of UAV operations.

By decoupling the UAV system into the individual blocks as illustrated in Fig.
1.1, it becomes possible to selectively analyze and learn about the various issues
inherent in currently available UAV systems. Therefore, in this thesis, the following
chapters specifically concentrate on these blocks. Specifically, the first part of the
thesis focuses on the sensing aspects and the second part deals with the communi-
cation aspects prevalent in UAV systems.
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1.1.2 Research Overview

In this subsection, we provide a comprehensive overview of the research that is pre-
sented in this thesis. UAVs cater to applications in several diverse sectors. One such
application can be seen with UAV light shows. Multiple UAVs are programmed
to work in tandem to provide visually appealing scenes in the night sky during
various events [8]. Another scenario can be observed in disaster management situa-
tions where the use of a multi-UAV system can increase the probability of success
in a search and rescue operation [9]. Fig. 1.2 provides an abstract view of how a
multi-UAV system is used in a disaster management scenario for search and rescue
operations of stranded individuals. The research presented in this thesis focuses on
the sensing and communication of UAVs, particularly in a multi-target or multi-UAV
environment.

In a multi-UAV system, individual UAVs utilize various onboard sensors to sense
their surrounding environment. The sensed information can include various nearby
objects present in the vicinity of the UAV. These objects can include birds, trees,
aircrafts, building infrastructure, and even other UAVs. The sensed information has
to be adequately processed to derive meaningful information that further helps to
ensure safe and secure UAV operations. However, the detection of multiple nearby
objects is a challenging task. As such detecting multiple small-sized UAVs adds fur-
ther complexity. As UAVs have a small form factor, the effective radar cross-section
available for UAVs is small as compared to traditional aircrafts. Hence, small-sized
UAVs are undetectable using conventional aircraft detection methods. We attempt
to address this issue of detecting multiple UAVs by utilizing the data from various
onboard sensors and machine learning algorithms. We first propose a thermal-based
approach to detect and estimate the presence of multiple UAVs. The proposed ap-
proach utilizes thermal images captured from various measurement scenarios. Each
measurement scenario contains multiple small-sized UAVs maneuvering in arbitrary
directions. Our proposed machine learning architecture is trained with the captured
thermal images to detect and estimate the exact number of UAVs in the vicinity.
Next, an acoustic-based approach was proposed. Acoustic signatures of multiple
small-sized UAVs maneuvering in random directions were captured and processed.
The processed information was fed to the proposed machine learning models to accu-
rately detect and estimate the number of UAVs in the vicinity. It is shown that the
proposed approach is a low-cost and portable solution that can be deployed easily
on edge-computing devices. One of the limitations of the acoustic-based approach
is that the detection is localized to short distances. Hence, we attempted to use
the mmWave frequency modulated continuous wave (FMCW) radars to detect and
localize target objects. mmWave FMCW radars provide accurate range and velocity
estimates making them a prime candidate for accurate detection and localization.
However, their angle of arrival estimation is poor. We proposed a rotating mmWave
FMCW radar setup that can improve the angle of arrival estimation as well as
classify the targets based on their range-angle signatures. The proposed approach
requires a small form factor and can be integrated on UAVs and GCS.
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Figure 1.2: Search and rescue operation with the help of a multi-UAV system

To facilitate better decision-making and control, there is a requirement for in-
formation to be transferred between UAVs and GCS or other devices. UAVs are
equipped with various communication modules that can aid in the transfer of in-
formation. However, utilizing a single communication protocol in all scenarios for
information transfer may not be energy efficient. In this scenario, switching be-
tween different communication technologies based on the application requirements
seems to be way in the right direction. Initially, we propose a hybrid communication
switching scheme for UAV-assisted wireless networks that can transfer information
from UAVs to GCS by utilizing minimum transmission energy. The proposed scheme
uses the free space (FS) and free space and multipath (FSMP) formulations to arrive
at the optimum switching scheme. To incorporate additional parameters and scale,
we further proposed Q-learning and deep Q-network (DQN) algorithms to form the
optimum switching scheme.

Based on the above, this thesis is structured into two parts, with the first part
discussing the proposed solutions for achieving smart sensing using cutting-edge
hardware sensor modules. The second part of the thesis provides insights into
transmitting the sensed information and telemetry data in an energy-efficient man-
ner using the proposed hybrid communication switching scheme. Thus, the major
contributions of this thesis are outlined as given below:

• A simple cost-effective approach to detect and estimate the UAV count using
thermal and acoustic-based sensors. The proposed approach utilizes cutting-
edge signal processing and machine learning techniques to accurately deter-
mine the exact number of UAVs in the vicinity. The proposed approach is
lightweight and low in complexity enabling them to be deployed easily on edge
computing devices.

• A radar-based approach to improve the localization of UAVs and target objects
in a multi-target environment. The proposed approach improves the angle
of arrival estimation of mmWave FMCW radar using a programmable rotor
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and state-of-the-art computer vision algorithms. Additionally, the proposed
approach classifies the target objects based on the range-angle signatures.

• A novel hybrid communication switching scheme for UAV-assisted wireless
network. A framework to switch between different communication technologies
based on energy-efficient data transmission is proposed. Two approaches are
proposed to aid in the formation of the hybrid network, one using the FS and
FSMP path loss models and the other with the help of RL algorithms such as
Q-learning and DQN.

1.2 Organization of the thesis

This Ph.D. thesis is a compilation of contents from seven publications, all of which
are attached in the Appendix. These publications Paper A, Paper B, Paper C,
Paper D, Paper E, Paper F, and Paper G are referenced as [7], [10], [11], [12], [13],
[14], and [15] respectively. The thesis is structured into five chapters as follows:

• Chapter 1 introduces the reader to the primary content presented in the dis-
sertation. A brief research overview is presented, after which the focus of the
thesis is outlined. This is followed by summarizing the primary contributions
presented in the dissertation.

• Chapter 2 provides the relevant background material required while navigating
the subsequent chapters in the thesis. Additionally, a literature survey of the
current research associated with each of the issues tackled in the dissertation
is also summarized. The contents of this chapter are selectively compiled from
all the publications listed in the Appendix section of the thesis.

• Chapter 3 proposes various approaches to detect and estimate the presence
of UAVs in a multi-UAV system. Various sensors such as thermal, acoustic,
and radars are utilized in conjunction with state-of-the-art machine learning
techniques to detect and localize UAVs and other object targets. This chapter
of the thesis is composed from Paper C, Paper D, and Paper E.

• Chapter 4 discusses a novel hybrid BLE/LTE/Wi-Fi/LoRa switching scheme
for UAV-assisted wireless networks. The chapter provides a theoretical frame-
work and analytical expressions for energy-efficient data transmission over the
hybrid UAV-assisted wireless network. Additionally, two approaches are pro-
posed to aid in the formation of the network, one using the FS and FSMP
path loss model, and the other using RL algorithms such as Q-learning and
DQN. The chapter is a summarized version of Paper F and Paper G that is
provided in the Appendix.

• Chapter 5 concludes the dissertation by highlighting the major contributions.
Additionally, future avenues for research in conjunction with the thesis topic
are also presented and discussed.
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Chapter 2

Background Theory and Literature
Survey

2.1 Introduction

As mentioned in previous chapters, sensing and communication are vital to main-
taining safe and secure operational services for UAVs. This chapter provides relevant
background information and literature on the current state-of-the-art concerning the
various issues addressed in this thesis. We first present a brief summary of the neces-
sary background theory about different sensors and communication technologies that
can be encountered in future chapters. Afterward, a summarized literature review
is provided for each of the issues discussed in the succeeding chapters. The various
algorithms, machine learning models, and hardware technologies used throughout
the thesis are also briefed. This chapter comprises background theory and literature
from all the publications, Paper A [7], Paper B [10], Paper C [11], Paper D [12],
Paper E [13], Paper F [14], and Paper G [15].

2.2 Background Theory

This section provides fundamental information required to access the subsequent
chapters in the thesis. First, a summary of different hardware sensors is presented.
Afterward, an outline of the various communication technologies utilized in the
thesis is presented.

2.2.1 Hardware Sensors

mmWave FMCW Radars

The mmWave FMCW radars [16], [17] are renowned for their ability to deliver precise
range and velocity information [18]. mmWave FMCW radars are the natural choice
for UAV-related applications because of their robustness against harsh weather and
lighting conditions. They are also attractive for use in detection and collision avoid-
ance scenarios due to their high bandwidth and precise range and velocity resolution
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(a) Range profile plot (b) Range-doppler plot

(c) Range-azimuth plot

Figure 2.1: Plots obtained from mmWave FMCW radar [7] as (a) range plot, (b)
range-doppler plot, and (c) range-azimuth plot.

[19]. The operation of mmWave FMCW radars is similar to that of conventional
radars. The radar emits a frequency-modulated continuous chirp waveform, which
is reflected by surrounding objects. The receiver processes the reflected waveform
to estimate the radial range, radial velocity, and angle of arrival (AoA) of the target
object.

The raw intermediate frequency (IF) samples obtained from the mmWave
FMCW radar are processed to create the range-plot, range-doppler, and range-
azimuth heatmaps, as illustrated in Fig. 2.1a, 2.1b, and 2.1c respectively. The plots
in Fig. 2.1 are obtained when the TI AWR1843 mmWave FMCW radar is utilized
in conjunction with the TI mmWave demo visualizer [20]. It can be inferred from
Fig. 2.1a that four objects have been detected by the radar at a radial distance of
less than 3 meters. The range-doppler heatmap in Fig. 2.1b indicates that these

8



Scene
Lens

Infrared
Sensor Thermal

image
Image

Processor

Figure 2.2: Thermal camera operating principle [7].

four objects are stationary as the higher intensity red hue is located in proximity
to 0 m/s. Further, it can be deduced from the range-azimuth heatmap in Fig. 2.1c
that the objects are positioned at an angle of 10◦ from the radar.

Because of their superior sensing capabilities, mmWave FMCW radars are em-
ployed in UAVs for object recognition, identification, and tracking. In [21], it has
been suggested to use the micro-Doppler spectrum derived from mmWave FMCW
radars for the detection and identification of birds and UAVs. In a similar vein,
the work in [22] uses the mmWave FMCW radar micro-Doppler spectrum to help
identify micro-UAVs in low grazing angle settings. This is particularly useful in
electronic warfare, where detecting micro-UAVs can be challenging due to the to-
pographical clutter. Furthermore, the authors in [23] have used mmWave FMCW
radars in conjunction with convolutional neural networks (CNNs) for activity classi-
fication and localization of objects. Similar to this, Siddharth et al. in [24] achieved
accurate target classification in the range of 87.68%− 99.7% by combining you look
only once (YOLO) and faster region-based convolutional neural networks (RCNN)
with range-angle images obtained from mmWave FMCW radars.

Inaccurate AoA estimation is one of the shortcomings of mmWave FMCW radars.
The AoA estimation and field of view (FoV) in both azimuth and vertical directions
is found to be improved by combining a mechanically rotating radar and novel ma-
chine learning algorithms as demonstrated in [25] and [26]. By utilizing a single
transmitter and receiver, this approach has the benefit of accurate AoA estima-
tion. Furthermore, in [26], the authors presented techniques for elevation and angle
estimation of UAVs from the GCS using mmWave FMCW radars.

Thermal Camera

UAVs equipped with thermal cameras can be useful for surveillance, disaster man-
agement, and search and rescue missions. These cameras can operate in harsh
weather and low-light conditions. Thermal cameras utilize specialized sensors that
can record infrared radiation. After processing the collected infrared radiation, a
temperature profile is generated that provides color-specific information on the tem-
perature levels within the captured frame. The generated temperature profile is
then utilized to enhance detection and classification capabilities. The operation of
thermal cameras is illustrated in Fig. 2.2. Image resolution, range, refresh rate, and
lens focal length are a few of the important thermal camera parameters [27], [28].

There are numerous applications for thermal imaging when combined with UAVs.
To detect heat leaks in structures, the authors of [29] processed thermal images taken
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by a UAV fitted with thermal cameras. Thermal camera-mounted UAVs are used
in [30] to automatically monitor and identify wildlife. Moreover, UAVs fitted with
thermal cameras are employed for tracking, identifying, and object detection in the
ocean [31]. In our work, we detect and estimate the presence of numerous hovering
UAVs using the FLIR Lepton 3.5 [32] thermal camera.

2.2.2 Communication Technologies

UAVs must constantly update the GCS about their position, battery health, on-
board sensor data, and other critical information to enable and maintain seamless
autonomous operations. The transfer of telemetry or sensed data necessitates the
use of efficient and reliable communication technology for UAVs. The following
paragraphs provide insight into some of the characteristics associated with various
communication protocols that are used as a part of this thesis. Table 2.1 highlights
the key attributes of these communication protocols.

Long Range (LoRa)

LoRa, developed by Semtech Corporation, is a low-power, long-range communication
technology that is predominantly used for internet-of-things (IoT) applications [33].
The MAC layer of LoRa, known as LoRaWAN, is open source and maintained by
the LoRa Alliance [34], while the LoRa physical layer is proprietary and utilizes
the chirp spread spectrum (CSS) modulation [35]. LoRa has a maximum range of
approximately 10 to 15 km and transmits via the unlicensed spectrum at frequencies
433, 868, 915, and 923 MHz. However, one of the primary drawbacks of employing
LoRa in UAVs can be attributed to its data rate that can only support up to a
maximum of 50 kbps [33].

Bluetooth Low Energy (BLE)

Designed to meet the needs of short-range, low-power applications, Bluetooth Smart,
often known as BLE, is an improved version of the original Bluetooth technology
[36]. The Bluetooth special interest group (SIG) developed the protocol to meet the
demands of low-power applications in healthcare, fitness, and beacons. In addition,
BLE is comparable to conventional Bluetooth in that it has a data throughput of 1
Mbps and a range of roughly 50 meters. BLE supports a multitude of topologies,
including broadcast, mesh, p2p, and star. BLE utilizes the 2.4 and 2.48 GHz spec-
trum just like the conventional Bluetooth, however, it is not backward compatible
with its predecessor. Due to its high data rate and low power consumption, BLE is
an excellent candidate for UAV-based applications [37], [38], [39].

Wireless Fidelity (Wi-Fi)

Widely used in computers, tablets, cellphones, digital televisions, and other devices,
Wi-Fi is a short-range communication technology that is based on the IEEE 802.11
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Table 2.1: Key metrics for communication technologies [7].

Protocol Range
(km)

Throughput
(Mbps)

Power
(W)

Frequency
(GHz)

Topology

Wi-Fi ≈ 0.1 ≈ 104 ≈ 2 2.4, 5 Star, Mesh
BLE ≈ 0.1 0.125 - 1.36 0.01 - 0.5 2.4 Star, Mesh,

Broadcast,
P2P

LTE-M ≈ 10 ≈ 1 0.1 - 0.2 LTE bands Star
LoRa ≈ 10 0.01 - 0.05 ≈ 0.025 0.433, 0.868,

0.915, 0.923
Star

protocol stack. Wi-Fi is available in multiple variants with different power consump-
tion, data rate, and bandwidth specifications. 2.4 GHz and 5 GHz are the unlicensed
spectrum bands in which Wi-Fi operates [40]. Orthogonal frequency division mul-
tiplexing (OFDM) is the modulation scheme used by Wi-Fi. OFDM equips Wi-Fi
with high data rate capability and immunity to interference issues. Due to its mod-
ular design, Wi-Fi can be configured to operate in both infrastructure and ad-hoc
modes. Due to the above-mentioned features, Wi-Fi has become a promising solu-
tion for UAV-based applications. As observed in [41], Wi-Fi is deployed in ad-hoc
mode to be used in UAV relay networks for various applications.

Long-Term Evolution for Machine-Type Communication (LTE-M)

LTE-M is developed by the 3rd generation partnership project (3GPP) to facilitate
machine-to-machine communications. LTE-M is a low-power wide-area communi-
cation standard that provides a high data rate and increased bandwidth to support
IoT applications [42]. LTE-M utilizes the licensed spectrum provided by 3GPP. Its
unique architectural design has enabled seamless integration with existing cellular
networks paving the way for greater adoption in UAV applications. Additionally,
the growing popularity of LTE-M can also be attributed to its extended range, low
latency, tolerance to interference, and weather conditions.

2.2.3 Edge Computing Platforms

In this section, we provide relevant information on some of the edge computing
devices that have been used in our experiments. These are Raspberry Pi 4 Model
B, Nvidia Jetson Nano, and Nvidia Jetson Xavier. The proposed machine learning
models have been deployed onto these edge computing devices to analyze deployment
feasibility and inference time.

In chapter 3, section 3.3, to obtain the inference time on various edge comput-
ing devices, the proposed model and benchmark models (refer section 2.4) are first
converted to their equivalent TensorFlow Lite versions. TensorFlow Lite [43], devel-
oped by TensorFlow, is an open-source software that is used to optimize and deploy
machine learning models onto edge computing devices. The TensorFlow Lite model
is optimized for model size and inference time and enables seamless deployment on
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a variety of embedded devices. In our work, the TensorFlow Lite versions of the
proposed model and benchmark models are first deployed onto the above-mentioned
embedded devices to determine the inference time.

Raspberry Pi 4 Model B

The latest model in the Raspberry Pi lineup, the Raspberry Pi 4 Model B, has
a quad-core ARM Cortex-A72 processor and 2, 4 or 8 GB of RAM. The board is
equipped with 2.4/5.0 GHz wireless LAN compatibility, Bluetooth 5.0, BLE, and
Gigabit Ethernet. With a 40-pin GPIO header, the board also supports CSI, DSI,
USB 2.0, and USB 3.0 interfaces. The Raspberry Pi 4 board is also well-suited for
UAV and autonomous applications owing to their compliance-certified Bluetooth
and wireless LAN protocols [44].

Nvidia Jetson Nano

Nvidia’s Jetson Nano is a compact GPU platform that is designed for edge comput-
ing applications. The board has a quad-core ARM Cortex A5 CPU and a 128-core
Maxwell architecture GPU [45]. In addition to offering 4 GB of RAM, the Jetson
Nano also supports a variety of peripherals such as USB 3.0, USB 2.0 Micro-B,
GPIO, I2S, I2C, UART, SPI, and Gigabit Ethernet interfaces. Further, it is also
reported that the Jetson Nano can accelerate deep learning frameworks with an AI
performance of about 472 GFLOPS [46].

Nvidia Jetson AGX Xavier

The Nvidia Jetson AGX consists of a 512-core Volta architecture GPU and a 64-
bit 8-core Carmel ARM architecture CPU [47]. Primarily developed for various
autonomous applications, the platform has 64 tensor cores and offers 32 GB RAM.
Additionally, the board also comes with a dedicated vision accelerator, deep learning
accelerator, and encoder/decoder units for executing various image processing tasks.
The Jetson AGX Xavier supports RJ45, USB-C, USB 2.0, UART, and other periph-
eral interfaces. According to [48] and [46], the Jetson AGX Xavier can accelerate
deep learning algorithms by an amount of 32 TFLOPS.

2.3 You Look Only Once (Yolo) Architecture and
Working

The Yolov3 is a cutting-edge multi-scale object detection algorithm with a very
short inference time [49]. Yolov3 operates by performing a single-stage forward pass
over the entire image. The forward pass helps in predicting the class categories
and their associated probabilities. Yolov3 is based on the Darknet-53 architecture
which combines skip connections and convolution layers [50]. Drawing inspiration
from the ResNet architecture [51], the Darknet-53 architecture is mostly composed
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Figure 2.3: The Darknet architecture for Yolov3 [7].

of feature extraction and feature detection stages. In the feature extraction stage,
53 convolution layers are arranged as 3 × 3 and 1 × 1 successive layers. This is
followed by a skip connection. In contrast, the feature detection stage has 53 layers
that contribute to improving the prediction accuracy of the algorithm. As a result,
the algorithm utilizes 106 convolutional layers in total for feature identification and
feature extraction.

To obtain multi-scale feature embeddings, the Yolov3 algorithm performs an
initial pass of the input image through a feature extractor. Yolov3 supports 13×13,
26×26, and 52×52 feature scales. To draw bounding boxes on the identified object,
the acquired feature maps are subsequently passed into the feature detection stage.
Here, every feature map is separated into a group of grid cells and each grid cell is
responsible for predicting almost three bounding boxes. Each bounding box consists
of class probabilities and class attributes. The likelihood that a specific class occurs
in the corresponding grid cell is given by the class probabilities. Each bounding box
‘B’ containing ‘5+C’ attributes has ‘C’ number of classes. In our work, the proposed
model is being used to identify three classes, namely UAV, car, and humans, and so
C = 3. The number ‘5’ in ‘5 + C’ denotes the bounding box attributes (tx, ty, th,
tw) and the objectness score. Yolov3 computes bounding box dimensions in relation
to anchor box dimensions where the anchor boxes are prior boxes with fixed aspect
ratios. These fixed aspect ratios of anchor boxes are computed by first executing a
k-means algorithm on the complete dataset before training. Finally, the objectness
score is a metric that determines the presence of an object in the relevant grid
cell. Convolution of the downsampled feature maps with a 1× 1 detection kernel is
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performed for feature detection. Here, the dimension of the detection kernel is given
by 1× 1× (B ∗ (5 +C)). Yolov3 has three layers at which feature detection occurs,
namely the 82th, 94th, and 106th layers.

Following object detection, each grid can contain up to three bounding boxes,
depending on the object’s relative location within the grid cell. A non-maximum
suppression is performed to prevent multiple bounding boxes for the same detected
object. The bounding box with the largest area of overlap with the detected object
is retained, while the remaining bounding boxes are discarded. In our work, we
employ the Yolov3 version to estimate the AoA from range-angle images. In Fig.
2.3, a high-level architecture of the Yolov3 version is provided. Further, Fig. 2.3
also illustrates how Yolov3 generates three distinct resolution outputs for a given
input range-angle image.

2.4 Benchmark Models

Benchmark models are advanced machine learning models with unique architectural
characteristics. For example, DenseNets [52] preserves the feed-forward nature of
the network by feeding the feature maps from each layer to all subsequent levels. To
enhance performance, residual blocks are introduced by the ResNet architecture [53].
The skip connections that make up the residual blocks retain the lost abstractions
in the original path thereby improving the performance. Further, to improve accu-
racy, the EfficientNet family of CNNs [54] utilizes uniform scaling of the network’s
width, depth, and resolution. On the other hand, MobileNet [55] architectures are
designed to offer fast computations on embedded and mobile devices. These mod-
els with their low memory footprint offer a better trade-off between accuracy and
resource consumption. In chapter 3, section 3.3.7, we assess the performance of the
proposed model by comparing it with these existing benchmark models. DenseNet
[52], EfficientNet [54], Inception [56], MobileNet [55], ResNet [53], NASNetMobile
[57], VGG [58], and Xception [59] are among the 23 benchmark models that have
been used. The benchmark models accept an input image resolution of 224×224×3

and are pre-trained using the ImageNet dataset [60].

2.5 Continuous Wavelet Transform (CWT)

The CWT splits a signal into its time and frequency counterparts [61]. Similar to
the short-time fourier transform (STFT) [62], the CWT operates by measuring the
correlation between the analyzing wavelet ψ and the original signal f(t). The ana-
lyzing wavelet is scaled and dilated according to the parameters p and q respectively.
To calculate the CWT of a signal f(t), assuming p > 0, then,

C(p, q; f(t), ψ(t)) =

∫ ∞

−∞
f(t)

1

p
ψ*

(
t− q
p

)
dt, (2.1)

where the * operator represents the complex conjugate [63]. The output obtained
from CWT depends on the nature of the original signal. The output is real-valued if
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the input signal on which CWT is applied is real. The C(p, q) coefficients obtained
after continuously varying p and q are used to plot the spectrogram of the signal. In
chapter 3, section 3.3, CWT is applied over the trimmed audio clips to generate the
audio spectrograms. The audio clips are sampled at 48000 Hz for a 3 second dura-
tion. The resulting spectrogram displays time and frequency components associated
with the acoustic signature of UAVs.

2.6 Literature Survey

This section predominantly focuses on the current state-of-the-art prevalent for the
various issues outlined in this thesis.

2.6.1 UAV Count Estimation Using Thermal Imaging and
Lightweight CNN

As evidenced by the literature, there has been prior research on the detection and
estimation of UAVs using thermal imaging. A noteworthy example of this can be
seen in [64], where the authors use deep learning techniques to create a UAV tracking
and detection system. Adversarial data augmentation methods were used to develop
a dataset with UAVs operating in both thermal and visual modes. Despite being
trained on artificial data, the proposed model demonstrated good performance on
real-world UAV images with complex environments. In [65] and [66], UAV detection
systems using thermal sensors are developed to detect obstacles at night. Specifi-
cally, the proposed approach in [65] utilizes an RGB camera and ADS-B signals to
validate the results. Additionally, the reported detection accuracy was 100% for all
nighttime cases and extreme illumination scenarios. In [67], an alternative method
for developing a UAV detection system made use of faster-RCNN, a saliency map,
and an MSO module. Meaningful features from the thermal images were extracted
with the use of the thermal saliency map. Before supplying the thermal image to
the model, the MSO module improves the resolution of small objects, which im-
proves the model accuracy. According to reported results, the proposed approach
achieved an accuracy of more than 93%. Using an alternate strategy, the authors
of [68] examine the performance of a UAV detection system by training with a lim-
ited number of thermal images. To improve model accuracy, the features visible in
thermal images are preserved in their preprocessed RGB image counterpart. After-
ward, the previously processed RGB images and thermal images are then used to
train the model. According to the reported results, it was inferred that the type
of preprocessing performed on the RGB images significantly impacted the model
accuracy.

As evident from previous research, the majority of the literature on thermal
imagery-based UAV detection lacks real-world datasets. To imitate the features of
thermal images, RGB images or other sources are utilized to create synthetic thermal
images. Moreover, the majority of the literature concentrates on the detection of a
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single UAV. Simultaneous detection of several UAVs is essential to assure safety and
security in real-world trespassing and intrusion scenarios. Section 3.2 of chapter 3
investigates this problem and attempts to provide a potential solution. Our proposed
approach to precisely calculate the number of UAVs in a multi-UAV scenario seeks to
close this gap. Furthermore, this work will serve as a guide for future UAV detection
systems that embark on concurrently detecting several UAVs.

2.6.2 Acoustic and Machine Learning Based UAV Count Es-
timation

Extensive works have been published on the topic of UAV detection using acoustic
signatures. In this section, we provide a brief overview of the current state-of-the-
art on acoustic-based UAV detection. However, for a detailed account of the topic,
the interested reader is encouraged to refer to section D.2 of this thesis. Previous
approaches to detect UAVs based on acoustic signatures can be classified into two,
conventional methods and machine learning-based methods.

Conventional methods

The conventional method of utilizing acoustic data to detect UAVs is based on sig-
nal processing techniques such as correlation. One such study in [69] utilizes a
modified cross-correlation approach for UAV detection. The differential Doppler
shift produced by the rapid motion of the UAV and the spacing of the microphone
array is utilized by the proposed approach to detect UAVs. The incoming sig-
nals are successfully decorrelated from the background noise using the differential
doppler shift feature. The measurements were performed in a quiet, controlled en-
vironment. The collected data was then combined with ambient noise to assess
the performance of the proposed approach. In another study [70], a drone acous-
tic detection system (DADS) employing microphone nodes was developed for UAV
detection and classification. The steered-response phase transform (SRP-PHAT)
approach is used in the DADS to detect UAVs. Additionally, the propeller frequen-
cies from the spectrogram of the measured acoustic signatures are used to classify
the drones. Based on the reported results, the SRP-PHAT approach works well with
real UAVs in practical situations. However, based on the classification algorithm,
the UAVs must reach a threshold distance to attain improved performance. In [71],
the acoustic spectrum produced by UAVs is studied and analyzed using the Barlett,
capon, and cross-correlation approach. To achieve performance comparable to the
mel-frequency cepstral coefficients (MFCC) method, an additional high-pass filter
is employed in the proposed methodology. Subsequent experiment results also show
that the cross-correlation approach performed better when noise was removed using
low-pass filtering. In contrast, [72] makes use of the intrinsic harmonics present in
the acoustic field signatures for 3D localization and detection. Zero-phase bandpass
filters in conjunction with a pitch recognition algorithm are used to extract the fun-
damental and other significant harmonics of the acoustic input signal. To assess
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the performance, experiments have been performed outdoors and in anechoic con-
ditions. It was found that the proposed method performs admirably well when the
UAV follows plain vertical trajectories. However, the performance was inadequate
for complicated trajectories involving several UAVs and calls for additional research.
Another study that sheds light on using acoustic signatures to detect UAVs is [73].
In this study, scientists use a sound level meter to gauge the noise level in a confined
space with just a single UAV. Following the acquisition of the noise-free measure-
ments, UAV noise was combined with ambient music and anthropogenic noise from
humans in the surrounding area. The frequency spectrum was analyzed using spec-
tral methods, and it was revealed that the detection of UAVs was confirmed upon
noticing a peak at 5, 000 Hz in the frequency spectrum. Nevertheless, the study
is unable to replicate and validate the findings in a multi-UAV real-world setting.
The authors of [74] used a biologically inspired vision approach to solve the UAV
detection challenge. Time-frequency analysis of the audio signals is performed to
obtain spectrogram images. Using a hoverfly vision model to preprocess these spec-
trogram images, meaningful representations can be extracted that can aid in UAV
detection. In comparison to conventional narrowband and broadband methodolo-
gies, it was demonstrated through outdoor field trials that the bioinspired technique
can increase the maximum UAV detectable distance between 30% and 50%. Nev-
ertheless, further validation of the proposed method is required through additional
UAV trials and flight scenarios.

Machine learning methods

New capabilities for UAV detection and classification have been made possible by the
development of machine learning algorithms [75], [76]. To aid in UAV detection and
classification, machine learning approaches extract the data’s innate hidden patterns
[77]. A notable increase in detection and classification accuracy has been reported
by combining machine learning techniques with other preprocessing methods such
as principal component analysis (PCA) and STFT [78]. In the following paragraphs,
we examine some of the literature on machine-learning techniques for UAV detection
and classification that utilize acoustic signatures.

In [79], the authors examine the acoustic fields produced by several miniature
quadcopter UAVs. The acoustic field data is then provided to COMSOL Multi-
physics simulation software to perform numerical analysis and simulations. The
simulation results ascertained the impact of directional patterns, blade defects, and
propeller-induced pressure changes on the generated UAV acoustic fields. Further,
to detect UAVs, the acquired acoustic fingerprints were then fed into a neural net-
work model that was trained using the cepstrum coefficients. In another work [80],
the authors detected and tracked a UAV in a noisy real-world environment using
several microphone nodes. MFCC and STFT were employed in the data preprocess-
ing stage. CNN and support vector machines (SVM) were then used for training.
Results indicate that when a UAV is in close proximity to a microphone node, the
STFT-SVM model performs better at detecting it. Subsequent research endeavors
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may involve testing various UAVs and mitigating ambient noise while preprocessing.
A multi-class SVM is used in [81] to recognize UAVs under various environmental
situations. As part of the work, a dataset comprising five 70 minute audio files is
recorded. The recordings included audio signals captured during the daytime from
nature, street traffic noise, train audio, audio from crowd, and flying UAVs. To per-
form further analysis, the audio recordings are then divided into parts of 5 and 20

milliseconds. Next, preprocessing is performed to extract features such as MFCCs,
zero crossing rate (ZCR), spectral centroid, spectral roll-off, and temporal centroid.
Afterward, the SVM classifier uses these extracted features to output a UAV de-
tection accuracy as high as 96.4%. The authors of [82] use k-nearest neighbors
(k-NN) and plotted image learning (PIL) as two classifiers to detect UAVs. Audio
clips of 1 second duration are recorded independently in a noise-free indoor and
outdoor setting using DJI Phantom 1 and DJI Phantom 2. Subsequently, the audio
from the outdoor environment is included to replicate real-world situations. The
audio snippets then undergo an FFT transformation before being sent to various
classifiers. According to the authors, PIL demonstrated 83% accuracy in detecting
UAVs, while k-NN only accounted for 61%. In [83], the authors created a distributed
system for UAV detection and localization utilizing an acoustic wireless sensor net-
work. Trial investigations revealed that there was a considerable difference between
the background spectrum and the power spectral density (PSD) of UAV sound. A
UAV audio dataset was developed based on this idea. The dataset included ambient
background noises added to UAV audio. Upon low pass filtering of the audio sam-
ples at 15 kHz, FFT is then applied to generate the PSD of the signals. Additional
PCA transformation is performed to reduce the dimensions. The preprocessed sig-
nals are then sent to the SVM classifier after being split up for training, testing,
and additional testing using overlapped signals. Reported results indicate that suc-
cessful UAV identification occurred when the signal-to-interference ratio (SIR) was
above 10 dB. In the work [84], the blind source separation (BSS) method is used to
detect UAVs in the presence of multiple source interference. The audio signatures
are recorded using three distinct UAVs, each operating independently. The proposed
approach begins by estimating the total number of sources. Depending upon the
type of source separation required (overdetermined, positive-definite, or underdeter-
mined), either ICA, PCA, or variational mode decomposition (VMD) is applied after
source estimation. To assess the performance, the extracted features are then fed
to various machine learning algorithms, including SVM, k-NN, and decision trees.
Reported results indicate that SVM and k-NN performed similarly, with SVM per-
forming marginally better. Both algorithms outperformed conventional filtering and
mixed-signal techniques, displaying an accuracy of more than 90% for UAV detec-
tion. An alternate approach for detecting UAVs using acoustics was carried out
in [78]. Firstly, the sounds of thunderstorms, birds, airplanes, and amateur UAVs
were recorded in a noisy setting. Next, for feature extraction, the authors employed
linear predictive cepstral coefficients (LPCC) and MFCC. To recognize and identify
UAV acoustics, the collected features are then fed as input to SVMs with linear,
cubic, and quadratic kernels. The findings indicate that SVM using a cubic kernel

18



in conjunction with MFCC features outperforms LPCC, achieving a UAV detection
accuracy of approximately 96.7%.

Supervised learning [85] uses labeled datasets as inputs and outputs, in contrast
to the previously stated unsupervised approaches. The labeled data helps the model
to understand the structure of the data by taking on a supervisory role. Based on
the amount of labeled data and its underlying structure, supervised algorithms learn
to become increasingly accurate over time. The authors of [86] conducted a com-
parison analysis to identify the optimal classifier for acoustic UAV identification.
To replicate real-world UAV scenarios, acoustic signatures from various UAVs are
recorded and then these audio signals are supplemented with various distinct en-
vironmental noises. Next, the MFCCs features are extracted from these acoustic
signatures and then provided to various classifiers to evaluate their effectiveness.
With an F-score of 80%, the recurrent neural network (RNN) was found to perform
the best, followed by the gaussian mixture model (GMM) at 68% and CNN at 58%.
In [87], normalized STFT is applied to UAV acoustic signals. The authors used the
DJI Phantom 3 or 4 versions to record the UAV acoustic signatures. Once recorded,
the captured audio snippets are trimmed to 20 ms duration with a 50% overlap.
The trimmed audio clips are then subjected to normalized STFT to produce 41958

non-UAV and 68931 UAV audio frames. There were acoustic signatures from mo-
torbikes and scooters in the non-UAV audio frames. Additive white gaussian noise
(AWGN) is added to the output of the STFT before it is fed into the proposed CNN
architecture. The findings showed a false alarm rate (FAR) of 1.28 and an accuracy
of 98.97% for UAV detection. In this study [88], remotely piloted aircraft systems
(RPAS) in urban contexts are detected using CNN and sensory substitution of am-
bient and pre-existing microphones. A diverse set of RPASs were used to conduct
separate indoor and outdoor trials. The captured audio snippets are then used to
create spectrogram images. Next, these spectrogram images are fed to the Inception
CNN model for further training via transfer learning. For every RPAS class, the
results revealed an RPAS detection accuracy of more than 90%. Mel-spectrograms
are used in [89] to extract features from UAV audio signals. In this work, with the
goal of UAV classification, the authors employed CNNs and convolutional recurrent
neural networks (CRNN) to extract the relevant features. From the obtained mel-
spectrograms, it was determined that CNNs performed better than other methods
for UAV classification. The study also investigated ways to enhance UAV detection
performance by combining ensemble techniques with late fusion methods. UAV de-
tection in [90] also uses audio spectrograms in conjunction with CNN, RNN, and
CRNN. In a controlled setting, the authors used two distinct UAVs to perform ex-
perimental studies. Realistic audio data that can be used for inference was obtained
by augmenting real-world background noises. According to the published results,
CNN and CRNN exhibited accurate detection and classification of UAVs outper-
forming RNN models. Our proposed method referenced in section 3.3.4 of chapter
3 also revolves around a similar approach in which we utilize audio spectrograms to
perform multiple UAV detection.

The most recent studies on machine learning-based acoustic UAV detection are
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Table 2.2: Overview of recent research on machine learning-based acoustic detection
of UAVs [12].

Reference Method Results Limitations
[81] Preprocessing using ZCR,

MFCC, spectral centroid,
etc. Extracted features are

fed to multi-class SVM.

UAV detection accuracy -
96%

• Single UAV case.

• Lacks real-world experiments
and background noise.

[86] MFCC coefficients are fed
to RNN, GMM, and CNN.

RNN showed best F-score
with 80% followed by

GMM with 68% and CNN
with 58%.

• Augmented environmental
noise.

• Multi-UAV detection is absent.

[83] PSD using FFT followed
by PCA for dimension

reduction. Output fed to
SVM.

Best accuracy when SIR
was greater than 10 dB.

• SVM is more sensitive to bit er-
ror rate.

[87] Normalized STFT features
with CNN.

UAV detection accuracy of
98.97%

• Considered only single UAV
scenario.

• AWGN is added to simulate a
noisy environment.

[82] Preprocesing using FFT.
Trained using PIL and

KNN.

PIL - 83% and KNN - 61%
accuracy

• Sound clips from 2 UAVs
recorded separately.

[80] Preprocessing with MFCC
and STFT. Obtained

features fed to SVM and
CNN.

eSTFT-SVM reported best
performance.

• Considered only single UAV
case.

• Model accuracy is low.

[88] Audio spectrograms with
CNN. Used different RPAS

classes individually for
measurements.

Greater than 90%

detection accuracy.
• Multiple RPAS scenario is ab-

sent.

[90] Audio spectrograms with
CNN, RNN, CRNN.

CNN reported best
detection accuracy with

96.38% followed by CRNN
with 94.72%.

Experimented with two
different types of UAVs.

• Lacks real-world experiment
scenarios.

• Doesn’t estimate the number of
UAVs.

[78] MFCC and LPCC for
feature extraction.

Features are fed to SVM
with linear, cubic, and

quadratic kernels.

MFCC with SVM cubic
kernel achieves 96.7%

detection accuracy.

• Considers only single UAV sce-
nario.

[89] Mel-spectrograms for
feature extraction followed

by CNN and CRNNs.

CNN (94.7% accuracy)
outperformed CRNN

(94.1% accuracy).
Experimented with
real-world scenarios.

• Multiple UAV scenarios are ab-
sent.

[79] Trains neural network on
cepstrum coefficients.

Relatively high UAV
detection rate.

• Multiple UAV scenarios are ab-
sent.

[84] BSS using ICA, PCA, or
VMD features. Obtained
features are fed to SVM,
KNN, and Decision trees

SVM and KNN reported
more than 90% accuracy

• Lacks real-world scenarios with
background noise.

compiled in Table 2.2. As observed from Table 2.2, a major portion of the existing
literature investigates the detection of a single UAV [80], [81], [86], [87], [88], [78],
[89]. In scenarios involving several UAVs, the results obtained for detecting a single
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UAV can differ significantly. Comparably, the scenarios taken into consideration in
the literature roughly duplicate well-defined and controlled UAV trajectories [81],
[90], [86], [87], [84]. Thus, such controlled scenarios may not provide a practical UAV
flight trajectory and hence can adversely affect real-time detection accuracy. More-
over, several discussed techniques call for the utilization of extremely sophisticated
hardware infrastructure, which may not be always accessible [83].

2.6.3 Angle of Arrival Estimation and Classification of
Targets Using Rotating mmWave FMCW Radar and
Yolov3

As mentioned in section 2.2.1, mmWave FMCW radars are low-cost sensors that
can provide accurate range and velocity estimates. However, their angle of arrival
estimates are poor. This limitation prevents the radar from being used in critical
detection and localization operations. As such there have been several attempts
in the literature to improve the AoA estimation. In [91], an adaptive radar sig-
nal processor is proposed by the authors for the detection of multiple UAVs. The
received signal samples are first subjected to pulse compression (PC), fast fourier
transform (FFT), and beamforming by the radar signal processor. Afterward, for
each range-Doppler angle bin the processed signal is assessed for potential detection
using the constant false alarm rate (CFAR) logic. The angular characteristics of
the targets are collected and both single and multi-target scenarios are taken into
consideration. Based on simulation and real-world test results, it was found that the
proposed method can detect and resolve two UAVs situated ≈ 8◦ apart with satis-
factory performance. Aubry et al. attempts to solve the adaptive radar detection
problem in the presence of limited training data in [92]. Three detection schemes
based on the generalized likelihood ratio test (GLRT) are proposed. The detection
schemes are based on the assumption of linear combination for inverse covariance
matrices. Based on the published results, even with a limited number of train-
ing samples, the proposed GLRT-1 and GLRT-3 outperform traditional adaptive
detectors by a significant performance margin. A novel approach for DoA estima-
tion based on 2-D spectrum sensing is developed in [93]. To gain 2-D occupancy
awareness, the proposed method takes advantage of the inherent block-sparsity of
the 2-D space-frequency profile. By introducing a variable for block-sparsity, the
block sparse learning via iterative minimization (BSLIM) approach is used to solve
a non-convex regularized maximum likelihood (RML) estimation problem to ob-
tain the space-frequency profile. It was observed from the reported results that the
BSLIM algorithm outperforms conventional methods in terms of false alarms and
detection rate. The authors of [94] introduce a novel class of covariance matrix
estimators called the median matrices, that are independent of the sample proba-
bility distribution. The construction of the median matrices involves utilizing the
positive definite properties of matrices. Depending upon the output obtained from
the new estimators, the secondary outliers in the training data are eliminated using
a generalized inner product (GIP) selection criterion. It was observed that the log-
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euclidean median-based estimator performs better than other estimators in terms of
the training data’s secondary outlier selection probability. The multi-class inverse
wishart mixture (MC-IWM) filter [95] and the fast maximum likelihood (FML) co-
variance estimator [96] are two additional covariance estimators that can be used to
infer radar disturbances and support precise UAV detection and localization.

To precisely estimate the AoA, the authors in [97] use a rapid iterative adap-
tive algorithm that makes use of a time-shared technique. Using a single mmWave
FMCW radar, the technique’s initial step requires estimating the coarse azimuth
angle. To precisely estimate the DoA within a limited area, the intermediate results
are then fed into a more sophisticated iterative algorithm. However, this approach is
computationally demanding because it depends on several mmWave FMCW radars.
An alternate approach in [98] simultaneously calibrates the antennas and estimates
the AoA using linear algebraic techniques. Under the presence of an effective cou-
pling between the antennae elements, the iterative optimization algorithm showcases
excellent performance. Furthermore, it is demonstrated that the proposed method
operates effectively with several sensors and transmitter-receiver pairs. In [99], Dae-
gun et al. presented a joint angle and delay estimation technique that extends the
one-dimensional pseudospectrum searching by making use of the dual-shift-invariant
nature of the received signal. Monte Carlo simulations were employed to evaluate
the performance of the proposed approach. Results indicate that the proposed ap-
proach performed better than the state-of-the-art. However, the proposed approach
is computationally demanding and requires additional testing with challenging real-
world scenarios. In [100], the authors develop a low-complexity estimating technique
that approximates different FMCW radar characteristics, including the AoA. The
proposed approach relies on combining the benefits of the MUSIC and 2D-FFT algo-
rithms. However, under the presence of several targets, the proposed approach fails
to yield any significant performance gain. The notion of rotating the radar about
its axis to scan an area is used in [24] and [25]. The range profile is constructed
using the signals that are acquired in each frame of the rotating radar. The range-
angle maps, which provide a 180◦ field-of-view of the scene, are then constructed
by stitching and combining all of the individual range profiles. Nevertheless, [24] is
primarily focused on target detection and classification and is not intended for AoA
estimation. In contrast, Linga et al. have presented a novel AoA estimation tech-
nique in [25], that performs reasonably well for AoA estimation. Our work will be
an extension to this existing work, in which the proposed method estimates the AoA
from the range-angle maps by utilizing cutting-edge machine learning techniques.

2.6.4 Hybrid Communication Switching Scheme for UAV-
Assisted Wireless Networks

To ensure reliable and robust information transfer, UAVs are outfitted with various
communication technologies. BLE [101], Wi-Fi [102], LTE-M [103], and LoRa [35]
are some of these communication modules. Every communication technology is dif-
ferent in terms of transmit power, bandwidth, range, and other attributes. To fulfill
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various application requirements, the use of just one communication technology may
not suffice and calls for a hybrid and adaptive communication switching scheme for
UAV-assisted wireless network. Thus, in this thesis, we present the formation of a
hybrid communication switching scheme for UAV-assisted wireless networks.

The amount of literature prevalent on the topic of hybrid switching schemes for
communication systems is currently scarce and sparse. To increase the sum rate
capacity, the authors of [104] have proposed an indoor hybrid RF/PLC/VLC com-
munication system that switches the device connections between the RF, PLC, and
VLC. Moreover, [105] has formulated and studied the transmit power minimization
problem. In [106], a dual radio IoT architecture has been proposed for the use of
wildlife monitoring systems. Based on the herd’s closeness, the proposed approach
utilizes BLE in low power wide area networks (LPWAN). To assess the effectiveness
of the proposed approach, an analytical model for energy consumption has also been
provided. Research has demonstrated that the proposed dual radio network outper-
forms a network that just uses LPWAN in terms of energy efficiency. The authors of
[107] have examined a multi-layer ad-hoc UAV network that utilizes BLE and Wi-
Fi to enhance the network’s throughput and latency. The UAV-assisted network is
first split up into several clusters. BLE is considered to be the primary choice when
communication takes place within clusters and also between gateway UAVs and clus-
ter heads. For the communication between gateway UAV and GCS, Wi-Fi is the
preferred option. The performance of the proposed scheme against standalone com-
munication protocols is assessed through simulations using the optimized network
engineering tool (OPNET). It has been determined that in terms of throughput
and latency, the proposed scheme outperforms standalone communication proto-
cols. Nevertheless, the proposed scheme has not given enough attention to the UAV
energy consumption. Furthermore, this scheme has not considered additional com-
munication protocols that can support long-range communication between UAVs
and GCS. Moreover, the proposed scheme focuses only on the free space path loss
model which may be inadequate in real-world situations where multipath propaga-
tion dominates. Currently, to the best of our knowledge, no work is available in the
literature that focuses on the topic of hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted
wireless network for energy-efficient data transmission.

The use of reinforcement learning (RL) in UAV-assisted wireless networks has
been the subject of numerous works published in the literature. In [108], a deep
learning (DL) technique has been presented for collecting data in a wireless net-
work aided by UAVs. A number of DL-based artificial intelligence (AI) techniques,
including federated DL, multi-agent deep deterministic policy gradient, and point
learning, have been proposed in [109] to address the problem of optimizing energy
efficiency in UAV-assisted wireless network. For UAV-assisted wireless networks op-
erating in the TeraHertz band, the joint flight control and spectrum access problem
is solved in [110] using a combination of RL and echo state learning. In [111], the
authors have proposed a deep reinforcement learning (DRL) method for allocating
resources in UAV-assisted wireless networks in terms of throughput, bandwidth, and
power consumption. In [112], the authors jointly optimize channel and relay selec-
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tion in UAV-assisted device-to-device (D2D) networks using the stochastic learning
automata (SLA) algorithm. However, none of the above-mentioned works focuses
on leveraging RL algorithms to form a hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted
wireless network that supports energy-efficient data transmission. Our work refer-
enced in section 4.8 of chapter 4 of this thesis focuses on this aspect.
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Chapter 3

Smart Sensing for UAV Networks

3.1 Introduction

In this chapter, we discuss some of the inherent issues in the detection of multiple
UAVs in a multi-UAV system. We primarily focus on achieving practical solutions
to the problem using state-of-the-art low-cost sensors. The proposed approaches in
each case are intended to be lightweight and computationally less demanding. This
is to ensure portability and deployability on edge computing devices.

This chapter is a summarized version of the contents found in Paper C [11], Paper
D [12], and Paper E [13]. The chapter starts by first introducing an approach to
estimate the number of UAVs in the vicinity using thermal imaging. Next, we employ
acoustic sensors and lightweight CNNs to detect and estimate the UAV count. In the
third section, we look at how mmWave FMCW radar sensors can be used to localize
and classify multiple targets by utilizing machine learning techniques. Finally, the
last section provides an overview of the work and future research directions.

3.2 UAV Count Estimation Using Thermal Imaging
and Lightweight CNN

3.2.1 Motivation

Recent technology advancements have generated interest in using UAVs for a range
of applications, including disaster management, package delivery, law enforcement,
surveying, and defense [7]. Nevertheless, the improper and illicit usage of UAVs
in recent times has increased the need to detect, monitor, and track UAV-related
activities [113]. In this regard, techniques to identify and detect unauthorized and
intruding UAVs are crucial. In our work, we tackle this problem by employing a
thermal imaging-based technique. The principal incentive for employing a thermal
imaging-based solution is their enhanced visibility in intensely bright and dim en-
vironments. Moreover, unlike acoustic sensors, thermal sensors are not affected by
background noise [114], [10].
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3.2.2 Contributions

The major contributions of this work as provided in Paper C [11] are as follows:

• Proposed a simple cost-effective approach to estimate the count of UAVs in
multi-UAV setting by utilizing thermal imaging.

• Developed a lightweight machine learning model that can be used on the edge
to estimate the UAV count in a multi-UAV scenario.

• Developed a thermal dataset that contains a total of 10 UAVs flying simulta-
neously in all directions in a random manner.

3.2.3 System Model

Batteries are the primary power sources that enable UAVs to perform various tasks
including flight, landing, and hovering. During these tasks, UAVs dissipate heat
energy. Propeller rotation and other aerodynamic motion also results in energy
dissipation for UAVs. Some part of the energy thus dissipated from the above-
mentioned dynamic motions is converted to thermal energy. This thermal energy
is characteristic to each UAV and depends on factors such as UAV form factor,
UAV internals, and UAV battery source. Hence, by carefully processing the thermal
characteristics of UAVs, these thermal signatures can be leveraged to detect UAVs.
Therefore, the main goal of this work is to leverage the unique thermal signatures
of UAVs along with state-of-the-art machine learning techniques so as to estimate
the total UAV count.

3.2.4 Methodology

The proposed method makes use of the distinctive thermal signatures produced by
UAVs carrying out diverse tasks. In this case, we use the FLIR Lepton thermal
camera [32] to capture the thermal signatures. The recorded thermal images are
then fed to a customized lightweight CNN model to determine the number of UAVs
in the captured frame. The steps are outlined as follows:

Step 1: Use the FLIR Lepton thermal camera to capture thermal images of
UAVs.
Step 2: Resize and normalize the captured thermal images before providing them
as input to the proposed CNN architecture.
Step 3: Utilizing the processed images, train the proposed lightweight CNN model
to determine the approximate number of UAVs present in the scene.

3.2.5 Measurement Setup

The experiment was carried out primarily in an enclosed laboratory setting with
a radius of 5 meters that was semicircular in shape. The thermal images of UAVs
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Table 3.1: Various parameters used for the experiment [11].

Parameters Details

Measurement duration 5 minutes
Semicircular area Radius: 5 meters

UAV model Count
DJI Mavic 2 Enterprise 1

DJI Mini SE 2

DJI Mini 2 1

SYMA X30 1

DJI Mini 3 Pro 1

Tello EDU 4

Table 3.2: Specifications of thermal camera [11].

Parameters Value

Size (mm) 10.5× 12.7× 7.14

Resolution (pixels) 160× 120

Frame Rate (Hz) 8.7 (effective)
Lens Type f/1.1

Thermal sensitivity (mK) < 50

Spectral Range (microns) 8− 14 (nominal)
Horizontal Field of View (◦) 57

were captured in each measurement of the experiment. Each measurement was
taken with 1, 2, 3, · · · upto 10 UAVs randomly maneuvered in all directions. For
the measurements, a variety of UAV models were used, including the Tello EDU
series [115], the DJI series [116], and the SYMA series [117]. Table 3.1 contains
information on the different UAV model types used in this thesis. Tello EDU UAVs
were also utilized in the planned experiments as it can be challenging to detect small-
sized UAVs. Each Tello EDU was configured to follow predetermined flight paths.
On the other hand, the remaining UAVs were manually controlled by humans. More
information with respect to the experiment setup can be obtained from Table 3.1.

In this work, the FLIR Lepton 3.5 [32] camera is used to capture the thermal
images of UAVs. With an effective frame rate of 8.7 Hz, the FLIR Lepton 3.5

produces a thermal image with a resolution of 160 × 120 pixels. With a nominal
spectral range of 8–14 microns, the FLIR Lepton provides a thermal sensitivity
of less than 50 mK. We use the FLIR Lepton due its excellent performance and
compact form factor. Table 3.2 provides additional information about the FLIR
Lepton thermal camera.

A static tripod is used to mount the thermal camera, as illustrated in Fig. 3.1. A
USB A connection from the Raspberry Pi Model 4B provides power to the thermal
camera [44]. Furthermore, a Picamera [118] is installed directly beneath the FLIR
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Figure 3.1: Experimental setup used for collecting thermal images of UAVs.

Lepton. The Picamera is used to capture RGB pictures that will act as ground
truth for the thermal images. The Raspberry Pi powers the Picamera as well, and
both devices work in tandem with the thermal camera. Apart from acting as power
sources to the two cameras, the Raspberry Pi is also responsible for capturing and
archiving the RGB and thermal images that are collected from the FLIR Lepton and
Picamera, respectively. The operating system that is installed on the Raspberry Pi
is Ubuntu 18.04 [119]. Ubuntu 18.04 was chosen, so as to ensure smooth installation
and integration of ROS Melodic [120] and other necessary software packages onto
the Raspberry Pi board. Data from both the FLIR Lepton and Picamera can be
simultaneously captured with the aid of ROS Melodic. The Raspberry Pi board is
powered by a portable battery bank.

Each measurement involved flying a predetermined number of UAVs in every di-
rection. For every one of these flight paths, thermal and RGB images are captured
and saved. Ten measurements are taken, with each measurement consisting of 1, 2,
3, and so on up to 10 UAVs flown in arbitrarily different directions. Each measure-
ment was designed for 5 minutes so that at least 2500 thermal images were captured.
To increase variability, several UAV models were employed in the planned measure-
ments. In order to introduce additional unpredictability and noise to the data set,
one of the measurements was performed outdoors. This in turn offers a means of
comprehending the performance of the proposed approach in outside environments.
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(a) (b)

Figure 3.2: The RGB images obtained by using Picamera with the configured ex-
perimental setup for measurement scenarios [11] with (a) 6 UAVs and (b) 8 UAVs.

(a) (b)

Figure 3.3: The thermal images obtained by using FLIR Lepton with the configured
experimental setup for measurement scenarios [11] with (a) 6 UAVs and (b) 8 UAVs.

3.2.6 Dataset Details

The FLIR Lepton camera produces thermal images with an image resolution of
nrow × ncol = 160× 120 pixels. We have constructed a data set Dj = {yij}N=1000

i=1 of
thermal images using the configuration mentioned in the previous section. In this
data set, y denotes each thermal image within a set of 1000 images belonging to
the class j. In this case, the class j represents the images containing j UAVs. Class
2, for instance, represents the thermal images that contain 2 UAVs. The proposed
CNN model receives a subset of this data set as training input. The RGB images
of the measurement scenarios with 6 and 8 UAVs flown randomly are displayed in
Fig. 3.2. The equivalent thermal images for the 6 and 8 UAV scenarios are shown
in Fig. 3.3.
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Figure 3.4: Proposed CNN architecture for predicting the number of UAVs based
on thermal images [11].

Table 3.3: Details on the architecture of the proposed CNN model [11].

No. Layer Output Size Parameter
1 Input [(None, 160, 120, 3)] 0

2 Conv2D (1) [(None, 160, 120, 8)] 224

3 MaxPooling2D (1) [(None, 80, 60, 8)] 0

4 Conv2D (2) [(None, 80, 60, 16)] 1168

5 MaxPooling2D (1) [(None, 40, 30, 16)] 0

6 Flatten [(None, 19200)] 0

7 Dense [(None, 10)] 192010

3.2.7 Proposed CNN Architecture

Fig. 3.4 shows the proposed CNN model. The thermal image with a resolution of
160×120 serves as the input to the CNN model. After the input layer, a combination
of max pooling and convolution (Conv2D) layers are followed. Next, the image is
passed into a convolutional layer with 8 filters and a 3 × 3 kernel size. This layer
extracts features, and the reduced image is sent into a 2 × 2 max pooling layer.
The reduced image is then subjected to a second convolutional process using an
L2 regularizer with a 0.001 regularization value. Next, other layers such as the
max pooling, flattening, and dense layers are followed. We use the ReLu non-linear
activation function to activate each convolutional layer. Lastly, the output layer
estimates the likelihood of UAVs in the image using softmax activation. Table 3.3
provides further architectural details.

The UAV-thermal dataset contains 10, 000 thermal images. The thermal images
are sorted into 10 folders where each folder corresponds to a class that indicates
the number of UAVs in the thermal image. Train, test, and validation is performed
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Figure 3.5: Plots depicting the curves for training loss and validation loss [11].

Figure 3.6: Classification performance depicted with the confusion matrix [11].

with ratios of 80%, 10%, and 10%, respectively. To reduce the loss, the sparse
categorical cross-entropy function is employed. Additionally, during training, the
model employs an adaptive momentum (Adam) optimizer with a value of 10−4 as
the learning rate.

3.2.8 Results

The thermal images from the dataset are used to train the proposed CNN model.
The proposed CNN model is trained by 10-fold cross-validation. The dataset is
divided into train, test, and validation subsets with a split ratio of (80, 10, 10)%.
The loss curve obtained during training is shown in Fig. 3.5. It can be observed
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from Fig. 3.5 that after 40 epochs, both the training and validation losses converge to
a minimum. With the 10-fold hold-out validation, it can be observed that the model
achieves 99.91% validation accuracy. Additionally, to assess the model performance
following training, previously unseen data (10% from the dataset) is used for testing.
On the test set, we achieved an accuracy of 99.9% on average. Fig. 3.6 depicts the
confusion matrix that represents the performance of the proposed model.

3.3 Acoustic and Machine Learning Based UAV
Count Estimation

3.3.1 Motivation

Various sensors can be used to detect and track small-sized UAVs. Radar sensors,
vision-based sensors, and acoustic sensors [121], [91] are few of them. However, it
has been shown that utilizing acoustic sensors for UAV detection offers a number
of benefits over other types of sensors. Compact and inexpensive, acoustic sen-
sors gauge the pressure changes caused by sound waves to measure sound intensity.
Acoustic sensors, in contrast to conventional vision and radar-based sensors, are
usually omnidirectional. Due to their ability to detect disturbances in all directions,
acoustic sensors are a perfect fit for collision-avoidance systems. Additionally, pas-
sive acoustic sensors are environmental friendly as they do not emit any radiation.
Radar sensors rely on a threshold radar cross-sectional area to ensure detection. In
contrast, acoustic sensors are independent of the form factor of UAVs, thereby en-
hancing their detection performance compared to radar systems. When compared to
vision and radar-based systems, the output data rate of acoustic sensors is compar-
atively modest, which makes data processing and acquisition relatively easier. Thus
a major part of this section is focused on the detection and estimation of several
UAVs utilizing only their generated acoustic signatures.

3.3.2 Contributions

Prior research in the field has primarily concentrated on identifying a single UAV
rather than several UAVs. Moreover, the research predominantly focused on con-
trolled environments and predefined trajectories. This work is different from pre-
vious works such that, the primary focus is directed towards acquiring acoustic
signatures from a maximum of 10 UAVs. The UAVs are configured to navigate in a
random manner across all directions, with different velocities. Our study addition-
ally incorporates the natural background noise throughout the detection process.
One outdoor measurement has also been incorporated, that includes noise origi-
nating from wind and bird chirping. Supervised learning techniques are employed
because of their exceptional efficacy in target detection and classification. While
unsupervised techniques have the benefit of extracting intrinsic properties from un-
labeled data, they are ineffective in identifying certain specific classes of targets.
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Further, the proposed CNN architecture demonstrates superior performance com-
pared to existing machine learning models in terms of both accuracy and model
size. Due to its comparatively compact model size, the proposed CNN architecture
exhibits reduced resource consumption, facilitating its deployment on lightweight
edge-computing devices as Raspberry Pi 4, NVIDIA Jetson Nano, and others. The
model is evaluated on these edge computing devices, and the corresponding infer-
ence time is also noted. As such the major contributions of this work outlined in
Paper D [12] are as follows:

• An acoustic-based UAV dataset is created by utilizing a total of 10 UAVs. An
arbitrary number of UAVs are flown randomly within the measurement area
and the acoustic field signatures are captured using a cardioid unidirectional
microphone.

• Time-frequency algorithms such as CWT are applied to transform the recorded
acoustic field signatures to spectrogram images.

• A custom lightweight CNN architecture is designed to estimate the number of
UAVs in the scene. The performance of the proposed model is compared with
state-of-the-art benchmark machine learning models in terms of accuracy and
model size.

3.3.3 System Model

Motorization and the propeller motion of small multirotor UAVs can produce compli-
cated acoustic fields. Thus, UAVs produces acoustic fields that are arguably unique
and has complex harmonics. The literature contains various works such as [122],
[123], and [124] that address the study of the UAV acoustic fields. Our proposed
approach leverages these distinct harmonic acoustic signatures produced by several
UAVs to identify and quantify their presence in an indoor environment.

3.3.4 Methodology

UAV Acoustic
signatures (.wav)

Spectrogram
images

Proposed CNN
model

CWT

Hardware
Deployment

Training Inference 
Estimated
UAV Count 

Estimated
number of UAVs

Figure 3.7: Schematic representation of the proposed methodology [12].

The proposed method makes use of the acoustic field produced by the UAV pro-
pellers and rotors. An acoustic field is generated due to the high-speed rotation of
UAV rotors and propellers, creating pressure differentials. In this work, the gen-
erated acoustic field signatures are recorded using a cardioid microphone. Audio
spectrogram images are produced by capturing and processing acoustic signatures
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Table 3.4: Experiment details and measurement settings [12].

Experiment Parameters Details
Measurement duration 5 minutes

Semicircular area Radius: 5 meters
Microphone Shure MV7
Sampling rate 48000 Hz

Output impedance 314 ohms
Frequency response 50 Hz - 16000 Hz

Total UAVs 10
DJI Telllo EDU 4

DJI Mini SE 2

DJI Mini 2 1

DJI Mini 3 Pro 1

DJI Mavic 2 Enterprise 1

SYMA X30 1

from 10 UAV combinations. CNN models are then trained using these audio spec-
trogram images to determine the approximate number of UAVs present in the scene.
Fig. 3.7 depicts a condensed flow diagram of the methodology.

3.3.5 Measurement Setup and Dataset

Measurement setup

Measurement is carried out in an indoor laboratory setting that spans a semicircular
area with radius of 5 meter. Acoustic signatures from a maximum of 10 UAVs that
are flown arbitrarily in all directions within the measurement area were recorded.
The DJI Mavic 2 Enterprise [125], DJI Mini 2 [126], DJI Mini SE [127], DJI Mini 3
Pro [128], DJI Tello EDU [129], and SYMA X30 [117] are the UAV models used in the
experiment. With the exception of the DJI Mavic 2 Enterprise, all of the remaining
UAVs weighs less than 250 and have a relatively small form factor (about 251 ×
362 × 70 mm [128]). Small-sized UAVs serve as an excellent candidate to evaluate
the estimation performance of the proposed approach in a multi-UAV setting. The
DJI Tello UAVs were configured to follow a predetermined flight path. However,
the remaining UAVs were human controlled to maneuver in random trajectories so
as to replicate near real-time scenarios. Additional information on the experiment
is given in Table 3.4.

The Shure MV7 microphone is used to record the UAV acoustic signatures [130].
The microphone is unidirectional with a cardioid type polar pattern and has an
output impedance of 314 Ω. Its adjustable gain spans between 0 and +36 dB, and
offers a frequency response that spans from 50 Hz to 16000 Hz [131]. Further spec-
ifications of the microphone can be found in Table 3.4. The microphone is fixed
atop a tripod stand and oriented toward the measurement region. The unidirec-
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Figure 3.8: Shure MV7 mounted on a tripod to measure UAV acoustic signals [12].

tional cardioid polar pattern of the microphone allows it to pick up and magnify the
acoustic disruptions caused by UAVs flying in front of it. Disturbances originating
from the rear end of the microphone are however reduced in power and hence do
not affect the output signal. The microphone configuration utilized to record the
acoustic signatures from UAVs is shown in Fig. 3.8.

For each measurement, an arbitrary number of UAVs were flown for 5 minutes
in the designated area. For instance, acoustic field signatures from 5 randomly
flown UAVs were recorded in the fifth measurement of the experiment. The sixth
measurement consisted of randomly flying 6 UAVs. Each measurement of the ex-
periment has been planned to use as much different UAV models as feasible in order
to increase variability. For measurements that required additional UAVs, however,
we had to resort to similar UAV models due to availability limits. A 5 UAV mea-
surement example is illustrated in Fig. 3.9. We performed the 2nd measurement
outdoors in order to introduce additional variability to the acoustic field readings.
The outdoor measurement also in turn adds noise from wind and bird chirping. The
outdoor measurement area is a semicircular area of radius 5 meters as like the in-
door measurement area. Moreover, 3 distinct UAV models were used for the initial
measurement so as to increase the number of sample values.
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Figure 3.9: Recording UAV acoustic signals for a scenario with 5 UAVs [12].

Dataset details

A dataset consisting of UAV audio snippets is created using the acoustic signatures
that are recorded from the performed experiments. The duration of each recorded
acoustic signature is 5 minutes. The recorded signatures are meticulously cropped
to preserve only the audio related to the UAV. With a sampling rate of 48000 Hz,
each trimmed audio signal has a duration of 4 minutes and 45 seconds (285 seconds).
For each trimmed signal (285 second duration), we divide it into 95 equal parts in
order to minimize latency and ensure seamless processing. Each part is a 3 second
audio clip that is sampled at 48000 Hz. Thus, the dataset has 1140 three second
UAV audio samples in total. The UAV audio clips with a duration of 3 seconds for
the 1, 2, 4, 6, 8, and 10 UAVs are provided in Fig. 3.10. As seen in Fig. 3.11, the
CWT transform is applied to these audio samples in order to further generate the
audio spectrogram images.

3.3.6 Proposed CNN Architecture

CNNs are special deep-learning architectures that identify and categorize objects
in images using artificial neural networks. The proposed approach involves using a
unique CNN architecture to extract feature data from spectrogram images.

We initially tested the performance of the custom CNN architecture by changing
the number of layers as 5, 10, 15, and 20. With a data set split of (80, 10, 10) for
training, testing, and validation, we employed a 10-fold cross-validation. It was
found that CNNs with 20 layers or more outperformed those with less layers in
terms of performance. To find the best-performing architectures, we then adjusted
the image resolution and layer count. The performance of the CNN architectures
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Figure 3.10: Recorded UAV acoustic signatures for (a) 1 UAV, (b) 2 UAVs, (c) 4

UAVs, (d) 6 UAVs, (e) 8 UAVs, and (f) 10 UAVs measurement scenarios [12].

 

(a) (b) (c)

(d) (e) (e)

Figure 3.11: Plotted spectrogram images for (a) 1 UAV, (b) 2 UAVs, (c) 4 UAVs,
(d) 6 UAVs, (e) 8 UAVs, and (f) 10 UAVs measurement scenarios [12].

with 18 layers and above is given in Table 3.5. The performance variation by altering
the image resolution is also noted. Table 3.5 shows that performance starts to
progressively rise from 18 layers, peaks at 22 and 24 layers, and then gradually
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Table 3.5: Various CNN architectures obtained by varying image resolution and
number of layers [12].

Sl. No. No of Layers Image resolution Avg. Test Accuracy (%)
1 18 300× 200× 3 92.29

2 18 400× 300× 3 92.40

3 18 500× 400× 3 86.05

4 18 600× 500× 3 94.73

5 18 700× 600× 3 93.55

6 20 300× 200× 3 89.37

7 20 400× 300× 3 88.50

8 20 500× 400× 3 89.56

9 20 600× 500× 3 88.89

10 20 700× 600× 3 88.00

11 22 300× 200× 3 92.19

12 22 400× 300× 3 94.24

13 22 500× 400× 3 94.74

14 22 600× 500× 3 93.86

15 22 700× 600× 3 94.05

16 24 300× 200× 3 92.98

17 24 400× 300× 3 92.98

18 24 500× 400× 3 93.56

19 24 600× 500× 3 93.86

20 24 700× 600× 3 94.24

21 26 300× 200× 3 91.13

22 26 400× 300× 3 91.61

23 26 500× 400× 3 89.76

24 26 600× 500× 3 86.34

25 26 700× 600× 3 88.11

declines. It was found that five CNN architectures (shown in bold in Table 3.5)
performed with an average test accuracy of greater than 94%. Out of the five, the
CNN architecture with 22 layers and supporting input image resolution of 500×400×
3 was selected after taking into account other performance metrics and parameters.

Table 3.6 and Fig. 3.12 depict the 22-layer proposed CNN architecture. After
applying CWT on the audio clips, spectrogram images with a resolution of 836 ×
716 × 3 pixels were produced. These spectrogram images are then further scaled
to 500 × 400 × 3 pixels to train the proposed CNN architecture. The input layer
of the proposed CNN architecture then receives the rescaled spectrogram images as
input. The convolutional layers in the proposed architecture have kernel dimensions
of 4× 4. To extract embedded feature representations, 8 or 16 convolutional kernels
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Figure 3.12: The proposed CNN architecture [12].

are primarily employed. In the final convolutional layer, we also employ dilation
with a dilation factor of 2. Dilation introduces holes between neighbouring elements
thereby expanding the kernel size. As a result, it is possible to capture intrinsic
sequence information with a wider field of view [132].

In order to increase the number of layers in the network without sacrificing
performance, the proposed CNN architecture utilizes residual blocks. A total of 2
residual layers are used in our proposed model. Fig. 3.12 shows the architecture
of the residual blocks employed in the proposed model. We have also introduced
3 × 3 max pooling layers throughout the proposed architecture. The input feature
representation is downsampled with the help of the max pooling layer [133]. Max
pooling improves computing performance for subsequent layers by effectively remov-
ing translational invariances from the input representation. Batch normalization is
also used at the input layer in the proposed model, as illustrated in Table 3.6. The
problem of internal covariate shift [134] is resolved by batch normalization by nor-
malizing the input distribution through a process of rescaling and re-centering. In
the final layers of the proposed CNN architecture, we use the flatten and dense lay-
ers. The input vector is converted into a 1-dimensional output by the flatten layer,
which is then supplied to the dense layer. The output of the dense layer are class
probabilities that can be utilized for detection and classification tasks. As we are
predicting a maximum of 10 UAVs, there are 10 outputs from the dense layer in the
proposed architecture.

The Adam optimizer [135] is utilized to train the proposed CNN model using the
tanh activation function. The batch size has been increased to 16 and the learning
rate to 0.001 in order to reduce the training-related variations in the accuracy/loss
curve. Using two Tesla V100-SXM3 GPUs with 32 GB RAM [136], the Keras deep
learning library [137] is used for training the proposed CNN model.
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Table 3.6: Architecture details of the proposed CNN model arranged layerwise [12].

No. Layer Output Size Parameter
1 Input [(None, 500, 400, 3)] 0

2 Batch Normalization (1) [(None, 500, 400, 3)] 12

3 Conv2D (1) [(None, 500, 400, 8)] 392

4 MaxPooling2D (1) [(None, 166, 133, 8)] 0

5 Conv2D (2) [(None, 166, 133, 8)] 1032

6 Batch Normalization (2) [(None, 166, 133, 8)] 32

7 Conv2D (3) [(None, 166, 133, 8)] 1032

8 Batch Normalization (3) [(None, 166, 133, 8)] 32

9 Add (1) [(None, 166, 133, 8)] 0

10 Activation (1) [(None, 166, 133, 8)] 0

11 Conv2D (4) [(None, 166, 133, 16)] 1032

12 Batch Normalization (4) [(None, 166, 133, 8)] 32

13 Conv2D (5) [(None, 166, 133, 16)] 1032

14 Batch Normalization (5) [(None, 166, 133, 8)] 32

15 Add (2) [(None, 166, 133, 8)] 0

16 Activation (2) [(None, 166, 133, 8)] 0

17 Conv2D (6) [(None, 166, 133, 16)] 2064

18 MaxPooling2D (2) [(None, 55, 44, 16)] 0

19 Conv2D (7), Dilation rate = 2 [(None, 55, 44, 64)] 16448

20 MaxPooling2D (3) [(None, 18, 14, 64)] 0

21 Flatten [(None, 16128)] 0

22 Dense [(None, 10)] 161290

3.3.7 Results

The proposed CNN model is trained using the spectrogram images that are produced
after applying the CWT transform. 80% of the dataset is reserved for training, 10%
for validation, and the remaining 10% is used for testing. We trained each fold for
50 epochs with a batch size of 16 and a learning rate of 0.001 using 10-fold cross-
validation [138]. For the 10-fold cross-validation, we split the dataset as 80% for
training and 10% for validation. The remaining 10% of the dataset acts as a test
set so as to compute the detection accuracy. The loss and accuracy curves obtained
during training are displayed in Fig. 3.13a and 3.13b respectively. Fig. 3.13a shows
that after 10 epochs, there is a significant drop in both training and validation loss.
As a result, after 10 epochs, the accuracy curves for training and validation converge
close to 1, suggesting that the proposed model necessitate less training time.

The model performance on the test set was assessed after training. The confusion
matrix that was plotted after testing the proposed model on the test set is shown
in Fig. 3.14. It is evident from Fig. 3.14 that in more than 90% of the cases, the
proposed model can accurately forecast the number of UAVs. For the remaining 10%

of the cases, the proposed model is inaccurate in its prediction. This may be because
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(a) Loss curve

(b) Accuracy curve

Figure 3.13: Loss curve and accuracy curve obtained after training [12].

the resulting signal can become unresolvable due to the superposition of acoustic
signatures from comparable UAV types. As seen in Table 3.7, the performance of the
proposed model is also contrasted with that of common benchmark machine learning
models. For the purpose of computing the performance metrics on the benchmark
models, we split the data set in the same split ratio as before. The spectrogram
images are then provided as input to benchmark models after undergoing rescaling
to 224 × 224 × 3 pixels. In comparison to the benchmark models, the proposed
model achieves a comparatively high test accuracy of 93.33%, as shown in Table 3.7.
Table 3.7 further shows that, in comparison to the benchmark models, the proposed
model requires a storage space of just 2.34 MB, allowing for seamless deployment
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Figure 3.14: Classification performance depicted with the confusion matrix for the
proposed model [12].

and portability across a wide range of edge computing devices. Furthermore, when
compared to other benchmark models, our approach uses fewer number of total
parameters. Additionally, the majority of the total parameters that the proposed
model utilizes are trainable parameters, demonstrating effective parameter usage. In
terms of the number of floating point operations (FLOPs) [141], Table 3.7 compares
the computational performance of our model to that of other benchmark models.
GFLOPs are the metric used to gauge the number of FLOPs, with 1 GFLOP equal
to 109 FLOPs. Standard open-source software from TensorFlow [142] and PyTorch
[143] is used to acquire the FLOP count. As can be seen, our model has fewer FLOPs
than the standard benchmark models with the exception of MobileNetV3Large and
MobileNetV3Small models. This difference may be attributed to the width and
resolution multiplier parameters introduced in the MobileNet series [55] that are in
turn responsible for decreasing the computing cost.

We have also deployed the proposed model on to edge computing platforms
such as NVIDIA Jetson Nano, Raspberry Pi 4 Model B, and NVIDIA Jetson AGX
Xavier. On each of these devices, we compute the inference time for the proposed
model. For time-critical applications, the inference time computation can aid in
determining feasibility to deploy the proposed model. We used a randomly chosen
10% of the dataset as test set for each of the three devices. With the Raspberry Pi
4 board, the trained model was executed for an average inference time of approx-
imately 127 milliseconds over 10 iterations. However, with the Jetson Nano, the
average inference time was approximately 219 milliseconds. This is to be expected
as the GPU resources of the Jetson Nano are not being completely utilized by the
TensorFlow Lite models. For GPU operations, even though CUDA is not supported
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Table 3.7: Comparison of various performance metrics between benchmark models
and the proposed CNN model [12].

Sl. No. Model Total Parameters Avg.
Test

Accuracy
(%)

Model
Size

(MB)

Floating Point
Operations
(GFLOPs)

1 DenseNet121 [52] 7, 047, 754 83.77 28.98 2.88

2 DenseNet169 [52] 12, 659, 530 87.28 51.76 3.42

3 DenseNet201 [52] 18, 341, 194 88.68 74.68 4.37

4 EfficientNetB0 [54] 4, 062, 381 83.85 16.74 0.4

5 EfficientNetB1 [54] 6, 588, 049 81.05 27.01 0.59

6 EfficientNetB2 [54] 7, 782, 659 80.08 31.80 0.68

7 EfficientNetB3 [54] 10, 798, 905 84.21 43.94 0.99

8 EfficientNetB4 [54] 17, 691, 753 78.24 71.66 1.54

9 EfficientNetB5 [54] 28, 534, 017 79.73 115.20 2.41

10 EfficientNetB6 [54] 40, 983, 193 82.45 165.18 3.43

11 EfficientNetB7 [54] 64, 123, 297 81.40 257.98 5.27

12 InceptionResnetV2 [139] 54, 352, 106 77.63 218.77 6.55

13 InceptionV3 [56] 21, 823, 274 78.42 87.97 2.89

14 MobileNetV2 [55] 2, 270, 794 86.75 9.49 0.32

15 MobileNetV3Large [140] 4, 239, 242 86.92 17.42 0.23

16 MobileNetV3Small [140] 1, 540, 218 81.84 6.55 0.06

17 NASNetMobile [57] 4, 280, 286 77.71 18.48 0.27

18 ResNet101V2 [53] 42, 647, 050 89.64 171.37 8.28

19 ResNet152V2 [53] 58, 352, 138 87.63 234.50 12.5

20 ResNet50V2 [53] 23, 585, 290 90.35 94.82 3.97

21 VGG16 [58] 14, 719, 818 87.98 58.98 15.5

22 VGG19 [58] 20, 029, 514 87.98 80.22 19.6

23 Xception [59] 20, 881, 970 82.89 83.96 0.36

24 Proposed model 184,462 93.3 2.34 0.25

with TensorFlow Lite [144], the Jetson devices provide the necessary CUDA support
[145]. Hence, the observed increase in inference time is expected. Similarly, when
executed on the NVIDIA Jetson AGX Xavier, the trained model was able to output
an average inference time of approximately 81.4 milliseconds. Comparing the Jetson
Nano and Raspberry Pi 4 to the Jetson AGX Xavier, the latter was faster in infer-
ring the predictions. The faster inference time, despite the GPU not being used,
can be ascribed to the availability of additional RAM, around 32 GB, which can
subsequently improve system performance. Moreover, compared to the other two
devices, the Jetson AGX Xavier has access to additional computing resources. The
inference time obtained for the proposed model and benchmark models on different
edge computing devices are listed in Table 3.8. For the purpose of determining the
inference time for the benchmark models, we divide the data set based on same split
ratio as mentioned before. On all three embedded devices, it is evident that the pro-
posed model outperforms majority of the benchmark models with a faster inference
time. However, the MobileNet models exhibit lower inference time as compared to
the proposed model. This may be because of the introduced width and resolution
multiplier parameter in the MobileNet series that further lowers the computational
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Table 3.8: Computed inference time values when deployed on various edge comput-
ing devices [12].

Sl. No Model
Inference time (seconds)

Raspberry Pi Jetson Nano Jetson AGX Xavier
1 DenseNet121 [52] 0.692 0.841 0.413

2 DenseNet169 [52] 0.832 1.009 0.483

3 DenseNet201 [52] 1.088 1.275 0.614

4 EfficientNetB0 [54] 0.389 0.372 0.116

5 EfficientNetB1 [54] 0.591 0.546 0.178

6 EfficientNetB2 [54] 0.624 0.592 0.180

7 EfficientNetB3 [54] 0.843 0.794 0.248

8 EfficientNetB4 [54] 1.162 1.147 0.359

9 EfficientNetB5 [54] 1.724 1.672 0.528

10 EfficientNetB6 [54] 2.339 2.173 0.832

11 EfficientNetB7 [54] 3.252 2.971 1.158

12 InceptionResNetV2 [139] 1.637 1.828 0.797

13 InceptionV3 [56] 0.700 0.819 0.378

14 MobileNetV2 [55] 0.088 0.112 0.046

15 MobileNetV3Large [140] 0.072 0.090 0.036

16 MobileNetV3Small [140] 0.022 0.028 0.011

17 NASNetMobile [57] 0.320 0.256 0.125

18 ResNet50V2 [53] 0.912 1.008 0.440

19 ResNet101V2 [53] 1.879 2.053 0.858

20 ResNet152V2 [53] 2.820 3.159 1.285

21 VGG16 [58] 3.903 4.042 1.699

22 VGG19 [58] 5.031 6.981 2.184

23 Xception [59] 1.236 2.206 0.520

24 Proposed model 0.127 0.219 0.081

cost of the model.

3.4 Angle of Arrival Estimation and Classification
of Targets Using Rotating mmWave FMCW
Radar and Yolov3

3.4.1 Motivation

There is an increasing need for improved detection, localization, and tracking tech-
niques as UAVs become more and more popular. Advanced sensor technologies are
fitted onto UAVs and GCSs so as to provide better target localization. LiDARs, RGB
cameras, and ultrasonic sensors are among them. However, the sensing capabilities
of majority of these sensors are inadequate under harsh weather and insufficient
lighting conditions. In this regard, when compared to other sensors, the mmWave
FMCW radars have demonstrated relatively better performance. The mmWave
FMCW radars are compact lightweight sensors that offer exceptional target detec-
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tion capabilities. The radars offer good velocity estimation capability together with
a radial distance measurement range of 0.2 meters to 300 meters. Further, they also
provide accurate range and velocity resolutions. In addition, they are a promising
solution for GCS and UAV applications due to their performance in harsh weather
and environmental situations.

Despite the aforementioned benefits, the AoA estimation and AoA resolution
of mmWave FMCW radars are inadequate [7]. For the radar to estimate the AoA
accurately from a single target, at least one transmitter and two receivers are re-
quired. The AoA estimation can be successfully improved by increasing the number
of transmitter and receiver pairs, given that the trade-off between hardware com-
plexity and larger form factor are considered. Further, it is even more challenging
to estimate AoA for several objects in a multi-target environment. Therefore, our
goal in this work is to improve the AoA estimation for mmWave FMCW radars, so
as to enable accurate target detection and localization.

3.4.2 Contributions

Even though there have been several attempts to improve the AoA estimation capa-
bilities of mmWave FMCW radars as mentioned in section 2.6.3 of chapter 2, most
of these approaches demand high computational complexity and additional hard-
ware resources. Our work aims to resolve some of these issues. As such the major
contributions of this work are:

• We propose a single rotating mmWave FMCW radar setup to obtain accurate
multi-target AoA estimation.

• Our proposed method utilizes computer vision algorithms such as Yolov3 to
estimate the AoA of multiple targets with a 180◦ field of view.

• In addition to AoA estimation, the proposed approach also provides an accu-
rate classification of the targets based on the obtained range-angle signatures.

3.4.3 System Model and Problem Formulation

The operation of mmWave FMCW radars involves transmitting high-frequency chirp
signals. When these chirp signals are obstructed in its path by obstacles, they are re-
flected back. The receiving antennae captures these reflected chirps and utilizes them
for additional processing. The IF signal is then obtained by feeding the transmitted
and received chirp signals into a mixer. The analog IF signal is then forwarded to
a high-speed ADC for sampling and generating the corresponding digital samples.
To determine the radial range, radial velocity, and AoA of the target, these raw IF
samples then undergo further processing [146].

To estimate the range of the target, FFT transformation is applied on the ob-
tained IF samples [147]. Thus, the range denoted by R is computed as,

R =
cfIF
2S

, (3.1)
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Figure 3.15: Estimating the angle of arrival [13].

where S is the slope of the mmWave FMCW radar, fIF is the IF signal frequency,
and c denotes the velocity of light in vacuum (3x108 m/s).

AoA estimation depends directly on the number of receiver antennas on the
radar. The mmWave FMCW radar is manufactured such that there exists between
a target object and the individual receiver antennas a differential distance. The
differential distance is directly proportional to the phase change that is obtained by
applying a second FFT transformation on the output range profile. The angle-FFT
is obtained by performing the second FFT operation over the different receiver an-
tennas. Now, the AoA estimation of target objects in the scene can then be obtained
utilizing the angle-FFT plot. Note that the 2D-FFT is applied over spatially sepa-
rated receiver antennas to obtain the angle-FFT, whereas, the 2D-FFT leverages the
phase difference between time-separated chirp waveforms to estimate the velocity
[148]. Considering the distance between adjacent receiving antennas is d and the
phase difference between the received chirp waveforms is ϕ, then the following is
true,

ϕ =
2πd sin θ

λ
, (3.2)

where the wavelength of the chirp signal is denoted by λ. Hence, the estimated value
for AoA given by θ is computed as,

θ = sin−1(
λϕ

2πd
) (3.3)

Fig. 3.15 provides a visual depiction of the AoA estimation. As observed from
(3.2) and (3.3), the value of ϕ is more sensitive to changes in the value of θ, especially
when θ = 0◦. Further, the sensitivity of ϕ to θ falls rapidly with increasing θ value.
This can be attributed to the non-linear relationship that exists between ϕ and θ

with ϕ ∝ sin θ. Thus, with the increase in θ, the sensitivity of sin θ decreases. As a
result, when the target is positioned perpendicular to the radar, AoA estimation is
more accurate [148].
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As observed, the AoA estimation requires the presence of atleast one transmitter
and two receivers. In this work, we attempt to obtain accurate AoA estimation with
the use of a single transmitter and receiver antennae.

3.4.4 Measurement Setup and Dataset

Measurement setup

The measurement equipment comprises of a mmWave FMCW radar that is securely
installed atop a programmable rotor. The rotor is fixed firmly on stationary tripod
stand. The rotor is portable and uses battery sources for power. The mmWave
FMCW radar is installed on the rotor head. Depending on the requirements, the
rotor head is capable to rotate the firmly fixed radar in the azimuth for the whole
360◦. The programmable parameters of the rotor include the rotational velocity, the
rotational direction, and the rotational angle. The rotor can be rotated at a velocity
that can be adjusted based on the quantity of chirp frames the radar transmits in
a second. Here, the set of K equally spaced chirp waveforms sent by the radar is
referred to as a chirp frame, or simply a frame [146]. The rotor’s rotational velocity
has a direct impact on the accuracy of the AoA estimation. If the rotor rotates at
high rotational velocity, then the radar captures fewer frames in each second. On
the otherhand, a low rotational velocity corresponds to a higher number of radar
frames collected each second. Higher frames per second are required to obtain better
AoA estimate performance, since higher the number of collected frames, larger the
amount of information that can be retrieved from multiple targets present in the
scene. In this work, in order to record at least one frame for each degree of radar
rotation, we have configured the rotor’s rotating velocity to be low.

Let θFoV be the intended FoV that the rotor should cover in t seconds. The
radar transmits nf frames in t seconds. Taking into account that the whole θFoV is
split into smaller angle bins (θb), we get the subsequent relationship:

θb =
θFoV

nf

(3.4)

The desired FoV in our experiment is 180◦. For the radars AWR2243 [149] and
AWR1843 [150], the nf is 800 and 200 frames, respectively. A batch of 128 chirp
waveforms called a frame are transmitted by the mmWave FMCW radar. For
AWR2243 and AWR1843, this translates to 0.225◦ and 0.9◦ per frame, respectively.
In our experiment setup, the radar is oriented vertical relative to the ground plane
in order to maximize the FoV at elevation.

Our experiment uses two mmWave FMCW radars from Texas Instruments:
AWR2243 [149] and AWR1843 [150]. The frequency ranges of both radars are
the identical, ranging from 77 to 81 GHz. They also have the identical chirp slope,
sampling rate, ADC samples, RF bandwidth, and number of transmitter and re-
ceiver pairs. However, the AWR1843 uses 800 frames, while the AWR2243 uses 200
frames. The key specifications for both the radars is provided in Table 3.9.
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Table 3.9: Specifications for mmWave FMCW radars, AWR1843 and AWR2243 [13].

Radar Parameter Value
No. of ADC samples 256

Sampling Rate 10 MSPS
No. of Chirps 128

Frequency Range (RF) 77− 81 GHz
No. of Tx antennas 3

No. of Rx antennas 4

No. of frames (AWR2243) 200

No. of frames (AWR1843) 800

Transmission Power 12 dBm
Bandwidth (RF) 1798.92 MHz

Chirp Slope 29.982 MHz/µs
Frame periodicity 40 ms
Rx Noise Figure 14 dB (76 to 77 GHz)

15 dB (77 to 81 GHz)

Table 3.10: Experiment settings [13].

Experiment Parameter Value
Measurement Range upto 26 meters

Car Size 431.5× 178.0× 160.5 cm3

Human Height 172 cm
UAV Size 32.24× 24.2× 8.4 cm3

Figure 3.16: mmWave FMCW radar mounted on the rotating rotor [13].

The experiment is conducted at an outdoor parking lot with a car, a UAV, and
people positioned at different angles to the radar. For each measurement, the UAV,
car, and people are positioned at various points within a radial distance of ≈ 26

meters and 180◦ FoV in front of the radar. We restrict the radial distance within
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Figure 3.17: Measurement case AA from Set3_OnlyHumans [13].

the allowed measurement range by capping it at ≈ 26 meters. Nevertheless, objects
up to 300 meters away can be measured by the mmWave FMCW radars [149], [150].
For every measurement, a total of 800/200 frames containing the raw IF signal are
recorded, depending on the radar version (AWR1843/AWR2243) that is being used.
Each frame of the radar comprises of 128 chirps with a duration of about 40 ms.
Additionally, depending on the radar model, each frame of the radar delivers raw
IF signal data corresponding to a 0.225◦/0.9◦ FoV. To acquire the range profile for
every frame, the gathered raw IF signal data is post-processed in MATLAB [151].
In order to create a 180◦ FoV range-angle map of the entire measurement scenario,
the range profiles for each frame are finally stitched together [24]. The experimental
configuration of the rotating mmWave FMCW radar, which records the raw IF
signals, is depicted in Fig. 3.16. Additional experiment parameters are listed in
Table 3.10.

Dataset details

Based on the measurement setup described above, we have collected the raw IF signal
data for various target objects from the mmWave FMCW radars, AWR2243 and
AWR1843. The target objects consist of human, car, and UAV combinations that
are positioned at different locations in front of the radar. The AWR2243 mmWave
FMCW radar was utilized to record the IF signals from humans, cars, and UAVs.
In a similar vein, the IF signals from humans were obtained using the AWR1843
mmWave FMCW radar. MATLAB is utilized to process the captured raw IF signals
and derive the corresponding range profile for every frame. The radar range-angle
images are created by stitching together the range profiles for each frame. On the
basis of these range-angle images, three datasets have been developed. The first
dataset includes humans, car, and UAV; the second dataset includes a mix of UAV
and car. Range-angle images of just human targets are included in the third dataset.
Set1_UavCarHumans, Set2_UavCar, and Set3_OnlyHumans are the names of the
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Table 3.11: Measurement cases for Set1_UavCarHumans [13] (Angle in degrees).

Range (m) → 5 7 9 11 13 15 17 19 21 23 25
Cases ↓

AA U(0◦) H1(30◦) H2(60◦) H3(90◦) H4(120◦) H5(150◦) C(0◦)
BB U(30◦) H5(180◦) H1(60◦) H2(90◦) H3(120◦) H4(150◦) C(30◦)
CC U(60◦) H1(0◦) H2(30◦) H3(90◦) H4(120◦) H5(150◦) C(60◦)
DD U(90◦) H1(0◦) H2(30◦) H3(60◦) H4(120◦) H5(150◦) C(90◦)
EE U(120◦) H1(60◦) H2(90◦) H3(150◦) H4(0◦) C(180◦) H5(30◦)
FF U(150◦) H5(0◦) C(150◦) H1(30◦) H2(60◦) H3(90◦) H4(120◦)
GG H1(60◦) H2(90◦) U(180◦) H3(150◦) C(120◦) H4(0◦) H5(30◦)
HH U(30◦) H4(0◦) H3(150◦) H2(120◦) H1(90◦) C(180◦) H5(60◦)
II H1(90◦) H2(120◦) U(30◦) H3(180◦) H4(60◦) H5(0◦) C(150◦)
JJ U(150◦) H3(180◦) H1(120◦) H2(60◦) H4(90◦) C(30◦)
KK H3(150◦) U(60◦) H4(90◦) H5(30◦) H1(180◦) H2(0◦) C(120◦)
LL H2(180◦) H1(120◦) U(30◦) H3(60◦) H4(90◦) H5(150◦) C(0◦)
MM H2(0◦) U(90◦) H3(30◦) H4(120◦) H1(180◦) H5(150◦) C(180◦)
NN U(90◦) H1(30◦) H3(60◦) H4(120◦) H5(150◦) H2(0◦) C(180◦)

U - UAV, C - Car, H1 - Human 1, H2 - Human 2, H3 - Human 3, H4 - Human 4, H5 - Human 5.

Table 3.12: Measurement cases for Set2_UavCar [13] (Angle in degrees).

Range (m) → 5 7 9 11 13 15 17 19 21 23 25
Cases ↓

AA U(0◦) C(60◦)
BB U(0◦) C(60◦)
CC U(0◦) C(90◦)
DD U(60◦) C(120◦)
EE U(60◦) C(150◦)
FF U(60◦) C(180◦)
GG U(90◦) C(180◦)
HH U(120◦) C(150◦)
II U(120◦) C(0◦)
JJ U(120◦) C(0◦)
KK U(150◦) C(0◦)
LL U(150◦) C(90◦)
MM U(180◦) C(60◦)
NN U(180◦) C(120◦)
OO U(180◦) C(30◦)

U - UAV, C - Car.

first, second, and third datasets, respectively. After processing from MATLAB, the
range-angle images for Set1_UavCarHumans and Set2_UavCar have a resolution of
875× 656 pixels. In a similar vein, Set3_OnlyHumans contains range-angle images
with a resolution of 1167× 875 pixels.

In Tables 3.11, 3.12, and 3.13, the dataset measurement cases are described
in detail. Depending on the dataset, the various cases are labeled as AA, BB,
CC,....OO. An object that is positioned at a given distance and angle from the
radar is represented by the entries of the table. The labels used in the table entries,
together with their corresponding abbreviations, are provided at the bottom of each
table. Accordingly, the first entry in Table 3.13 case AA shows a person at 5 m and
0◦ in front of the radar. The remaining entries can be deciphered as follows: a second
person standing at 7 m and 30◦, a third individual at 9 m and 60◦, a fourth human
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Table 3.13: Measurement cases for Set3_OnlyHumans [13] (Angle in degrees).

Range (m) → 5 7 9 11 13 15 17 19 21 23 25
Cases ↓

AA H1(0◦) H2(30◦) H3(60◦) H4(90◦) H5(120◦)
BB H3(0◦) H4(30◦) H5(60◦) H1(150◦) H2(180◦)
CC H5(0◦) H1(90◦) H2(120◦) H3(150◦) H4(180◦)
DD H1(30◦) H2(60◦) H3(90◦) H4(120◦) H5(150◦)
EE H2(0◦) H3(30◦) H4(60◦) H5(90◦) H1(180◦)
FF H4(0◦) H5(30◦) H1(120◦) H2(150◦) H3(180◦)
GG H1(60◦) H2(90◦) H3(120◦) H4(150◦) H5(180◦)
HH H1(0◦) H2(30◦) H3(60◦) H4(90◦) H5(120◦)
II H2(0◦) H3(30◦) H4(60◦) H5(90◦) H1(150◦)

JJ H2(0◦) H3(30◦) H4(60◦) H5(90◦),
H1(120◦)

KK H4(150◦) H5(180◦) H1(0◦) H2(30◦) H3(60◦)
LL H3(120◦) H4(150◦) H5(180◦) H1(0◦) H2(30◦)
MM H2(90◦) H3(120◦) H4(150◦) H5(180◦) H1(0◦)
NN H1(60◦) H2(90◦) H3(120◦) H4(150◦) H5(180◦)
OO H1(30◦) H2(60◦) H3(90◦) H4(120◦) H5(150◦)

H1 - Human 1, H2 - Human 2, H3 - Human 3, H4 - Human 4, H5 - Human 5.
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Figure 3.18: Block diagram of the proposed AoA estimation approach [13].

at 11 m and 90◦, and a fifth at 13 m and 120◦ with respect to the radar. Fig. 3.17
illustrates one specific measurement case from the dataset Set3_OnlyHumans.

3.4.5 Proposed Approach

Fig. 3.18 depicts the block diagram of the proposed method. It can be inferred from
Fig. 3.18 how the proposed method works by utilizing raw IF signal data collected
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Table 3.14: Configuration parameters for Yolov3 [13].

Parameter Value
Number of classes 3

Batch Size 64

Learning rate 0.001

Momentum 0.9

Decay 0.0005

Max Batches 6000

Subdivision 16

Filters 24

CUDA version 11.4

GPU version Tesla V100-SXM3

from the rotating radar system. To generate the range profiles, additional processing
is performed onto the recorded IF samples. Every range profile corresponds to a
specific angle at which the radar is positioned. A 180◦ range-angle view of the
surrounding area is then obtained by stitching all the range profiles associated with
each rotational step of the rotor. MATLAB is then used to retrieve the range-angle
images from the collected range profiles. As described previously, the range-angle
images signify the signatures of the three target objects, car, UAV, and humans.

The Yolov3 algorithm is then trained using the obtained range-angle images. We
use the LabelImg software [152] to draw bounding boxes on the range-angle images
so as to train the Yolov3 algorithm. The centroid of the bounding boxes drawn
indicate the target object’s AoA. Further, the different parameters utilized by the
Yolov3 algorithm to identify the target objects from the range-angle maps are listed
in Table 3.14. In this work, we use a 10-fold cross-validation scheme. This scheme
involves training for 10 folds of the experiment. For training, 80% of the dataset
images are utilized in each fold of the experiment. For testing, the remaining part
of the data set are designated as test images. To initiate the training, we make use
of the pretrained weights that are available from the Darknet-53 repository. The
weights are updated for each fold of the training so as to reach the optimal values.
Consequently, the 1st fold’s weights are uncorrelated to those of the 2nd fold, and so
on. We are implicitly eliminating any bias connected to the training by employing
this method. Finally, to obtain the predictions, the updated weights after training
are used on the test images.

The Yolov3 algorithm outputs range-angle images with bounding boxes on the
detected object. It should be noted that each pixel in the range-angle image is
associated to a particular range and angle of the target object. As a result, in the
measurement setup, the centroid coordinates of the detected bounding box match
the estimated range and AoA of the target object. After obtaining the AoA estima-
tion, the algorithm’s performance can be determined by calculating the root mean
square error (RMSE) between the target’s ground truth angle and the estimated
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Table 3.15: Accuracy and RMSE values for 10 folds [13].

Sl No. UAV Car Human Accuracy
(RMSE) (RMSE) (RMSE) (%)

1 1.4746◦ 1.3234◦ 0.9644◦ 99.3902

2 0.7869◦ 1.4576◦ 0.8635◦ 98.4939

3 1.3661◦ 1.0667◦ 1.0702◦ 97.9166

4 0.8700◦ 1.3807◦ 1.2312◦ 98.6111

5 0.9305◦ 1.2518◦ 1.1380◦ 98.7012

6 0.7274◦ 1.2540◦ 0.8898◦ 98.4423

7 0.8963◦ 1.6049◦ 1.1868◦ 96.8838

8 1.4128◦ 1.2237◦ 1.1005◦ 98.6413

9 1.3441◦ 1.2035◦ 0.9511◦ 95.5882

10 0.9922◦ 1.1559◦ 0.8297◦ 99.3569

AoA value.

3.4.6 Results

Table 3.16: Comparison of the proposed work with other methods [13].

Method Number of antennas Targets with
same range

or angle

Target
classification

2D-ESPRIT
[153]

1 Tx, 2 Rx ✗ ✗

DFT-ESPRIT
[154]

1 Tx, 2 Rx ✗ ✗

Dual-
Smoothing
[155]

1 Tx, 2 Rx ✗ ✗

Clustered
ESPRIT [156]

1 Tx, 2 Rx or more. Rx
antennas could be less than

number of targets

✓ ✗

Rotating
Radar [25]

1 Tx, 1 Rx ✓ ✗

Ours 1 Tx, 1 Rx ✓ ✓

The Yolov3 algorithm is trained with the labeled range-angle images to deter-
mine the ideal weight parameters. The training is performed for 10 folds of the
experiment containing 6000 iterations each so as to minimize the average loss. Fig.
3.20 shows the average loss vs iterations for the 7th fold of the experiment. Addi-
tionally, Table 3.15 lists the accuracy for each experiment fold. Our approach is
reliable, as evidenced by the comparatively high average classification accuracy of
98.20%, as observed from Table 3.15. As seen in Fig. 3.19, the classified output can
be observed on the range-angle image. The confusion matrix shown in Fig. 3.21 also
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(a) Set1_UavCarHumans

(b) Set2_UavCar

(c) Set3_OnlyHumans

Figure 3.19: Inference images after executing Yolov3 on all three range-angle image
datasets [13].
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Figure 3.20: Plot depicting the average loss vs iteration for the 7th fold [13].

Class UAV Car Human None Total 

UAV 650 0 0 14 664 

Car 0 669 0 1 670 

Human 0 0 1955 14 1969 

 
 
 
 
 

Figure 3.21: Confusion matrix depicting the classification performance [13].

depicts the prediction statistics. According to the confusion matrix, the percentages
of UAV, car, and humans are 97.89%, 99.85%, and 99.28%, respectively. It was also
observed that the average precision, recall, and F1-score are 0.991, 0.992, and 0.991,
respectively for the 10 folds of the experiment.

The RMSE value is used to determine the performance of the proposed AoA
estimation approach. The various RMSE values for various test cases are listed in
Table 3.15. As can be observed, the average AoA RMSE values for the humans, car,
and UAV are 1.0225◦, 1.2922◦, and 1.0800◦ respectively. It is interesting to note
that car has an average RMSE value higher than both humans and UAV. This is
because the larger size of the car accounts for its greater AoA dispersion. Thus the
proposed approach suggests that the large size of the car in relation to a UAV and
humans makes it challenging to quantify its AoA to a single value.

The advantages of the proposed method over other similar techniques, including
rotating radar [25], DFT-ESPRIT [154], dual-smoothing [155], clustered ESPRIT
[156], and 2D-ESPRIT [153], are presented in Table 3.16. The proposed approach
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is found to be comparable to the rotating radar technique in utilizing just a single
transmitter-receiver antenna to identify a number of non-interacting targets. In
addition to AoA estimate, the proposed approach also offers the benefit of target
classification. Furthermore, the proposed approach exhibits a lower RMSE error
when compared against the rotating radar method.

3.5 Summary

In this chapter, we delved into some of the inherent issues related to sensing in UAVs.
Primarily, we focused on the detection of multiple UAVs or targets by utilizing dif-
ferent sensing technologies and machine learning techniques. In the first approach,
we propose an end-to-end technique to estimate the UAV count by utilizing thermal
sensors. The proposed method is deployed on embedded hardware so as to capture
thermal images that are subsequently used to process and estimate the UAV count.
Furthermore, a UAV-thermal dataset has been created, that comprises of a collec-
tion of 10 UAVs that are configured to traverse in various directions. Extensive
experiments were conducted to illustrate a 99.9% accuracy for the proposed CNN
architecture to estimate the number of UAVs present. In the future, our intention is
to expand upon this research by directing our attention towards the identification of
UAV models. This endeavor holds the potential to greatly influence the mitigation
of UAV security risks within a multi-UAV setting.

In the second approach, acoustic sensors were utilized to precisely assess the
UAV count in the surrounding area. A UAV acoustic dataset was created, consist-
ing of 10 combinations of UAVs, covering both indoor and outdoor environments.
The UAVs were configured to maneuver randomly in all directions. The dataset un-
derwent preprocessing by utilizing time-frequency transformations so as to extract
spectrogram images from the acoustic input. The spectrogram images that are pro-
duced are subsequently inputted into a specialized lightweight CNN model in order
to approximate the UAV count. The proposed model demonstrates a high average
test accuracy in effectively estimating the number of UAVs in the vicinity. Further-
more, the proposed model has been deployed on different edge computing platforms
to assess its performance in terms of inference time. Potential future advancements
of this research involve integrating additional sensors to enhance the UAV model
identification and tracking.

In the third approach, we introduced a novel method for accurately estimating
the AoA in mmWave FMCW radar. The proposed method aims to enhance the
radar’s ability to detect and locate targets in critical applications involving UAVs
and GCS. In this work, the estimate of FoV and AoA of mmWave FMCW radars
are enhanced by integrating a mechanical rotor configuration with advanced com-
puter vision techniques like Yolov3. In each rotational step of the rotor, the radar
generates range profiles. The range profiles are subsequently combined to provide
range-angle images, which offer a comprehensive 180◦ perspective of the surrounding
area. The range-angle images generated are subsequently inputted into the Yolov3
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algorithm, which is responsible for the detection, classification, and localization of
several targets inside the given scene. The proposed method demonstrated excep-
tional accuracy in target classification and surpassed previous techniques with its
low AoA estimation error. A potential avenue for future research could involve as-
sessing the real-time performance of the suggested approach on UAVs and GCS in
order to mitigate delay in target detection and localization.
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Chapter 4

Hybrid Communication Switching
Scheme for UAV-Assisted Wireless
Networks

4.1 Introduction

In this chapter, we discuss the communication aspects of a UAV-assisted wireless
network. Specifically, we focus on the inherent issues of relying on a single commu-
nication technology to meet the various application use cases. In light of this, we
introduce a novel hybrid communication switching scheme to incorporate various
communication technologies and utilize them based on application requirements.

This chapter contains relevant content taken from Paper F [14] and Paper G
[15]. The mentioned articles are provided in the Appendix section of this disserta-
tion. Firstly, the chapter provides sufficient motivation for the notion of utilizing
an adaptively switching communication framework. Afterward, we provide two ap-
proaches to form the energy-efficient data transmission hybrid network, one using
the FS and FSMP path loss model and the other using RL algorithms. Addition-
ally, we also present the derived analytical results for the formed hybrid network.
The chapter concludes by providing a summary of the work and avenues for future
research.

4.2 Motivation

BLE [101], Wi-Fi [102], LTE-M [103], and LoRa [35] are a few of the communica-
tion modules utilized in UAVs. For short distances (about 300 m), BLE can transfer
data with low energy [36, 157]. As a result, BLE can be used for several low-power,
short-range UAV applications, such as smart agriculture [38]. The authors of [101]
have proposed an approach that uses UAVs to gather data from several sensor nodes
spread across a sizable farmland area. The proposed approach utilizes BLE to send
crop health data from the sensor nodes to the nearby UAV. For applications that
demand high data rates, Wi-Fi is the preferred communication technology. In [102],
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Figure 4.1: Pycom communication module.

a UAV system that can transmit voice over internet protocol (VoIP) data to the
GCS in disaster-affected areas for monitoring purposes has been proposed. Wi-Fi
is chosen for transmitting the video data due to its reliability and high-speed data
rate. Conversely, LTE-M is an improved variant of the widely used LTE protocol
that is intended to facilitate uninterrupted connection for IoT devices. In [103],
it has been shown that LTE-M and other LPWAN protocols have demonstrated
efficacy in facilitating dependable communication between high-speed moving en-
tities. The LoRa communication protocol is frequently employed for long-distance
communication purposes. The LoRa protocol offers a coverage range of approxi-
mately 10 km, accompanied by a relatively low power consumption of 0.025 watts
[158, 33]. The authors in [159] have examined the dependability of several commu-
nication technologies, including LoRa, Wi-Fi, and LTE, from the standpoint of a
UAV swarm. The LoRa protocol has been found to have improved dependability for
long-range communications for a higher density of UAV swarms, in comparison to
Wi-Fi. Therefore, this demonstrates that relying solely on a single communication
protocol may not be optimal in meeting the requirements of an adaptive wireless
network supported by UAVs. For instance, the LoRa protocol has the capability to
facilitate long-distance communication. Nevertheless, the UAV’s movement hinders
its ability to provide higher data rates while it is in close proximity to the GCS. Opt-
ing for either BLE or Wi-Fi in this scenario could potentially result in increased data
rates over the same distance. Driven by the aforementioned, the primary goal of this
chapter is to address the aforementioned limitations associated with the utilization
of a single communication technology for wireless networks assisted by UAVs.

Chip miniaturization and technological advances have resulted in reducing the
form factor of existing technologies. For example, the Pycom communication mod-
ule shown in Fig. 4.1 houses five communication technologies namely Sigfox, LoRa,
Wi-Fi, Bluetooth, and LTE packed into a single chip. UAVs equipped with these
chips can switch between these technologies to provide either low-energy data trans-
mission or high throughput or low latency communication. Drawing inspiration
from this aspect, our work proposes to provide a detailed analysis of a novel hy-
brid communication switching scheme employing such communication modules for
UAV-assisted wireless networks.
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4.3 Contributions

Based on the discussions above, the major contributions of this work as summarized
in Paper F[14] and Paper G[15] are as given below:

• A hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network is formed
with FS and FSMP energy models.

• Analytical expressions corresponding to network energy consumption and av-
erage network delay are derived for the data transmission over the hybrid
BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network.

• Further, two RL algorithms namely, Q-learning and DQN are proposed for
energy-efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network. The performance of the proposed RL algorithms is
compared with the rule-based algorithm and random hybrid scheme.

• Through extensive numerical results, it is shown that the proposed RL algo-
rithms result in energy-efficient data transmission over hybrid BLE/LTE/Wi-
Fi/LoRa UAV-assisted wireless network. We also compare the performance of
the proposed hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network
in terms of the network energy consumption and average network delay with
conventional shortest path routing algorithm considering individual commu-
nication technology.

4.4 System Model

We examine a UAV-assisted wireless network with N UAVs randomly placed over a
B2 area. The UAVs are deployed over l layers of height h1, h2, · · · , hl as illustrated
in Fig. 4.2. UAVs gather data and transmit it to the GCS that is located at co-
ordinates (B/3, B/3). GCS is deemed to possess comprehensive access to various
communication technologies for the purpose of data collection and processing. In
this scenario, it is assumed that the data arrived at each UAV follows a Poisson
distribution. Upon successful data transmission, the UAV proceeds to randomly
relocate to another location in order to collect data.

The selection of a communication technology from BLE, LTE, Wi-Fi, and LoRa
signifies the establishment of a UAV-GCS link. After the establishment the UAV-
GCS link, the transmission of data will occur at a transmit power of PT and a data
rate of R. A delay of Td seconds will be incurred. Moreover, this work examines
two path loss models, namely FS and FSMP, in the context of establishing a com-
munication technology for a UAV-GCS link. In the FS model, a UAV-GCS link
has the ability to choose a communication technology if the radial distance of the
link is smaller than rτ , where τ denotes one of the communication technology from
BLE, LTE, Wi-Fi, or LoRa. The energy consumption in the FS model adheres to
d2 model. In the FSMP model, however, a communication link is assigned to a
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Ground Control
Station

Figure 4.2: System model for the proposed hybrid BLE/LTE/Wi-Fi/LoRa scheme
for two layers [15].

UAV-GCS link regardless of the distance. In the event that the radial distance is
smaller than rτ , the energy consumption adheres to the d2 model. Conversely, if the
radial distance exceeds rτ , the energy consumption conforms to the d4 model.

4.5 Problem Formulation

The primary goal of this work is to reduce the total energy consumption of the
UAV-assisted wireless network. The overall energy consumption of the network is
calculated by adding up the energy consumption at each link between the UAV and
GCS. The energy expenditure at a UAV-GCS link is determined by the combined
energy consumption of transmitting data using a transmit power and transmitting
this data over a radial distance dg. Assuming R as the data rate and PT as the trans-
mit power, the energy consumed for transmitting k bits of data can be determined
as [160]

ETr =
kPT

R
. (4.1)

As previously stated, the energy consumption is contingent upon the path loss model
and the radial distance. Next, the energy consumption for the FS model and FSMP
model is derived in the subsequent sections.
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4.5.1 FS Model

In the framework of the FS model, a UAV-GCS link selects a communication technol-
ogy if the radial distance associated with that particular communication technology
is smaller than the threshold distance rτ . The energy consumed for the transmission
of data over a radial distance dg is determined as [161]

Ed,fs = kEe + kEfsd2g, (4.2)

where Efs is the free space power amplification energy and Ee represents the energy
consumed by the electronic circuit for transmitting one bit.

4.5.2 FSMP Model

The FSMP model determines the assignment of a UAV-GCS link to any commu-
nication technology, regardless of its radial distance. The calculation of the energy
required to transmit k bits of data over a radial distance dg is derived as [161]

Ed,fsmp =

{
kEe + kEfsd2g, when dg < rτ ;

kEe + kEmpd
4
g, when dg ≥ rτ .

(4.3)

Here, the symbol Emp represents the power amplification energy in the multipath
fading model, which is calculated as Emp = Efs/r2τ . For simulation purpose, we
consider Efs = 10× 10−12 J/bit/m2 and Ee = 25× 10−9 J/bit.

Lastly, in terms of the energy consumption, the overall cost of the UAV-assisted
wireless network is given as

C =
N∑
i=1

(ETr,i + Ed,i). (4.4)

Thus, the main objective is to reduce the cost of the network in terms of energy
consumption, as defined in (4.4).

4.6 Analytical Model for Hybrid BLE/LTE/Wi-
Fi/LoRa UAV-Assisted Wireless Network with
Energy-Efficient Data Transmission

This section presents the mathematical formulas that have been derived for the
determination of network energy consumption in both the FS and FSMP models.
For the interested reader, a detailed derivation is provided in Paper G section G.4.

4.6.1 FS Model

The FS model calculates the total energy consumed by the network EN/W , as

EN/W =
∑
τ

Ppr,τN(ETr,τ + Ed,fs,τ,avg) (4.5)
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where for the communication technology τ , ETr,τ can be computed from (4.1). In
this context, Ed,fs,τ,avg denotes the mean energy consumption associated with the
communication technology τ and it can be obtained as

Ed,fs,τ,avg = kEe +
kEfs
2

(r2a + r2b ) (4.6)

where ra and rb are defined as

ra =


0, for BLE

rBLE,fs, for LTE

rLTE,fs, for Wi-Fi

rWi-Fi,fs, for LoRa

(4.7)

and

rb =


rBLE,fs, for BLE

rLTE,fs, for LTE

rWi-Fi,fs, for Wi-Fi

rLoRa,fs, for LoRa

(4.8)

The average network delay, denoted as Tavg,fs, is derived in a similar manner as,

Tavg,fs =
k

R
+

2(r2a + r2b + rarb)

3c(ra + rb)
(4.9)

where ra and rb are as defined previously, R represents the rate of the communica-
tion technology, and k denotes the number of bits transmitted. The parameter c
represents the velocity of light in vacuum (3× 108 m/s).

4.6.2 FSMP Model

Unlike the FS model, the FSMP model calculates the total energy consumed by the
network EN/W as,

EN/W =
∑
τ

Ppr,τN(ETr,τ + Ed,fsmp,τ,avg) (4.10)

where the term ETr,τ is computed by (4.1) for the communication technology τ .
Here, the mean energy consumption by the communication technology τ is denoted
by Ed,fsmp,τ,avg and it is obtained as,

Ed,fsmp,τ,avg = kEe +
k

(r2b − r2a)

[
kEfs
2

(r4c − r4a) +
kEmp

3
(r6b − r6c )

]
(4.11)

where ra, rb, and rc are defined as

ra =


0, for BLE

rBLE,fsmp, for LTE

rLTE,fsmp, for Wi-Fi

rWi-Fi,fsmp, for LoRa

(4.12)
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rb =


rBLE,fsmp, for BLE

rLTE,fsmp, for LTE

rWi-Fi,fsmp, for Wi-Fi

rLoRa,fsmp, for LoRa

(4.13)

and

rc =


rBLE,fsmp, for BLE

rLTE,fsmp, for LTE

rWi-Fi,fsmp, for Wi-Fi

rLoRa,fsmp, for LoRa

(4.14)

In a similar manner, Tavg,fsmp that represents the average network delay is computed
as,

Tavg,fsmp =
k

R
+

2(r2a + r2b + rarb)

3c(ra + rb)
(4.15)

where ra, rb, and c are as previously defined, R is the rate of the communication
technology, and k is the number of bits transmitted. Both the hybrid FS and FSMP
methods have the same average network delay. This is anticipated as the delay
in both scenarios is directly depending upon the variable dg. Furthermore, this
assertion is also substantiated by the simulations results provided in the following
sections.

4.7 Proposed Approach I: Hybrid BLE/LTE/Wi-
Fi/LoRa UAV-Assisted Wireless Network with
Energy-Efficient Data Transmission using FS
and FSMP Models

The objective of the proposed scheme is to establish a UAV-assisted wireless network
that combines BLE, LTE, Wi-Fi, and LoRa to transmit data in an energy-efficient
manner. Two path loss models are considered for forming the network, as explained
below.

4.7.1 FS Model

With the FS model, a UAV-GCS link has the capability to choose a communication
technology if the radial distance value is less than the predetermined threshold
distance rτ .

The steps for choosing a communication protocol for a UAV-GCS link is outlined
in Algorithm 1. According to the data presented in Table 4.1, it can be noted that
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Table 4.1: Key parameters for various communication protocols considered in this
work [15].

Protocol PT (W) R (Mbps) PT/R rτ
Wi-Fi [40], [158] 2 10 0.2× 10−6 600

LTE [42], [162] 0.1 1 0.1× 10−6 400

BLE [163], [7] 0.01 1.36 0.007× 10−6 200

LoRa [158], [33], [35] 0.025 0.050 0.5× 10−6 1500

Algorithm 1: Algorithm to form the hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network by utilizing the FS framework [15].
Input: N , dg
Output: Network energy consumption and average network delay

1 if dg < rBLE then
2 Compute the energy consumption across a UAV-GCS link with (4.1)

and (4.2) for all the communication protocols;
3 Emin = min{EBLE, ELTE, EWi-Fi, ELoRa};
4 Select the communication technology with cost Emin;
5 else if dg < rLTE then
6 Compute the energy consumption across a UAV-GCS link with (4.1)

and (4.2) for Wi-Fi, LTE, and LoRa;
7 Emin = min{ELTE, EWi-Fi, ELoRa};
8 Select the communication technology with cost Emin;
9 else if dg < rWi-Fi then

10 Compute the energy consumption across a UAV-GCS link with (4.1)
and (4.2) for LoRa and Wi-Fi;

11 Emin = min{EWi-Fi, ELoRa};
12 Select the communication technology with cost Emin;
13 else
14 Select the communication protocol as LoRa;
15 end
16 Compute the overall energy consumption and average delay of the network;

the threshold distance of BLE is lower than that of LTE. Similarly, the threshold
distance of LTE is lower than Wi-Fi which is subsequently lower than LoRa. Initially,
if the radial distance of a particular link is lower than the prescribed rBLE, then the
link is assigned to any one of the communication technologies based on minimum
energy consumption. In cases where the radial distance is below the threshold value
rLTE, the link will be allocated to one of the communication technologies, namely
LTE, Wi-Fi, or LoRa, based on the principle of minimizing energy consumption.
Similarly, if the radial distance is lower than rWi-Fi, the link is allocated to either
Wi-Fi or LoRa based on the same energy criteria. Alternatively, it will be linked to
LoRa.
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Algorithm 2: Algorithm to form the hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network by utilizing the FSMP framework [15].
Input: N , dg
Output: Network energy consumption and average network delay

1 Compute the energy consumption across a UAV-GCS link with (4.1) and
(4.3) for all the communication protocols;

2 Emin = min{EBLE, ELTE, EWi-Fi, ELoRa};
3 Select the communication technology with cost Emin;
4 Compute the overall energy consumption and average delay of the network;

4.7.2 FSMP Model

According to the FSMP model, the assignment of a communication technology is
determined by its energy consumption, regardless of its radial distance.

Algorithm 2 outlines the steps to form the hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network that enables energy-efficient data transmission. The algo-
rithm works on the principle that the communication technology with lower energy
consumption for transmission is assigned a UAV-GCS link.

4.8 Proposed Approach II: Hybrid BLE/LTE/Wi-
Fi/LoRa UAV-Assisted Wireless Network with
Energy-Efficient Data Transmission using RL
Algorithms

This section presents Q-learning and DQN, two reinforcement learning algorithms for
forming an energy-efficient data transmission over a hybrid BLE/LTE/Wi-Fi/LoRa
UAV-assisted wireless network.

4.8.1 Q-Learning

In this subsection, the proposed Q-learning method for transmitting data in an
energy-efficient manner via a hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless
network is presented. Q-learning is a reinforcement learning technique that op-
erates without a model, wherein the agent engages in direct interaction with the
environment in order to obtain the optimal policy. Q-learning is value-based and is
capable of determining the value function without requiring any prior information
of the state transition probabilities [164]. The execution time and storage cost of
Q-learning are comparatively lower than those of model-based algorithms, as long
as the state and action space are not extensive. The performance and conduct of
the algorithm are dependent on the reward, hence appropriate design of the reward
function is essential [165], [166]. The objective of this study is to facilitate the
transmission of data from UAV to a GCS while minimizing energy usage. An illus-
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Figure 4.3: Block diagram illustration of Q-learning [15].

Table 4.2: Q-table representing the state-action pairs formulated for Q-learning [15].

St
at
es

Actions

tration of the states, actions, and reward for the Q-learning algorithm is provided
in Fig. 4.3. In our hybrid system, we define the states, actions, and reward as given
below:

States

Consider a collection of N states for the Q-learning algorithm, denoted as S =

{sn}, where n = 1, 2, ..., N . Each state in this work symbolizes the communication
link established between the UAV and GCS. Given the presence of N UAVs in the
network, the number of UAV-GCS links is N , resulting in a corresponding number
of states of N .
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Action

An action signifies the agent’s selection of a communication technology to allocate
to a UAV-GCS link. In our hybrid system, let there be a set of M actions A = {am}
that are associated with each state sn ∈ S. Hence, in this work, as there are four
communication technologies, the number of actions are four given by M = 4.

Reward/Penalty

The agent is rewarded or punished by the environment according on their actions.
Let γ represent the reward or penalty. In this case, γ = γ(sn, am) represents the
reward or penalty that an agent receives when it is in state sn and carries out an
action am. The reward/penalty will be allocated to the agent in our hybrid system
subsequent to the selection of the communication technology for the UAV-GCS link.
The proposed work aims to achieve energy-efficient data transmission via a hybrid
BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network, and hence γ is defined in
relation to the network energy consumption. Thus, γ is calculated as,

γ =



10−6

EN/W

1

EN/W

e−EN/W

W1

E1,N/W

+
W2

E2,N/W

,

(4.16)

(4.17)

(4.18)

(4.19)

where, E1,N/W denotes the network energy consumption to transmit k-bits of infor-
mation and E2,N/W represents network energy consumption for transmitting over
a distance. Moreover, the weights allocated for E1,N/W and E2,N/W are denoted
as W1 and W2, respectively. As the reward increases the network formed is more
energy-efficient, hence we define γ with an inverse relation to the network energy.

Updating the Q-value

The agent utilizes the reward or penalty to modify the Q-value associated with a
state-action pair, as specified in Table 4.2. A reward or penalty is obtained when a
UAV-GCS link is associated to a communication protocol. The updated Q-value is
given as,

Q(st, at)← (1− λ)Q(st, at) + λ(γ +∆max
a
Q(st+1, a)), (4.20)

where, ∆ represents the discount parameter and λ denotes the learning rate of
the Q-learning algorithm. In this context, the term maxaQ(st+1, a) calculates the
maximum future reward and subsequently applies it to the reward associated with
the current state.
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Algorithm 3: Algorithm to form the hybrid UAV-assisted wireless network
by utilizing the Q-learning algorithm [15].
Input: λ, ∆, N UAVs, M communication technologies,

exploration-exploitation factor ε, maximum episode count Kmax

Output: Network energy consumption and average network delay
1 Assign zeros to the rows and columns of the Q-matrix;
2 Arrange the UAV-GCS links along the rows of the Q-matrix according to

the descending order of distance to the GCS;
3 Arrange the communication technologies along the columns of the Q-matrix;
4 Training
5 for i = 1 to Kmax do
6 Choose the initial state s0;
7 for t = 1 to N do
8 Generate random number u ∈ (0, 1);
9 if u > ε then

10 Choose the action that corresponds to maximum Q-value from
the Q-matrix at = maxaQ(st, at);

11 else
12 Choose a communication technology at random as action at;
13 end
14 Compute the energy consumption of the network using (4.1), (4.3),

and (4.4);
15 Compute γ using (4.16), (4.17), (4.18), and (4.19);
16 Modify the Q-value using (4.20);
17 if st == sN then
18 break;
19 else
20 Change st as st = st+1 to transition to the next state in the order

of decreasing distance to GCS;
21 end
22 end
23 end
24 Validation
25 Select the maximum Q-value indices for each row in the Q-matrix;
26 Assign each UAV-GCS link to the communication protocol with maximum

Q-value;
27 Compute the overall energy consumption and average delay of the network;

The Q-learning approach proposed in this work is described by Algorithm 3.
The proposed approach involves initializing the Q-matrix by assigning the number
of UAV-GCS links to the rows and the communication protocols to the columns.
The UAV-GCS links are arranged in a descending order based on their distance from
the GCS. Commencing with the initial row of the Q-matrix, select a communica-
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Figure 4.4: Neural network employed in the proposed DQN algorithm [15].

tion protocol at random. Compute the energy consumption of the network for the
selected communication protocol. Compute the reward by utilizing (4.16), (4.17),
(4.18), and (4.19). Subsequently, the Q-value of the link can be updated by em-
ploying (4.20). Afterward, proceed to the next state in accordance with decreasing
distance to the GCS. The state transition rule in this work is partially influenced
by the work done in [167], wherein the authors employed a similar strategy of tran-
sitioning to the next state based on decreasing channel state information. Continue
the above steps until the UAV-GCS link that is nearest to the GCS is updated. The
aforementioned steps are iterated several times so as to ensure that all communi-
cation protocols and links are covered. After the training is completed, establish a
connection between the UAV-GCS link and the communication protocol that yields
the maximum Q-value. Compute the overall network energy consumption and av-
erage delay of the network for achieving energy-efficient data transmission over the
hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network. As the number of
state-action pairs increases, the memory requirement for the storage of the Q-values
in the Q-matrix also increases. As a result, there is a increased memory overhead
that can adversely impact the algorithm performance [167]. In order to address
these concerns, the DQN algorithm employs a neural network to approximate the
Q-values [168]. The DQN algorithm utilizes the neural network to maintain the
relative importance between the Q-values, resulting in comparable outcomes to that
of the Q-learning algorithm [169]. Next, we dive into the specifics of the proposed
DQN algorithm.

4.8.2 Deep Q-Network (DQN)

In this subsection, we introduce the DQN algorithm to form the hybrid
BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network so as to achieve energy-
efficient data transmission.
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Figure 4.5: Schematic representation of the proposed DQN algorithm [15].

The application of the DQN algorithm to this work is similar to that of Q-
learning. The descriptions for states and actions are identical to those defined for
Q-learning. Thus, if there are N UAVs in the UAV-assisted wireless network, there
will be N UAV-GCS communication links and N number of states. As the number
of communication technologies are four, there are correspondingly four actions. The
DQN algorithm employs a ε-greedy strategy to choose an action at for a given state
st. This implies that a stochastic action is chosen (exploration) with a probability ε,
and the action associated with the highest value Q(st, at) is chosen with a probability
(1 − ε) (exploitation). Therefore, a tradeoff between exploration and exploitation
is provided so as to ensure that the DQN algorithm may effectively train without
being trapped in a local optima [167]. For a state st and an action at, the reward
γt at step t is computed using (4.17).

The DQN network consist of two distinct neural network models, namely a policy
network and a target network. The neural networks receive each UAV-GCS link
together with its matching length as input. The policy network is formed by a
fully connected neural network with two hidden layers, as depicted in Fig. 4.4. A
collection of 256 neurons form the first hidden layer, whereas the number of neurons
in the second hidden layer is 128. During the training process, the ReLu activation
function is employed to activate all the layers. The policy network is duplicated
to form the target network. The architecture of the target network is identical to
that of the policy network. The primary function of the target network is to ensure
stability during the training process of the DQN algorithm. The policy network’s
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output layer comprises 4 outputs that are activated linearly. At step t, the output
from the DQN algorithm provides the prediction of the state-action values Q(st, at).

The action at for state st is chosen according to the ε-greedy policy, as depicted
in Fig. 4.5. Selecting action at leads to a change in state from st to state st+1

and a reward γt. The transition between states adheres to the identical distance-
based principle employed in Q-learning. The deque is used to store the tuple K =

{st, γt, at, st+1, ϕt} in the experience replay memory. In this context, the variable
ϕt represents the final state. In the subsequent step, a random mini-batch sample
(s′t, γ

′
t, a

′
t, s

′
t+1, ϕ

′
t) is chosen for the purpose of training the policy network. The

primary objective of employing a random sample is to mitigate the influence of
inter-state correlations and enhance the stability of the training procedure. The loss
function is minimized during the training process. At any step t, the loss function
is derived as [167]

Lt = E

[(
γt +∆max

a
Q̂(st+1, a, ŵ)−Q(st, at, w)

)2
]

(4.21)

where Q(st, at, w) denotes predicted Q-value from the policy network when
trained with weights w, ∆ represents the discount factor (∆ ∈ [0, 1]), and
(γt + ∆maxa Q̂(st+1, a, ŵ) signifies the output that is obtained from the target
network once it is trained with ŵ weights. It is important to note that the weights
of the target network ŵ are replicated from the policy network at each ζ iteration.
The Adam optimizer is used to train both the policy network and target network.
The policy network is updated by employing the equation provided in [167]

Q∗(st, at)← Q(st, at) + λ(γt +∆max
a
Q̂(st+1, a)−Q(st, at)) (4.22)

where Q∗(st, at) denotes the updated Q-value and λ represents the learning rate.
Algorithm 4 describes the steps for the proposed DQN algorithm.

4.9 Numerical Results

In this section, we initially introduce the simulation configuration that was consid-
ered for producing the simulation results. Next, the simulation results for both the
FS and FSMP models are shown in order to validate the analytical derivations. Fi-
nally, the simulation results are showcased to assess the performance of the proposed
RL algorithms in comparison to other models.

4.9.1 Simulation Setup

For simulation, we consider a rectangular area measuring 1500 × 1500 m2, with the
GCS positioned at coordinates (500, 500, 0). There are 500 UAVs deployed in the
rectangular area, at different altitudes of 100, 200, 300, and 400 meters. Every UAV
is outfitted with four distinct communication technologies, including BLE, LTE,
Wi-Fi, and LoRa. The rate at which packets arrive follows a Poisson distribution,
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Algorithm 4: Algorithm to form the hybrid UAV-assisted wireless network
by utilizing the DQN algorithm [15].
Input: λ, ∆, ζ, ε, N UAVs, M communication technologies, Number of

episodes Kmax

Output: Network energy consumption and average network delay
1 Initialize the policy network weights w, target network weights ŵ, and

experience replay memory;
2 Sort the UAV-GCS links (states) in descending order based on their

distance from the GCS;
3 Training
4 for i = 1 to Kmax do
5 Choose the initial state s0 (first UAV-GCS link) from the sorted list;
6 ϕ0 = 0, j = 0;
7 for t = 1 to N do
8 Generate a random number u ∈ (0, 1);
9 if u > ε then

10 Choose action at = maxaQ(st, at, w);
11 else
12 Choose an action at at random;
13 end
14 Compute the overall energy consumption of the network using (4.1),

(4.3), and (4.4);
15 Compute the reward γt, using (4.17);
16 Transition to the next state st+1 in order of decreasing distance to

GCS;
17 if st+1 == sN then
18 ϕt = 1, j = j + 1;
19 end
20 Modify the experience replay memory with K = (st, γt, at, st+1, ϕt);
21 if ϕt = 1 then
22 break;
23 end
24 Choose a minibatch sample (s′t, γ

′
t, a

′
t, s

′
t+1, ϕ

′
t) at random, when the

experience replay memory is full;
25 Estimate the value of Q(st, at, w) from the policy network;
26 From the target network, estimate (γt +∆maxa Q̂(st+1, a, ŵ);
27 Using (4.21), calculate the loss;
28 Using (4.22), modify the weights w of the policy network;
29 if j == ζ then
30 Modify the weights ŵ of the target network;
31 end
32 end
33 Reduce the value of ε by the defined decay rate;
34 end
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35 Validation
36 Retrieve the Q-values from the trained policy network for each UAV;
37 Assign each UAV-GCS link with the communication technology that

exhibits the maximum Q-value;
38 Compute the overall energy consumption and average delay of the network;

Table 4.3: Simulation parameters employed for the assessment of the performance
of the proposed approach [15].

Parameter Value
Number of UAVs, N 500
Location of GCS (500, 500, 0)

Horizontal area 1500× 1500

Hovering heights {100, 200, 300, 400}
Ee 25 nJ/bit
Efs 10 pJ/bit/m2

Velocity of UAV, ν 2 m/s

Packet length, k 128 bits
Mean of Poisson distribution, λ 100

Speed of the transmission, c 3× 108 m/s

Initial energy at a UAV E 10 Joules

with the mean being randomly selected from the set {1, 2, · · · , 100}. Each packet
consists of 128 bits, resulting in a random distribution of the total number of bits
received by each UAV. Table 4.3 provides a detailed list of the parameters employed
in the different runs of the simulation. Furthermore, Table 4.1 also includes the
parameters for each communication technology.

4.9.2 Simulation Results (FS and FSMP)

Based on the simulation parameters described above, we will discuss the obtained
numerical results in this subsection.

The topology of the proposed hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wire-
less network based on the FS energy model is as illustrated in Fig. 4.6a. Fig. 4.6a
indicates that a significant proportion of the UAVs employ the LoRa protocol (shown
in red) for establishing connections with the GCS. The UAVs situated a medium
range employ Wi-Fi (yellow) and LTE (orange) technologies to establish the UAV-
GCS connection. UAVs in closer proximity to the GCS are linked through the BLE
(green) communication protocol. The BLE communication protocol consumes least
amount of energy compared to other protocols when UAVs are in close proximity to
the GCS. Therefore, a limited number of UAVs linked to BLE can be observed in
close proximity to the GCS as shown in Fig. 4.6a. In the case of UAVs located at
distances exceeding the path loss range of BLE, the communication protocol that
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Figure 4.6: Topological representation of the UAV-assisted wireless network for
(a) FS and (b) FSMP configurations. For all topologies, the GCS is situated at
coordinates (500, 500, 0). The communication technologies BLE, LTE, Wi-Fi, and
LoRa are represented by the colors green, yellow, orange, and red, respectively [15].
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Figure 4.7: Change in the energy consumption of the network for the models (a) FS
and (b) FSMP for all random UAV settings. The curves for the analytical results are
plotted using equations (4.5) and (4.10). For all configurations, the GCS is situated
at coordinates (500, 500, 0) [15].

minimizes the energy consumption is selected. In the FSMP energy model, when
the proposed scheme is utilized for the UAV-assisted wireless network, the link con-
nections between the UAV and GCS are interchanged, as depicted in Fig. 4.6b. Fig.
4.6b demonstrates that a limited number of UAVs transition their communication
protocol from LTE to BLE. This phenomenon can be attributed to the disparity in
energy consumption between BLE, which adheres to the d4 energy model, and LTE,
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which adheres to the d2 energy model. It can be observed that other communication
protocols also exhibit similar changes.

The network energy consumption for the proposed hybrid solution is compared
to the standard shortest path routing algorithm with individual communication
technology, taking into account the FS path loss model, as shown in Fig. 4.7a.
The energy consumption of the proposed hybrid approach for the Wi-Fi protocol is
comparable to that of the conventional approach, as depicted in Fig. 4.7a. Nev-
ertheless, the energy consumed is still larger than that consumed by BLE. This
can be attributed to the comparatively lower transmit power of BLE in relation to
the average transmit power of the proposed hybrid scheme. For individual com-
munication technology, the conventional approach employs the hop-based shortest
path algorithm to transmit packets from the UAV to the GCS. The analysis of Fig.
4.7a reveals that the energy consumption obtained from the analytical model aligns
as expected with the energy consumption observed in the simulation results. The
hybrid approach is also compared to the standard shortest path routing algorithm
with individual communication technology in terms of network energy consump-
tion, as shown in Fig. 4.7b. In this case, we utilize the FSMP path loss model.
Fig. 4.7b also demonstrates that the energy consumption associated with the pro-
posed hybrid scheme is comparatively lower than that of the conventional approach.
Furthermore, it has been shown that the conventional approach employing BLE
consumes a greater amount of energy in comparison to alternative methods. The
reason for this is that the value of rτ is significantly low for BLE, leading to a greater
number of UAV-GCS links adhering to the d4 model. Additionally, the changes in
the analytical results of the proposed approach is illustrated in Fig. 4.7b. The sim-
ilarity between the analytical results and the simulation results, as depicted in Fig.
4.7b, serves to validate the accuracy of the analytical derivations.

The plot of the average network delay between the proposed hybrid scheme and
the conventional shortest path routing algorithm for individual communication tech-
nology is provided in Fig. 4.8a and Fig. 4.8b. From Fig. 4.8a and Fig. 4.8b, it can
inferred that there is no substantial variation in the delay for the proposed hybrid
approach even when the proposed scheme adheres to both the FS and FSMP energy
models. This phenomenon can be ascribed to the delay parameter that is predom-
inantly influenced by the value of the transmission delay. The transmission delay
is in turn dependent upon the data rate of the communication protocol. Thus the
LoRa protocol has a higher delay, as it has comparatively lower data rate in relation
to other communication protocols. Based on the analysis of Fig. 4.7b and Fig.
4.8b, it can be concluded that the proposed hybrid scheme, which follows the FSMP
energy model, outperforms the conventional shortest path routing algorithm with
individual communication technology in terms of minimizing energy consumption
and reducing average network delay.

Fig. 4.9a illustrates the variation in network energy consumption for the hybrid
scheme proposed, based on the FS and FSMP energy models. The network en-
ergy consumption between the FS and FSMP energy models in the proposed hybrid
scheme is found to be similar as evident from Fig. 4.9a. Fig. 4.9b illustrates the
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Figure 4.8: Change in the average delay of the network when based on (a) FS
and (b) FSMP models for all random UAV settings [15]. The curves representing
the analytical results are plotted by utilizing equations (4.9) and (4.15). In all
configurations, the GCS is situated at coordinates (500, 500, 0).

mean network delay for the proposed hybrid method, based on the FS and FSMP en-
ergy models. Fig. 4.9b reveals that the FSMP energy model demonstrates a reduced
delay in comparison to the FS energy model of the proposed hybrid scheme. This
can be better explained through the examination of the distinct interconnections
between each communication technology within both schemes. The distribution
of UAVs connected to various communication technologies in the proposed hybrid
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Figure 4.9: Plots representing the change in (a) energy consumption and (b) average
delay for the proposed hybrid network [15]. The curves representing the analytical
results are plotted by utilizing the equations (4.5), (4.9), (4.10), and (4.15). For all
settings, the GCS is situated at coordinates (500, 500, 0).

scheme, based on the FS energy model, is as follows: 14 UAVs are connected to BLE,
153 UAVs are connected to LTE, 279 UAVs are connected to Wi-Fi, and the remain-
ing 54 UAVs are connected to LoRa. The utilization of the FSMP energy model in
the proposed hybrid technique results in a modification of this distribution. There is
a change in the connection density, with 162 UAVs connected to LTE and 21 UAVs
connected to BLE. Furthermore, the number of UAVs linked to LoRa decreases to
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Table 4.4: Change in the energy consumption of the network when expressed as a
weighted sum of energy components E1,N/W and E2,N/W . The variables W1 and W2

denote the assigned weights [15].

W1 W2 Etotal (J)
0.1 0.9 0.0204
0.2 0.8 0.0287
0.3 0.7 0.0392
0.4 0.6 0.0512
0.5 0.5 0.0650
0.6 0.4 0.0797
0.7 0.3 0.1002
0.8 0.2 0.1430
0.9 0.1 0.2589

38. This change in the distribution of connections results in a reduction of delay in
the proposed hybrid scheme that follows the FSMP energy model. The proposed
hybrid scheme, which follows the FSMP energy model, demonstrates a decreased
delay due to the increased data rates offered by BLE and LTE in comparison to
the LoRa protocol. Thus the proposed hybrid approach, incorporating the FSMP
energy model, minimizes the network energy consumption and reduces the mean
network latency.

4.9.3 Performance Evaluation of the Proposed RL Algo-
rithms

In this section, we provide numerical results that compare the performance of the
proposed Q-learning (Algorithm 3) and DQN (Algorithm 4) algorithms with a rule-
based algorithm and a hybrid random approach. The hybrid random approach
involves randomly selecting UAV-GCS links from BLE, LTE, Wi-Fi, and LoRa. In
addition, we demonstrate the efficacy of the proposed algorithms by taking into
account the PHY layer parameter, which represents the number of transmissions
needed for a packet to be successfully delivered. The simulation configuration re-
sembles the preceding scenario, whereby a surface area measuring 1500 × 1500 m2

is taken into account, and the GCS is positioned at coordinates (500, 500, 0). We
examine a set of 100 UAVs that are placed randomly in the designated area, at
different altitudes of 100, 200, 300, and 400 meters. The rest of the simulation
parameters remain unchanged as provided in the preceding section.

We performed extensive simulations to analyze the behavior of Q-learning pa-
rameters. Primarily, we varied the learning rate and discount with several re-
ward/penalty expressions as defined in (4.16), (4.17), (4.18), and (4.19). It was ob-
served that the Q-learning technique yields an optimal hybrid network with λ = 0.7

and ∆ = 0.7, when the reward is selected from (4.16), (4.17), and (4.18).
We adjusted the Q-learning parameters λ and ∆ within the range of 0.1 to 0.9,
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Figure 4.10: Topological representation of the hybrid UAV-assisted wireless network
that is formed by utilizing (a) random hybrid scheme, (b) rule-based algorithm, (c)
proposed Q-learning algorithm, and (d) proposed DQN algorithm. For all topologies,
the GCS is situated at coordinates (500, 500, 0). The communication technologies
BLE, LTE, Wi-Fi, and LoRa are represented by the colors green, yellow, orange,
and red, respectively [15].
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Table 4.5: Various parameters used for the DQN algorithm [15].

Parameter Value
Learning rate (neural network) 0.01

Discount factor 0.4

Batch size 64

Minibatch size 64

Epsilon 1 to 0.001

Replay memory size 50000

Number of episodes 6400

Hidden layer count 2

Neuron count in first layer 256

Neuron count in second layer 128

with increments of 0.1, for the reward specified in (4.16), (4.17), and (4.18). It
was found that when λ falls in the range of 0.4 to 0.9 for all ∆, the Q-learning
algorithm formed the hybrid network with minimum energy consumption. The
network energy consumption for various weights when the reward is selected as
(4.19) is presented in Table 4.4. Here, the weights are selected from the range
of {0.1, 0.2, · · · , 0.9}. The optimal values for the proposed Q-learning method are
λ = 0.7 and ∆ = 0.6. According to Table 4.4, it can be observed that the energy
consumption is reduced when W1 = 0.1 and W2 = 0.9. This implies that E2,N/W

has a greater influence compared to E1,N/W in achieving the hybrid network with
the minimum energy consumption. The reason for this is that in the case of a UAV-
GCS link containing k bits of data, the energy required for transmission, denoted as
E1,N/W , remains constant. However, the energy consumed for propagation, denoted
as E2,N/W , changes in accordance with the radial distance of the link. The training
of the DQN algorithm is performed using identical simulation configuration as that
of Q-learning. The policy and target networks consist of fully-connected neural
networks, each comprising two hidden layers. The hidden layers include 256 and
128 neurons. The exploration-exploitation factor ε is varied within the range 1 to
0.001. Table 4.5 contains additional parameters pertaining to the DQN algorithm.
The optimal performance was attained by setting the learning rate to 0.01 and
the discount factor to 0.4. The DQN algorithm achieved convergence after a total
of 6400 episodes, leading to the establishment of a hybrid UAV-assisted wireless
network that consumes minimal network energy.

The topology of the hybrid random network is illustrated in Fig. 4.10a. In
Fig. 4.10a, BLE is depicted by green lines, LTE by yellow lines, Wi-Fi by orange
lines, and LoRa by red lines. The topological representation also illustrates that the
connections are uniformly spread over the four protocols, regardless of any specific
criteria, as a result of the random distribution. Fig. 4.10b illustrates the UAV-
assisted wireless network that was developed using the rule-based algorithm. Based
on Fig. 4.10b, it is evident that UAVs located at a greater radial distance from the
GCS are linked to the LoRa protocol, and those in closer proximity to the GCS are
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linked to BLE. The hybrid network formed with the proposed Q-learning and DQN
algorithms is depicted in Fig. 4.10c and Fig. 4.10d respectively. From Fig. 4.10c
and 4.10d, it is evident that the UAV-GCS link is connected to a communication
technology that has minimum energy consumption with the required number of
transmissions.

We evaluate the effectiveness of the proposed algorithms with the random hy-
brid scheme and the rule-based algorithm [170]. This performance evaluation is
based on network energy consumption and average network delay as depicted in
Fig. 4.11a and Fig. 4.11b, respectively. The results generated by the Q-learning
method are derived from the reward defined in (4.17). The Q-learning and DQN
algorithms showcase superior performance compared to the rule-based algorithm in
terms of energy consumption and average delay, as depicted in Fig. 4.11a and Fig.
4.11b, respectively. This is because of the inherent learning nature of RL algorithms.
During the training or exploration phase of RL algorithms, the environment char-
acteristics are acquired, allowing for an accurate estimation of the network’s energy
consumption. Nevertheless, the rule-based algorithm determines the communication
technology by considering the distance, regardless of the features of the PHY layer.
The unknown PHY layer characteristics contribute to an increased frequency of
retransmissions necessary for the successful transmission of bits, consequently lead-
ing to an increased energy consumption and delay. The proposed RL algorithms
thus demonstrate a superior advantage over other schemes in terms of learning and
integrating additional parameters that can impact the communication link. The
random hybrid scheme exhibits a higher energy consumption in comparison to both
the proposed and rule-based methods. As evident from Fig. 4.10a and Fig. 4.10c,
this is because of the increased number of UAVs connected with BLE for the hy-
brid random network configuration as compared to the RL-based hybrid network.
The energy consumption thus increases due to the fact that the majority of these
links have a geographical distance exceeding r, resulting in an energy consumption
of d4. As compared to other communication technologies, BLE provides high data
rate, hence the transmission delay is less, resulting in a decrease in the average
network delay, as depicted in Fig. 4.11b. To provide further understanding on the
performance of all schemes, we present explicit values derived from the simulation.
During the 10th iteration, the hybrid random network consumes 1160 Joules of en-
ergy, while the rule-based approach consumes 190 Joules of energy. Nevertheless,
the proposed algorithms surpass all the other schemes by achieving a lower net-
work energy consumption of approximately 151 Joules, as depicted in Fig. 4.11a.
The rule-based algorithm demonstrates an average network delay of approximately
0.71 seconds, while the random hybrid scheme exhibits an average network delay of
approximately 0.344 seconds at the 10th iteration. Additionally, the proposed RL
algorithms demonstrate an average network delay of 0.5 seconds at the 10th itera-
tion, as depicted in Fig. 4.11b. The DQN and Q-learning algorithm exhibit similar
performance as evident from Fig. 4.11a and Fig. 4.11b. This is because DQN fun-
damentally adheres to the same mathematical concepts as Q-learning. In contrast
to Q-learning, the DQN approach use a neural network to acquire information from
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Figure 4.11: Performance evaluation of the rule-based algorithm, random hybrid
scheme, proposed Q-learning algorithm, and proposed DQN algorithm. The per-
formance is compared for random UAV settings with respect to the (a) energy
consumption of the network and (b) average network delay. For all random con-
figurations, the GCS is situated at coordinates (500, 500, 0) [15].

the input and generate an estimated Q-value. As the amount of data increases,
the process of storing and retrieving Q-values through Q-learning might result in a
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decline in performance. In this case, DQN surpasses Q-learning in terms of reduced
memory usage and computational efficiency. However, as compared to Q-learning,
the DQN algorithm necessitates longer duration for training and fine-tuning. For
instance, the duration needed to train Q-learning demands 20 minutes whereas DQN
necessitates around 6 hours.

4.10 Summary

In this chapter, we have presented a framework of a hybrid BLE/Wi-Fi/LTE/LoRa
switching scheme for UAV-assisted wireless networks. In the proposed framework,
every UAV transitions to the communication protocol that exhibits reduced energy
consumption while transmitting the available data. The proposed hybrid network
can be formed by implementing two approaches. In the first method, the proposed
hybrid network is formed by employing the FS and FSMP path loss models. Subse-
quently, we have put forth two RL algorithms, namely Q-learning and DQN, in order
to form the hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network. The pro-
posed RL algorithms accept a random network as an input and learn from it. Based
on the learning from the input, the hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted
wireless network is then attained by assigning the optimal communication technol-
ogy to a link. In addition, we have put forth a theoretical framework that addresses
the energy-efficient transmission of data over hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless networks. This framework is applicable to both FS and FSMP path
loss models. In addition, we have obtained and validated the analytical expressions
for the energy consumption and the average delay of the network through extensive
analysis. In conclusion, it has been demonstrated that the proposed RL algorithms
exhibit superior performance in terms of average network delay and network energy
consumption in comparison to rule-based algorithms and random hybrid schemes.
In the future, we intend to integrate the dataset acquired from physical layer pa-
rameters in order to assess the efficacy of the proposed algorithms. Furthermore,
a potential avenue for research is examining the impact of introducing intelligent
reflecting surfaces in the establishment of the hybrid network.
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Chapter 5

Concluding Remarks

5.1 Conclusion

To conclude, this dissertation is a compilation of various publications related to
the sensing and communication aspects of UAVs/drones. The dissertation pro-
vides a glimpse into some of the challenges encountered in a multi-UAV system.
Novel cost-effective methods using state-of-the-art hardware technologies and so-
phisticated machine learning algorithms are proposed to combat and mitigate these
issues. Through rigorous experimentation and testing, the proposed approaches are
validated with the current state-of-the-art.

As mentioned above, the thesis is organized into two broad areas, sensing and
communication. Chapter 3 discusses the sensing aspects of UAVs. In this chapter,
we propose two cost-effective approaches to detect and estimate UAV count in the
vicinity. The proposed approaches utilize thermal and acoustic sensors enhanced
with lightweight machine learning algorithms. Additionally, to improve UAV local-
ization, a novel approach utilizing rotating mmWave FMCW radar and cutting-edge
computer vision algorithms is also proposed. In addition to the dynamics, the pro-
posed approach also provides an accurate classification of the multiple target objects
in the scene.

Chapter 4 provides a theoretical framework for obtaining a hybrid BLE/LTE/Wi-
Fi/LoRa UAV-assisted wireless network with energy-efficient data transmission. An-
alytical expressions for calculating the network energy consumption and average
network delay are also derived. The chapter also proposes two approaches to form
the hybrid network, one using the FS and FSMP path loss models and the other uti-
lizing RL algorithms, namely Q-learning and DQN. Through extensive experiments,
the results for the energy-efficient data transmission over a hybrid BLE/LTE/Wi-
Fi/LoRa UAV-assisted wireless network are verified and validated.

Thus, in conclusion, the research presented in this thesis underscores the sig-
nificance of enhancing UAV sensing and communication with novel and innovative
techniques. The techniques proposed in this thesis provide robust, cost-effective,
and lightweight solutions that can be deployed on UAVs and edge computing de-
vices. Overall, we believe this research has provided meaningful contributions to the
scientific community and encourages the need for further exploration and innovation.
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Figure 5.1: Research Summary

5.2 Future Research

In addressing some of the challenges presented in this thesis, it is evident that the
proposed solutions can be further improved to increase performance and provide
enhanced capabilities. Utilizing an omnidirectional polar patterned antenna for
the acoustic-based approach is one step. For the rotating radar approach, explor-
ing and investigating ways to incorporate the radar setup into maneuvering UAVs
will significantly improve their detection and collision-avoidance performance. The
thermal-based approach can be further enhanced by introducing regression to scale
the detection performance to an even larger number of targets. Exploring the ef-
fect of introducing intelligent reflecting surfaces for the hybrid switching scheme
will provide insight into maximizing the sum rate. Additionally, incorporating novel
methods to optimize the machine learning models can also individually improve the
proposed approaches.

However, to arrive at a multi-UAV autonomous system with enhanced sensing
and communication capabilities, further research is required. Thus, taking a holistic
view of the envisioned research project, as shown in Fig. 5.1, some future research
directions are outlined below:

• As mentioned in the previous sections, the fusion of various sensor modalities
is a potential future research direction. However, the fusion also entails fur-
ther challenges like an increase in computational complexity, latency, power
consumption, type of suitable modalities, etc. Thus a fair amount of explo-
ration and experimentation is required to obtain a lightweight sensor fusion
algorithm tuned to UAV applications.

• Tracking and path planning of multiple targets is also another direction of
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research. Enabling smart tracking using current sensor setups and lightweight
machine-learning algorithms can drastically improve system performance.

• Currently, the hybrid communication switching scheme is catered to serve the
energy-efficient data transmission criteria. Incorporating additional parameter
criteria to serve more practical scenarios is a venue for further research.

• The practical implementation of the hybrid switching scheme on UAVs using
hardware modules like Pycom demands further investigation. In this scenario,
the effect of the module weight, overall power consumption, interfacing with
the flight controller, switching latency and formats, etc., requires much-needed
effort.

We hope that this thesis has provided much-needed insight into the various
challenges in UAV sensing and communication. We believe that our efforts will pave
the way for additional research that can ultimately culminate in a truly autonomous
multi-UAV system that can cater to the applications of the future.
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Embedded Sensors, Communication
Technologies, Computing Platforms
and Machine Learning for UAVs: A
Review

A. N. Wilson, A. Kumar, A. Jha, L. R. Cenkeramaddi

Abstract: Unmanned aerial vehicles (UAVs) are increasingly be-
coming popular due to their use in many commercial and military ap-
plications, and their affordability. The UAVs are equipped with var-
ious sensors, hardware platforms and software technologies which en-
able them to support the diverse application portfolio. Sensors include
vision-based sensors such as RGB-D cameras, thermal cameras, light de-
tection and ranging (LiDAR), mmWave radars, ultrasonic sensors, and
an inertial measurement unit (IMU) which enable UAVs for autonomous
navigation, obstacle detection, collision avoidance, object tracking and
aerial inspection. To enable smooth operation, UAVs utilize a number of
communication technologies such as wireless fidelity (Wi-Fi), long range
(LoRa), long-term evolution for machine-type communication (LTE-M),
etc., along with various machine learning algorithms. However, each of
these different technologies come with their own set of advantages and
challenges. Hence, it is essential to have an overview of the different type
of sensors, computing and communication modules and algorithms used
for UAVs. This paper provides a comprehensive review on the state-of-
the-art embedded sensors, communication technologies, computing plat-
forms and machine learning techniques used in autonomous UAVs. The
key performance metrics along with operating principles and a detailed
comparative study of the various technologies are also studied and pre-
sented. The information gathered in this paper aims to serve as a practi-
cal reference guide for designing smart sensing applications, low-latency
and energy efficient communication strategies, power efficient computing
modules and machine learning algorithms for autonomous UAVs. Finally,
some of the open issues and challenges for future research and develop-
ment are also discussed.

A.1 Introduction

Recent advances in sensor miniaturization, ubiquitous wireless connectivity, en-
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Figure A.1: Diagramatic overview of the survey

hanced processing power and low complexity algorithms have contributed to the
growing demand for unmanned aerial vehicle (UAV) or drone-based applications.
According to market estimates, the revenue generated from these broad range of
UAV applications is expected to exceed 8.5 billion dollars by 2027 [1]. Additionally,
UAV-based architectures are explored for the development and implementation of
next generation technologies such as 5G, vehicle-to-everything (V2X) communica-
tions, etc.

UAVs are originally used in military applications to survey and target enemy
territory. However, recent technological advancements have led to the use of UAVs
in a wide range of applications spanning multiple industries. Agriculture, disaster
management, surveillance, package delivery, and aerial photography are some of the
common applications for UAVs. UAVs are used in agriculture to monitor crop health
and irrigation. [2]. In defense, they are used for intruder detection and attack [3].
Surveillance applications use UAVs for mapping large areas [4]. UAVs with remote
sensing capabilities are useful for scanning large geographical areas for archaeological
applications [5]. Recently, UAVs have made their way into the e-commerce industry.
Amazon has demonstrated a UAV-based package delivery system called Prime Air
[6] that can deliver shipments to customers in remote areas within a specific time.

UAVs provide enhanced aerial inspection, improved line-of-sight (LoS) commu-
nication, reliable data acquisition and seamless obstacle free movement which con-
tribute for their wide spread adoption across diverse applications. Furthermore,
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their ability to access remote locations and capture images makes them far superior
and more flexible than ground-based systems. In addition, factors such as cutting-
edge computational resources, readily available components, and low cost have made
UAVs the obvious choice for a wide range of application requirements.

To accommodate the wide range of supported applications, UAVs are outfit-
ted with highly sophisticated hardware and software modules. Embedded sensors,
communication modules, and computing platforms are among the hardware com-
ponents, while the software stack supports UAV configuration aspects, control and
stabilization algorithms, mission planning, and testing. Additionally, machine learn-
ing and deep learning approaches are also utilized to support the various collision
avoidance and stabilization algorithms. The hardware and software components are
tightly coupled and work in tandem to allow UAVs to fly and perform various op-
erations. As a result, comprehending and appreciating UAV operations requires an
understanding of the complex interplay of the underlying technologies.

There are some survey papers in the literature that provide information on the
various technologies used in UAVs. In [7], the authors have provided a brief descrip-
tion of the different sensors used in autonomous systems. The principle of operation
of each sensor along with their key performance metrics are outlined. Whereas, in
[8], a comprehensive review of the diverse computing platforms along with on-board
flight controller software is discussed. Information about the different communica-
tion technologies used in UAVs together with the open research challenges is pre-
sented in [9] and [10]. Recently, the use of machine learning algorithms for UAV
and ground control station (GCS) applications have gained prominence [11], [12].
In [13], the use of UAVs for smart agriculture is explored. The authors attempted
to describe the various agricultural sensors used on board UAVs, as well as potential
future research directions and challenges. Table B.2 provides a brief comparison of
existing surveys with the current survey.

As can be seen, the preceding studies focus on specific aspects of UAVs such as
applications, components, and software and thus fail to provide a high level practical
overview of the system in general. There is a need for a coherent and concise review
of UAV literature that can serve as a practical guide for the novice learner, given
the abundance of literature on the subject. As a result, the primary goal of this
paper is to provide a practical perspective of the UAV system and equip the reader
with the tools and techniques needed to deploy a UAV system especially focusing
on sensors aspects. The following are the main contributions of this survey article:

• Overview of the UAV system describing the various components and their
interactions.

• Description of various embedded sensors used in UAVs outlining their operat-
ing principle, along with key performance metrics and limitations.

• Communication technologies used in UAVs to transfer information among
UAVs and GCS modules.
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Table A.1: Comparison between existing surveys and this survey

Year Reference Focus areas ES CT CP ML

2018 [8] UAV flight controller hardware and
software

✗ ✗ ✓ ✗

2019 [10] UAV wireless communication,
cellular-connected UAVs

✗ ✓ ✗ ✗

2019 [11] Machine learning for cellular-connected
UAVs

✗ ✓ ✗ ✓

2020 [9] UAV communication technologies ✗ ✓ ✗ ✗

2020 [7] Embedded sensors for autonomous
systems

✓ ✗ ✗ ✗

2021 [13] Communication and sensor technologies
for UAVs focussed on agriculture
applications

✓ ✓ ✗ ✗

2021 [12] Deep learning for UAVs ✗ ✗ ✗ ✓

2021 This
work

Embedded sensors, computing
platforms, communication technology,
machine learning with focus on sensing
and communication for UAVs

✓ ✓ ✓ ✓

ES - Embedded Sensors; CT - Communication Technology; CP - Computing
Platform; ML - Machine Learning.

• Computing platforms that can be equipped on UAVs with emphasis on com-
putational resources and easy integration of hardware and software.

• Machine learning algorithms that are primarily focused on sensor fusion and
communication for UAVs.

• Finally, potential future research directions are presented.

The remainder of this paper is organized as shown in Fig. A.2. Section II provides
an overview of the UAV system. Section III summarizes the various embedded on-
board sensors in UAVs. Section IV focuses on the different on-board communication
modules. Section V discusses the computing platforms (hardware and software)
that are used in tandem with UAVs. Section VI investigates the various machine
learning algorithms employed in UAVs. Section VII explores the relevant potential
future directions and finally, section VIII concludes the paper.

A.2 UAV System Overview

In order to better understand and appreciate the content of this paper, it is necessary
to first learn about the various components/subsystems used in UAVs. A more
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Section II: UAV System Overview

Section III: Embedded Sensors 
 A. Vision-based sensors
 B. Position-based sensors
 C. Proximity sensors
 D. Radar-based sensors
 E. LiDAR
 F.  RFID sensor 
 G. UWB sensor 

Section IV: Communication
Modules 

 A. LoRa
 B. BLE
 C. Wi-Fi
 D. LTE-M

Section V: Computing Platforms 
 A. FPGA-based platforms
 B. ARM-based platforms
 C. GPU-based platforms
 D. Atmel-based platforms 
 E. Intel-based platforms 

Section VI: Machine Learning
Techniques 

 A. Sensor fusion
 B. Communication

Section VII: Open Research Areas
and Future Directions 

Section VIII: Conclusion 

Section I: Introduction

Figure A.2: Structure of the article.

comprehensive approach would be to represent the UAV system abstractly, as shown
in Fig. A.3. This view of the UAV system is built by taking into account the
flexibility and portability provided by various UAV components in order to cater to
a variety of applications.

The ability of UAVs to sense and perceive their surroundings is enabled by vari-
ous hardware sensor modules. Each sensor is unique in terms of its operation, form
factor, cost, performance and output information. Based on application require-
ments, sensors with varying form factor and performance can be used on UAVs.
Agricultural applications rely heavily on temperature and vision-based sensors to
monitor crop health, whereas surveillance and remote sensing primarily use camera
and light detection and ranging (LiDAR)-based modules.

UAVs are equipped with communication modules that allow data to be trans-
mitted between UAVs and the GCS. Each communication module operates at the
specified frequency, bandwidth, power, and coverage. Depending on the applica-
tion, a suitable communication technology must be chosen, taking into account its
capabilities and characteristics. Wireless fidelity (Wi-Fi) modules are used to trans-
fer information among UAVs in applications that require a high data rate, whereas
long range (LoRa) modules are used in search and rescue operations that require
information transfer over a long distance.
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Figure A.3: UAV system overview.

Various sensor and communication modules are integrated on UAVs using com-
puting platforms. Computing platforms are hardware processing units that can con-
nect and act as a medium for processing data from various sensor and communication
modules. The type of computing platform to be used on UAVs is determined by the
application’s requirement specifications. Processing power, interfacing options for
connecting with hardware sensor and communication modules, form factor, weight,
and other factors are considered when selecting a computing unit for UAVs.

Additionally, the computing platforms host a variety of algorithms that are crit-
ical to ensuring the safe and secure operation of UAVs. The algorithms are designed
to cater to various application scenarios while also being low in complexity and
power consumption. Sensor fusion techniques, interference mitigation schemes, con-
trol and stabilization strategies, and so on are examples of these algorithms. Several
machine learning and deep learning algorithms have recently been shown to improve
performance in various aspects of UAV operations. This review will concentrate on
some of the most recently developed machine learning algorithms that can be used
in a variety of UAV applications.

Decoupling the UAV system into the building blocks depicted in Fig. A.3 allows
for selective analysis and learning of the various aspects of UAVs. This paper’s
content focuses on each of these blocks separately, providing useful and necessary
information from a practical standpoint.

A.3 Embedded Sensors

Embedded sensors are critical in many UAV functions, including autonomous opera-
tions, collision avoidance, tracking, communication, and so on as shown in Fig. A.4.
These sensors have been classified into vision-based sensors, position-based sensors,
proximity sensors, radar, and LiDAR sensors depending upon the type of infor-
mation they produce. This section provides a high-level overview of these sensors,
as well as information on their operating principles and key performance metrics.
Other considerations include cost, output format, and power consumption.
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Figure A.4: UAV embedded sensor applications.

A.3.1 Vision-based Sensors

Vision-based sensors generate an image of the captured scene, providing a visual
perception of the environment. The generated image is then processed and used
with various image processing and computer vision algorithms to ensure and enable
a variety of UAV operations and services. The RGB-D cameras and thermal cameras
are two popular vision-based technologies, and they are summarized in the following
paragraphs.

A.3.1.1 RGB-D Camera

The most common sensors used on UAVs are RGB-D cameras. These sensors provide
perception of the surroundings in the form of RGB images. Because RGB images
are closely related to human visual perception, it is simple to make sense of the
information obtained. Nonetheless, the images can be fed into image processing and
computer vision algorithms to perform target detection, localization, and tracking.
Furthermore, depth information can be used to calculate the spatial distance of
targets from the camera, which is useful for collision avoidance operations. The
resolution of RGB cameras and other considerations such as the camera’s frame
rate, shutter type, and aperture determine their image quality [14], [15].

RGB-D cameras on board UAVs are used for object detection, collision avoidance,
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and tracking. This can in seen in [16] where the authors have used a single RGB-D
camera to implement a collision avoidance system which when integrated with a
bin-occupancy filter can be used for tracking. Another setup described in [17] uses
RGB-D camera along with the inertial measurement unit (IMU) data to provide
simultaneous localization and mapping (SLAM).

A.3.1.2 Thermal Camera

Thermal cameras mounted on UAVs can aid in search and rescue operations, disaster
management, and surveillance applications. These cameras can work in low-light
and robust weather conditions. Thermal cameras use special sensors which can
capture the infrared radiations falling on them. The captured radiation information
is then processed to generate a temperature profile which is used to improve detection
and classification performance. Fig. A.5 depicts the working principle of thermal
cameras. When choosing thermal cameras, some of the key parameters to consider
are image resolution, range, refresh rate, and lens focal length [18], [19].

When integrated with UAVs, thermal imaging has a wide range of applications.
The authors of [20] used UAV equipped with thermal cameras to capture thermal
images, which were then processed to detect heat leaks in buildings. In [21], thermal
camera mounted UAVs are used to autonomously monitor and detect wildlife. UAVs
equipped with thermal cameras are also used to detect, identify, and track objects
in the ocean [22].

A.3.2 Position-based Sensors

Position-based sensors detect movement and can also provide relative position in-
formation in relation to a known reference point. These sensors are used in UAVs
to pinpoint the precise location of UAVs in a given area. Furthermore, these sensors
can provide odometric information about UAVs, which helps to determine the ori-
entation of the UAV. Some of the relevant positional sensors used in UAVs are the
global positioning system (GPS) and IMUs, which will be discussed in the following
subsections.

A.3.2.1 GPS

The GPS is a global radio navigation system that is used in a variety of applica-
tions that utilize positional information. GPS works on the trilateration principle
[23] using a system of atleast 24 active satellites and GCSs as shown in Fig. A.6.
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Figure A.6: Working principle of GPS.

GPS modules provide accurate position and time information for UAV-based appli-
cations [24]. Special GPS modules such as the real-time kinematic (RTK) GPS [25]
provide high update frequency and are able to withstand the UAVs’ high velocity
and maneuverability. But despite their benefits, GPS systems consume a significant
amount of power due to the constant synchronization and locking of the GPS signal.

UAVs equipped with GPS modules provide precise positional and temporal in-
formation that is used for localization, stabilization, tracking, and navigation. GPS-
enabled UAVs are used in [26] for accurate landmine detection. The authors of [27]
use a high precision RTK GPS to determine the ground control target locations.
In [28], the authors use GPS and camera data along with the hierarchical A* algo-
rithms to determine the best flight path for UAVs. Further, GPS enabled UAVs find
applications in precision agriculture to monitor crop health, map agricultural areas,
and for cropdusting [29].

A.3.2.2 IMU

IMUs are electronic devices that measure inertial quantities such as acceleration, an-
gular motion, and orientation of an object. Accelerometers, gyroscopes, and mag-
netometers are common components of IMUs for UAVs. IMUs in UAVs work in
tandem with GPS modules to form the inertial navigation system (INS), which is
responsible for UAV localization, stabilization, and tracking.

Because IMUs are critical components for maintaining stable flight control and
guidance for UAVs, understanding some of their key performance metrics is critical.
The quality of the IMU is determined by the performance of its internal compo-
nents, such as accelerometers, gyroscopes, and magnetometers. The range provided
by the accelerometer and gyroscope is one of the most important parameters to
consider. Another key parameter is the bias instability property which captures the
accumulated sensor bias and unknown drift error in the IMUs over time. Aside from
the aforementioned factors, bandwidth, output data rate, temperature sensitivity,
dimensions, number of axes and weight are other IMU parameters to consider [30],
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Table A.2: Key Performance Metrics for Various On-board Sensors

Sensor Key metrics Output format Interfacing
options

Power
(W)

Vendor Cost
(USD)

Limitations Refer-
ences

RGB-D
camera

RGB resolution: up to 1920 x
1280

Maximum range: 10 m
Depth FoV: 87◦ x 58◦

RGB FoV: 69◦ x 42◦

RGB and depth
image

SPI, USB,
MIPI

0.35− 3.5 Intel
RealSense

200− 600 Rain, fog, mist,
ambient lighting, etc.

[14], [15],
[16], [17],

Thermal
camera

Thermal resolution: 336 x
256 / 640 x 512

Thermal accuracy: ±5◦ C
Spectral range: 7.5˘13.5 µm

Thermal image UART,
USB, I2C,
SPI, SDIO

0.5− 1.55 FLIR 1500−8000 Fails to distinguish
objects when they are
at the same
temperature

[18], [19],
[20], [21],

[22]

GPS Velocity accuracy: 0.1 m/s
Horizontal position accuracy
(RTK): ≈ 2.5 m
Sensitivity (navigation):
−160 dBm
Time to first fix: 28 s

NMEA, UBX, RTCM UART,
USB, SPI,

DDC

- u-blox,
EMLID

- Increased power
consumption, cannot
penetrate through
solid walls or
structures.

[24], [25],
[26], [27],
[28], [29]

IMU Gyro bias instability:
≈ 0.05◦/hr

Accelerometer bias
instability: ≈ 15 µg

Data rate: 1 to 1000 Hz

Digital output for
gyroscope,

accelerometer and
magnetometer

RS-422, I2C 5 KVH,
InvenSense

- Drift in the values
over time leading to
incorrect
measurement values

[30], [31],
[32], [33],

[34]

Ultrasonic
sensor

Range: ≈ 10 m
Range resolution: ≈ 1 mm
Measure angle: 15◦

Frequency: 30− 80 kHz

Pulse width, real-time
analog voltage

envelope, analog
voltage output, serial

digital output

I2C, RS232,
TTL, USB,

UART

< 1 XL-
MaxSonar,
Sparkfun,
Marvelmind

10˘60 Wind, acoustic
disturbances, etc.

[35], [36],
[37], [38],
[39], [40],
[41], [42],
[43], [44]

mmWave
FMCW
radar

Radial range: ≈ 200 m
Range resolution: ≈ 4 cm
FoV: 5◦ − 160◦

Raw IF sample (time
series data), range
profile, velocity

profile, angle profile

CAN, CSI-2,
I2C, LVDS,
QSPI, SPI,

UART

1− 3 Texas In-
struments

25˘35 Angle estimation can
be error prone

[45], [46],
[47], [48],
[49], [50],
[51], [52],
[53], [54],

[55]
LiDAR Range: ≈ 100 m

Range accuracy: ≈ 3 cm
FoV (Horizontal): 360◦

FoV (Vertical): +15◦ −−15◦
LiDAR data points:
≈ 600, 000 points/s

3D Point cloud Ethernet,
UDP

8− 22 Velodyne,
Ouster

100˘6000 Rain, fog, mist, etc. [56], [57],
[58], [59],

[60]

RFID
sensor

Reader antenna ports: 2, 4

Frequency: 860− 960 MHz
Tag memory: 96 bits
Tag antenna size: 94 x 24 mm

Digital serial output
through USB,
Ethernet, etc.

Ethernet,
USB

Reader:
0.01− 1.4

Zebra,
Smartrac

- Affected by metals
and liquids, prone to
interference and
jamming

[61], [62],
[63], [64],
[65], [66],

[67]
UWB
sensor

Detection Range: 40 m
Frequency: 3.1− 4.8 GHz
Accuracy (LoS): 2.1 cm
Max Operating Range (LoS):
300− 1100 m

Digital serial output
through USB,
Ethernet, etc.

Ethernet,
USB, SPI,

CAN,
UART,
GPIO

2 TDSR,
Decawave

- Co-existence with
other technologies,
interference issues, etc

[68], [69],
[70], [71],

[72]

[31], [32].

Attitude determination, localization, and navigation are three of the most im-
portant functions of IMUs in UAVs. This is demonstrated in [33], where the authors
created a single frequency GPS IMU system to provide real-time information to
UAVs to aid in localization, guidance, and navigation. Another application for
IMUs is stabilization. In [34], authors developed a method for using IMU data to
provide real-time video stabilization of images captured by a fixed camera mounted
on a UAV.
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Figure A.7: Operating principle of ultrasonic sensor.

A.3.3 Proximity Sensors

Proximity sensors provide information regarding objects that are placed within a
short distance from the sensor. The section that follows discusses ultrasonic sensors,
which are one of the most common proximity sensors used in UAVs.

A.3.3.1 Ultrasonic Sensor

Ultrasonic sensors [35], [36] are used in UAVs for target detection, flight navigation,
and collision avoidance [37], [38]. They are used in industry for quality control and
fault detection [39]. Ultrasonic sensors are widely used in autonomous systems for
smart car parking and vehicle detection due to their robust sensing capabilities [40].
Ultrasonic sensors operate by measuring the distance between the sensor and the
target object using high-frequency sound waves [41] as shown in Fig. A.7. They
are extremely reliable and can detect transparent objects in situations where other
vision-based systems may fail. Some of the key performance metrics for ultrasonic
sensors can be found in Table A.2.

In addition to providing proper navigation, accurate obstacle detection and
timely obstacle avoidance [37], [38], ultrasonic sensors are also used for ensuring
safe landing for UAVs. In [42], a sonar-based model is developed which measures
the reflected sound waves to determine the suitability of the landing field. If there
are obstacles in the landing field that are higher than the UAV legs, the landing
is considered unsafe. Precise indoor localization and navigation of UAVs is also
achieved by using the ultrasonic system developed by Marvelmind [43]. A network
of stationary ultrasonic nodes are placed in an area and connected wirelessly through
the license free band. The mobile object carrying another ultrasonic node frequently
sends beacons which is captured by these stationary nodes. The propagation de-
lay between the beacons is measured and using trilateration, precise localization is
achieved in order of around ±2 cm. Ivan et al. in [44] has demonstrated the use of
Marvelmind technology by developing a precise localization system that would en-
able accurate position estimation for vertical takeoff and landing (VTOL) of UAVs.
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Table A.3: Key Performance Metrics for mmWave FMCW Radar

Parameter Expression

Radial range (d) d = fic/2S

Radial velocity (v) v = λ∆Φ/4πTc

AoA (θ) θ = sin−1 (λ∆Φ/2πh)

Range resolution (dres) dres = C/2B

Velocity resolution (vres) vres = λ/2Tf

AoA resolution (θres) θres = λ/Mh. cos(θ)

fi - Intermediate frequency; c - Velocity of light; S -
Chirp slope; ∆Φ - Phase difference between the consecutive
chirps; λ - Chirp wavelength; Tc - Time interval between
consecutive chirps; h - Spacing between two adjacent re-
ceiver antennas; B - RF bandwidth; Tf - Chirp frame time;
M - Number of receivers.

In [39], the authors create a prototype ultrasonic inspection system using UAVs that
provides information about the structural integrity of an industrial unit.

A.3.4 Radar-based Sensor

Another type of sensor that is proving to be extremely useful for UAVs is radar
sensors. Radars have traditionally been used to detect targets by measuring how
long it takes an emitted electromagnetic wave to reflect back after striking the target
object. Radars were originally used to detect and identify approaching enemy targets
in military and defense applications. Their use in self-driving cars has recently
demonstrated that they can be used effectively outside of their intended application
fields. Radars have since been installed on UAVs to improve their perception and
detection capabilities. Due to size and power constraints, the mmWave frequency
modulated continuous wave (FMCW) class of radars has shown promise for UAV-
based applications. The section that follows provides an overview of these radar
sensors, including their advantages, disadvantages, and potential applications.

A.3.4.1 mmWave FMCW Radar

The mmWave FMCW radars [45], [46] are well-known for providing accurate target
range and velocity information [47]. Due to their resistance to extreme weather
and lighting conditions, mmWave FMCW radars are the obvious choice for UAV-
related applications. Furthermore, the combination of their high bandwidth and
accurate range and velocity resolution makes them appealing for use in detection
and collision avoidance scenarios [48]. mmWave FMCW radars work in the same
way that traditional radars do. A frequency modulated continuous chirp waveform
is transmitted by the radar and reflected by nearby objects. The reflected chirp is
received at the receiver and processed to determine the radial range, velocity, and
angle of arrival (AoA) of the target.
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As shown in Fig. A.8, A.9 and A.10, the raw IF samples from the mmWave
FMCW radar are processed to obtain the range-plot, range-doppler and range-
azimuth heatmaps respectively. The plots are directly obtained from the TI
mmWave demo visualizer which was used along with the TI AWR1843 mmWave
FMCW radar to detect the objects. The range-plot shows that the radar has
detected four objects at a radial distance that is less than 3 meters. They are
stationary as observed from the range-doppler heatmap, as the higher intensity red
colour is situated close to 0 m/s. From the range-azimuth plot, it is inferred that
the objects are placed at an angle of 10◦ from the radar. Some of the key mmWave
radar parameters along with their expressions is summarized in Table A.3.

mmWave FMCW radars are used in UAVs for object detection, identification,
and tracking due to their excellent sensing capabilities. Detecting and identifying
UAVs and birds using the micro-Doppler spectrum obtained from mmWave FMCW
radars has been proposed in [49]. Similarly, the work in [50] contributes to the iden-
tification of micro-UAVs in low grazing angle scenarios using the mmWave FMCW
radar micro-Doppler spectrum. This has broad applications in electronic warfare,
where terrain clutter can make detecting micro-UAVs difficult. Additionally, the
authors in [51] have used mmWave FMCW radars for localization and activity clas-
sification of objects using convolutional neural network (CNN). Similarly, Siddharth
et al. in [52] has used the range-angle images obtained from mmWave radars along
with YOLO and Faster RCNN models to achieve accurate target classification in
the range of 87.68%−99.7%. One of the limitations of mmWave radars is their poor
AoA estimation. As seen in [53] and [54], novel machine learning techniques and
mechanical rotation of radar in the horizontal direction improves the AoA estima-
tion and field of view (FoV) in both azimuth and vertical directions. This method
has the advantage of providing accurate angle estimation while only requiring one
transmitter and receiver. In addition, the authors of [54] introduced techniques for
estimating the height and angle of UAVs from the GCS using mmWave FMCW
radars.

A.3.5 LiDAR

LiDAR is a sophisticated remote sensing technology used to generate 3D maps of the
environment. The LiDAR system works by beaming a large number of lasers onto
a surface. The beam’s wavelength is typically in the optical, infrared, or ultraviolet
range. The reflected beam from the object in focus is captured by a laser scanner,
and the time of flight between the transmitted and reflected beams is measured and
used to calculate the source’s distance from the LiDAR. This distance calculation
process is repeated several times to produce a complex image map (3D point cloud)
of the scanned surface, as shown in Fig. A.11.

One of the most important characteristics of LiDARs is the range over which the
laser beam can be focused. The power of the laser beam is restricted to conform
to eye safety regulations, which in turn, limits the maximum detectable range of
LiDARs. Other factors such as laser type and focal length of lens also impact on
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Figure A.8: Range plot.

Figure A.9: Range-doppler heatmap.

LiDAR range. Another critical parameter for LiDARs is the density of the LiDAR
point cloud which determines the resolution of the images obtained after LiDAR
scanning. Other parameters such as range resolution, scan rate, dimension, FoV,
and weight are also considered based on application requirements [56], [57].

UAVs equipped with LiDAR modules are used in agriculture, mining, forestry
and civil engineering to name a few. A LiDAR-based UAV system is used in [58]
for classification of forest vegetation and structure measurements. The authors rep-
resent the area’s vegetation and topography gradient using a LiDAR-hyperspectral
image fusion method. LiDARs are also used to map coastal areas as seen in [59].
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Figure A.10: Range-azimuth heatmap.
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Figure A.11: LiDAR scanning.
LiDAR images provide more information for monitoring shoreline changes. LiDARs
are also used to provide navigation capabilities for UAVs in GPS-denied environ-
ments for localization and collision avoidance [60].

A.3.6 Radio-Frequency Identification (RFID) Sensor

The RFID is a contactless wireless system that uses radio frequency waves to track
and identify objects. The RFID system primarily consists of a RFID reader and
RFID tags. RFID tags are placed on objects that require tracking or identification.
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The RFID reader transmit radio frequency waves which interact with these attached
RFID tags to obtain useful information about the respective object. RFID technol-
ogy finds applications in a number of diverse areas such as inventory management,
supply chain, security, pharmaceutical, transport and airline industry. RFIDs are
equipped in UAVs for identifying and tracking objects. Additionally, they are also
used for UAV localization [61].

The criteria to determine the best RFID system for a particular UAV applica-
tion requires the knowledge of key parameters such as operating frequency, power
requirements and environmental conditions. RFID systems can operate in low fre-
quency (LF), high frequency (HF), and ultra-high frequency (UHF) ranges. RFID
for UAVs primarily uses the UHF (865˘960 MHz) that provides read range of around
4−6 meters or more depending upon the type of tags used [62]. Depending upon the
application use case, the RFID tags employed can be passive or active. The passive
tags does not require any external power source to operate whereas the active tags
are equipped with a limited battery source to ensure its operation. Environmental
factors include the location of the tag, the material on which the tag is attached,
temperature, pressure, vibration sensitivity, etc. Other important include commu-
nication interface for RFID readers, antennae ports, read accuracy, data rate, cost,
etc., [63], [64], [65].

Traditional applications of RFID systems are enhanced using UAV systems. This
is evident in RFly [61], where the authors have developed a UAV-based RFID relay
for improving the read range of an RFID system. Additionally, they have also
developed an RF based localization algorithm for localizing non-line-of-sight (NLoS)
objects. Another system in [66], uses passive RFID tags to estimate the 6 degrees-
of-freedom (DoF) pose of a controller. The pose is estimated by utilizing a singular
value decomposition (SVD)-based approach that uses the position of the tags with
respect to the controller. This method provides seamless UAV navigation in indoor
environments. In [67], Zhang et al. developed a RFID enhanced UAV system that
estimates the precise pose of the UAV. The system works by utilizing the phase
measurements from the different RFID tags attached to the UAV to determine the
6-DoF pose of the UAV system.

A.3.7 Ultra-Wideband (UWB) Sensor

UWB sensors uses short-range radio frequency pulses to determine location of nearby
objects. The operating principle is more or less similar to the RFID technology,
where the UWB transmitter sends billions of pulses over a wide frequency spectrum
which is captured by the UWB receiver to determine the location of the target. UWB
primarily uses two techniques for positioning, the time difference of arival (TDoA)
approach and the two way ranging (TWR) method. In TDoA, UWB sensors are
placed at multiple locations in an indoor space. The moving UWB tag continuously
sends signals which is captured by these different UWB tags. Subsequently, by
using multilateration, the location of the moving tag is accurately determined. In
TWR, when two devices using UWB come close to each other, they start ranging to
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determine their distance. The time taken to transmit and receive the signal is used
to calculate the distance between the two objects [68].

UWB sensors provide highly accurate distance measurements (in order of 2 cm)
[69], [70]. As the time duration of the pulses gets narrower the accuracy of the mea-
surement is improved. Moreover, UWB is less affected by multipath interference and
hence it is preferred in highly crowded environments to achieve reliable positioning.
However, as UWB uses a wide range of frequencies, co-existence of UWB with other
technologies is a challenge. Additionally, since UWB requires an always ON sensing
strategy to capture the transmitted signal, power consumption is more as compared
to the RFID sensors.

In UAVs, UWB sensors are primarily used for localization purposes in GPS-
denied environments. In [71], the authors propose a target-relative tracking and
positioning method using UWB sensors. To estimate the speed of the target, ini-
tially the UWB range measurements are fused with other on-board sensor data
using an extended kalman filter (EKF). Next, the target orientation is transferred
to the quadcopter by using UWB-based communication. The experiment results
demonstrate the autonomous capability of the proposed approach to relatively posi-
tion the quadcopter with respect to the target. Additionally, UWB sensors in UAV
can also help in autonomous docking. In [72], the authors have developed UWB-
vision approach to facilitate the autonomous landing of quadcopters in GPS-denied
environments. The system initially uses a combination of distance and relative
displacement measurements to approach the landing zone. Once the landing pad
is detected, the measurements from UWB and vision-based systems are fused to
provide an accurate landing position.

A.4 Communication Modules

UAVs must constantly update the GCS about their position, battery health, on-
board sensor data and other critical information in order to enable and maintain
seamless autonomous operations. The requirement for telemetry or sensed data
transfer necessitates the use of efficient and reliable communication technology for
UAVs. The following section provides insight into some of the characteristics asso-
ciated with each communication protocol so that the user can make an informed
decision about the choice of communication module to equip on board UAVs. Fur-
thermore, Table A.4, highlights the key attributes of various communication proto-
cols used in UAVs.

A.4.1 LoRa

LoRa is a low-power, long-range communication technology that is primarily used
in the internet-of-things (IoT) applications [73]. The technology is developed by
Semtech corporation. The protocol is designed and implemented in such a way the
LoRa physical layer employs a proprietary chirp spread spectrum (CSS) modulation
[74], while its MAC layer known as LoRaWAN is open source and maintained by
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the LoRa Alliance [75]. LoRa transmits over unlicensed bands at frequencies of 433
MHz, 868 MHz, 915 MHz, and 923 MHz with an approximate maximum range of
about 10 to 15 km. One of the main limitations of using LoRa in UAVs is its data
rate, which can reach only upto a maximum of 50 kbps [76].

A.4.2 Bluetooth Low Energy (BLE)

BLE or Bluetooth Smart is an enhanced version of the classic Bluetooth technology
that is designed for low-power, short-range application demands [77]. The Blue-
tooth Special Interest Group (SIG) designed and developed the protocol in order
to provide low-power solutions for applications such as health care, beacons, and
fitness. Furthermore, BLE has a data rate of 1 Mbps and range of about 50 me-
ters, similar to traditional Bluetooth. The protocol supports a variety of topologies
such as star, mesh, p2p, and broadcast. BLE is not backward compatible with its
predecessor, however it uses the same frequency as traditional Bluetooth, 2.4 GHz
to 2.48 GHz. Because of its low power consumption and high data rate, BLE is a
promising technology for use in UAVs [13], [78].

A.4.3 Wi-Fi

Wi-Fi is a widely used short-range communication protocol found in laptops, tablets,
smartphones, digital televisions, and other devices. Wi-Fi is based on the IEEE
802.11 protocol stack and comes in a variety of versions with varying levels of power
consumption, data rate, and bandwidth. Wi-Fi operates in the unlicensed spectrum
band of frequencies, specifically 2.4 GHz and 5 GHz [79]. Wi-Fi employs the or-
thogonal frequency division multiplexing (OFDM) modulation, which is responsible
for its high data rate and resistance to interference issues. These properties make
Wi-Fi an ideal choice for use in UAVs. Furthermore, because of its modular design,
it can be deployed in both infrastructure and ad-hoc modes. In [80], Wi-Fi is set up
in an ad-hoc manner to be used with UAV relay networks.

A.4.4 Long-Term Evolution for Machine-Type Communica-
tion (LTE-M)

LTE-M is a low-power wide-area communication standard developed by the 3GPP
to support machine-to-machine communications and IoT applications. [81]. The
protocol provides a high data rate as well as increased bandwidth. It operates
within 3GPP specified licensed spectrum band. The increased adoption of LTE-
M protocol in UAV applications can be attributed to its design architecture which
allow seamless integration with existing cellular infrastructure. Furthermore, its
long range, low latency, resistance to interference, and weather conditions have all
contributed to its growing popularity
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Table A.4: Key Performance Metrics for Communication Technologies

Protocol Range
(km)

Throughput
(Mbps)

Power
(W)

Frequency
(GHz)

Topology

BLE ≈ 0.1 0.125 - 1.36 0.01 - 0.5 2.4 Star, Mesh,
Broadcast,

P2P
LTE-M ≈ 10 ≈ 1 0.1 - 0.2 LTE bands Star
Wi-Fi ≈ 0.1 ≈ 104 ≈ 2 2.4, 5 Star, Mesh
LoRa ≈ 10 0.01 - 0.05 ≈ 0.025 0.433, 0.868,

0.915, 0.923
Star

A.5 Computing Platforms

Computing platforms are on-board hardware and software modules that facilitate
the integration of various sensor and communication technologies to ensure safe and
secure operation of UAVs. The most important component of a UAV computing
platform is the flight controller. The flight controller is in charge of interpreting
data from on-board sensors in order to facilitate real-time decision making. Flight
controllers are also in charge of telemetry, communication with the GCS, power
management, and other duties. In addition to flight controllers, the computing
platforms also responsible for executing object detection tasks, collision avoidance
algorithms, UAV stabilization schemes, and control algorithms. The sections that
follow describe the available hardware and software platforms for implementing flight
controller systems and other necessary algorithms on UAVs.

A.5.1 Hardware Platforms

UAV hardware platforms are embedded processing units that implement flight con-
troller capabilities. The hardware flight controller systems are in charge of con-
trolling the UAV’s altitude and mobility, avoiding collisions, interacting with other
sensing and communication modules, controlling and stabilizing the UAV, naviga-
tion, and so on. Because of the numerous tasks that these units must perform, the
performance of these platforms is primarily determined by the type of processor,
speed, and computational memory. When selecting a flight controller module for
UAV applications, other factors such as form factor and power consumption are
taken into account. Furthermore, these hardware components aid in the execution
of sophisticated algorithms required to meet the demands of the UAV applications.
The most recent widely used UAV hardware platforms are presented in this section,
along with some key metrics such as processor specifications, available memory, form
factor, supported operating system, and power consumption.

A.5.1.1 FPGA-based Platforms

a) OcPoC-Zynq Mini : The OcPoC-Zynq Mini [82] is a fully programmable
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FPGA+ARM-based system-on-chip (SoC) that is developed by the Aerotenna com-
pany. The on-board Artix-7 FPGA enables the seamless integration and interfacing
of various sensor and hardware modules. Additionally, the coupled dual-core ARM
A9 processor increases the computational capability and input/output (I/O) flex-
ibility. The module comes with on-board IMU with 9-DoF and a high-resolution
barometer that is used to measure the atmospheric pressure. The hardware board
is also capable of interfacing devices using the following protocols: SPI, CAN, I2C,
USB-OTG, and USB-UART. The OcPoC-Zynq Mini is lightweight and has a small
form factor, making it an appealing option for use with UAVs [83].

A.5.1.2 ARM-based Platforms

a) Pixhawk 4: Pixhawk 4 [84] is the latest flight controller board designed
and developed by Holybro and Auterion [85]. The board is optimized to run the
latest PX4 autopilot software stack and comes with advanced features which makes
it flexible and reliable for autonomous operations. The board is equipped with a
STM32F765 processor which consists of a powerful 32-bit ARM Corex M7 chip. It
additionally houses a STM32F100 32-bit ARM Cortex M3 processor dedicated to
handle the I/O operations between the board and the various on-board peripherals.
The various on-board sensors equipped on the board include gyroscope, accelerom-
eter, magnetometer and barometer. Other peripherals include an on-board u-blox
Neo-M8N GPS/GLONASS receiver that aids in the acquisition of better positional
information [86]. In order to support real-time operations, the Pixhawk 4 uses the
NuttX operating system. Furthermore, the multi-threaded capabilities of NuttX
allow for Linux/Unix programming of the flight controller [87].

b) Pixhawk 4 Mini: The Pixhawk 4 Mini [88] flight controller board is in-
tended for use with smaller UAVs commonly used by hobbyists and researchers.
With the exception of a dedicated I/O processor unit, the hardware configuration
of the Pixhawk 4 Mini is similar to that of the Pixhawk 4 [89]. The Pixhawk 4 Mini
also includes the STM32F765 processor, as well as an accelerometer, gyroscope,
magnetometer, and barometer. It has a smaller dimensional form factor than the
Pixhawk 4, which is detailed in Table A.5. Pixhawk 4 Mini also uses the NuttX
operating system for real-time operations.

c) BeagleBone Blue: The BeagleBone Blue [90], [91] is a miniaturized Linux-
based system that can be used as a flight controller in UAVs and autonomous ve-
hicles. The Octavo OSD3358 board features an ARM Cortex-A8 processor and 512

MB DDR3 RAM. It is equipped with a NEON floating-point accelerator for perform-
ing complex digital signal processing computations. The board can be programmed
in Linux using a variety of supported softwares such as MATLAB, Python, ROS and
ArduPilot, making it ideal for developers and hobbyists looking to quickly prototype
their applications. Bluetooth 4.1, BLE, and Wi-Fi are among the integrated com-
munication modules used to ensure the reliable transmission of sensor and telemetry
data. In addition, the board includes built-in sensors such as an IMU, a barometer,
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Table A.5: Commonly Used UAV Flight Controller Boards

Platform Processor On-board
sensors

Available
memory

Power
(W)

Supported
interfaces

Form factor
(cm)

Weight
(g)

Refer-
ences

OcPoC-Zynq
Mini

CPU: ARM-A9
dual-core
FPGA: Artix-7

IMU,
Barometer

512 MB
DDR3

≈ 3 I2C,
USB-OTG,
USB-UART,
SPI, CSI,
GSI, CAN

9.2× 6.3 25˘35 [82],
[83]

Pixhawk 4 CPU: ARM
Cortex-M7
IO Processor: ARM
Cortex-M3

Accelerometer,
Magnetometer,
Barometer,
GPS

512 KB - UART, I2C,
SPI, CAN,
PWM, R/C

4.4× 8.4 ≈ 33 [84],
[85],
[86],
[87]

Pixhawk 4
Mini

CPU: ARM
Cortex-M7

Accelerometer,
Magnetometer,
Barometer,
GPS

512 KB - UART, I2C,
SPI, CAN,
PWM, R/C

3.8× 5.5 ≈ 37 [88],
[89]

BeagleBone
Blue

CPU: ARM
Cortex-A8

IMU,
Barometer,
Thermometer

512 MB
DDR3

- USB 2.0,
UART, SPI,
I2C, GPIO

17.5× 11.2 ≈ 36 [90],
[91],
[92]

Raspberry Pi
4 Model B

CPU: ARM
Cortex-A72

- 1/2/4/8

GB DDR4
- USB 2.0,

USB 3.0,
UART, CSI,
DSI, GPIO

8.5× 5.6 ≈ 66 [93]

Nvidia Jetson
Nano

CPU: ARM
Cortex-A57 quad-core
GPU: Maxwell
128-core

- 4 GB
DDR4

5− 10 USB 2.0,
UART, SPI,
I2C, I2S,
GPIO

6.96× 4.5 ≈ 17 [94],
[95]

Nvidia Jetson
TX2

CPU: Nvidia Denver
2 64-bit dual-core and
ARM Cortex-A57
quad-core
GPU: Pascal 256-core
with 256 CUDA cores

- 8 GB
DDR4

7.5−15 USB 3.0,
USB 2.0,
UART, SPI,
I2C, I2S,
GPIO, CAN

5.0× 8.7 ≈ 88 [95],
[96],
[97],
[98]

Nvidia Jetson
AGX Xavier

CPU: ARM v8.2
Carmel 64-bit 8-core
GPU: Volta 512-core
with 64 Tensor cores

- 32 GB
DDR4

10− 30 USB 3.0,
UART, SPI,
CAN, I2C,
I2S, DMIC,
DSPK, GPIO

10.0× 8.7 ≈ 280 [95],
[99],
[100]

Arduino
Mega 2560

CPU: ATmega2560 - 256 KB
flash

- USB 2.0,
UART, SPI,
I2C, GPIO

10.15× 5.33 ≈ 37 [101],
[102],
[103]

Intel UP
boards

CPU: Intel Atom
x5-z8350 quad-core
FPGA: Intel FPGA
Altera Max V

- 1/2/4 GB
DDR3L

≈ 13 USB 2.0,
USB 3.0,
UART,
GPIO, CSI,
I2C, I2S

8.56× 5.65 ≈ 98 [104],
[105],
[106]

and a thermometer [92].
e) Raspberry Pi 4 Model B: The Raspberry Pi 4 Model B is the latest version

in the Raspberry Pi series with a quad-core ARM Cortex-A72 processor and 2, 4 or
8 GB of RAM depending upon the requirements. The board comes with Bluetooth
5.0, BLE, Gigabit Ethernet and 2.4/5.0 GHz wireless LAN support for connectivity.
The Pi 4 board has a 40 pin GPIO header with support for USB 2.0, USB 3.0, CSI,
and DSI ports. As the wireless LAN and Bluetooth are compliance certified, the
Raspberry Pi 4 can easily be used in UAVs and autonomous applications [93].
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A.5.1.3 GPU-based Platforms

Hardware boards which are integrated with GPUs have recently become popular
due to the deployment of deep learning algorithms on embedded platforms. This
section lists some of the popular GPU-based platforms which can be used on UAVs
for enabling machine learning based operations.

a) Nvidia Jetson Nano: The Nvidia Jetson Nano is a low form factor board
intended to be used with small-sized autonomous vehicles. The board consists of
a 128-core Maxwell architecture GPU and quad-core ARM Cortex A5 CPU [94].
The Nano comes with 4 GB RAM and supports Gigabit Ethernet, USB 3.0, USB
2.0 Micro-B, GPIO, I2C, I2S, SPI, UART interfaces for connecting with various
peripherals. Jetson Nano is reported to provide an AI performance of approximately
472 GFLOPS to accelerate deep learning frameworks [95].

b) Nvidia Jetson TX2: A slightly higher end version of the Jetson Nano, the
Nvidia Jetson TX2 gives more performance for computer vision and deep learning
applications. The Jetson TX2 board comes with a dual-core 64-bit Nvidia Denver
2 CPU [96]. The GPU features a 256-core Pascal architecture with 256 CUDA
cores. The board has 8 GB RAM and supports USB 3.0, USB 2.0, UART, SPI,
I2C, I2S, GPIO and CAN interfaces for peripheral connections [97]. The TX2 is
reported to provide 1.33 TFLOPs of AI performance as compared to the Jetson
Nano [95] and hence the TX2 can be used for slightly higher end and demanding
applications. In [98], the authors demonstrate a prototype system that uses the
computing capabilities of the Jetson TX2 to run the YOLOv3 algorithm for UAV
surveillance in airports.

c) Nvidia Jetson AGX Xavier: The Jetson AGX Xavier board is primarily
developed to integrate machine learning and deep learning algorithms for various
autonomous applications. The board is based on a 512-core Volta architecture GPU
with 64 tensor cores and a 64-bit 8-core Carmel ARM architecture CPU [99]. It has
32 GB RAM memory and is integrated with a dedicated deep learning accelerator,
vision accelerator and encoder/decoder units for various computer vision tasks. For
interfacing with peripherals, the Jetson AGX Xavier supports RJ45, USB-C, USB
2.0, UART, etc. In terms of performance, the Jetson AGX Xavier is capable of
accelerating deep learning algorithms in the order of 32 TFLOPS [100], [95].

A.5.1.4 Atmel-based Platforms

a) Arduino Mega 2560 R3: The Arduino Mega 2560 board [101] is based
on the ATmega2560 microcontroller. It has digital I/O and analog input pins for
interfacing with peripherals. Out of the 54 digital I/O pins, 15 can be used for PWM
output. Additionally, the board also supports UART, I2C and USB connections
[102]. As seen in [103], the Arduino Mega 2560 is used to study adaptive control of a
quadcopter by using a serial-stage proportional-integral-derivative (PID) controller.
The design utilizes the Arduino board to act as the core control board. The board
in turn is interfaced with various sensors such as infrared sensor, bluetooth module,
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gyroscope and laser ranging sensor.

A.5.1.5 Intel-based Platforms

a) Intel UP board series: The Intel UP boards are Raspberry Pi 2 sized
boards that are primarily developed for robotics, UAV, smart home, IoT and digital
signage applications [104]. The board is powered by an Intel Atom x5-z8350 quad-
core processor along with the Intel FPGA Altera Max V. It can have 1/2/4 GB
DDR3L RAM of memory and supports interfacing options such as USB 2.0, USB 3.0,
UART, CSI, DSI, and GPIO [105]. Although the board doesn’t have dedicated on-
board sensors, it is powerful to run Linux, Android and even Windows 10 operating
system. The powerful CPU performance can be seen in [106], where the Intel UP
boards are used as companion computers to power the TF Mini LiDAR for height
estimation.

A.5.2 Software Platforms

In order to interact and maintain proper functionality of the various hardware mod-
ules, flight controller software modules are deployed on to UAV computing platforms.
The flight controller software stack consists of control and localization algorithms,
stabilization techniques, navigation strategies, and other services that enable UAV
operations to run smoothly. There are numerous flight controller software packages
on the market today. To name a few, selecting the right flight controller software for
UAVs would entail taking into account several factors such as UAV application re-
quirements, communication constraints, power consumption, and ease of interacting
with other hardware components. The section that follows provides a brief overview
of some of the most popular open source flight controller software that is used for
commercial and research purposes

A.5.2.1 ArduPilot

ArduPilot is a trustworthy open source flight controller software that can control
UAVs like gliders, conventional and VTOL planes, multirotors, and helicopters [107].
ArduPilot which was started by hobbyists in 2009, is now used for commercial and
research purposes. It supports a wide range of hardware platforms, including Maver-
ick, Raspberry Pi and Odroid to name a few [108]. The ArduPilot software stack in-
cludes control algorithms for UAV localization and navigation. GCS software is also
included with ArduPilot, which can help with vehicle configuration, mission plan-
ning, and testing. Additionally, the software supports RTK GPS, magnetometers,
barometers, airspeed sensors, brushless motors, actuators, and gimbals. ArduPilot
is licensed under GPL Version 3. It is free to download and use. Further, it has a rich
documentation and source code which can be found in [107] and [109] respectively.

130



A.5.2.2 PX4

PX4 provides adaptable tools and algorithms to assist UAVs in autonomous naviga-
tion. The Dronecode foundation hosts the software, which is distributed under the
BSD license [110]. Its modular architecture, configurability, and license permissions
make it a viable commercial option. The documentation and source code can be
found on GitHub [111].

A.6 Machine Learning Techniques

Unlike static terrestrial systems, UAVs are dynamic and move in three dimensions
which makes UAV detection, localization, control, and communication operations
challenging. Furthermore, to ensure efficient and reliable UAV operations, a large
number of variables such as altitude, speed, and power needs to be optimized. This
has put a limit on how far traditional techniques can progress. Recently, machine
learning algorithms have shown promise in resolving some of these complex issues.
These algorithms are highly scalable and adaptable to a wide range of variables,
making them an appealing option for UAV networks. Machine learning algorithms
can also retain relevant previous information, which can help with successful UAV
operations decision making. Furthermore, because of their inherent data analysis
and prediction capabilities, these algorithms are capable of changing the real-time
dynamics of UAV networks with ease, which has contributed to their popularity.
Control, navigation, detection, collision avoidance, interference management, sensor
fusion, computer vision, and communication are just a few of the fields in which the
algorithms can be used in UAVs. There is a large body of literature on the use of
machine learning in a subset of these fields. A comprehensive analysis and review
of the use of machine learning for sensing and communication, on the other hand,
is limited. As a result, in this section, the major contributions of machine learning
are summarized from a sensing and communication application standpoint, as we
discovered that this approach is most beneficial for a novice reader to quickly ramp
up on UAV-based machine learning algorithms.

A.6.1 Sensor Fusion

Because a single sensor cannot provide perfect sensing capability, the fusion of sen-
sors with different modalities has demonstrated superior performance. Traditional
sensor fusion techniques extract features from each sensor modality separately and
then combine them to produce meaningful information. The evolution of deep learn-
ing algorithms has added a new dimension to this space by automating feature ex-
traction from input data-sets. This automatic feature extraction in deep learning
algorithms has accelerated the rate of sensor fusion to unprecedented levels, allowing
us to envision full-scale autonomous operations [112], [113].

Sensor fusion techniques can be divided into three categories. Depending on
the stage at which the feature processing and fusion is performed, there are three
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types: (1) early fusion, (2) deep fusion, and (3) late fusion. [114]. Early fusion is
accomplished by fusing the various sensor modalities directly at the input. This
enables greater cross-modal interaction but necessitates extreme caution in terms of
data alignment, synchronization, and input data format compatibility. Deep fusion,
as opposed to early fusion, operates at an intermediate level, where the features of the
various sensor modalities are combined at a halfway point after necessary processing
and feature extraction. However, deep fusion is difficult to design and implement.
Finally, late fusion employs separate networks to independently process and extract
features from each modality. The extracted features are combined towards the end
of the processing chain to produce a fused output. Late fusion is simpler to design
and can easily handle alignment, synchronization, and data redundancy.

The vast majority of sensor fusion literature is focused on object detection appli-
cations. In [115], the RetinaNet architecture is used to fuse 2D camera images and
sparse radar data using a novel deep learning framework called CameraRadarFusion-
Net. The model is intended to intelligently determine the level at which sensor fusion
occurs so as to obtain improved 2D object detection performance. The proposed
approach shows better performance as compared to the baseline image network by
approximately 10%. This can be further improved by feeding the raw radar de-
tections through a noise filter in order to reduce unwanted detections and improve
performance. Further, with this approach the improved performance comes with
additional latency due to data processing of the radar projections. The authors
in [116], use a different approach to improve 3D object detection, a middle fusion
center point method. A center point detection network is used to detect the center
point of the objects in the RGB images. Based on these center points, a 3D frustum
is created to include the radar detections in the image plane. The associated radar
detections are then used to generate radar feature maps which can complement the
image-based features. The fused feature map can then be used to accurately deter-
mine additional object properties such as depth, rotation, and velocity. However,
it should be noted that in this approach the frustum is created based on the depth
estimated from images. This can lead to include the nearby objects in the generated
frustum and hence should be carefully considered.

The combination of LiDAR point clouds and camera images is also used for sen-
sor fusion. On this front, the work by Danfei et al. [117], has gained popularity due
to its application agnostic nature. The raw point cloud obtained from LiDAR mod-
ules is fed into a PointNet architecture, which produces multiple 3D box hypotheses
with the input 3D points acting as spatial anchors. The network learns to predict
the best hypothesis, which is then combined with CNN-processed image features to
detect objects. The approach offers a simple design with no environment and sen-
sor specific assumptions while guaranteeing state-of-the-art performance. However,
the algorithm can fail if the number of points are below the recommended thresh-
old. Additionally, issues can also result due to partially visible objects. Another
work by Pang et al., [114], uses a low complexity object detection framework to
fuse output from camera and LiDAR data using a 2D CNN. The approach used is
a late fusion technique that operates on the fused output candidates prior to non-
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maximum suppression (NMS). Thus, the semantic and geometric properties of the
output can be used to produce more meaningful and accurate results. According
to the authors, the results obtained demonstrated high performance in the KITTI
benchmark as well as the best performance for long distance object detection. Zhao
et al. have used the fusion of 3D LiDAR and camera data to perform object de-
tection [118]. The authors employ 3D LiDAR to generate object-region proposals,
which are then mapped on to the camera image. The new superimposed image is
then used to generate regions-of-interest (ROI) proposals, which are then fed into
CNNs to detect objects. The proposed approach has an average processing time
of about 66.79 ms making it ideal for real-time operations. However, the proposed
approach under performs while trying to detect tiny objects that is beyond 60 m
of the LiDAR scanning range. Hence, the future work can employ mmWave radars
to improve the detection capability by generating more accurate object-region pro-
posals. LiDAR and camera fusion is also utilized for tracking purposes. In [119],
full surround online multi-object tracking (MOT) framework is implemented using
a LiDAR and calibrated camera array fusion technique. The tracking problem is
formulated using markov decision processes (MDPs) which treats the target appear-
ance/disappearance as state transitions within the MDP. The framework is modular
and can support various sensor modalities to improve localization and tracking of
objects in 3D. In [120], the authors utilize PointFusion [117] and VoxelFusion for
camera and LiDAR fusion by leveraging the VoxelNet architecture. This research fo-
cuses on resolving the interfacing problem that exists between highly sparse LiDAR
point clouds and region proposal networks (RPN). PointFusion involves mapping of
3D points on to the image plane. VoxelFusion divides the point cloud into equally
spaced 3D voxels and then encodes groups of points to each of these voxels based
on where they reside. The concatenated output from PointFusion or encoded points
from VoxelFusion is then fed into a novel voxel feature encoding layer (VFE) and
then used for detection. As a result, this method greatly simplifies feature extraction
and bounding box prediction and provides an end-to-end trainable deep network in
a single stage. Other LiDAR-based sensor fusion techniques include the TransFuser
[121], which investigates the limitations of geometric sensor fusion in dealing with
complex scenarios and uncontrolled traffic situations. In this work, the authors cre-
ate a multimodal transformer to combine the LiDAR birds eye representation with
image data. The fusion is based on an attention-based approach that captures the
entire global 3D scene with a focus on dynamic objects, greatly improving detec-
tion performance. However, this approach under performs in red light conditions
and hence requires further improvement. The attention-based approach is also used
in [122], where the authors perform 3D object detection of LiDAR bird’s eye view
(BEV) representations with camera images using a gated feature fusion. Using an
auto-calibrated projection mechanism, the 2D camera features are used in the first
stage to create a smooth spatial feature map with high correlation with the cor-
responding LiDAR points. In the second stage, a gated feature fusion network is
used to combine these spatial attention maps for camera and LiDAR data fusion
based on region. Following this, the camera-LiDAR fusion is achieved using a subse-
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quent proposal refinement stage. The proposed method shows significant gain when
used with the KITTI and nuScenes datasets. It should be noted that this approach
uses a two-stage training method which increases training time. Moreover the data
augmentation has to be performed carefully without adding distortion. In [123],
a LiDAR and vision-based sensor fusion technique is discussed to achieve reliable
object classification with minimal loss. The authors employ an innovative method
of upsampling LiDAR point clouds to produce pixel-level depth information, which
is then associated with the corresponding RGB data points. For object classifica-
tion, the fused image is now fed into a CNN. However, it should be noted that the
mapping of the upsampled LiDAR feature maps to each of the pixels in the RGB
leads to increased processing time and hence can be reduced.

Sensor fusion algorithms help to ensure reliable pose estimation in addition to
object detection, tracking, and classification. This is especially beneficial for UAV-
based systems, as accurate pose estimation allows for better tracking and collision
avoidance operations. One such notable work includes the DenseFusion [124], where
the authors fuse the RGB images along with the depth images to implement a reliable
6-DoF pose estimation system. The model employs a heterogeneous architecture in
which two input data sources are fused using a novel dense fusion method, after
which the pixel-wise embedded features are extracted and used for accurate pose
estimation. In addition, an iterative pose refinement algorithm is used to improve
the system so that it can handle real-time inference. The proposed approach out-
performs the state-of-the-art in terms of better pose estimation, robustness towards
occlusions and reduced runtime. In [125], RGB image is combined with depth in-
formation in an early fusion to output low-dimensional latent features. This is fed
into a deep neural network to perform pixel-wise semantic segmentation for scene
understanding. The proposed approach is able to demonstrate increased success
rate in both static navigation tasks and dynamic traffic. One of the limitation of
the proposed approach is its inability to utilize ego-speed as an input modality.
Adding ego-speed can cause the inertia problem which can render the agent unable
to restart after it stops for obstacle avoidance. Table A.6 summarizes the above men-
tioned sensor fusion algorithms which can be tailored to be used with UAV-based
applications.

A.6.2 Communication

UAV-based communication systems faces a number of challenges due to the three-
dimensional motion, constantly changing channel model, frequently varying orienta-
tion and limited energy source associated with UAVs. Moreover, interference issues,
cyber-physical attacks, coexistence with existing cellular infrastructure, spectrum
sharing, reliable message routing and inclement weather are other challenges for
UAV-based communication. As UAV-based communication systems are inherently
complex, machine learning algorithms have been found to provide the necessary
boost to enable and ensure the various communication requirements for UAVs.
These algorithms can accommodate a large number of variables and outperform
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Table A.6: Sensor Fusion Techniques

Year Method Sensors modalities Architecture Fusion level Application References

2021 TransFuser Camera image, LiDAR
BEV representation

Transformer with
gated recurrent units

Late 3D object detection,
Motion forecasting

[121]

2021 Fusion of RGB
and depth

images

RGB image, Depth image ResNet architecture Early Scene understanding [125]

2020 CenterFusion Camera image, Radar
point cloud

CNN, Frustum
association

Middle 3D object detection [116]

2020 3D-CVF Camera image, LiDAR
BEV representation

Adaptive gated
feature fusion network

- 3D object detection [122]

2020 CLOC fusion
network

Camera image, LiDAR
point cloud

2D CNN Late 3D object detection [114]

2020 CameraRadar-
FusionNet

Camera image, Radar
point cloud

RetinaNet, VGG
architecture

Early, Late,
Halfway

2D object detection [115]

2020 Fusion of 3D
LiDAR and
camera data

Camera image, 3D LiDAR
data

Region proposal
generation, VGG

architecture

- 3D object detection [118]

2019 VoxelFusion RGB image, LiDAR point
cloud

Faster RCNN,
VoxelNet

Late 3D object detection [120]

2019 DenseFusion RGB image, Depth image CNN, PointNet
architecture

- 6D pose estimation [124]

2019 Online MOT Full-surround camera
images, LiDAR point

clouds

MDP with support
vector machines

Early Multi-object tracking and
detection

[119]

2018 PointFusion Camera image, LiDAR
point cloud

CNN, PointNet
architecture

Early 3D object detection [117]

2018 CNN-based
fusion of vision

and LiDAR

Camera image, LiDAR
data

AlexNet - Object classification [123]

traditional algorithms in terms of performance. Furthermore, the algorithms are
easily scalable, can be tuned for low complexity, and can predict future states, al-
lowing the UAV system to adapt to changing conditions. Some recent contributions
to machine learning algorithms used for UAV-based communication are discussed in
the following paragraphs.

In order to ensure reliable communication, it is critical to obtain an accurate
channel model estimation. Wang et al. in [126] has described an approach where
the channel parameters for the air-to-ground (A2G) links between UAV and GCS is
predicted using an unsupervised learning algorithm. Received signal strength (RSS)
data from mobile users is collected and used to forecast a temporary 3D channel
model for the UAV-GCS link. The channel features are then classified using the
k-means clustering technique based on LoS/NLoS parameters. The LoS/NLoS pa-
rameters are then classified and used to calculate the path loss between the UAV
and the GCS. The proposed model is evaluated by comparing simulation results to a
conventional statistical channel model and is found to achieve approximately 91.8%

accuracy. However, the proposed approach suffers from shadowing effects which can
lead to decrease in system performance and hence should be resolved. Another chan-
nel modelling approach by William et al. in [127] uses generative neural networks
to model the channel at millimeter wave frequencies. Firstly, the proposed model
predicts whether each link is LoS or NLoS or in outage. This state information is
then fed into a variational autoencoder, which generates the delays, AoAs, and so
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on for each propagation path. The methodology is tested for UAVs with 28 GHz
A2G channels in an urban environment where the training data sets are produced
using Wireless Insite [128] ray tracing software. The proposed model is found to
effectively capture the scattering effect from nearby buildings. However, in order to
completely validate the accuracy of the model, comparison with real-world channel
measurements also needs to be studied and verified for different scenarios. In [129],
the authors have used an alternate two-stage method to model the millimeter wave
channel model for UAVs. The first stage involves developing an effective channel es-
timation technique to collect millimeter wave channel information so that each UAV
can train a local channel model using generative adversarial networks (GAN). In the
second stage, a novel distributed GAN framework is developed, allowing each UAV
in the UAV network to share channel information with each other while maintaining
privacy. According to simulation results, the proposed approach improves average
UAV downlink rate by more than 10% when compared to baseline real-time chan-
nel estimation schemes. The results also show that sharing more generated channel
samples increases the learning rate, but decreases as the total number of UAVs in
the network increases. Additionally, in comparison with a perfect CSI scheme, the
proposed method yields lower data rate due to the inevitable training error.

Improved interference mitigation schemes are also required for reliable and low-
latency communication between multiple UAVs. In [130], the authors used a deep re-
inforcement learning (DRL)-based echo state network (ESN) to address interference
issues in cellular-connected UAVs. Each UAV is designed to reduce its interference
from the ground network as well as its energy consumption and wireless latency.
The proposed approach models the problem as a dynamic game in which each UAV
uses the ESN architecture to determine the best path, transmission power, and cell
associations. Furthermore, the computational complexity of the proposed algorithm
is reduced by determining an upper and lower bound for each UAV’s altitude. The
simulation results show that the proposed scheme reduces interference for ground
users while also improving wireless latency per UAV. One of the limitations of the
proposed approach is the increase in runtime complexity of the algorithm when the
performance of the ground UEs is improved. In addition to interference mitigation,
UAVs are prone to eavesdropping attacks. The work by [131] provides a method
for detecting eavesdropping attacks in a UAV assisted wireless network using unsu-
pervised learning methods. The eavesdropping attack is assumed to occur during
the authentication process in this case. In order to detect eavesdropping, the au-
thors build predictive models that use one-class support vector machines (OC-SVM)
and the k-means clustering algorithm. To train and test the above algorithms, the
authors have also developed novel approaches for generating the data sets under
varying channel conditions. The results show that k-means clustering performs
better when the eavesdropper has a high SNR, however, in terms of stability, the
OC-SVM outperforms the k-means.

There is growing interest in integrating UAVs to provide assistance to the ex-
isting cellular infrastructure. On this front, the work done by Lins et al. in [132],
demonstrates the use of UAVs in search and rescue missions by utilizing the existing
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5G infrastructure. The authors show that for search and rescue missions, the system
intelligence (SI) unit should handle and optimize decision making, communication-
computation tradeoffs, and connection establishment while the edge intelligence (EI)
unit should take care of optimization of artificial intelligence based end-user appli-
cations. The authors further presents a virtualized testbed to demonstrate the
above concepts. The demonstration utilizes various DNN partitioning strategies
to evaluate the effects of CPU and memory usage, transmission bit rate, and ob-
ject detection accuracy. Future research can change the transport infrastructure
from fixed to dynamic and provide dynamic system adaptation to the propagation
channels for search and rescue operations. Another work by Galkin et al. in [133],
focuses on establishing reliable 5G cellular connectivity in a UAV-based communica-
tion system in presence of interferers. A supervised approach is proposed, followed
by neural network training, in which the UAV selects the GCS based on distances
to the GCS, channel conditions, received signal power, and interferer location. The
authors consider a UAV that is equipped with two sets of antennas: an RF omni-
directional antenna and a directional antenna. Based on the received signal power
from omni-directional antenna and other information, the neural network is trained
to establish the connection with the GCS from the directional antenna while achiev-
ing best channel quality. The proposed scheme outperforms other schemes, such
as the strongest-signal and closest-neighbor association techniques. The proposed
method can be further extended by introducing UAV mobility which can lead to
handovers complexities to the UAV association problem.

In [134], the three-dimensional spectrum sharing between UAVs and device-to-
device (D2D) communication is studied. It is assumed that UAVs share spatial
spectrum in the same licensed bands as D2D networks. A machine learning-based
stochastic geometry approach is proposed to optimize the area spectral efficiency
(ASE) of UAVs while maintaining the required ASE for D2D networks. For training,
a gaussian kernel non-linear regression is used with various input parameters such
as D2D density, UAV flight height, UAV spectrum sensing radius, fading factor,
and so on. The resulting output provides statistics for an approximated log-normal
distribution, which can then be used to derive various insights such as false alarm
probability, spatial missed detection probability, and so on. The reported simulation
results show that as the spatial spectrum sensing radius decreases, so does the
coverage probability of UAVs, but there is an improvement in the ASE of UAVs.
The proposed method also aids in determining the best spatial spectrum sensing
radius given certain network parameters.

In [135], the power allocation issue of a UAV-assisted visible light communi-
cation system using non-orthogonal multiple access (NOMA) is considered. The
problem is formulated such that the sum-rate of all users is maximized subject to
the constraints on power allocation, quality of service of users and UAV position.
The proposed method employs the harris-hawkins optimization (HHO) algorithm in
conjunction with a fully connected artificial neural network. The optimization algo-
rithm aids the artificial neural network to avoid the "local minima" trap and hence
makes it suitable for real-time applications. According to the numerical simulation
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results, the proposed algorithm outperforms conventional optimization schemes and
algorithms. One of the future extensions for this work is to extend the approach to
fixed-wing UAVs to achieve joint 3D trajectory optimization and power allocation.
Currently, the algorithm suffers from a performance loss of about 10%, which should
be investigated and improved. To meet the power requirements of UAV swarms, the
authors of [136] proposed a distributed federated learning (FL) approach. Accord-
ing to this approach, the UAV swarm is made up of a leader UAV and its follower
UAVs. Each follower UAV runs a local FL model based on the data it collects and
sends the trained data to the leader UAV. The leader UAV gathers these trained
models and combines them into a global FL model. The trained global FL model is
now being used to create a UAV swarm power allocation and scheduling algorithm.
The proposed algorithm outperforms traditional algorithms in terms of energy con-
sumption and delay for the UAV swarm, according to simulation results. It is to
be noted that the convergence of the FL model largely depends upon the UAV an-
tenna angle deviations, where a larger angle deviation variance requires additional
communication round for convergence. Beamforming is another area of UAV-based
communication where machine learning is used. The authors of [137] propose a ma-
chine learning-based beamforming technique to enable low-latency communication
in a multi-UAV network. If the channel or signal-to-interference noise ratio (SINR)
information is provided, the proposed method employs Q-learning to predict the
beamforming coupling coefficients. According to simulation results, the proposed
method outperforms conventional rapid beam tracking methods. Furthermore, the
new method computes the best digital weights for SINR maximization and thus
achieves better performance compared to traditional gradient based schemes for
large angle deviation scenarios. A brief summary of the discussed machine learning
algorithms for UAV communication can be found in Table B.6.

A.7 Open Research Areas and Future Directions

As seen in the preceding sections, the wide range of sensors, hardware and software
solutions for UAVs raises a number of issues and potential future research directions.
To enable a complete visual perception of the environment, we need to use sensor
fusion algorithms backed by machine learning. Even though the sensor fusion algo-
rithms listed above have excellent accuracy for object detection and classification,
their performance and reliability in extreme weather conditions and lighting needs to
be evaluated further. There is also a scarcity of data sets which can aid in analyzing
and evaluating the sensing performance of UAVs in such harsh weather conditions.
Moreover, the algorithms listed in [120] and [121] perform 3D object detection which
can significantly increase the computational overhead and hence have to optimized
to port to UAV systems. Further research into dynamic sensor fusion techniques,
depending on the requirements of the imaging scene, is required. Due to the strict
requirements for inference time for autonomous systems, low-complexity sensor fu-
sion algorithms are also essential. Another potential future extension work, as seen
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Table A.7: Machine Learning Techniques for UAV-based Communication

Year Method Application Merits Demerits References

2021 Distributed GAN Channel modelling 10% improved average UAV
downlink rate compared to

baseline

Lower data rate with
respect to perfect CSI

[129]

2021 Deep neural
networks
(SSD-VGG16)

Cellular assistance Virtualized testbed to
demonstrate DNN partitioning

for 5G infrastructure

Dynamic system
adaptation for propagation

channels is not present

[132]

2020 Variational
autoencoder

Channel modelling Accurate channel parameter
estimation and scattering effect

Validation with real-world
channel measurements is

not provided

[127]

2020 Artificial neural
networks

Cellular assistance,
Interference
management

Improved directional
beamforming

UAV mobility can
introduce handover issues

[133]

2020 Gaussian kernel
non-linear
regression

Spectrum sharing Optimal spatial spectrum radius
with maximum ASE for UAV

networks

Decreased spatial spectrum
radius can lead to increased

inter-UAV interference

[134]

2020 Artificial neural
networks

Power allocation Real-time applications 10% performance loss [135]

2020 Distributed
federated learning

Scheduling, Power
allocation

Better energy consumption and
lower delay for UAV swarms

Large angle deviation
requires additional
computation time

[136]

2020 OC-SVM, K-means Physical layer
security

OC-SVM is less sensitive to
change in signal power whereas

k-means is more resistant
towards high SNR attacks

Verification with real-time
experiments is not provided

[131]

2020 Q-learning Beamforming,
Interference
mitigation

Enhanced beamforming due to
improved coupling coefficient

estimation

Noise and interference can
distort the received

coupling coefficient power
leading to performance loss

[137]

2019 DRL ESN Interference
management

Reduces interference to ground
users and improves wireless

latency

Increased runtime
complexity

[130]

2019 K-means Channel modelling 91.8% accuracy with respect to
statistical channel model

Shadowing effects [126]

in [121], is to improve red light detection performance in the transformer model un-
der various conditions. In [116], the authors provide a novel method of fixed pillar
expansion to reduce the height inaccuracies from radar detections. This can help
in reducing computational complexity but it can lead to inaccurate estimate of the
center point of the object. Employing adaptive pillar size can be one possible future
extension. Performing joint detection and tracking using videos and point cloud
streams is also an interesting research direction. As some fusion algorithms rely on
active sensors such as radars and LiDARs, the interference effects of these sensors
must be investigated. A possible research direction in this regard is to develop novel
interference mitigation techniques for mmWave FMCW radars [138]. Even though
work has been done to improve the AoA and AoA resolution [54], [53], there is still
room for advancement in this area for mmWave FMCW radars such as accurate
estimation using low-complexity algorithms with reduced inference time.

In terms of communication, when UAVs are outfitted with various communi-
cation modules for different applications, obtaining an optimized communication
scheme that takes into account various constraints such as energy, latency, and
spectrum availability is a potential research direction. Moreover, devising algo-
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rithms which perform equally well during UAV motion also requires further inves-
tigation. One of the future extensions for [129] can be to improve the distributed
GAN model to incorporate UAV mobility and NLoS aspects to ensure robust and re-
liable communication. For [132], the optimal utilization of available UAV resources
to accomodate the various machine learning enhanced communication algorithms is
a possible future extension. Furthermore, there is growing interest in the research
community in integrating existing cellular networks with UAV networks in order to
enable future wireless technologies. Efficient handovers and association in cellular-
connected UAVs where the UAVs are in motion provides interesting directions for
further research. Apart from the above, an important area of future research is joint
sensing and communication for mmWave and UWB sensors. The authors of [139]
has provided proof of concept simulations for joint sensing and communication in
mmWave radars, yet this area is still nascent and shows huge potential. Expanding
joint sensing and communication with enhanced machine learning models can also
be explored provided the UAV resource constraints are adequately met. Other po-
tential research directions include efficient and power-optimized routing protocols
for UAV wireless networks to cater to different channel conditions and applications.

A.8 Conclusion

We provided a brief overview of the various hardware and software technologies
used for UAVs in this survey article. Various on-board sensors, communication
components, and computing platforms were discussed, as well as some practical
information about the technologies’ key metrics. Among on-board sensors, RGB-D
cameras provide better visual information related to the static environment whereas
radars and LiDARs provide better dynamics of the different objects present. From
the perspective of UAV-based communication, LoRa provides long distance coverage,
whereas better reliability can be achieved using Wi-Fi for short distances. Pixhawk
4 provides dedicated computational resources and flexibility to operate UAVs. To
cater to deep learning applications, the Nvidia boards offer an excellent choice in
terms of performance and form factor. There is also discussion of software solutions
that aid in various UAV applications. A brief description of the current state-of-
the-art machine learning and deep learning algorithms used in UAVs for sensing and
communication is also provided. CNNs offer reliable object detection and flexibility
to be used with other sensor modalities. For UAV communication, based on the
application, a number of machine learning algorithms ranging from deep neural
networks to deep reinforcement learning are in use. The information in this article
is intended to provide the reader with the most recent sensor, communication and
computing technologies for UAVs, as well as research directions for emerging UAV-
based applications.
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Recent Advances in Thermal Imaging
and its Applications Using Machine
Learning: A Review

A. N. Wilson, K. A. Gupta, B. H. Koduru, A. Kumar, A. Jha, L. R. Cenkeramaddi

Abstract: Recent advancements in thermal imaging sensor tech-
nology have resulted in the use of thermal cameras in a variety of ap-
plications, including automotive, industrial, medical, defense and space,
agriculture, and other related fields. Thermal imaging, unlike RGB imag-
ing, does not rely on background light, and the technique is non-intrusive
while also protecting privacy. This review article focuses on the most
recent advancements in thermal imaging technology, key performance
parameters, an overview of its applications, and machine learning tech-
niques applied to thermal images for various tasks. The article begins
with the most recent advancements in thermal imaging, followed by a
classification of thermal cameras and their key specifications, and finally
a review of machine learning techniques used on thermal images for var-
ious applications. This detailed review article is highly useful for design-
ing thermal imaging-based applications using various machine learning
techniques.

Figure B.1: Diagramatic overview about the recent advances in thermal imaging
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Table B.1: Subbands in the infrared spectrum

S No. IR Band Wavelength (in nm)
1 Near infrared 700 – 1400

2 Short range wavelength infrared 1400 – 3000

3 Mid range wavelength infrared 3000 – 8000

4 Long range wavelength infrared 8000 – 15000

5 Far infrared 15000− 1000000

B.1 Introduction

Since 1960, thermal imaging was confined only to military [1] and medical [2] ap-
plications, however, with the recent advancements in chip technology and lower
cost, thermal imaging has gained widespread popularity. Thermal imaging works
by utilizing the radiation in the infrared region of the spectrum, specifically the
wavelengths from 3 to 14µm. These wavelengths are subdivided into different sub-
bands as shown in Table B.1. Special devices called thermal imagers utilizes the
infrared part of the spectrum to obtain a spatial temperature distribution map of
the captured scene [3]. Each pixel in the temperature map depicts the relative tem-
perature of that point in the environment. These temperature maps can be easily
used for real-time applications with proper calibration, bias removal, and further
processing. [4].

Thermal imaging technology is independent of any external light source because
it is based solely on the detection of infrared radiations emitted by objects. As
a result, the technology is found to have a faster processing speed than its RGB
counterparts [5]. Thermal imaging devices are now being widely used in civilian
applications such as fever scanners, insulation detectors, and electrical hotspot de-
tectors due to lower chip costs, improved portability, and flexible designs. Com-
bining thermal cameras with RGB cameras has also gained popularity due to their
ability to complement each other’s features [4]. In addition to the benefits listed
above, thermal imaging provides a non-contact, non-invasive method known as in-
frared thermography for obtaining useful information about a patient’s health and
diagnosis, which has widespread medical applications [6].

The high sensitivity of thermal cameras have enabled them to be used in optical
applications as well [7]. Other applications enabled by thermal imaging include fire
prediction, weather forecasting, and animal monitoring [7]. RGB cameras depend on
illumination and reflection from the objects whereas thermal cameras are sensitive
to the emitted infrared radiation, even if the object is cold[7]. Because each object’s
heat signature is unique, thermal cameras have an advantage over standard RGB
cameras in distinguishing between similar objects.

Thermal cameras have grown in popularity and use as a result of the benefits
listed above. This article focuses on various key technological advancements to pro-
vide a glimpse into the most recent developments in this technology. The article
primarily highlights the various types of thermal imaging devices/cameras on the
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Table B.2: Comparison of previous review articles with our work

Year Reference Focus areas RA Appl. CM Image
Pro.

ML
Tech.

Comments

2005 [8] Image processing techniques for
active and passive thermography

✗ ✗ ✗ ✓ ✗ Restricted to processing
techniques

2009 [9] Status of intra-operative thermal
imaging and case report on it’s
advantages and applications

✓ ✓ ✗ ✗ ✗ Restricted to
intra-operative thermal
imaging

2014 [10] Uses and applications of thermal
Imaging in Agriculture

✓ ✓ ✗ ✗ ✗ Restricted to the field of
agriculture

2017 [11] Theory behind thermal imaging
and its applications in different
fields

✓ ✓ ✗ ✗ ✗ Restricted to working
and applications of
thermal imaging

2020 [12] Techniques for face Emotion
detection using thermal imaging

✓ ✓ ✗ ✗ ✓ Restricted to facial
emotion detection

2020 [13] Review of techniques and
methodologies on diagnosing
breast cancer using thermal
imaging

✓ ✓ ✓ ✗ ✗ Restricted to
applications in breast
cancer diagnosis

2021 [14] Role of thermal sensors and
imaging in aerial navigation
systems

✓ ✓ ✓ ✗ ✓ Restricted to aerial
navigation systems

2022 Our Work Recent advancements in
thermal imaging, latest
models of thermal cameras
available in the market,
image processing and
machine learning techniques
related to thermal imaging

✓ ✓ ✓ ✓ ✓ Not restricted to
particular filed of
study or application

RA - Recent Advancements; Appl. - Applications; CM - Current Models in market; Image Pro. - Image Processing;
ML Tech. - Machine Learning Techniques

market, thermal camera selection criteria based on application and specifications, re-
cent machine learning techniques for thermal image processing, and potential future
research directions. Our survey article differs from others in terms of application
focus, recent advancements, a brief overview of camera models, and machine learn-
ing techniques. Table B.2 highlights the most important aspects of this article,
demonstrating how it differs from previous surveys.

The remainder of this paper is structured as follows: Section B.3 focuses on re-
cent advancements in thermal imaging that includes different thermal camera models
and latest research and development in the area. Section B.4 presents different ther-
mal imaging based applications. Section B.5 goes over the recent machine learning
techniques used along with thermal imaging. Finally, section B.6 concludes the
article.

B.2 Principle of thermal sensing

Thermal imaging is a non-contact and non-destructive method to measure the tem-
perature of an object [15]. Thermal imaging utilizes the infrared radiation (IR)
emitted from an object to create a visual temperature profile of the captured scene.
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Figure B.2: Working of bolometer-based thermal sensor

As shown in Table B.1, the infrared spectrum is divided into different subbands
based on their wavelength. The wavelength determines the intensity of infrared ra-
diation that is emitted. Thermal imaging technology utilizes this energy intensity
to generate the temperature map of the captured scene. The amount of thermal
radiation emitted by a body primarily depends on the temperature (T ) of the body
and its emissivity factor (ε). The emissivity factor represents the ratio of energy
emitted from a body to that of a perfect black body at the same temperature. The
emissivity factor is 1 for a perfect black body and 0 for a perfect white body. Based
on the IR energy radiated from a body, the surface temperature Ts of the body can
be calculated as follows:

W =

[
2π5k4

15c2h3

]
T 4 = σT 4

s (B.1)

where W represents the energy flux emitted per unit area (Wm−2) of the body,
c is the speed of light in vacuum (3x108ms−1), k is the Boltzmann’s constant
(1.38x10−23JK−1), σ is Stefan-Boltzmann constant (5.67x10−8 Wm−2K−4), h is the
Planck’s constant (6.63x10−34 Js), and T is the temperature of the body in Kelvin.

When (B.1) is applied to real objects, then the surface temperature is computed
as,

W = εσT 4 (B.2)

where ε is the object’s emissivity. By utilizing W , we can obtain a thermal visual-
ization of the captured scene which is the basis of thermal imaging [15].

The primary component of a thermal imaging system is the thermal detector/sen-
sor. The thermal detector is responsible for mapping the incident infrared radiation
to an appropriate temperature value. Based on the operating principle, thermal
detectors are classified into three types, pyroelectric, thermoelectric, and bolometer
sensors as shown in Table B.3. Pyroelectric sensors are made up of special materials
that accumulate the charge on the basis of incident infrared radiation. A tempera-
ture change in the captured scene induces a proportional change in the accumulated
charge. This change in the accumulated charge is used to obtain the thermal profile
of the scene [16]. On the other hand, thermoelectric sensors operate according to the
Seebeck effect [17]. Seebeck effect is the phenomenon by which a voltage difference
is produced based on the temperature difference between two dissimilar electrical
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Table B.3: Popular thermal sensors and key sensing technology

Sl. No. Model Type Material Manufacturer

1 Lepton 3.5 [19] Bolometer Vanadium-oxide (VOx) FLIR
2 Pyrosens [20] Pyroelectric Lithium tantalate DIAS Infrared
3 InspectionCAM

IQ-AAA [21]
Bolometer Vanadium-oxide (VOx) Seek Thermal

4 D6T [18] MEMS-based
thermoelectric

- Omron

5 Evo Thermal 90
[22]

Thermoelectric - Terabee

conductors. Microelectromechanical systems (MEMS) based thermoelectric sensors
focus the incident infrared radiation onto a thermoelectric sensor. The amount of
incident infrared radiation generates an equivalent voltage. The induced voltage is
then used to compute the object’s temperature using interpolation and look-up ta-
ble approximations. [18]. Compared to pyroelectric sensors, thermoelectric sensors
are reliable and cheap. However, thermoelectric sensors suffer from non-linearity
issues due to the non-linear dependence between the output voltage and measured
temperature.

Recently, bolometer-based thermal detectors have gained popularity due to their
high thermal sensitivity, small size, and high accuracy. A bolometer is a special
material whose electrical resistance responds to the amount of infrared radiation
incident on it. Commonly used materials for bolometers include vanadium oxide
(VOx) and amorphous silicon (a-Si). An example of a bolometer-based thermal
sensor is the FLIR Lepton 3.5 [19]. The FLIR Lepton 3.5 uses a VOx-based mi-
crobolometer array for thermal imaging. Fig. B.2 shows a simplified block diagram
of the operation of a microbolometer-based thermal sensor. Fig. B.2 shows that
the optical lens system focuses the incident infrared radiation onto the focal plane
array (FPA). Each element on the FPA represents a pixel and each pixel is in
turn a VOx microbolometer that responds to the incident flux by producing a tem-
perature change. The temperature change is proportional to the resistance of the
microbolometer. The change in resistance is captured by the voltage fluctuations
which is fed into a system-on-chip (SoC). The SoC performs the necessary signal
processing and outputs the thermal profile of the scene [19].

B.3 Recent Advances in Thermal Imaging

The early thermal camera sensors were designed with a lens filled with gas. They
also required refrigeration to function properly. However, due to advancements in
semiconductor technology, thermal cameras are now comparable to standard charge-
coupled device (CCD) cameras. Furthermore, their improved portability and low
cost have made them suitable for use in several applications [23].

Advancements in thermal imaging have paved way for thermal camera sensors
that can help in enhancing user interaction with the environment. Thermal imaging-
based sensors are used in games to identify the effect of moral decisions based on
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the user’s facial heat map [24]. Thermal cameras have become portable and easy
to integrate such that they are now being used in pocket devices like FLIR C2,
FLIR One, Cat S60, and Landguide M4 [4]. Recently dual camera systems with
thermal camera integrated along with visual cameras have been developed to provide
application-based usage i.e, when surveillance is required, the thermal camera mode
is enabled in the dual camera setup. The dual camera setup is used in parking
lots to determine car parking history or recently occupied parking spots based on
the heat emitted from the engines or surrounding surfaces [4]. However, thermal
camera integration with visual camera increases the bandwidth of applications. As
thermal cameras cannot detect visual information such as numbers, signs, and words,
integration of an optical image provides an additional advantage to the thermal
image and thereby enhances it [25]. Through this overlay of optical and thermal
images, highly informative and contrast images are obtained, making the detection
of hotspots and sources of fire and heat easier. Currently, thermal cameras have
become ubiquitous with a wide variety of selection to choose from. Fig. B.3 displays
the various types of thermal camera classes. These are categorized with respect to
factors such as usage, application, temperature, and range as explained in Table
B.4.

Thermal Camera

Components

Optic System  
(Lens) Detector Amplifier Processor Display

Price Brand ResolutionErgonomics 
& Design

Dimensions 
(Size & Weight)Certification Durability

Hand-held Compact Smart Phone
connected

Mountable
Camera

Binocular
Camera

Monocular
Camera

Thermal Imaging
Smart Phone

Selection
Criteria

Classification

Figure B.3: Components, selection criteria, and classification of thermal cameras
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Table B.4: Suitable camera model with respect to the applications

Sl. No. Temperature Range Inspection Application Model

1. Low Short Quick and small Facility maintenance,
HVACs pros

E4 through E8

2. High Mid and
short

Small Electricians and plant site
maintenance

E40 through
E60

3. Low and high Mid, short,
and long

Intensive Substation surveys and
solar farm surveys

T420 to T640

B.3.1 Latest Developments in Thermal Cameras

The current subsection discusses the latest thermal camera models available in the
market. Table B.5 shows the different thermal camera models along with some key
metrics which can help in deciding the right thermal camera for different applica-
tions. Thermal camera models from companies FLIR and MOBOTIX have been
discussed here along with their suitability in accordance with various applications.

FLIR thermal imaging cameras are used for predictive maintenance. They are
also equally used by electricians and technicians to detect and resolve electrical
issues, isolation issues, etc. These cameras are well suited for making long-distance
inspections with accurate temperature profiles [35]. Furthermore, the multi-spectral
dynamic imaging (MSX) feature in these cameras enables multi spectral dynamic
imaging to make the thermal images more refined. The interfaces are also well
developed to ensure easy transfer of output data. This feature can be found in Ex,
Exx, and the T series versions of FLIR thermal cameras [36].

The E series thermal camera range includes E4, E5, E6, and E8 all of which are
highly portable and can be used to detect hidden defects. This allows technicians
to take instant action in response to a situation before it becomes too serious [36].
These cameras have thermal, visible and MSX imaging in it. Based on the type of
E series model, the IR imaging resolution can be adjusted; E4 (upto 4800 pixels),
E5 (up to 10, 800 pixels), E6 (upto 19200 pixels), and E8 (upto 76, 800 pixels). The
E40, E50, and E60 models are for frequent and wide angled inspection for onsite
technicians and electricians. These cameras also have high wireless connectivity and
touchscreen control to do instant analysis of the captured thermal images [36]. FLIR
T series is suited for measurements in extreme conditions such as long range or high
temperature. It has a rotating optical block and auto rotation feature to correctly
aim the target for exact measurement and better view for analysis and capture.
T620 and T640 has built-in GPS to add location to the thermal image for better
labelling [36]. FLIR A655sc can be used in applications where the thermal camera
mount needs to be fixed. For InGaAs detection, FLIR A6200sc thermal camera is
suitable. For high-speed mid-wave infrared (MWIR), FLIR X8400sc series shows
promise [36].

MOBOTIX thermal cameras are widely used for surveillance applications. M16
Thermal [37] has two adjacent lenses which does thermal overlay with the visual
image to pinpoint the location of hotspots like fire-affected regions in an image.
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Table B.5: Popular thermal cameras and their specifications

Sl.
No.

Model
Name

(Brand)

Camera
Type

Size
(mm)

Sensor
Resolu-

tion
(pixels)

Price
(USD)

Detecting
Temperature
Range (◦C)

Thermal
Sensitivity

(◦C)

User Interface
and

Connectivity

Refer-
ences

1 FLIR C5
(Teledyne

FLIR)

Compact
Pocket

Thermal
Camera

138×
84× 24

160× 120 855 −20− 400 0− 100 : ±3
; 100− 400 :
±3%

Touchscreen; FLIR
Ignite cloud

connectivity (using
Wi-Fi)

[26]

2 Ti480
PRO

(Fluke)

Hand-held
Camera

277×
122×
167

640× 480 − −20− 1000 ±2 or 2% Touch screen;
Wireless

connectivity
(Smart Phone,

PC); Fluke
Connect® app

compatible

[27]

3 Compact-
PRO XR

(Seek
Thermal)

Smart
Phone

Connected
Thermal
Camera

25.4×
44.45×
25.4

320× 240 599 −40− 330 < 0.070 Seek Thermal app [28]

4 Helion 2

XP50 Pro
(Pulsar)

Monocular
Camera

242×
75× 60

640× 480 4376 – < 0.025 Built-in WiFi
module - connects
to Smart Phones

using Stream
Vision 2 app

[29]

5 CAT S62
PRO

(CAT)

Thermal
Imaging
Smart
Phone

158.5×
76.7×
11.9

1440×1080 530 −20− 400 – 5.7” FHD +

Display
[30]

6 Merger
LRF XP50
(Pulsar)

Binocular
Camera

196×
143× 76

640× 480 6486 – < 0.025 Built-in WiFi
module - connects
to Smart Phones

using Stream
Vision 2 app

[31]

7 RSE600
(Fluke)

Mountable
Camera

83 x
83× 165

640× 480 – −10− 1200 ±2 or ±2% SmartView®

desktop software
[32]

8 M16B
Thermal

TR
(MOBOTIX)

Mountable
Camera

210×
158×
207

336× 252 – −40− 170 ±0.05 HD wideband
audio, Ethernet,
RS232 support

[33]

9 S16B
DualFlex

(MOBOTIX)

Mountable
Camera

130×
115× 33

336× 252 – −40− 160 ±0.05 HD wideband
audio, Ethernet,
RS232 support

[34]

M16 TR thermal camera [38] is a low-power camera that has an additional thermal
radiometry feature that enables the measurement of thermal radiation in the image.
S16 DualFlex is a flexible dual thermal camera with one or two weatherproof sensors
which can withstand any conditions due to the robust casing around the dual camera
sensor setup [25], [39]. S16 TR [40] enables the radiation values to trigger an alarm
or activation to alert the user if the temperature values exceed or are lesser than the
threshold values calibrated in the sensor. Choosing a thermal camera for a particular
application requires careful consideration of a variety of factors as it is a long-term
investment. One needs to keep in mind the right supplier to suit the needs, as the
functioning of the thermal camera depends largely on its hardware. The different
thermal camera selection criteria is as shown in Fig.B.3.

To choose the right camera model based on the application, the following char-

159



acteristics should be kept in mind [41]:-

• Camera resolution - Based on the application it can be decided if a basic
resolution model is required or an advanced one. Basic resolution is around
60 x 60 pixels. 320 x 240 pixels offer superior definition and for even more
advanced resolution 640 x 480 is suitable.

• Thermal sensitivity - Thermal sensitivity provides an indication of the ther-
mal cameras ability to sense minute variations in temperature. Higher the
value of sensitivity, more accurately the camera can measure lower temper-
ature differences. Hence, in industrial applications where such conditions of
lower temperature differences prevail, a thermal camera with high temperature
sensitivity should be selected.

• Accuracy - Depending upon the desired accuracy of the temperature readings,
a suitable thermal camera model should be selected. Currently, the standard
accuracy values are ±2% or ±2◦C. However, in more advanced thermal cam-
eras, the accuracy ranges as ±1% or ±1◦C.

• Camera features - Based on the application, having the right set of features
for the thermal camera is necessary to ensure smooth operations. In certain
applications a dual camera setup of visual and thermal camera is required. In
others, thermal fusion must be a necessity. In-built GPS helps to determine the
location which can be useful in unmanned aerial vehicle (UAV) applications
whereas, in others portability is the prime feature. Thus it can seen that
according to preference of various camera features, a suitable thermal camera
model should be selected.

• Software- Software compatibility with the corresponding hardware is essential
to maintain operations. Hence, based on the intense level of inspection, the
corresponding software should be selected.

The following are the most important considerations to make when selecting a
particular thermal camera [41]:

• Hardware- It is advantageous to have a wide range of hardware to meet the
needs of any custom application at all stages of development, from basic inspec-
tion equipment to advanced high resolution defined thermal image producing
cameras.

• Software- The software should be compatible with the application and hard-
ware platform, as the software defines how the image will be produced and
displayed. Hence, based on the information that should be retrieved from the
image, an appropriate software should be chosen.

• Hardware Interfaces- It is ideal to have multiple hardware interfaces such as
I2C, SPI, and USB so that it can be used with a variety of hard platforms and
embedded/edge devices.
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B.3.2 Future work in Thermal Imaging

Due to the vast scope in thermal imaging and its utilization in different applications,
most of the research in thermal imaging is in the production of sophisticated thermal
cameras. These cameras are more application specific and has greater range, sensi-
tivity, and tolerance. Interestingly, thermal imaging is being used in a variety of new
applications [42]. Researchers use thermal imaging to detect anxiety and classify it
based on the heat map of the face. As stated in medical research, based on the
type of anxiety, the bloodflow in the face can get altered. Certain types of anxiety
can trigger more bloodflow in the cheeks whereas others can incite low bloodflow in
the forehead [23]. Current research is also focussed on Airborne thermography in
which high resolution thermal imaging is used to measure crop fields on the basis of
temperature, drought tolerance of crops, and efficient water delivery[42].

B.4 Applications of Thermal Imaging

Medicine

Industry
Thermal 
Imaging

Agriculture

Civil

Defence

Other

.
Crop monitoring [43] Maritime [36] Surveillance [44]

Border security [36]

Firefighting [36]

Thermal overlay [25]

Art inspection [36]

Thermal scanning [45]

Electrical insulation [41]

Powerline inspection [46]

Breast cancer detection [2] Diabetic foot imaging [47] Building inspection [48]

Figure B.4: Applications of thermal imaging

A vast majority of applications involve the use of thermal imagery as shown
in Fig B.4. These include detecting cracks in building structures [48], identifying
breast cancer [2], surveillance [44], autonomous driving [49], etc. Thermal cameras
are favoured primarily because of their ability to obtain useful information through
a non-contact non-intrusive manner. High resolution thermal cameras are employed
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to detect temperature variations in different parts of the human body which can
in turn help in medical diagnosis. The development of a neonatal in intensive care
units can be assessed based on the time-dependent thermal variations obtained from
thermal imaging. As the method is non-contact and non-invasive it poses reduced
risk to neonatals [50]. Thermal imagery also helps to identify irregularities and
detect diseases early. Breast cancer identification [51], [52], tumor detection [53],
diabetic foot inspection [54], [47], covid-19 screening [55], [45], diabetic eye disease
[56], and skin cancer lesions [57] are some areas where thermal imaging has an edge
over other traditional methods. Other applications include dental diagnosis where
the amount of deposits and activity on the tooth root caries are effectively measured
using thermal imaging to make accurate decisions [58].

One of the earliest use of thermal cameras stems from military and defense
applications. Thermal cameras can easily identify intruders in the dark proving to
be an effective sensing technology in low light environments. Additionally they aid
in surveillance [44], detection and tracking of UAVs [59], ship navigation [36], flight
landing assistance [60], maintaining border security [61], etc.

Industrial applications for handheld thermal cameras have also gained promi-
nence due to their ease to carry and detect fault and issues. Issues with electrical
insulation [41], pipeline rework [46], and power-line inspection [46] are some areas
where thermal cameras has helped improve industrial processes. Additionally, they
are also used in welding applications to inspect defects [62]. Similarly, in civil and
construction, thermal imagery helps to identify air leakages in buildings, defects and
cracks in bridge structures [48], etc.

Thermal cameras are used in agriculture for crop monitoring, yield forecasting,
and irrigation scheduling [43]. Monitoring field nurseries to detect early diseases
in tender seeds using thermal signatures has helped improve yield. In addition
to the above applications, thermal cameras also find use in firefighting [63], face
de-identification [64], human activity recognition [65], occupancy estimation [66],
disaster management [67], thermal overlay [25], etc. Their use in artwork inspection
to validate the authenticity and identify defects is also prominent [68]. Thermal fu-
sion along side RGB images have helped in semantic segmentation of urban environ-
ments in order to assist autonomous vehicles [69]. Recent advances in semiconductor
technology coupled with enhanced computing capabilities and machine learning al-
gorithms have also helped to explore new applications for thermal cameras. Some
of these will be covered in the subsequent section.

B.5 Machine Learning Techniques for Thermal
Imaging Applications

In recent years, thermal imaging coupled with machine learning techniques has
gained traction. Thermal images provide the temperature gradient of the captured
scene. Any fault or anomaly in a system or device is associated with a change in
its temperature profile. By utilizing state-of-the-art machine learning techniques
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along with thermal imaging, these anomalies can be easily detected and inferred in
a contactless and non-invasive manner. Moreover, the ability to perform highly scal-
able operations on large datasets have also added to the popularity in using thermal
imaging with machine learning techniques.

In electric power industry, identifying equipment faults early from the tempera-
ture distribution of thermal images can help prevent equipment failure, fire hazards
and other potential risks. In [70], Ying et al. addresses the problem of incorrect
detection of equipment parts with different orientation from hand-held thermal cam-
era images. The authors propose a cascaded two-stage spatial transform network
(STN) that is fed into faster region-based convolutional neural networks (R-CNN)
to identify the required rotation transformation. Training is performed separately
for the two stages and then further end-to-end fine tuning is performed to achieve
detection with large orientation angles. The proposed approach outperforms current
state-of-the-art methods including the oriented you only look once (YOLO) algo-
rithm with a higher mAP value. Another work in [71], utilizes thermal imaging to
characterize the condition of a machine. The authors use two convolutional neural
networks (CNNs) along with the Zeiler method [72] to obtain useful insights from
the thermal image. One of the CNN is used to extract the spatial aspects from
the roll bearing element and the other CNN infers the gradation of imbalance us-
ing the extracted temporal features. The proposed system is able to obtain 91.6%

and 95% accuracy for rotating machinery use cases in machine-fault detection and
oil-level prediction applications. Another work by Choudhary et al. [73], focuses
on detecting bearing faults in induction motors using thermal imaging. The perfor-
mance of traditional feature extraction methods fail due to insignificant information
and string noise from the thermal noise. The authors in this work thus use a two
dimensional discrete wavelet transform (2D-DWT) along with principal component
analysis (PCA) to resolve this issue. The extracted features were then arranged
according to the Mahalanobis distance to select the optimal features. Classification
is performed using support vector machines (SVM), linear discriminant analysis
(LDA), and complex decision trees (CDT). Reported results show that SVM ob-
tained higher classification accuracy as compared to other techniques. The work by
Ogbechie et al. [74] uses dynamic bayesian networks for anomaly detection in laser
surface heat treatment process. The proposed approach uses a NIT Tachyon 1024
thermal camera to obtain images of the heat treatment process. After the necessary
preprocessing and feature selection, the data is trained using two different types
of dynamic bayesian networks with a k -fold cross validation. An anomaly score is
calculated that is used to identify and detect anomalies in the laser heat process.

Other fault detection and classification areas where thermal images combined
with machine learning prove useful are in photovoltaic systems [75]. Photovoltaic
systems are vulnerable to various defects such as encapsulant defects, back sheet
defects, cracket cell, and faulty interconnections. In this work, the authors have
initially performed a texture feature analysis for the different faulty panels using
grey-level co-occurrence matrices (GLCMs). The extracted features are then trained
using artifical neural networks to classify the faults. The new approach exhibits
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93.4% training and 91.7% testing efficiency respectively. It is also reported that the
proposed approach outperforms other conventional techniques such as SVMs and
k-nearest neighbours (kNNs) by a significant margin.

Machine learning is being extensively used in the medical domain to the minimize
the manual decision making which can led to errors. Machine learning models once
trained with the thermal images can be used to predict and detect tumors. Early can-
cer identification using non-invasive techniques with thermal imagery helps reduce
fatality rate. In [82], Karthiga and Narasimhan, study various machine learning clas-
sification techniques to best extract the features to display these cancer symptoms.
Thermal imagery is initially preprocessed using top-hat and bottom-hat transforms.
The resulting image structure is segmented using morphological operations to yield
various statistical, geometrical, and intensity features. Further processing using
GLCM is performed to obtain texture features. The texture features in the spatial
domain are classified using various machine learning techniques. The cubic SVM
shows the most promising accuracy with 93.3% as compared to other techniques
such as kNN, decision tree classifier, and logistic regression. In [79], the authors
use thermal camera and heart rate sensors to study the time delay associated with
various physiological functions of the body. The thermal camera provides facial im-
ages which is processed using a two-layer artificial neural network (ANN) in order
to predict the actual change in breathing temperature. Additional adaptive algo-
rithms are also employed with the heart rate measurements to accurately estimate
the temperature. Results show that the time delay associated with the drop in heart
rate and breathing frequency corroborate with real world measurements obtained
from heart rate sensors of cyclists.

Other applications of thermal imagery coupled with machine learning include
detection of damaged pavements as studied in [80]. In this work, the authors use a
pre-trained EfficientNet B4 fusion architecture to combine thermal and RGB images
to detect pavement damages. An argument dataset is also generated by addition
of camera noise, non-uniform illumination, and other parameters to replicate real-
world pavement damages and scenarios. Experiments carried out with images from
individual RGB sensors, thermal cameras, and the fused images show that the fused
thermal-RGB image provides better prediction accuracy of about 98.34%. The fused
images are capable of providing reliable detections for various cracks such as alliga-
tor, longitudinal, and transverse along with pothole categories.

In [81], the authors develop a novel approach to enable semantic segmentation
for thermal images by introducing a gated featurewise transform layer to the pro-
posed edge-conditioned convolutional neural network (EC-CNN) architecture. Low
resolution thermal images are affected by thermal crossover and imaging noise that
makes detecting object boundaries challenging. To overcome this issue, the authors
utilize hierarchical edge features obtained by training RGB images. The trained
model is then fed to the proposed semantic segmentation network that is based on
DeepLabv3 [88]. The reported results show that the proposed method outperforms
traditional methods for thermal image semantic segmentation. Additionally, the au-
thors have also provided with a manually annotated thermal image dataset (SODA)
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Table B.6: Machine learning techniques for thermal imaging

Year Method Application References Comments

2016 Bayesian networks Firefighting [76] 1. Combination of mean, dissimilarity, correla-
tion, skewness, and standard deviation pro-
duced highest performance results.

2. Usage of CNN and discrete wavelet transforms
can be explored.

2016 K* algorithm Occupancy
estimation

[77] 1. Entropy-based algorithms exhibited excellent
performance.

2. Can improve classification performance using
recent occupancy history.

2017 Dynamic bayesian
networks

Anomaly
detection

[74] 1. Obtained 90% specificity with greater than 80%

sensitivity.
2. Can improve process parameter values. Online

implementation for timely feedback can also be
a potential future work.

2017 Dynamic bayesian
networks

Occupancy
estimation

[78] 1. Three order reduction in memory requirement
and 8x reduction in memory utilization. 13x
improvement in execution time.

2. Future extension can include exploring the per-
formance with multiple PIR sensors.

2018 STN, Faster R-CNN Equipment
detection

[70] 1. Accurate identification of rotated equipments.
2. Future extension can be online implementation

for live detection.

2018 CNN Condition
monitoring of

machines

[71] 1. More than 90% accuracy in real-world applica-
tions.

2. Online condition monitoring for offshore wind
turbines can be future work.

2018 ANNs Breathing
frequency
estimation

[79] 1. Results corroborate with real values obtained
from cycling expeditions.

2. Usage of CNNs and parallel algorithms for fu-
ture work.

2019 ANNs Identifying
faults in

photovoltaic
systems

[75] 1. Fast detection time along with remote monitor-
ing. Enhanced classification accuracy of 92.8%
with ANNs as compared to SVMs and kNNs.

2. Online methods and CNNs can be explored.

2019 Deep RNN based
LSTM

Human activity
recognition

[65] 1. HAR systems with RNNs offer 96% accuracy as
compared to other methods.

2. Performance with bright images, orient-
ed/tilted subjects, etc can also be explored.

2020 EfficientNet B4 Pavement defect
detection

[80] 1. Excellent pavement defect detection perfor-
mance compared to other methods. Addition-
ally, the proposed method outperforms detec-
tion as compared to RGB images.

2. Prediction performance is low for road marking,
manholes, and shadow as compared to RGB.
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2020 Gated featurewise
transform with

EC-CNN

Thermal
semantic

segmentation

[81] 1. Proposed method performs better than
DeepLabv3 with 4.8% gain. Resonable perfor-
mance under thermal crossover.

2. Incorporate transfer learning from RGB data
and including more annotated thermal images
can be future work.

2020 Random forests and
ensemble learning

Face recognition
and

de-identification

[64] 1. Ensemble learning can improve the prediction
performance.

2. Fusion techniques can be investigated.

2021 SVM, LDA, CDT Induction motor
fault detection

[73] 1. SVM outperformed LDA and CDT for bearing
defect classification.

2. Can increase cases for bearing defects.

2021 Cubic SVM Breast cancer
identification

[82] 1. Cubic SVM classifier produced highest accuracy
of 93.9% as compared to other classifiers.

2. The work can be extended to include other
views such as right, left, and lateral to improve
accuracy.

2021 CNN Hand gesture
classification

[83] 1. Lightweight CNNs with high accuracy of
99.52%

2. Can extend for hand gesture recognition in com-
plex backgrounds.

2021 ResNet-50 with
random forest

Pollution
identification on

MOSA

[84] 1. Proposed approach uses ResNet50 with random
forest to achieve mean recognition accuracy of
98.04%.

2. Experiments on real MOSA samples can be per-
formed.

2021 Random forest Occupancy
estimation

[66] 1. Uses blob filtering algorithm to distinguish hu-
mans close to each other. Achieves 99% accu-
racy.

2. Sensor fusion, different deployment configura-
tions, transient heat conditions, CNNs and
RNNs can be explored.

2021 Deep convolutional
encoder-decoder
network with

adaptive boost

Occupancy
estimation

[85] 1. Privacy-friendly, low-resolution TSA sensing
technique with 98.43% classification accuracy.

2. Estimating human-sensor distance using en-
tropy point methods can be potential future
work.

2021 ResNet
encoder-decoder

network with pyramid
supervision training

Semantic
segmentation in

snowy
environment

[86] 1. Proposed network achieved 78% mIoU and
has become state-of-the-art for snowy environ-
ments.

2. Dataset classes can include additional classes
such as animals and maintenance holes. Inte-
grate other sensors for future work.

2022 ResNet-50 encoder
decoder model with
transformer based

fusion

Glass
segmentation

[87] 1. Proposed RGB-T network outperformed exist-
ing methods with 93.8% IoU for images with
glass.

2. Can combine with polarization to improve re-
sult.

for further research into thermal semantic segmentation. Another interesting work
by Dong et al. in [87], utilizes the transmission properties of infrared radiation to
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segment images containing glass elements. As glass is transparent to visible light,
traditional methods for RGB images fail to effectively detect and segment regions
containing glass. The architecture in the proposed work is made up of two inde-
pendent ResNet-50 networks that act as the encoder stage for extracting high-level
features from both the RGB and thermal images. These features are then combined
using a transformer-based fusion module. The result is then fed into a decoder for
obtaining the desired segmentation output. Qualitative and quantative evaluations
have shown that the proposed approach outperforms current state-of-the-art tech-
niques and effectively segments glass components in images. However, the approach
still requires further work to classify in polarized image conditions.

Occupancy estimation is another potential application based on thermal imagery.
In [66], the authors provide a comparative study of various low resolution thermal
sensors, GridEye, MLX90640, and Lepton that can be used to provide highly ac-
curate real-time occupancy estimation. The proposed approach involves a unified
algorithm pipeline that involves noise reduction, bilinear interpolation, blob filter-
ing to distinguish multiple people close to each other, and connected component
analysis to obtain the best possible results. The output from this pipeline is fed
into a novel feature vector design that is used in conjunction with classification
algorithms to classify target occupants. Classification algorithms include random
forests, gaussian naive bayes, kNNs, and SVM. Experiment results have reported
that the random forests algorithm exhibits 99% accuracy. In comparison to the
above, the authors in [77], use a low-pixel count 4 x 16 thermal detector array to
perform occupancy detection. The thermal detector along with RGB camera is
mounted on the Raspberry Pi to obtain the images. The RGB camera served as the
ground truth occupancy values. Background separation algorithm coupled with a
slow-moving exponential weighted moving average (EMWA) accompanied the pre-
processing stage before feature extraction. Three features, number of active pixels,
number of connected components, and size of the largest connected component were
identified to be used with the classification algorithms. The Weka toolchain [89]
was used to compare different machine learning classification algorithms. It was
found that entropy-based algorithms such K* gave the best performance with an
accuracy of 82.56% and a root mean square error of 0.304. Another approach fol-
lowed by Naser et al. in [85], uses an array of thermal sensors at different locations
of the room to perform human segmentation and occupancy estimation. In this
work, the authors have proposed a deep convolutional encoder-decoder network for
human segmentation from the thermal images. Residual thermal signatures are fur-
ther eliminated during the post processing using connectivity filters. To classify
and also to determine occupancy estimation, the output is then fed to an adaptive
boosting algorithm. The adaptive boosting approach provides accuracy of 98.43%
from vertical and 100% from overhead sensor locations. Another work by Charles et
al. [78] uses a bayesian machine learning algorithm on a resource constrained ARM
Cortex-Mo based ST Nucleo-F070RB board to estimate the room occupancy using a
single analogue passive infrared (PIR) sensor. The proposed algorithm uses infinite
hidden markov model (iHMM) with laplace components on the raw PIR data for
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segmentation. The segmented data is now manipulated to estimate the laplace di-
versity which provides an indication of the room occupancy. Reported results show
that a moderately high-performance microcontroller is able to house the occupancy
algorithm while providing real-time performance and reduced power consumption.

Classification of hand gestures for sign language digits can also be performed
using thermal imaging as demonstrated in [83]. Daniel et al. demonstrates an
end-to-end edge computing system based on light weight CNNs that can classify
thermal images of different hand gestures. The proposed approach utilizes a 3200
thermal image dataset to train a model that is based on bottleneck layers. The
model is deployed on a Raspberry Pi and the developed system achieves 99.52%

accuracy. Furthermore, the proposed approach is compared with the Big Transfer
(BiT) model to report approximately a 20% improvement in accuracy. For human
activity recognition (HAR), the authors in [65] extend the OpenPose approach to ex-
tract body joints from human thermal images for activity recognition. The proposed
approach utilizes OpenPose and subsequently performs a spatiotemporal feature ex-
traction. Discriminant analysis is performed on the extracted features followed by
a deep recurrent neural network (RNN) based long short-term memory (LSTM)
to better retain the embedded time-sequential information. The novel approach is
reported to outperform other techniques such as hidden markov models (HMM),
deep belief networks (DBN), CNN and RNNs. Thermography is also used for face
recognition and de-identification [64]. Normal RGB images can easily deceive face
recognition systems as they work only on identifying the extracted features. The
authors in this work use additional features extracted from thermal images such as
feature matrix and feature image along with random forests and ensemble learning
to improve prediction accuracy and better facial de-identification. This can help
in preventing erroneous face recognition with use of facial images. Another inter-
esting work in [76] uses thermal imagery in firefighting situations to identify local
conditions and decide proper navigation course through a fire or smoke prone area.
High temperature regions are separated using the Otsu method which is then fed
into a bayesian classifier to probabilistically detect multiple classes during real-time
implementation. Further, a multi-objective genetic algorithm using resubstitution
and cross-validation errors is also used to find the best combination of features to
obtain the lowest error and highest performance.

Improving road safety in snowy environments is yet another application in which
thermal imagery can be beneficial. The authors in [86], have developed a multi-
modal RGB-thermal fusion model for semantic segmentation of roads in snow filled
environments. The architecture utilizes a convolutional encoder-decoder fusion net-
work where the encoder is based on a fully pre-activated ResNet-50 model [90] to
maintain good tradeoff between computation and feature learning. Both the RGB
and thermal images are fed into the encoder module that is followed by a atrous
spatial pyramid pooling (ASPP) which is used to incorporate image features. The
ASPP’s output is fused and then fed into a ResNet-34 based decoder module. Addi-
tional pyramid supervision training scheme [91] is also employed to improve training
accuracy. The proposed method has obtained a 78% mIoU outperforming state-of-
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the-art network for snowy environments. Thermal imaging coupled machine learn-
ing is also used to identify the severity of pollution on metal oxide surge arrester
(MOSA) [84]. The proposed approach utilizes thermal images of MOSA at various
pollution levels, which is fed into pretrained ’ResNet50’ architecture for feature ex-
traction. The extracted features are then given to various classifiers such as kNN,
SVM, naive Bayes and random forest. Random forest gave the best accuracy along
with fast inference time. The authors were also able to validate the practicality
of the proposed approach by experimenting on 11kV MOSA which also gave accu-
rate results. A brief summary of the various machine learning techniques used for
thermal imaging can be found in Table B.6.

B.6 Conclusion and Future work

Technological innovations in the semiconductor industry and along with other ad-
vancements has made thermal imaging applications more accessible and prevalent.
Novel machine learning algorithms in thermal imaging applications have shown to
provide better performance as compared to their traditional counterparts. Ther-
mal fusion has shown to be used in various applications scenarios and is still an
active research topic. Combining polarization properties in thermal fusion algo-
rithms containing glass segments is still unexplored. Further, it is shown above that
offline algorithms for thermal data provides good performance. However, their on-
line implementations require further research. In object detection and classification,
eliminating the thermal retention signatures is also crucial to improve performance.
Further, the current algorithms utilize existing implementations for normal RGB
with some variations. To obtain better performance and efficient resource utiliza-
tion, devising or modifying the algorithms to incorporate the thermal characteristics
of the scene would be highly beneficial.

In this article, the most recent developments in thermal imaging are reviewed.
The key specifications of the most recent thermal imaging devices have been dis-
cussed. The use of thermal imaging in a wide range of disciplines and scenarios
was discussed. Finally, machine learning techniques for thermal imaging were dis-
cussed along with possible future work. This article is useful as a reference guide for
designing and implementing thermal imaging-based systems and/or applications.
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Estimation of UAV Count Using
Thermal Imaging and Lightweight
CNN

W. A. Nelson, A. Jha, A. Kumar, L. R. Cenkeramaddi

Abstract: Illegal and improper use of UAVs has damaged public
property and challenged the safety and security of the civilian population.
Due to their small form factor, UAVs are undetectable using conventional
aircraft detecting methods. In this work, we have addressed this issue
by utilizing thermal images to detect and estimate the UAV count in a
multi-UAV setting. Thermal imaging-based detection provides a number
of advantages, including night vision, temperature sensitivity, low visibil-
ity, camouflage penetration, and non-invasiveness. It is a non-contact and
non-intrusive detecting method that can detect hidden objects or people
even in low-visibility environments such as smoke and fog. Experiments
were carried out by capturing thermal images of a multi-UAV setting,
where an arbitrary number of UAVs are flying in a random manner. Fur-
ther, a UAV-thermal dataset is also developed so as to facilitate further
research. Extensive experiments were carried out and the reported re-
sults show that the proposed model accurately estimates the number of
UAVs with an accuracy 99.9%.

C.1 Introduction

Advancements in unmanned aerial vehicles (UAV) technology have sparked interest
in utilizing UAVs for various applications such as package delivery, maintaining law
and order, surveying, disaster management, defense, etc [1]. However, in recent
times, the illegal and improper use of UAVs has elevated a growing concern to
detect, monitor, and track UAV-related activities [2]. In this context, techniques to
identify and detect illegal and intruder UAVs are of prime significance. There are
a lot of works in the literature which address this issue using various sensors and
techniques. Some of the notable ones include using acoustic sensors [3], RGB images
[4], radar modules [5], etc. However, in this work, we focus our attention on using
thermal imaging for UAV detection. The primary motivation for using a thermal
imaging-based solution can be attributed to the improved visibility that thermal
sensors offer in extreme light and dark conditions. Subsequently, thermal sensors
are invariant to background noise as compared to acoustic sensors [6], [7].
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There have been multiple attempts throughout the literature that use thermal
imaging for UAV detection. One such notable work is in [8], where the authors
develop a UAV detection and tracking system using deep learning techniques. A
data set containing UAVs in visual and thermal modes was generated using adver-
sarial data augmentation methodologies. Additionally, extensive experiments were
conducted that revealed that the proposed model performed well on real-world UAV
images with complex environments despite being trained on synthetic data. In [9]
and [10], the authors develop UAV detection systems to detect obstacles using ther-
mal sensors during the night. Particularly, in [9], the proposed method uses RGB
camera and ADS-B signals for validating the obtained results. Results also showed
that the detection accuracy was 100% for extreme illumination conditions and dur-
ing the night in all cases. The authors in [11] used faster-RCNN, a saliency map,
and a magnifying small objects (MSO) module to develop a UAV detection system.
The thermal saliency map helps to extract meaningful features from the thermal
images. Additionally, the MSO module enhances the resolution of small objects
before feeding the thermal image to the model. The MSO module thereby increases
the accuracy of the model. Reported results indicate more than 93% accuracy for
the proposed approach. In [12], the authors investigate the effectiveness of training
a UAV detection system using limited thermal images. In order to improve the ac-
curacy of the model, the RGB images containing UAVs were preprocessed to retain
characteristics found in thermal imagery. The model was hence trained on prepro-
cessed RGB and limited thermal images. It was reported that the accuracy of the
trained model improved significantly based on the type of preprocessing performed
on the RGB images.

It can be seen from the above paragraph that most of the literature pertaining to
UAV detection using thermal imagery lacks sufficient real-world datasets. Synthetic
thermal images are generated from RGB images or other sources to mimic thermal
image characteristics. Additionally, the literature focuses on the detection of just a
single UAV. In real-world intruder and trespassing scenarios, simultaneous detection
of multiple UAVs is crucial to ensure safety and security.

Our work aims to bridge this gap by providing a method to accurately estimate
the number of UAVs in a multi-UAV scenario. Additionally, this work will act as
a reference for future detection systems to embark on the challenge of detecting
multiple UAVs simultaneously. The main contributions of this paper are:

• Proposed a simple cost-effective approach to estimate the count of UAVs in
multi-UAV setting by utilizing thermal imaging.

• Developed a lightweight machine learning model that can be used on the edge
to estimate the UAV count in a multi-UAV scenario.

• Developed a thermal dataset that contains a total of 10 UAVs flying simulta-
neously in all directions in a random manner.

The remainder of the paper is organized as follows. Section C.2 provides the
problem formulation. Section C.3 explains the proposed method that includes the
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Table C.1: Experimental parameters.

Parameters Details

Semicircular area Radius: 5 meters
Measurement duration 5 minutes

UAV model Count
DJI Mavic 2 Enterprise 1

DJI Mini 2 1

DJI Mini SE 2

DJI Mini 3 Pro 1

Tello EDU 4

SYMA X30 1

Table C.2: Thermal camera specifications.

Parameters Value

Thermal sensitivity (mK) < 50

Resolution (pixels) 160× 120

Spectral Range (microns) 8− 14 (nominal)
Frame Rate (Hz) 8.7 (effective)

Horizontal Field of View (◦) 57

Lens Type f/1.1
Size (mm) 10.5× 12.7× 7.14

experiments, measurement setup, dataset details, and proposed convolutional neural
network (CNN) architecture. Section C.4 provides the results obtained after using
the proposed approach. Finally, Section C.5 concludes the paper by providing a
summary and possible future extensions.

C.2 Problem formulation

UAVs are powered with battery sources to conduct their various operations such as
flight, landing, and hovering. These operations dissipate energy. Additionally, the
rotation of propellers and other aerodynamic moving parts also results in energy
dissipation. A part of the energy dissipated is in the form of heat or thermal energy.
The dissipated thermal energy is characteristic of each UAV and depends on various
factors such as shape, size, internal components, and battery type of the UAV.
Hence, these thermal signatures can be utilized to detect and estimate the UAV
count in the captured frame. Hence in this work, the primary objective is to estimate
the UAV count from a captured frame by utilizing thermal imaging and machine
learning techniques.
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Figure C.1: Experimental setup used for collecting thermal images of UAVs.

C.3 Method

Each UAV has its own characteristic thermal signature. The proposed method ex-
ploits these thermal signatures to detect UAVs. The thermal signatures are captured
by using a thermal camera, in this case, the FLIR Lepton thermal camera [13]. The
captured thermal images are then provided to our custom lightweight CNN model to
estimate the UAV count in the captured frame. The precise steps are outlined below:

Step 1: Collect thermal images of various types of UAVs using the FLIR
Lepton thermal camera.
Step 2: Preprocess the obtained raw thermal images by resizing, normalizing,
grayscale conversion, etc. before feeding to the proposed CNN architecture.
Step 3: Train the processed images with our custom lightweight CNN model to
obtain an estimated UAV count in the scene.

C.3.1 Experiment

The experiment was conducted primarily in an indoor lab environment that consisted
of a semicircular area of radius 5 meters. Each measurement of the experiment
involved capturing thermal images of UAVs flying in the area. The measurements
consisted of an arbitrary number of UAVs flying in all directions in a random manner.
The measurements were taken in the order of increasing number of UAVs in the
scene. Different UAV models such as DJI series [14], Tello EDU series [15], and
SYMA series [16] were employed for the measurements. Details regarding the UAV

183



Input 
thermal 
image

Convolutional layerMaxPooling layer

Flatten 
layer

Dense 
layer

0

1

8

9

Output 
layer

3x3
x8 2x2 2x2

3x3
x1

6

Regularization 
factor = 0.001

160x1
20x3

Figure C.2: Proposed CNN architecture for estimating the UAV count from thermal
images.

model types can be found in Table C.1. As detecting small-sized UAVs is more
challenging, the designed experiments also used Tello EDU UAVs for measurement.
All the Tello EDU UAVs were programmed to fly in predefined trajectories. The
remaining UAVs however, were operated manually by human control. Additional
details regarding the experiment can be found in Table C.1.

The thermal images are captured using the FLIR Lepton 3.5 camera [13]. The
FLIR Lepton 3.5 outputs a thermal image that has a resolution of 160× 120 pixels
with an effective frame rate of 8.7 Hz. The FLIR Lepton offers a nominal spectral
range of 8 − 14 microns with a thermal sensitivity of less than 50 mK. Due to its
small size and excellent performance, it serves to be a good candidate to be used
in the proposed method. Additional details regarding the thermal camera can be
obtained from Table C.2.

The thermal camera is mounted on top of a static tripod as shown in Fig. C.1.
The power to the thermal camera is supplied with the help of a USB A connection
from the Raspberry Pi Model 4B [17]. A Picamera [18] is also fitted just below the
FLIR Lepton. The purpose of the Picamera is to capture RGB images and provide a
ground truth for the thermal images. The Picamera is also powered by the Raspberry
Pi and operates synchronously with the thermal camera. In addition to powering the
two cameras, the Raspberry Pi also serves the purpose of capturing and storing the
thermal and RGB images obtained from the FLIR Lepton and Picamera respectively.
The Raspberry Pi is installed with Ubuntu 18.04 [19] as the operating system.
Ubuntu 18.04 was selected so as to facilitate seamless integration and installation
of ROS Melodic[20] and other dependent software packages. ROS Melodic helps to
capture data simultaneously from both the FLIR Lepton and Picamera. A portable
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Table C.3: Layerwise architecture details of the proposed CNN model

No. Layer Output Size Parameter
1 Input [(None, 160, 120, 3)] 0

2 Conv2D (1) [(None, 160, 120, 8)] 224

3 MaxPooling2D (1) [(None, 80, 60, 8)] 0

4 Conv2D (2) [(None, 80, 60, 16)] 1168

5 MaxPooling2D (1) [(None, 40, 30, 16)] 0

6 Flatten [(None, 19200)] 0

7 Dense [(None, 10)] 192010

power bank is used to supply power to the Raspberry Pi board.
As mentioned above, each measurement consisted of flying a fixed number of

UAVs in all directions. Thermal and RGB images for each of these flight trajec-
tories are captured and stored. A total of 10 measurements are taken where each
measurement consisted of 1, 2, 3, etc. up to 10 UAVs being flown in random direc-
tions. Each measurement lasted for a total of 5 minutes so as to capture at least 2500
thermal images. Different UAV models were used in these measurements to improve
variability. Further, one measurement was conducted in an outdoor environment to
introduce noise and additional variability to the data set. This in turn provides a
way to understand how the proposed method performs in outdoor scenarios.

C.3.2 Dataset Details

The thermal images captured using the FLIR Lepton camera have an image resolu-
tion of nrow×ncol = 160×120 pixels. Using the setup described in the above section,
we have created a data set Dj = {yij}N=1000

i=1 of thermal images where y represents
each thermal image in a set of 1000 of images from the class j. Here class j denotes
the images that have j UAVs present in them. For example, class 2 denotes thermal
images with 2 UAVs. A subset from this data set is provided to the proposed CNN
model as input for training.

C.3.3 Convolution neural network (CNN)

The proposed CNN model is shown in Fig. C.2. The input to the CNN is the
thermal image of size 160×120. This is followed by convolution (Conv2D) and max
pooling layers. After the input layer, the image is fed into a convolutional layer
with 8 filters and a kernel size of 3× 3. Features are extracted in this layer and the
reduced image is fed to a max pooling layer of dimension 2× 2. The reduced image
then undergoes a second convolutional operation with a L2 regularizer that has a
regularization value of 0.001. This is further followed by max pooling, flatten, and
dense layers. All the convolutional layers are activated using the ReLu non-linear
activation function. Finally, the output layer uses softmax activation to provide
outputs in terms of the probability of the number of UAVs present in the captured
image. Additional architectural details are outlined in Table C.3.
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(a) (b)

Figure C.3: RGB images from Picamera for (a) 6 UAV measurement scenario, (b)
8 UAV measurement scenario.

(a) (b)

Figure C.4: Thermal image from FLIR Lepton for (a) 6 UAV measurement scenario,
(b) 8 UAV measurement scenario.

The UAV-thermal dataset that is developed for this work contains 10, 000 ther-
mal images. The images are segregated into folders ranging from 1 to 10, where each
folder represents a class depicting the number of UAVs in the scene. The dataset
is divided into the train, test, and validation sets in the ratio 80%, 10%, and 10%

respectively. The sparse categorical cross-entropy function is used to minimize the
loss. Further, the model uses an adaptive momentum (Adam) optimizer with 10−4

as the learning rate during training.

C.4 Results

In this paper, we propose a low-cost approach to estimate the UAV count in a scene
using lightweight CNN. Fig. C.3 shows the visual RGB images of the measurement
scenarios with 6 and 8 UAVs flown in a random fashion. Fig. C.4 depict the
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Figure C.5: Training and validation loss curve.

Figure C.6: Confusion matrix obtained on the test data set.

corresponding thermal images for the 6 and 8 UAV scenarios respectively. The
proposed CNN model is trained on the thermal images from the created dataset.
We use 10-fold cross-validation to train the proposed CNN model. The dataset is
split with (80, 10, 10)% for train, testing, and validation respectively. Fig. C.5 shows
the loss curve obtained during the training. It can be observed from Fig. C.5 that
the training and validation loss converge to a minimum after 40 epochs. The model
attains 99.91% validation accuracy from the 10-fold hold-out validation. Further,
after the training, the model is tested with previously unseen data (10% from the
dataset) to evaluate the performance. We obtained an average of 99.9% accuracy
on the test set. The confusion matrix depicting the model performance is provided
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in Fig. C.6.

C.5 Conclusion and Discussion

In this paper, we proposed a method to estimate the number of UAVs in a scene.
An end-to-end technique is developed that captures thermal images using embedded
hardware and later processes and estimates the number of UAVs. Additionally, a
UAV-thermal dataset is also developed that consists of a combination of 10 UAVs
flying in all directions in a random manner. Extensive experiments demonstrate that
the proposed CNN architecture was able to provide 99.9% accuracy in estimating
the exact number of UAVs present. Future extensions to this work include UAV
model identification in a multi-UAV setting that can help address UAV security
threats.
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Estimation of number of unmanned
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Wilson A. N., Ajit Jha, Abhinav Kumar, Linga Reddy Cenkeramaddi

Abstract: With the exponential growth in unmanned aerial vehicle
(UAV)-based applications, there is a need to ensure safe and secure op-
erations. From a security perspective, detecting and localizing intruder
UAVs is still a challenge. It is even more challenging to accurately esti-
mate the number of intruder UAVs on the scene. In this work, we propose
a simple acoustic-based technique to detect and estimate the number of
UAVs. Our method utilizes acoustic signals generated from the motion
of UAV motors and propellers. Acoustic signals are captured by flying an
arbitrary number of 10 UAVs in different combinations in an indoor set-
ting. The recorded acoustic signals are trimmed, processed, and arranged
to create a UAV audio dataset. The UAV audio dataset is subjected to
time-frequency transformations to generate audio spectrogram images.
The generated spectrogram images are then fed to a custom lightweight
convolutional neural network (CNN) architecture to estimate the number
of UAVs in the scene. Following training, the proposed model achieves an
average test accuracy of 93.33% as compared to state-of-the-art bench-
mark models. Furthermore, the deployment feasibility of the proposed
model is validated by running inference time calculations on edge com-
puting devices such as the Raspberry Pi 4, NVIDIA Jetson Nano, and
NVIDIA Jetson AGX Xavier.

D.1 Introduction

Advancements in chip miniaturization and wireless connectivity have made un-
manned aerial vehicle (UAV) based solutions attractive in various applications such
as agriculture [1], disaster management [2], aerospace [3], law enforcement [4], etc.
Their widespread popularity can be attributed to their unparalleled maneuverabil-
ity, decreasing cost, and increased sophistication [5]. However, the advantages of
UAVs are also exploited for improper and illegal use [6]. Further, as UAVs are com-
pact and small in size, concerns regarding collisions with other air-borne entities,
privacy, security, delivery of dangerous payloads, etc. should also be addressed.
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Ground control stations should be well-equipped with systems that can detect and
monitor UAV activity based on requirements.

There have been multiple attempts throughout the literature pertaining to the
detection and tracking of small-size UAVs. Some of these approaches include the use
of WiFi signals, RF radiations, vision-based sensors, radar-based approaches, and
acoustic signatures [7], [8]. However, compared to other sensors, utilizing acoustic
sensors for UAV detection has been shown to exhibit a number of advantages. Acous-
tic sensors are low-cost compact devices that detect pressure fluctuations created by
sound waves. Unlike traditional vision and radar-based sensors, acoustic sensors
are typically omnidirectional in nature. This allows them to sense disturbances in
all directions making them an ideal choice for collision-avoidance systems. Fur-
ther, passive acoustic sensors do not emit any radiation and hence it is environment
friendly. As acoustic signals are independent of the UAV form factor, it fairs well in
comparison to radar systems that require a threshold radar cross-sectional area to
enable detection. The output data rate for acoustic sensors is comparatively low as
compared to vision and radar-based systems facilitating seamless data acquisition
and processing. However, the limitation of acoustic systems is their low detection
range. For small inexpensive acoustic sensors, the detection range is typically less
than 300 m facilitating only short-range detection [9]. In this effort, we address the
problem of detecting and estimating multiple UAVs in an indoor environment using
acoustic sensors and machine learning techniques.

D.2 Related Work

In this section, we provide a brief overview of the various works in the literature
pertaining to UAV detection using acoustic signatures. It was observed that small
multi-rotor UAVs can produce complex acoustic fields due to UAV motorization
and propeller motion. The acoustic field thus produced contains complex harmonics
and is arguably a unique characteristic of the UAV. Investigations related to the
study of the UAV acoustic field can be found [10], [11], [12] in the literature. In [10]
investigated the effect of UAV acoustics on human subjects in an indoor occupational
environment. They concluded that the ability to accurately identify and record UAV
acoustic signatures primarily depends upon the sound pressure level of the UAV. The
study also found that an efficient redesign of multi-rotor UAVs is essential to lower
noise levels and regulate the noise frequency spectrum produced by UAVs. A similar
study [11] utilizes a large-aperture scanning microphone array to measure the sound
pressure level of a hovering UAV. The obtained results are then used to determine
a better design of UAV acoustics and analyze the UAV acoustic field. In [12], the
authors utilize the experimental data obtained from [11] to model the sound pressure
level of a UAV acoustic field using a physics-infused machine learning algorithm. The
physics-infused model is developed utilizing the interference from sound pressure
waves that are produced from acoustic monopole sources. The above-mentioned
works indicate that UAV acoustic signatures are unique and depend on a number
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of factors. Our work utilizes these unique acoustic harmonic signatures generated
by multiple UAVs to detect and estimate their presence in an indoor setting. In the
following subsections we provide a brief account of the various techniques used for
UAV detection based on acoustic signatures.

D.2.1 Conventional approach

The conventional approach relies on correlation and other signal-processing tech-
niques to detect UAVs from acoustic signatures. One early approach by [13], uses a
stationary microphone array to detect and track the flight trajectory of low-altitude
UAVs using their engine sound. UAV detection is performed by exploiting the
Doppler shift of the engine sound. On the other hand, tracking is carried out by
estimating the direction of arrival of the UAV. The direction of arrival is obtained
by utilizing the acoustic phase shift over the microphone array. The real-time per-
formance of the proposed approach was evaluated by performing field experiments.
It was found that the propagation delay of the acoustic delay impacts the UAV
detection and tracking performance. Another approach in [14], utilized a modified
cross-correlation technique for UAV detection. The proposed approach leverages the
differential Doppler shift that is created due to the high-speed UAV motion and mi-
crophone array separation. Using the differential Doppler shift property, the received
signals are successfully decorrelated from the ambient noise to enable UAV detec-
tion. Measurements were carried out in a controlled area with little noise. Ambient
noise was later added to the obtained data to evaluate the performance. Another
work [9] for UAV detection and classification involved the development of a drone
acoustic detection system (DADS) using microphone nodes. In the DADS, the detec-
tion of UAVs is performed using the steered-response phase transform (SRP-PHAT)
method while classification is obtained by utilizing the propeller frequencies from
the spectrogram of the measured acoustic signatures. It is reported that the SRP-
PHAT method provides reliable performance with real UAVs in real-world scenarios.
However, the classification algorithm requires the UAVs to obtain a threshold dis-
tance to achieve better performance. The work by [15], utilizes the Barlett, Capon,
and cross-correlation method to study and analyze the acoustic spectrum generated
from UAVs. The proposed approach utilizes additional high-pass filters to obtain
performance similar to the mel-frequency cepstral coefficients (MFCC) method for
UAV detection. Further experiments also reveal that the cross-correlation method
exhibited superior performance when followed by low-pass filtering to remove noise.
In comparison, [16], utilizes the intrinsic harmonics inherent in the acoustic field
signatures for detection and 3D localization. The acoustic signal’s fundamental
frequency and a few relevant harmonics are extracted using a pitch detection algo-
rithm coupled with zero-phase bandpass filters. Experimental measurements have
been carried out in anechoic and outdoor environments for performance evaluation.
It was observed that the proposed approach fairs well when the UAV traverses in
simple vertical trajectories. However, for complex trajectories with multiple UAVs,
the performance was low and required additional research. The study by [17] also
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provides insights into utilizing acoustic information to detect UAVs. In this work,
the authors measure the noise level using a sound level meter in a controlled en-
vironment containing only one UAV. After obtaining the noise-free measurements,
anthropogenic noise of people and background music was generated in the environ-
ment along with the UAV. Spectral methods were used to analyze the frequency
spectrum and it was reported that UAV detection was confirmed upon observing a
5000 Hz frequency in the spectrum. The research however fails to reproduce and
verify the results in a real-world environment with multiple UAVs. In [18], the au-
thors have addressed the problem of UAV detection through a biologically inspired
vision approach. The spectrogram signals obtained after performing time-frequency
analysis on the audio signals provide meaningful information that is embedded in
noise. By preprocessing these spectrogram images through a hoverfly vision model,
useful representations of these audio signals can be retrieved. The extracted repre-
sentations can be utilized for UAV detection. It was shown through outdoor field
trials that the bioinspired technique can improve the maximum UAV detectable
distance between 30% and 50% with respect to traditional narrowband and broad-
band techniques. However, the proposed approach requires additional verification
by using more UAV experiments and flight scenarios.

D.2.2 Machine learning approach

The advent of machine learning has bought new capabilities for UAV detection and
classification [19], [20]. Machine learning techniques identify the inherent hidden
patterns from the data that aid in UAV detection and classification [21]. By uti-
lizing these techniques with additional preprocessing techniques such as short-time
Fourier transform (STFT), principal component analysis (PCA), etc., a significant
improvement in detection and classification accuracy has been reported [22]. In the
subsequent sections, we explore some of the existing literature that uses machine
learning techniques for UAV detection and classification in terms of unsupervised
and supervised learning algorithms.

D.2.2.1 Unsupervised learning

In unsupervised learning [23], the algorithm learns to extract the hidden patterns
from the data. These algorithms work primarily on unlabeled data and learn the
inherent structure of the data without the need for any human intervention. They
are mainly used for tasks such as clustering, association, and dimensionality re-
duction. In [24], the authors study the acoustic fields generated by various small
quadcopter UAVs. The data thus obtained is used along with simulation software
such as COMSOL Multiphysics to perform numerical simulations and analysis. The
study determined the influence of blade defects, directional patterns, and pressure
variations caused by UAV propellers on UAV acoustic fields. The collected acoustic
signatures were further provided to a neural network that is trained on the cepstrum
coefficients to obtain UAV detection. In [25] the authors used multiple microphone
nodes to detect and track a UAV in a real-world environment with background noise.
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The work used MFCC and STFT for preprocessing the data. This was followed by
using support vector machines (SVM) and convolutional neural networks (CNN)
for training. Reported results indicate that the STFT-SVM model exhibited bet-
ter performance to detect a single UAV when the UAV approaches the vicinity of
a microphone node. Future work can include experimenting with multiple UAVs
and also reducing background noise during preprocessing. The work in [26] uti-
lizes a multi-class SVM for identifying UAVs in diverse environmental conditions. A
dataset is created that contains five 70 minute audio from nature during the day-
time, street traffic, train, crowd, and flying UAVs. The audio files are trimmed to
5 second and 20 millisecond segments for analysis. Preprocessing is then performed
to extract temporal centroid, spectral roll-off, spectral centroid, zero crossing rate
(ZCR), MFCCs, etc., as features. The extracted features are then fed to the SVM
classifier to obtain a high UAV detection accuracy of 96.4%. In [27], the authors
perform UAV detection using two classifiers, plotted image learning (PIL) and k
nearest neighbors (KNN). Sound clips with a 1 second duration of DJI Phantom 1

and 2 are recorded separately both indoors and outdoors in a noise-free environment.
Later, outdoor environment sounds are added to simulate real-world scenarios. The
FFT is applied to the sound clips which are then fed to the different classifiers. The
authors reported that PIL showed 83% accuracy in UAV detection as compared
to KNN which accounted for 61%. In [28], the authors developed a distributed
system using acoustic wireless sensor network for UAV detection and localization.
Through trial experiments, it was observed that the power spectral density (PSD)
of UAV sound differed significantly from the background spectrum. On the basis
of this concept, an acoustic dataset was created. The dataset consisted of UAV
sounds that were augmented with background environment sounds. The sound clips
are low pass filtered at 15 kHz, after which the PSD is obtained using FFT. PCA
is further performed for dimension reduction. The preprocessed signals are then
divided for training, testing, and additional testing with overlapped signals and
subsequently fed to the SVM classifier. It was reported that UAV detection was
successful when the introduced signal-to-interference ratio (SIR) was greater than
10 dB. In this work [29], the authors use the blind source separation (BSS) method
to detect UAVs in the presence of multiple source interference. Three different UAVs
are used separately to capture the audio signatures. The proposed method works by
first estimating the number of sources. After source estimation, three methods ICA,
PCA, or variational mode decomposition (VMD) are applied based on the type of
source separation (overdetermined, positive-definite, or underdetermined) required.
The features extracted are then fed to different machine learning algorithms such as
SVM, KNN, and decision trees to evaluate the performance. It was reported that
SVM and KNN showed similar performance with SVM exhibiting slightly better
performance. Both algorithms exhibited an accuracy of more than 90% for UAV
detection outperforming traditional filtering and mixed-signal methods. Another
approach for acoustic-based UAV detection was performed by [22]. In this work,
the sounds of amateur UAVs, birds, airplanes, and thunderstorms are recorded in a
noisy environment. The authors use MFCC and linear predictive cepstral coefficients

196



(LPCC) for feature extraction. The extracted features are then fed to SVMs with
linear, cubic, and quadratic kernels to detect and identify UAV acoustics. Results
show that SVM with the cubic kernel when coupled with MFCC features outper-
formed LPCC with a UAV detection accuracy of around 96.7%.

D.2.2.2 Supervised learning

In contrast to unsupervised learning, supervised learning [23] utilizes labeled
datasets as inputs and outputs. The labeled data serves as a kind of supervision
to help the model learn the structure of the data. Supervised algorithms can learn
over time and improve its accuracy based on the amount of labeled data and its
inherent structure. In [30], the authors perform a comparative study to determine
the best classifier for acoustic UAV detection. Acoustic signatures from various
UAVs are recorded individually and augmented with diverse environmental noise to
simulate real-world UAV scenarios. The MFCCs from these signals are extracted
and fed to different classifiers and their performance is evaluated. It was reported
that RNN provided the best performance with an F-score of 80%, followed by the
Gaussian mixture model (GMM) with 68% and CNN at 58%. The study in [31]
uses normalized STFT on UAV acoustic signals. The UAV acoustic signatures are
recorded using DJI Phantom 3 or 4 models. The recorded sound clips are trimmed
to a length of 20 ms with 50% overlapping. Normalized STFT is performed on these
sound clips to obtain 41958 non-UAV and 68931 UAV sound frames. The non-UAV
sound frames contained acoustic signatures from scooters and motorcycles. The
output obtained after performing the STFT is then fed to the proposed CNN
architecture after adding additive white Gaussian noise (AWGN). Results reported
a 98.97% UAV detection accuracy and 1.28 false alarm rate (FAR). In this work [32],
the sensory substitution of pre-existing and ambient microphones along with CNN
is used to detect remotely piloted aircraft systems (RPAS) in urban environments.
Indoor and outdoor experiments were carried out individually with a diverse set
of RPASs. Spectrogram images are generated from the recorded audio clips. The
spectrogram images are then further used to train the Inception CNN model via
transfer learning. Results showed an RPAS detection accuracy of greater than 90%

for all RPAS classes. The work in [33] uses mel-spectrograms to extract the features
from the audio signals of UAVs. The extracted features are then used with CNNs
and CRNNs for UAV classification. It was concluded that CNNs exhibited superior
performance in the classification of UAVs from the obtained mel-spectrograms.
Further, the study also investigated the use of late fusion methods with ensemble
techniques to improve UAV detection performance. Another work by [34] also
utilizes the audio spectrograms along with CNN, recurrent neural network (RNN),
and convolutional recurrent neural network (CRNN) to identify and detect UAVs.
The authors conducted two experiments using two different UAVs in a controlled
environment. Real-world background noises were augmented to obtain realistic
audio information that can be used for inference. Reported results indicate that
CNN and CRNN showed better performance over RNN in accurately detecting and
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Table D.1: Summary of the latest works on machine learning-based acoustic detec-
tion of UAVs

Reference Method Results Limitations
[30] MFCC coefficients are fed

to RNN, GMM, and CNN.
RNN showed best F-score

with 80% followed by
GMM with 68% and CNN

with 58%.

• Augmented environmental
noise.

• Multi-UAV detection is absent.

[26] Preprocessing using ZCR,
MFCC, spectral centroid,
etc. Extracted features are

fed to multi-class SVM.

UAV detection accuracy -
96%

• Single UAV case.

• Lacks real-world experiments
and background noise.

[27] Preprocesing using FFT.
Trained using PIL and

KNN.

PIL - 83% and KNN - 61%
accuracy

• Sound clips from 2 UAVs
recorded separately.

[28] PSD using FFT followed
by PCA for dimension

reduction. Output fed to
SVM.

Best accuracy when SIR
was greater than 10 dB.

• SVM is more sensitive to bit er-
ror rate.

[31] Normalized STFT features
with CNN.

UAV detection accuracy of
98.97%

• Considered only single UAV
scenario.

• AWGN is added to simulate a
noisy environment.

[25] Preprocessing with MFCC
and STFT. Obtained

features fed to SVM and
CNN.

eSTFT-SVM reported best
performance.

• Considered only single UAV
case.

• Model accuracy is low.

[34] Audio spectrograms with
CNN, RNN, CRNN.

CNN reported best
detection accuracy with

96.38% followed by CRNN
with 94.72%.

Experimented with two
different types of UAVs.

• Lacks real-world experiment
scenarios.

• Doesn’t estimate the number of
UAVs.

[32] Audio spectrograms with
CNN. Used different RPAS

classes individually for
measurements.

Greater than 90%

detection accuracy.
• Multiple RPAS scenario is ab-

sent.

[22] MFCC and LPCC for
feature extraction.

Features are fed to SVM
with linear, cubic, and

quadratic kernels.

MFCC with SVM cubic
kernel achieves 96.7%

detection accuracy.

• Considers only single UAV sce-
nario.

[24] Trains neural network on
cepstrum coefficients.

Relatively high UAV
detection rate.

• Multiple UAV scenarios are ab-
sent.

[33] Mel-spectrograms for
feature extraction followed

by CNN and CRNNs.

CNN (94.7% accuracy)
outperformed CRNN

(94.1% accuracy).
Experimented with
real-world scenarios.

• Multiple UAV scenarios are ab-
sent.

[29] BSS using ICA, PCA, or
VMD features. Obtained
features are fed to SVM,
KNN, and Decision trees

SVM and KNN reported
more than 90% accuracy

• Lacks real-world scenarios with
background noise.

classifying UAVs. Our work also revolves around a similar approach in which we
utilize audio spectrograms to perform multiple UAV detection.

Table D.1 summarizes the latest works in the literature related to machine
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learning-based acoustic detection of UAVs. As seen from Table D.1, the majority
of the literature focuses on detection for a single UAV scenario [25], [26], [30], [31],
[32], [22], [33]. The results obtained for detecting a single UAV can widely vary in
a multiple UAV scenario. Similarly, the scenarios considered in the literature more
or less replicate controlled and well-defined UAV trajectories [26], [34], [30], [31],
[29]. Such scenarios may not completely provide a realistic UAV flight trajectory
and may affect detection accuracy. Furthermore, some of the techniques described
require the use of high-end sophisticated computing infrastructure which may not
be always feasible and available [28]. Our work differs from the previous works in
detecting multiple UAVs rather than a single UAV. To the best of our knowledge,
this is the first time acoustic signatures have been employed to estimate the detec-
tion of maximum 10 UAVs in a scene. The scenarios considered comprise multiple
UAVs maneuvering in random directions and speeds. Our work also uses the inher-
ent background noise while performing detection. We have included one outdoor
measurement that includes background noise from wind and birds chirping. We use
supervised learning techniques in this work due to their superior performance in
the detection and classification of targets. Although unsupervised techniques have
the advantage of extracting the inherent features from unlabeled data, it fails in
performance when the requirement calls for the ability to identify specific classes
of targets. Further, our custom CNN architecture outperforms the current state-of-
the-art machine learning models in terms of accuracy and model size. Owing to the
relatively less model size, the custom CNN architecture consumes fewer resources
thereby enabling it to be deployed on lightweight edge-computing devices such as
Raspberry Pi 4, NVIDIA Jetson Nano, etc. We test the model on these devices and
also provide inference time for the same. As such the major contributions of this
paper are as follows:

• An UAV acoustic-based dataset is created by utilizing a total of 10 UAVs. An
arbitrary number of UAVs are flown randomly within the measurement area
and the acoustic field signatures are captured using a cardioid unidirectional
microphone.

• Time-frequency algorithms such as continuous wavelet transform (CWT) are
applied to transform the recorded acoustic field signatures to spectrogram
images.

• A custom lightweight CNN architecture is designed to estimate the number of
UAVs in the scene. The performance of the proposed model is compared with
state-of-the-art benchmark machine learning models in terms of accuracy and
model size.

The remaining sections of this paper are organized as follows: Section D.3 pro-
vides the methodology of the proposed approach. Section D.4 describes the mea-
surement setup and details regarding dataset creation. Section D.5 focuses on the
data preprocessing and the machine learning algorithm that is used. Section D.6
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summarizes the standard benchmark machine learning models that are used to com-
pare the performance of the proposed model. Section D.7 provides an overview of
the edge computing devices on which the proposed model is executed. Section D.8
summarizes the results obtained with the proposed approach. Section D.9 discusses
the implications of the proposed approach along with limitations and future work.
Finally, the paper is concluded in Section D.10.

D.3 Methodology

UAV Acoustic
signatures (.wav)

Spectrogram
images

Proposed CNN
model

CWT

Hardware
Deployment

Training Inference Estimated
UAV Count 

Estimated number
of UAVs

Figure D.1: Block diagram of the proposed work.

The proposed work utilizes the acoustic field generated from UAV rotors and pro-
pellers. The high-speed motion of rotors and propellers produces pressure differences
leading to the generation of an acoustic field. In the proposed work, these acoustic
field signatures are captured with the help of a cardioid microphone. Acoustic sig-
natures from 10 UAV combinations are captured and processed to generate audio
spectrogram images. These images are then used to train CNN models to estimate
the number of UAVs in the scene. A simplified flow diagram of the methodology is
shown in Fig. D.1.

D.4 Measurement setup and dataset

D.4.1 Measurement setup

The primary measurement area is an indoor lab environment that covers a semi-
circular area of 5 meters in radius. Experiments were designed to capture acoustic
signatures from a total of 10 UAV combinations that are flown in a random fashion
within the prescribed area. The UAV models employed for the experiment include
the DJI Mavic 2 Enterprise [35], DJI Mini 2 [36], DJI Mini SE [37], DJI Mini 3
Pro [38], DJI Tello EDU [39], and SYMA X30 [40]. Except for the DJI Mavic 2

Enterprise, all the other UAVs fall into the 250 grams category and have relatively
smaller dimensions (approximately 251× 362× 70 mm [38]). The small size of the
UAVs makes them an excellent choice for testing the estimation performance in a
multi-UAV scenario. The DJI Tello UAVs were operated programmatically to follow
a prescribed trajectory. The remaining UAVs were operated manually to fly in a
random fashion to simulate a near real-time scenario. Further details regarding the
experiment are provided in Table D.2.

The UAV acoustic signatures are recorded using the Shure MV7 microphone [41].
The microphone has a unidirectional (cardioid) type polar pattern with an output
impedance of 314 ohms. It has a frequency response ranging from 50 Hz to 16000
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Table D.2: Measurement setup and experiment details

Experiment Parameters Details
Semicircular area Radius: 5 meters

Measurement duration 5 minutes
Microphone Shure MV7

Frequency response 50 Hz - 16000 Hz
Output impedance 314 ohms

Sampling rate 48000 Hz
Total UAVs 10

DJI Mavic 2 Enterprise 1

DJI Mini 2 1

DJI Mini SE 2

DJI Mini 3 Pro 1

DJI Telllo EDU 4

SYMA X30 1

Hz with an adjustable gain spanning between 0 and +36 dB [42]. Additional details
regarding the microphone are provided in Table D.2. The microphone is mounted
on a tripod stand and faced toward the measurement area. As the microphone has
a unidirectional cardioid polar pattern, the acoustic disturbances originating from
UAVs flying in front of the microphone are captured and amplified. However, the
disturbances that originate from the rear end of the microphone are attenuated and
hence do not contribute to the output signal. Fig. D.2 shows the microphone setup
that was used to capture the acoustic signatures from UAVs.

Each measurement of the experiment consisted of flying an arbitrary number
of UAVs in the prescribed area for a duration of 5 minutes. For example, the
fifth measurement captured acoustic field signatures from 5 randomly flown UAVs.
The sixth measurement involved flying 6 UAVs in a random manner. To improve
variability, each measurement of the experiment has been designed to use different
types of UAVs as much as possible. However, due to availability constraints we
resorted to similar UAV models for measurements that required more number of
UAVs. Fig. D.3 depicts a 5 UAV measurement case. To provide additional variability
in the acoustic field measurements, we performed the 2nd measurement outdoors.
The outdoor measurement area is roughly the same semicircular area of radius 5

meters with additional noise related to wind, birds chirping, etc. Further, the first
measurement has been taken independently using 3 different UAV models to increase
the number of samples.

D.4.2 Dataset details

The acoustic signatures that are recorded and captured from the experiment are used
to create a dataset comprising UAV audio clips. Each recorded acoustic signature is
of 5 minute duration. The recorded signatures are carefully trimmed to retain only
the portion pertaining to UAV audio. Each trimmed audio signal is of 4 minutes
and 45 seconds (285 seconds) with a sample rate of 48000 Hz. To reduce latency and
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Figure D.2: Shure MV7 setup used for measuring the UAV acoustic signals

Figure D.3: Capturing acoustic signals for a 5 UAV scenario.

ensure smooth processing, we divide each trimmed signal (285 second duration) into
95 equal parts. Each one of the 95 parts is a 3 second audio clip with a sampling
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rate of 48000 Hz. In total, the dataset contains 1140 UAV audio clips of 3 second
duration.

D.5 Preprocessing and algorithm details

In the preprocessing stage of the proposed approach, various signal processing trans-
formations are applied on the prepared UAV audio dataset. After preprocessing, the
resulting spectrogram images are then fed to lightweight CNN models to estimate
the number of UAVs present in the scene.

D.5.1 Continuous Wavelet Transform (CWT)

The CWT is a wavelet transform that decomposes a signal into its time and fre-
quency components [43]. Just like the STFT [44], the CWT measures the correlation
between the original signal f(t) and the analyzing wavelet ψ. Depending upon the
correlation with the original signal, the analyzing wavelet is scaled and dilated by
parameters p and q respectively. Assuming the scaling parameter p > 0, and dilation
parameter q, then the CWT for a signal f(t) is computed as,

C(p, q; f(t), ψ(t)) =

∫ ∞

−∞
f(t)

1

p
ψ*

(
t− q
p

)
dt, (D.1)

where the * represents the complex conjugate [45]. If the CWT is applied to a real
signal, then the obtained output is also real-valued. By varying the parameters p
and q continuously, we obtain the C(p, q) coefficients which are subsequently used
to plot the spectrogram of the signal. In the proposed method, CWT is applied
over the trimmed audio clips. As each audio clip is 3 seconds long with a sample
rate of 48000 Hz, the resulting spectrogram exhibits time and frequency compo-
nents corresponding to these parameters. The acoustic signatures along with their
corresponding spectrogram outputs are plotted in Fig. D.4 and D.5.

D.5.2 Convolutional Neural Network (CNN)

CNNs are unique deep-learning architectures that utilize artificial neural networks
to detect and classify objects from images. In the proposed approach, we develop a
custom CNN architecture to extract feature information from spectrogram images.

While designing the custom CNN architecture, we first checked the performance
by varying the number of layers as 5, 10, 15, and 20 layers. We used 10-fold cross-
validation with a data set split of (80, 10, 10) for training, testing, and validation.
It was observed that CNNs with 20 layers or more provided better performance
as compared to the ones with a lower number of layers. Subsequently, we varied
the number of layers along with the image resolution to obtain the best-performing
architectures. Table D.3 provides the performance of the CNN architectures with
18 layers and more. The change in performance is also noted with respect to the
change in image resolution. It can be observed from Table D.3 that the performance
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(a) (b) (c)

(d) (e) (f)

Figure D.4: UAV acoustic signatures for scenarios with (a) 1 UAV (b) 2 UAVs (c)
4 UAVs (d) 6 UAVs (e) 8 UAVs (f) 10 UAVs.

 

(a) (b) (c)

(d) (e) (e)

Figure D.5: Spectrogram images of scenarios with (a) 1 UAV (b) 2 UAVs (c) 4 UAVs
(d) 6 UAVs (e) 8 UAVs (f) 10 UAVs.

gradually increases from 18 layers and peaks around 22 and 24 layers and then
gradually decreases. Out of the five CNN architectures (shown in bold in Table
D.3) that exhibited greater than 94% average test accuracy, we chose the CNN
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Table D.3: Comparison of CNN architectures based on number of layers and image
resolution

Sl. No. No of
Layers

Image resolution Avg. Test
Accuracy (%)

1 18 300× 200× 3 92.29

2 18 400× 300× 3 92.40

3 18 500× 400× 3 86.05

4 18 600× 500× 3 94.73

5 18 700× 600× 3 93.55

6 20 300× 200× 3 89.37

7 20 400× 300× 3 88.50

8 20 500× 400× 3 89.56

9 20 600× 500× 3 88.89

10 20 700× 600× 3 88.00

11 22 300× 200× 3 92.19

12 22 400× 300× 3 94.24

13 22 500× 400× 3 94.74

14 22 600× 500× 3 93.86

15 22 700× 600× 3 94.05

16 24 300× 200× 3 92.98

17 24 400× 300× 3 92.98

18 24 500× 400× 3 93.56

19 24 600× 500× 3 93.86

20 24 700× 600× 3 94.24

21 26 300× 200× 3 91.13

22 26 400× 300× 3 91.61

23 26 500× 400× 3 89.76

24 26 600× 500× 3 86.34

25 26 700× 600× 3 88.11

architecture (22 layers, 500 × 400 × 3) for further analysis after considering other
performance metrics and parameters.

The proposed CNN architecture that is made of 22 layers is shown in Fig. D.6 and
Table D.4. The spectrogram image obtained after performing CWT on the audio
clips have a resolution of 836 × 716 × 3 pixels. To be trained by the custom CNN
architecture, these spectrogram images are resized to 500×400×3 pixels. The resized
images are then fed to the proposed CNN architecture through the input layer. The
proposed architecture consists of convolutional layers with kernel dimensions 4× 4.
We primarily use 8 or 16 convolutional kernels to extract the feature embeddings.
The final convolutional layer however additionally uses dilation by a factor of 2.
The process of dilation intentionally expands the kernel size by introducing holes
between adjacent elements as shown in Fig. D.7. This provides a larger field of view
that in turn helps in capturing intrinsical sequence information [46].

To expand the network with additional layers without compromising on perfor-
mance, our model employs residual blocks. Our model uses a total of 2 residual
layers. The architecture of the residual blocks used in the proposed architecture

205



Residual blocks

Addition

Input 
spectrogram 

image

Convolutional layerMaxPooling layer

Flatten 
layer

Dense
layer

0

1

8

9

Output 
layer

4x4x8 3x3 3x3 3x3

4x4x8

4x4x8 4x4x8

4x4x8 4x4x8
4x4x8

Dilation 
rate = 2

500x400x3
Skip connection

Figure D.6: Proposed CNN architecture.

Table D.4: Layerwise architecture details of the proposed CNN model

No. Layer Output Size Parameter
1 Input [(None, 500, 400, 3)] 0

2 Batch Normalization (1) [(None, 500, 400, 3)] 12

3 Conv2D (1) [(None, 500, 400, 8)] 392

4 MaxPooling2D (1) [(None, 166, 133, 8)] 0

5 Conv2D (2) [(None, 166, 133, 8)] 1032

6 Batch Normalization (2) [(None, 166, 133, 8)] 32

7 Conv2D (3) [(None, 166, 133, 8)] 1032

8 Batch Normalization (3) [(None, 166, 133, 8)] 32

9 Add (1) [(None, 166, 133, 8)] 0

10 Activation (1) [(None, 166, 133, 8)] 0

11 Conv2D (4) [(None, 166, 133, 16)] 1032

12 Batch Normalization (4) [(None, 166, 133, 8)] 32

13 Conv2D (5) [(None, 166, 133, 16)] 1032

14 Batch Normalization (5) [(None, 166, 133, 8)] 32

15 Add (2) [(None, 166, 133, 8)] 0

16 Activation (2) [(None, 166, 133, 8)] 0

17 Conv2D (6) [(None, 166, 133, 16)] 2064

18 MaxPooling2D (2) [(None, 55, 44, 16)] 0

19 Conv2D (7), Dilation rate = 2 [(None, 55, 44, 64)] 16448

20 MaxPooling2D (3) [(None, 18, 14, 64)] 0

21 Flatten [(None, 16128)] 0

22 Dense [(None, 10)] 161290

is depicted in Fig. D.6. Additionally, 3 × 3 max pooling is used throughout the
architecture. Max pooling downsamples the input feature representation [47]. It
essentially removes translational invariances from the input representation thereby
improving computational efficiency for further layers. The proposed model also uti-
lizes batch normalization at the input layer and residual layers as observed from
Table D.4. Batch normalization resolves the problem of internal covariate shift
[48] by standardization of the input distribution that involves re-centering and re-
scaling. The final layers comprise the flatten layer and the dense layer. The flatten
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(a) Dilation factor = 1 (b) Dilation factor = 2

Figure D.7: Effect of dilated convolution for a 3x3 kernel on a 9x9 feature map.

layer transforms the input vector to a 1-dimensional output which is subsequently
fed into the dense layer. The dense layer outputs class probabilities which are finally
used for detection and classification tasks. In the proposed architecture, since we
are estimating a maximum number of 10 UAVs, there are 10 outputs from the dense
layer.

The proposed CNN model is trained using the Adam optimizer [49] with the tanh
activation function. We have adjusted the learning rate to 0.001 and batch size to
16 to reduce fluctuations in the accuracy/loss curve during training. Training is
performed using the Keras deep learning library [50] on two Tesla V100-SXM3 GPU
with 32 GB RAM [51].

D.6 Benchmark Models

Benchmark models are state-of-the-art models that have distinct architectural fea-
tures. For example, DenseNets [52] are special CNNs where the feature maps from
each layer are fed to all the subsequent layers thereby preserving the feed-forward
nature of the network. ResNet architecture [53] introduces residual blocks to im-
prove performance. The residual blocks are made up of skip connections that retain
the abstractions lost in the standard path. The efficientNet family of CNNs utilizes
uniform scaling of the depth, width, and resolution of the network to achieve better
accuracy. MobileNet [54] models on the other hand are optimized to provide faster
operations on mobile and embedded devices. These models have a low memory
footprint and offer a better tradeoff between resource utilization and accuracy. We
assess the performance of the proposed model by comparing it with these existing
benchmark models. We compare it with 23 benchmark models that include mod-
els from DenseNet [52], EfficientNet [55], Inception [56], MobileNet [54], ResNet
[53], NASNetMobile [57], VGG [58], and Xception [59]. The benchmark models are
pre-trained on the ImageNet dataset [60]. The input image resolution fed to the
benchmark models has a resolution of 224 × 224 × 3. We compare the proposed
model with benchmark models in terms of total parameters, model size, average
test accuracy, and number of floating point operations per second (FLOPs). The
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benchmark models are also further deployed on edge computing devices to measure
inference time.

D.7 Hardware Deployment

To obtain real-time performance with edge computing devices, we deploy the pro-
posed model on three embedded devices, namely, the Raspberry Pi 4 Model B, the
NVIDIA Jetson AGX Xavier, and the NVIDIA Jeton Nano. The Raspberry Pi 4
Model B board contains a quad-core ARM Cortex-A72 processor with 1/2/4/8 GB
of RAM. The board is well equipped with various communication interfaces such as
Bluetooth 5.0, BLE, and 2.4/5.0 GHz wireless LAN for wireless information trans-
fer. Additionally, the board also provides two USB 3.0, two USB 2.0, and a Gigabit
Ethernet port to ensure seamless interfacing with other devices [61]. As compared
to Raspberry Pi 4, the NVIDIA Jetson Nano comes with a 128-core Maxwell GPU
architecture and quad-core ARM Cortex A5 CPU. With 4 GB RAM and support
for multiple interfaces such as USB 2.0 Micro-B, USB 3.0, Gigabit Ethernet, I2C,
I2S, SPI, and UART, the Jetson Nano serves to be an excellent choice for high com-
puting edge computing devices [62]. For edge applications that require even more
computing capability, the NVIDIA Jetson AGX Xavier is preferred. The Jetson
AGX Xavier houses a 512-core Volta GPU architecture and an 8-core Carmel ARM
CPU along with 32 GB RAM. It has dedicated deep learning and vision accelerators
for various machine learning and computer vision tasks. To interface with other pe-
ripheral devices, the Jetson AGX Xavier provides standards such as USB-C, USB
2.0, UART, and RJ45 [63]. To obtain the inference time on the various edge com-
puting devices, the proposed model and benchmark models are first converted to
their equivalent Tensorflow Lite versions. TensorFlow Lite [64] is an open-source
software developed by Tensorflow to deploy pre-trained models on edge computing
devices. By converting the model to its equivalent TensorFlow Lite format, the
model is optimized for inference time and model size allowing seamless deployment
on various embedded devices. After converting to TensorFlow Lite versions, the
proposed model and benchmark models are deployed on these embedded devices to
obtain the inference time. The time taken to predict the exact number of UAVs from
the spectrogram images is collected and the average inference time is calculated.

D.8 Results

The spectrogram images obtained after applying the CWT transform are used to
train the proposed CNN model. We utilize 80% of the dataset for training, 10% for
validation, and the remaining 10% for testing. We used 10-fold cross-validation [65]
where each fold is trained for 50 epochs with a batch size of 16 and a learning rate
of 0.001. The 10-fold cross-validation utilizes 80% of the dataset for training and
10% for validation. The testing is performed on the remaining 10% of the dataset
to obtain detection accuracy. Fig. D.8a and D.8b show the loss and accuracy curves
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(a) Loss curve (b) Accuracy curve

Figure D.8: Loss and accuracy curves.

obtained during training. It can be observed from Fig. D.8a that the training and
validation loss decrease significantly after 10 epochs. Correspondingly, the accuracy
curves for training and validation converge close to 1 after 10 epochs indicating that
the proposed model requires less training time.

Figure D.9: Confusion matrix for the proposed model.

Upon training, the model performance was evaluated on the test set. Fig. D.9
depicts the confusion matrix obtained after evaluating the proposed model on the
test set. It can be observed that the proposed model is able to correctly predict the
number of UAVs for more than 90% of the cases. In the remaining cases, the model
incorrectly estimates the number of UAVs present in the scene. This might be due
to the superposition of acoustic signatures from similar UAV models that can render
the obtained signal unresolvable. The performance of the proposed model is also
compared with standard benchmark machine learning models as shown in Table D.5.
We used the same data set split while calculating the performance metrics on the
benchmark models. The spectrogram images are resized to 224×224×3 pixels before
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Table D.5: Performance metrics comparison between proposed CNN model and
benchmark models

Sl. No. Model Total
Parameters

Avg. Test
Accuracy (%)

Model Size
(MB)

Floating Point
Operations (GFLOPs)

1 DenseNet121 [52] 7, 047, 754 83.77 28.98 2.88

2 DenseNet169 [52] 12, 659, 530 87.28 51.76 3.42

3 DenseNet201 [52] 18, 341, 194 88.68 74.68 4.37

4 EfficientNetB0 [55] 4, 062, 381 83.85 16.74 0.4

5 EfficientNetB1 [55] 6, 588, 049 81.05 27.01 0.59

6 EfficientNetB2 [55] 7, 782, 659 80.08 31.80 0.68

7 EfficientNetB3 [55] 10, 798, 905 84.21 43.94 0.99

8 EfficientNetB4 [55] 17, 691, 753 78.24 71.66 1.54

9 EfficientNetB5 [55] 28, 534, 017 79.73 115.20 2.41

10 EfficientNetB6 [55] 40, 983, 193 82.45 165.18 3.43

11 EfficientNetB7 [55] 64, 123, 297 81.40 257.98 5.27

12 InceptionResnetV2 [66] 54, 352, 106 77.63 218.77 6.55

13 InceptionV3 [56] 21, 823, 274 78.42 87.97 2.89

14 MobileNetV2 [54] 2, 270, 794 86.75 9.49 0.32

15 MobileNetV3Large [67] 4, 239, 242 86.92 17.42 0.23

16 MobileNetV3Small [67] 1, 540, 218 81.84 6.55 0.06

17 NASNetMobile [57] 4, 280, 286 77.71 18.48 0.27

18 ResNet101V2 [53] 42, 647, 050 89.64 171.37 8.28

19 ResNet152V2 [53] 58, 352, 138 87.63 234.50 12.5

20 ResNet50V2 [53] 23, 585, 290 90.35 94.82 3.97

21 VGG16 [58] 14, 719, 818 87.98 58.98 15.5

22 VGG19 [58] 20, 029, 514 87.98 80.22 19.6

23 Xception [59] 20, 881, 970 82.89 83.96 0.36

24 Proposed model 184,462 93.3 2.34 0.25

providing it as input to the standard benchmark models. As observed in Table D.5,
the proposed model achieves a relatively high test accuracy of 93.33% as compared
to the benchmark models. It can also be observed from Table D.5, that the pro-
posed model requires just 2.34 MB of storage space as compared to the benchmark
models ensuring seamless portability and deployability on various edge computing
devices. Additionally, the total parameters employed by our model are less as com-
pared to other benchmark models. Moreover, the majority of the total parameters
used by the proposed model are trainable parameters showing efficient utilization of
parameters. Table D.5 also lists the computational performance of our model with
respect to other benchmark models in terms of the number of floating point opera-
tions (FLOPs) [68]. The FLOP count is measured as GFLOPs where 1 GFLOP is
equal to 109 FLOPs. The FLOP count is obtained by using standard open-source
software available from PyTorch [69] and TensorFlow [70]. It can be observed that
our model has a relatively less number of FLOPs as compared to most of the bench-
mark models. Specifically, MobileNetV3Small and MobileNetV3Large have lower
FLOP counts compared to the proposed model. This reduction in computational
cost might be due to the width and resolution multiplier parameter introduced in
the MobileNet series [54].

The proposed model has also been deployed on edge computing devices such as
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Raspberry Pi 4 Model B, NVIDIA Jetson Nano, and NVIDIA Jetson AGX Xavier.
We perform inference time calculation of the proposed model on all these devices.
The inference time calculation can serve as a useful reference when deciding the
deployment feasibility of the proposed model for time-critical applications. In all
three devices, we used a randomly selected test set which is 10% of the overall
dataset. The trained model was executed on the Raspberry Pi 4 board to obtain an
average inference time of about 127 milliseconds over 10 iterations. On the other
hand, the execution on the Jetson Nano reported an average inference time of about
219 milliseconds. This is expected as the TensorFlow Lite models are not utilizing
the GPU resources onboard the Jetson Nano. TensorFlow Lite does not support
CUDA for GPU operations [71]. However, the Jetson devices only support CUDA for
GPU operations [72] and hence the observed increase in inference time is expected.
Similarly, the trained model was able to provide an average inference time of about
81.4 milliseconds, when executed on the NVIDIA Jetson AGX Xavier. The Jetson
AGX Xavier showcased faster inference time as compared to the Raspberry Pi 4 and
Jetson Nano. Even though the GPU is not utilized, the faster inference time can be
attributed to the availability of increased RAM of about 32 GB which can increase
the performance of the system. Further, the Jetson AGX Xavier also has access to
additional computing resources as compared to the other two devices. Table D.6
lists the inference time obtained for the proposed model along with the benchmark
models on various edge computing devices. We used the same data set split while
calculating the inference time on the benchmark models. It can be observed that the
proposed model is faster than most of the benchmark models on all three embedded
devices. The MobileNet series of models however have a lower inference time than
the proposed model. This might be due to the width and resolution multiplier
parameter in the MobileNet series that reduces the computational cost of the model.

D.9 Discussion

In this work, we have provided a robust solution to estimate the number of UAVs in a
scene. The current setup employs only one unidirectional cardioid-type microphone
to estimate the number of UAVs. It is to be noted that since the polar pattern of the
microphone follows a cardioid pattern, the acoustic disturbances originating from
UAVs flying at the rear of the microphone are attenuated. This can severely impact
the estimated UAV number. A more practical approach to overcome this limitation
is to position multiple cardioid microphones such that the acoustic disturbances
originating from the full 360◦ of the scene are captured. Employing microphones
that exhibit an omnidirectional polar pattern can also be utilized so that acoustic
disturbances from all directions are captured without significant signal attenuation.

It can be observed from Table D.5 and Table D.6, that the proposed CNN ar-
chitecture provides relatively high accuracy and fast inference time on embedded
hardware all the while consuming fewer resources. The proposed model can thus be
employed for time-critical and resource-constrained UAV detection scenarios. High
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Table D.6: Inference time calculation on various edge computing devices

Sl. No Model
Inference time (seconds)

Raspberry Pi Jetson Nano Jetson AGX Xavier
1 DenseNet121 [52] 0.692 0.841 0.413

2 DenseNet169 [52] 0.832 1.009 0.483

3 DenseNet201 [52] 1.088 1.275 0.614

4 EfficientNetB0 [55] 0.389 0.372 0.116

5 EfficientNetB1 [55] 0.591 0.546 0.178

6 EfficientNetB2 [55] 0.624 0.592 0.180

7 EfficientNetB3 [55] 0.843 0.794 0.248

8 EfficientNetB4 [55] 1.162 1.147 0.359

9 EfficientNetB5 [55] 1.724 1.672 0.528

10 EfficientNetB6 [55] 2.339 2.173 0.832

11 EfficientNetB7 [55] 3.252 2.971 1.158

12 InceptionResNetV2 [66] 1.637 1.828 0.797

13 InceptionV3 [56] 0.700 0.819 0.378

14 MobileNetV2 [54] 0.088 0.112 0.046

15 MobileNetV3Large [67] 0.072 0.090 0.036

16 MobileNetV3Small [67] 0.022 0.028 0.011

17 NASNetMobile [57] 0.320 0.256 0.125

18 ResNet50V2 [53] 0.912 1.008 0.440

19 ResNet101V2 [53] 1.879 2.053 0.858

20 ResNet152V2 [53] 2.820 3.159 1.285

21 VGG16 [58] 3.903 4.042 1.699

22 VGG19 [58] 5.031 6.981 2.184

23 Xception [59] 1.236 2.206 0.520

24 Proposed model 0.127 0.219 0.081

detection performance coupled with real-time scenarios also suggests that the pro-
posed technique can be deployed in practical ground control stations to function as
an anti-UAV detection system. It can be inferred from the obtained results that
the proposed technique is capable of detecting more than 10 UAVs in a dynamic
real-time scenario given additional UAV information. In the future, the accuracy of
the proposed technique can be improved by utilizing other sensor modalities. With
the help of additional sensors, the work can also be extended to identify the UAV
model and/or type.

D.10 Conclusion

In this article, we addressed the problem of accurately estimating the total number
of UAVs present in a scene. We developed a UAV acoustic dataset to recreate a
real-world scenario comprising of 10 UAV combinations flown in a random manner.
The acoustic information from the dataset was preprocessed using time-frequency
transformations to obtain their respective spectrogram images. The generated spec-
trogram images are then fed into a custom lightweight CNN model to estimate the
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number of UAVs in the scene. The proposed model provides a high average test
accuracy in accurately estimating the number of UAVs. Subsequently, the proposed
model has also been executed on various edge computing devices to measure infer-
ence time performance. In the future, this work can be extended to identify the
UAV model and/or type by utilizing information from additional sensors.
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Multi-target Angle of Arrival Estima-
tion Using Rotating mmWave FMCW
Radar and Yolov3

A. N. Wilson, A. Kumar, A. Jha, L. R. Cenkeramaddi

Abstract: It is still challenging to accurately localize unmanned
aerial vehicles (UAVs) from a ground control station (GCS) using various
sensors. The mmWave frequency modulated continuous wave (FMCW)
radars offer excellent performance for target detection and localization in
harsh environments and low lighting conditions. However, the estimated
angle of arrival (AoA) of targets in the captured scene is quite poor.
This article focuses on improving AoA estimation by combining cutting-
edge machine learning algorithms with a mechanical radar rotor setup. A
mmWave FMCW radar system is mounted on a programmable rotor to
capture range-angle maps of targets at various locations. The range-angle
images are then labeled and trained further with the Yolov3 algorithm.
Subsequent testing reveals that for detected target objects, the centroid
of the bounding boxes from the detected objects provides accurate AoA
estimation with very low root mean square error (RMSE). The results
show that the proposed approach outperforms traditional methods in
terms of performance and estimation accuracy.
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Figure E.1: Block diagram of the proposed multi-target AoA estimation approach.
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E.1 Introduction

As the popularity of unmanned aerial vehicles (UAV) increases, there is a growing
demand for better detection, localization and tracking techniques. Ground control
stations (GCS) are equipped with sophisticated sensor technologies for improved
UAV localization. Some of these sensors are RGB cameras, ultrasonic sensors, Li-
DARs, etc. However most of these sensors fail in adverse weather and lighting condi-
tions. In this regard, the mmWave frequency modulated continuous wave (FMCW)
radars have shown superior performance compared to other sensors. The mmWave
FMCW radars are small, lightweight, and compact radars that offer excellent per-
formance for target detection. The radars provide a radial distance measurement
range from 0.2 meters to 300 meters in addition to excellent velocity estimation
performance. Additionally, they offer high range and velocity resolutions. Further,
their performance in adverse weather and environmental conditions makes them a
suitable choice for UAV and GCS applications.

Despite the above-mentioned advantages, the mmWave FMCW radars suffer
from poor angle of arrival (AoA) estimation and AoA resolutions [1]. Accurate AoA
estimation from a single target requires atleast one transmitter and two receivers for
the radar. Increasing the number of transmitter and receiver pairs can effectively
improve the AoA estimation, however this results in a tradeoff with increased size
and hardware complexity. Furthermore, estimation of AoA from multiple objects
for better target localization is even more challenging and hence it is still an ongoing
research topic.

There has been several attempts in the literature to improve the AoA estima-
tion. The authors in [2] propose an adaptive radar signal processor for detection
of multiple UAVs in the range-Doppler domain. The radar signal processor op-
erates by initially performing pulse compression (PC), FFT and beamforming on
the received signal samples. The processed signal is then evaluated for a possible
detection based on constant false alarm rate (CFAR) logic for each range-Doppler
angle bin. Both single and multi-target scenarios are considered and the angular
parameters of the targets are retrieved. Simulated and real-world experiment results
indicate that the proposed method is able to detect and resolve two UAVs placed
≈ 8◦ apart with satisfactory performance. In [3], Aubry et al. attempt to solve the
problem of adaptive radar detection in the presence of limited training data. The
proposed method consists of three generalised likelihood ratio test (GLRT) based
detection schemes that is based on the assumption of linear combination for in-
verse covariance matrices. Reported results show that the proposed GLRT-1 and
GLRT-3 exhibit significant performance gain over conventional adaptive detectors
in presence of limited training samples. In [4], a novel DoA estimation algorithm
based on 2-D spectrum sensing is developed. The proposed approach exploits the
intrinsic block-sparsity of the 2-D space-frequency profile to obtain 2-D occupancy
awareness. By including a term to account for the block-sparsity, a non-convex reg-
ularized maximum likelihood (RML) estimation problem is solved using the block
sparse learning via iterative minimization (BSLIM) algorithm to obtain the space-
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frequency profile. The BSLIM algorithm exhibits superior performance in terms
of detection rate and false alarms over traditional approaches. In [5], the authors
devise a novel set of covariance matrix estimators called median matrices that are
independent of the probability distribution of the samples. The matrices are con-
structed by exploiting its positive definite attributes. Based on the output from the
new estimators, a generalised inner product (GIP) selection criteria is utilized to
discard the secondary outliers in the training data. Reported results indicate that
the log-Euclidean median-based estimator outperforms other estimators in terms of
selection probability of secondary outliers in the training data. Other covariance
estimators that can also be utilized to infer radar disturbances and aid in accurate
UAV detection and localization include the fast maximum likelihood (FML) covari-
ance estimator [6] and the multi-class inverse Wishart mixture (MC-IWM) filter
[7].

The work by [8], uses a fast iterative adaptive algorithm employing a time-
shared method to accurately estimate the AoA. The first phase of the technique
involves a coarse azimuth angle estimation that is performed using just a single
mmWave FMCW radar. The obtained intermediate results are then fed into a more
refined iterative algorithm to accurately determine the direction of arrival (DOA)
estimations within a small region. However, this method relies on multiple mmWave
FMCW radars during the second phase making it computationally intensive. An-
other approach by [9] uses linear algebraic techniques to jointly calibrate the anten-
nas and estimate the AoA. The iterative optimization technique provides excellent
performance when there is an effective coupling between the antennae elements.
Additionally, the algorithm is shown to work well in presence of several sensors and
transmitter-receiver pairs. Daegun et al. in [10] proposed a joint angle and delay
estimation algorithm which utilizes the dual-shift-invariant structure of the received
signal to extend the one-dimensional pseudospectrum searching. Monte Carlo sim-
ulations were used to gauge the performance of the proposed method. Reported
results show that the proposed technique exhibited superior performance with re-
spect to state-of-the-art algorithms. However, the technique is computationally
intensive and requires further experimentation with complex real-world scenarios.
In [11], the authors combine the advantages of the 2D-FFT and MUSIC algorithms
to develop a low complexity estimation method to approximate the various FMCW
radar parameters such as AoA. However, this method fails to provide any perfor-
mance insight when used to detect multiple targets. In [12] and [13], the authors
use the notion of rotating the radar about its axis to scan an area. The signals
obtained in each frame of the rotating radar are used to construct the range profile
for the respective field of view. All the range profiles are then stitched and combined
together to get the range-angle maps that offer a 180◦ view of the scene. However,
the work by [12] focuses on target detection and classification and doesn’t provide
enough information for AoA estimation. Linga et al. in their work [13], has provided
a novel AoA estimation technique with relatively good performance, however this
can be further improved using machine learning techniques. Our work will be an ex-
tension to this work, where we will use state-of-the-art machine learning techniques
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to estimate the AoA from the range-angle maps. We will be using convolutional
neural networks (CNN) based algorithms which will serve to be useful for embedded
and internet-of-things (IoT) related applications.

Hence, in this work, we propose a multi-target AoA estimation method that uti-
lizes rotating mmWave FMCW radars. The proposed method employs a mechanical
rotor setup for rotating the mmWave FMCW radar along the azimuthal axis fol-
lowed by Yolov3 for post-processing the range-angle heatmaps. The AoA estimate
is calculated from the centroid of the detected bounding box.

The remaining sections of this paper is structured as follows. Section II gives
an overview of mmWave FMCW radars and signal processing aspects. Section III
gives a brief overview of the machine algorithm that is used on the collected dataset.
Section IV defines the various metrics used to measure the performance of the pro-
posed method. Section V provides a high level system description along with the
measurement and dataset details. Section VI summarizes the obtained results using
the proposed method. And finally, Section VII concludes the paper by providing a
brief summary and potential future research directions.

E.2 mmWave FMCW Radars and Signal Processing

The mmWave FMCW radars operate by transmitting high frequency chirp signals
on to the scene. The transmitted chirp signal is reflected back upon encountering
obstacles in its path. The reflected chirp is captured by the receiving antennae for
further processing. The transmitted and received chirp signals are then fed into a
mixer to obtain the intermediate frequency (IF) signal. The IF signal is further fed
into an ADC which samples the analog signal and provides digital values. The raw
IF samples then undergo additional processing to obtain the radial range, radial
velocity and AoA estimation of the target [14].

Range estimation involves performing an FFT transform over the captured IF
signal samples [15]. The range R is calculated as,

R =
cfIF
2S

, (E.1)

where fIF is the frequency of the IF signal, c is the velocity of light in vacuum (3x108

m/s), and S is the slope of the radar.
Velocity estimation exploits the phase of the IF signal. Change in distance

within a short time may not be accurately captured by the range estimation (due to
limitations in range resolution) procedure. However, these changes can be captured
by utilizing the phase difference between the received chirps. To obtain the velocity
estimation, we initially compute the range profile. Next, we perform a second FFT
across the received chirp signals to capture the small phase changes that can provide
the velocity estimation values.

AoA estimation involves utilizing the number of receiver antennas on the
mmWave FMCW radar. A differential distance exists from an object to each of the
receiving antennas. This differential distance corresponds to a phase change that
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Figure E.2: Angle of arrival estimation.

can be obtained by performing a second FFT on the output of the range profile.
The second FFT is applied across the different receiver antennas so as to obtain the
angle-FFT. The angle-FFT can then be used to obtain AoA estimation of target
objects in the scene. Note that in angle-FFT, the 2D-FFT is performed over the
different receiver antennas separated in space whereas for velocity estimation the
2D-FFT utilizes the phase difference between the different chirps that are separated
in time [16]. If ϕ is the phase difference between the received chirp signals and d

the distance between adjacent receiving antennas, then the following holds true,

ϕ =
2πd sin θ

λ
, (E.2)

where λ is the wavelength of the chirp signal. Thus the AoA estimation θ is given
as,

θ = sin−1(
λϕ

2πd
) (E.3)

Fig E.2. gives a pictorial representation of the estimation of AoA. As seen from
(E.2) and (E.3), when θ = 0◦, ϕ is more sensitive to changes in θ. As θ increases,
the sensitivity of ϕ to θ decreases. This is due to the fact that ϕ and θ share a
non-linear relationship as ϕ ∝ sin θ and sensitivity of sin θ decreases as θ increases.
Thus AoA estimation is more accurate when the target is placed perpendicular to
the radar [16].

Similar to AoA estimation, calculation of AoA resolution is also important to
correctly distinguish between targets placed close to each other with a small AoA
difference. The AoA resolution is defined as the least angle required between two
targets so that they can be easily distinguished as separate objects in the angle-FFT
[17]. The AoA resolution for mmWave FMCW radars is given as,

θres =
λ

Nd cos θ
, (E.4)

226



79

82

79

Scale 1
Stride 32 Scale 2

Stride 16

Scale 3
Stride 8

94

106

Residual block
Upsampling 

layer
Upsampling 

layer

Addition

Concatenation

Further layers

91
6136

Input 
range-angle 

image

Detected 
Output 
scale 1

Detected 
Output 
scale 2

Detected 
Output 
scale 3

Detection layer

Number of 
Network layers

Figure E.3: Yolov3 Darknet Architecture

where N is the number of receiver antennas on the radar. If it is assumed that
d = λ/2 and θ = 0, then the expression for θres reduces to,

θres =
2

N
, (E.5)

implying that the AoA resolution improves with increased number of receiver an-
tennas. For example, with 4 receiver antennas, the AoA resolution is 0.5 radians
which is equivalent to 28◦, a relatively high value. Since increasing the number of
antennas can also increase space and hardware complexity, there is active research
to improve the AoA resolution with minimum constraints.

E.3 You Look Only Once (Yolo) Architecture and
Working

The Yolov3 is a state-of-the-art multi-scale object detection algorithm that can
detect and classify objects from images and video with very fast inference time [18].
Just as the name suggests, the algorithm performs only a single-stage forward pass
over the whole image to determine the class probabilities and predictions. In this
work, we are using the Yolov3 version for our AoA estimation from range-angle
maps.

The Yolov3 algorithm is based on the Darknet-53 architecture [19] that uses
a combination of convolution layers and skip connections as shown in Fig. E.3.
Inspired by ResNet and other architectures [20], Darknet-53 primarily consists of
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feature extraction and feature detection stages. The feature extraction stage com-
prises of 53 convolution layers that are arranged as 3x3 and 1x1 consecutive layers
followed by a skip connection. On the other hand, the feature detection stage is made
up of 53 layers that helps to enhance the accuracy of the predictions as compared
to previous versions. Thus the algorithm employs a sum total of 106 convolutional
layers, both for feature extraction and feature detection.

Table E.1: Yolov3 configuration parameters

Parameter Value
Batch Size 64

Number of classes 3

Max Batches 6000

Sub division 16

Learning rate 0.001

Momentum 0.9

Decay 0.0005

Filters 24

GPU version Tesla V100-SXM3
CUDA version 11.4

The Yolov3 algorithm operates by initially passing the input image through the
feature extractor to obtain multi-scale feature embeddings. Yolov3 supports three
different feature scales namely, 13x13, 26x26, and 52x52. The obtained feature
maps are then fed into the feature detection stage to predict bounding boxes on
the detected object. To predict bounding boxes, the each feature map is divided
into a collection of grid cells. Each grid cell is capable of predicting three bounding
boxes. Each bounding box ’B’ consists of ’5 +C’ attributes and class probabilities.
Here, ’C’ represents the number of classes in the dataset. In this work, C = 3,
as we are using the model to detect three classes: UAV, car, and humans. The
class probabilities provide the probability of existence of a particular class in the
respective grid cell. The ’5’ represents bounding box attributes (tx, ty, th, tw) and the
objectness scores. Bounding box dimensions in Yolov3 are computed relative to the
anchor box dimensions. Anchor boxes are prior boxes that have predefined aspect
ratios. The predefined aspect ratios are determined by running a k-means algorithm
on the entire dataset prior to training. Lastly, the objectness score denotes the
presence of an object in the corresponding grid cell. Feature detection is performed
by convolving the downsampled feature maps with a 1x1 detection kernel whose
shape is given by 1x1x(B ∗ (5+C)). In Yolov3, feature detection occurs at the 82th,
94th, and 106th layers.

Once the object is detected, a maximum of three bounding boxes per grid can
be drawn based on the relative position of the object within the grid cell. To
avoid multiple bounding boxes for the same object, a non-maximum suppression
is performed. In non-maximum suppression, the bounding box that has the most
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overlapping area with the detected object is retained while the other bounding boxes
are discarded. A high level Yolov3 architecture diagram is given in Fig E.3. Table
E.1 further lists the various parameters used for the Yolov3 algorithm to detect the
various classes from the range-angle maps.

E.4 Performance Metrics

In this section, the various metrics used to quantify the performance of the machine
learning model are discussed [21]. A machine learning model can predict the class
of an object as either true (positive) or false (negative). When the model predicts
the class as true and the actual class is positive, then the observation is defined as a
true positive (TP). Similarly, when the model predicts the class correctly as negative,
then the observation is a true negative (TN). However, when the predicted class is
true and the actual class is negative, then the observation is a false positive (FP).
Similarly, the observation is defined as a false negative (FN) when the predicted
class is false and the actual class is positive.

E.4.1 Precision

Precision represents the fraction of total number of positively classified classes to
the total number of positively predicted classes. Precision is given as:

Precision =
TP

TP + FP
(E.6)

where TP and FP represents the true positives and false positives from the predicted
result.

E.4.2 Recall

Recall is calculated as the ratio of true positive to the total number of positive
classes. Recall is computed as:

Recall =
TP

TP + FN
(E.7)

where FN is the false negatives in the predicted results.

E.4.3 F1-score

F1-score provides a means to measure the performance of a machine model by uti-
lizing both precision and recall metrics. F1-score is calculated as follows:

F1-score =
2 ∗ Precision ∗Recall
Precision+Recall

(E.8)
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E.4.4 Accuracy

The accuracy metric provides an indication of the performance of the model across
all the classes. It is defined as follows:

Accuracy =
TN + TP

TN + FP + TP + FN
(E.9)

E.4.5 Root mean square error (RMSE)

The RMSE value provides a measure of how much the estimated value has deviated
from the actual true value. It is given as follows:

RMSE =

√∑P
i=1(xestimate − xactual)2

P
(E.10)

where P is the sample size, xestimate is the estimated value, and xactual is the actual
or true value in the experiment. Lower RMSE value implies that the estimated
measurement is closer to the true value and hence better model prediction.

E.5 System Overview and Dataset Details

E.5.1 System Description

The AoA estimation of multiple targets using mmWave FMCW radar is challenging.
As described in Section E.2, accurate AoA estimation requires an increased number
of transmitter and receiver antennas. This can lead to increased hardware complex-
ity. Hence in our setup, the system at the GCS is made up of mmWave FMCW
radar that utilizes only one transmitter-receiver antenna to estimate the AoA.

Our setup consists of a mmWave FMCW radar that is mounted firmly on a
rotor. The rotor in itself is mounted on a static tripod. The rotor is battery-
powered, programmable, and highly portable. The mmWave radar is mounted on
the head of the rotor. The head of the rotor can rotate the radar through the entire
360◦ in the azimuth direction based on requirements.

The parameters of the rotor that can be programmed include the rotational
direction, the rotational velocity, and the rotational angle. The rotational velocity
of the rotor can be set according to the number of chirp frames transmitted by
the radar per second. Here the chirp frame or simply frame is defined as a set
of K equally spaced chirp waveforms that are transmitted by the radar [14]. The
performance of the AoA estimation is directly influenced by the rotational velocity
of the rotor. If the rotational velocity of the rotor is high, then the number of frames
per second that are captured will be less. Similarly, if the rotational velocity is low,
then the captured number of frames per second from the radar is high. Improved
AoA estimation performance requires higher number of frames per second, as higher
number of frames can capture more information from multiple targets present in the
scene. Hence in our setup, we have programmed the rotational velocity of the rotor
to be low so as to capture at least one frame per degree of rotation of the radar.
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Table E.2: mmWave FMCW radar AWR1843 and AWR2243 Parameters

Radar Parameter Value
No. of frames (AWR2243) 200

No. of frames (AWR1843) 800

Frame periodicity 40 ms
No. of Tx antennas 3

No. of Rx antennas 4

No. of ADC samples 256

Sampling Rate 10 MSPS
Frequency Range (RF) 77− 81 GHz

Bandwidth (RF) 1798.92 MHz
No. of Chirps 128

Chirp Slope 29.982 MHz/µs
Rx Noise Figure 14 dB (76 to 77 GHz)

15 dB (77 to 81 GHz)
Transmission Power 12 dBm

Table E.3: Experiment Parameters

Experiment Parameter Value
UAV Size 32.24× 24.2× 8.4 cm3

Human Height 172 cm
Car Size 431.5× 178.0× 160.5 cm3

Measurement Range upto 26 meters

Based on the adjusted rotational velocity, let the desired FoV to be covered by
the rotor in t seconds be θFoV . In a t second duration, the radar transmits nf frames.
By considering that the entire θFoV is divided into smaller angle bins (θb), we obtain
the following relation,

θb =
θFoV

nf

(E.11)

In our experiment scenario, the desired FoV is 180◦. The nf is 800 and 200 frames
for the radars AWR2243 [22] and AWR1843 [23] respectively. Each frame is made
up of 128 chirp waveforms transmitted by the radar. This corresponds to 0.225◦ per
frame for AWR2243 and 0.9◦ per frame for AWR1843. To increase the FoV in the
elevation, the radar is placed vertical to the ground plane in our setup.

The two mmWave FMCW radars, AWR2243 [22] and AWR1843 [23] that we
use in our experiment are manufactured from Texas Instruments. Both radars have
identical frequency range spanning between 77 − 81 GHz. Additionally, they have
identical number of transmitter and receiver pairs, RF bandwidth, chirp slope, sam-
pling rate, and ADC samples. However, the number of frames employed is 800 for
the AWR1843 and 200 for the AWR2243. A detailed list of the key parameters of
the radars can be found in Table. E.2.
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Table E.4: Measurement cases for Set1_UavCarHumans (Range in meters and angle
in degrees)

Range (m) → 5 7 9 11 13 15 17 19 21 23 25
Cases ↓

AA U(0◦) H1(30◦) H2(60◦) H3(90◦) H4(120◦) H5(150◦) C(0◦)
BB U(30◦) H5(180◦) H1(60◦) H2(90◦) H3(120◦) H4(150◦) C(30◦)
CC U(60◦) H1(0◦) H2(30◦) H3(90◦) H4(120◦) H5(150◦) C(60◦)
DD U(90◦) H1(0◦) H2(30◦) H3(60◦) H4(120◦) H5(150◦) C(90◦)
EE U(120◦) H1(60◦) H2(90◦) H3(150◦) H4(0◦) C(180◦) H5(30◦)
FF U(150◦) H5(0◦) C(150◦) H1(30◦) H2(60◦) H3(90◦) H4(120◦)
GG H1(60◦) H2(90◦) U(180◦) H3(150◦) C(120◦) H4(0◦) H5(30◦)
HH U(30◦) H4(0◦) H3(150◦) H2(120◦) H1(90◦) C(180◦) H5(60◦)
II H1(90◦) H2(120◦) U(30◦) H3(180◦) H4(60◦) H5(0◦) C(150◦)
JJ U(150◦) H3(180◦) H1(120◦) H2(60◦) H4(90◦) C(30◦)
KK H3(150◦) U(60◦) H4(90◦) H5(30◦) H1(180◦) H2(0◦) C(120◦)
LL H2(180◦) H1(120◦) U(30◦) H3(60◦) H4(90◦) H5(150◦) C(0◦)
MM H2(0◦) U(90◦) H3(30◦) H4(120◦) H1(180◦) H5(150◦) C(180◦)
NN U(90◦) H1(30◦) H3(60◦) H4(120◦) H5(150◦) H2(0◦) C(180◦)

U - UAV, C - Car, H1 - Human 1, H2 - Human 2, H3 - Human 3, H4 - Human 4, H5 - Human 5.

Table E.5: Measurement cases for Set2_UavCar (Range in meters and angle in
degrees)

Range (m) → 5 7 9 11 13 15 17 19 21 23 25
Cases ↓

AA U(0◦) C(60◦)
BB U(0◦) C(60◦)
CC U(0◦) C(90◦)
DD U(60◦) C(120◦)
EE U(60◦) C(150◦)
FF U(60◦) C(180◦)
GG U(90◦) C(180◦)
HH U(120◦) C(150◦)
II U(120◦) C(0◦)
JJ U(120◦) C(0◦)
KK U(150◦) C(0◦)
LL U(150◦) C(90◦)
MM U(180◦) C(60◦)
NN U(180◦) C(120◦)
OO U(180◦) C(30◦)

U - UAV, C - Car.

The measurement scenario is an outdoor parking setting with UAV, car, and
humans placed at varying locations with respect to the radar. Each measurement
is taken by positioning UAV, car, and humans at different locations within a radial
distance of ≈ 26 meters and 180◦ FoV in front of the radar. We limit the radial
distance to ≈ 26 meters to remain within the permissible measurement area. How-
ever, the mmWave FMCW radars can measure targets with range upto 300 meters
[22],[23]. Depending upon the radar version used (AWR1843/AWR2243), a total
of 800/200 frames containing the raw IF signal is captured for each measurement.
Each frame of the radar has a duration of about 40 ms and consists of 128 chirps.
Further, each frame of the radar provides raw IF signal data corresponding to a
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Table E.6: Measurement cases for Set3_OnlyHumans (Range in meters and angle
in degrees)

Range (m) → 5 7 9 11 13 15 17 19 21 23 25
Cases ↓

AA H1(0◦) H2(30◦) H3(60◦) H4(90◦) H5(120◦)
BB H3(0◦) H4(30◦) H5(60◦) H1(150◦) H2(180◦)
CC H5(0◦) H1(90◦) H2(120◦) H3(150◦) H4(180◦)
DD H1(30◦) H2(60◦) H3(90◦) H4(120◦) H5(150◦)
EE H2(0◦) H3(30◦) H4(60◦) H5(90◦) H1(180◦)
FF H4(0◦) H5(30◦) H1(120◦) H2(150◦) H3(180◦)
GG H1(60◦) H2(90◦) H3(120◦) H4(150◦) H5(180◦)
HH H1(0◦) H2(30◦) H3(60◦) H4(90◦) H5(120◦)
II H2(0◦) H3(30◦) H4(60◦) H5(90◦) H1(150◦)

JJ H2(0◦) H3(30◦) H4(60◦) H5(90◦),
H1(120◦)

KK H4(150◦) H5(180◦) H1(0◦) H2(30◦) H3(60◦)
LL H3(120◦) H4(150◦) H5(180◦) H1(0◦) H2(30◦)
MM H2(90◦) H3(120◦) H4(150◦) H5(180◦) H1(0◦)
NN H1(60◦) H2(90◦) H3(120◦) H4(150◦) H5(180◦)
OO H1(30◦) H2(60◦) H3(90◦) H4(120◦) H5(150◦)

H1 - Human 1, H2 - Human 2, H3 - Human 3, H4 - Human 4, H5 - Human 5.

Figure E.4: The rotating mmWave FMCW radar measurement setup.

0.225◦/0.9◦ FoV depending upon the radar model. The collected raw IF signal data
is post-processed in MATLAB [24] to obtain the range-profile for each frame. Fi-
nally, the range profiles for all the frames are stitched together so as to obtain a 180◦

FoV range-angle map of the whole measurement scenario that comprises of multiple
targets [12]. Fig. E.4 shows the experimental setup of the rotating mmWave FMCW
radar that is used to capture the raw IF signals. Other relevant parameters related
to the experiment can be found in Table. E.3.

The range-angle images obtained from MATLAB is fed into the Yolov3 algo-
rithm for training. We implement a 10-fold scheme for validation. In this scheme,
the training is performed for 10 folds of the experiment. In each fold, only 80%

of the dataset images are used for training and the remaining are assigned as test
images. We utilize the pretrained weights available from the Darknet-53 repository
to initiate the training. Upon training, the optimum weights are obtained indepen-
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Figure E.5: Measurement setup for case AA from Set3_OnlyHumans.

dently for each fold. Thus the weights of the 1st fold are independent of the 2nd

fold, and so on. By using this approach, we are implicitly removing any bias that
is associated with the training. The weights obtained after training are used on the
test images to obtain the predictions. The predictions from the Yolov3 algorithm
are range-angle images that contain bounding boxes on the detected object. It is
to be noted that each pixel dimension in the range-angle image corresponds to a
specific range and angle in the measurement setup. Hence, the centroid coordinates
of the detected bounding box correspond to the target object’s estimated range and
AoA in the measurement setup. Once the AoA estimation is obtained, the algorithm
performance can be calculated by computing the root mean square error between
the AoA estimation and the ground truth angle of the target.

E.5.2 Dataset Details

Based on the above measurement setup, we have collected the raw IF signal data
from two mmWave FMCW radars, the AWR2243 and the AWR1843 for different
target objects. The target objects include combinations of UAV, car, and humans
positioned at various locations in front of the radar. We used the AWR2243 mmWave
FMCW radar to capture the raw IF signals of UAV, car, and humans. Similarly, we
used the AWR1843 mmWave FMCW radar to collect the raw IF signals of humans.
The collected raw IF signals are processed in MATLAB to obtain the range profile
for each frame. The range profiles for each frame are stitched together to obtain the
radar range-angle images. We have created three datasets based on these range-angle
images. The first dataset contains UAV, car, and humans while the second dataset
comprises of only UAV and car combination. The third dataset contains range-angle
images of only human targets. The first, second, and third datasets are named
as Set1_UavCarHumans, Set2_UavCar, and Set3_OnlyHumans respectively. The
range-angle images obtained after processing from MATLAB have a resolution of
875× 656 pixels for Set1_UavCarHumans and Set2_UavCar. Similarly, the range-
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Table E.7: RMSE and accuracy values for 10 folds

Sl No. UAV Car Human Accuracy
(RMSE) (RMSE) (RMSE) (%)

1 1.4746◦ 1.3234◦ 0.9644◦ 99.3902

2 0.7869◦ 1.4576◦ 0.8635◦ 98.4939

3 1.3661◦ 1.0667◦ 1.0702◦ 97.9166

4 0.8700◦ 1.3807◦ 1.2312◦ 98.6111

5 0.9305◦ 1.2518◦ 1.1380◦ 98.7012

6 0.7274◦ 1.2540◦ 0.8898◦ 98.4423

7 0.8963◦ 1.6049◦ 1.1868◦ 96.8838

8 1.4128◦ 1.2237◦ 1.1005◦ 98.6413

9 1.3441◦ 1.2035◦ 0.9511◦ 95.5882

10 0.9922◦ 1.1559◦ 0.8297◦ 99.3569

angle images in Set3_OnlyHumans have a resolution of 1167× 875 pixels.
The dataset measurement cases are detailed in Table. E.4, E.5, and E.6 respec-

tively. The different cases are labelled as AA, BB, CC ....OO depending upon the
dataset. The entries inside the table are represented as an object that is positioned
at a specified distance and angle with respect to the radar. The abbreviation for
the labels used in the table entries are given towards the bottom of the respective
tables. Hence, the first entry in case AA of Table. E.6 depicts a person at 5 m and
0◦ with respect to the radar. The rest of the entries can be interpreted as follows: a
second person at 7 m and 30◦, the third person at 9 m and 60◦, the fourth person
at 11 m and 90◦, and the fifth person positioned at 13 m and 120◦ with respect
to the radar. Fig. E.5 shows one particular entry of the measurement setup for
Set3_OnlyHumans.

The range-angle images depict the signatures of the different target objects, UAV,
car, and humans. To train using the Yolov3 algorithm, we draw bounding boxes on
the range-angle images using the LabelImg software [25]. The bounding boxes are
drawn such that the centroid of the boxes represents the AoA of the target object.

E.6 Results

The labeled range-angle images are used to train the Yolov3 algorithm for optimum
weight parameters. The training is performed for 10 folds of the experiment. In each
fold of the experiment, the training is executed for 6000 iterations so that the average
loss is minimized. The average loss vs iterations for the 7th fold of the experiment
can be observed in Fig E.6. Further, the accuracy for each fold of the experiment is
listed in Table E.7. As observed and calculated from Table E.7, we obtain a relatively
high average classification accuracy of 98.20%, demonstrating the reliability of our
approach. The predicted classification can be observed on the range-angle image as
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Table E.8: Comparing the advantages of this work with other techniques

Method Number of antennas Targets with
same range

or angle

Target
classification

2D-ESPRIT
[26]

1 Tx, 2 Rx ✗ ✗

DFT-ESPRIT
[27]

1 Tx, 2 Rx ✗ ✗

Dual-
Smoothing
[28]

1 Tx, 2 Rx ✗ ✗

Clustered
ESPRIT [29]

1 Tx, 2 Rx or more. Rx
antennas could be less than

number of targets

✓ ✗

Rotating
Radar [13]

1 Tx, 1 Rx ✓ ✗

Ours 1 Tx, 1 Rx ✓ ✓

Figure E.6: Average loss vs iteration curve for the 7th fold

shown in Fig. E.7. The prediction statistics can also be visualized with the help of
a confusion matrix as shown in Fig E.8. The confusion matrix shows that UAV, car,
and humans are classified 97.89%, 99.85%, and 99.28% respectively. The average
precision, recall, and F1-score for 10 folds of the experiment are 0.991, 0.992, and
0.991 respectively.

The performance of the algorithm to estimate the AoA is calculated using the
RMSE value. Table E.7 lists the different RMSE values obtained for each fold of the
algorithm for different test scenarios. It can be seen that the average AoA RMSE
value for UAV, car, and humans are 1.0800◦, 1.2922◦, and 1.0225◦ respectively.
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(a) Set1_UavCarHumans (b) Set2_UavCar

(c) Set3_OnlyHumans

Figure E.7: Images depicting Yolov3 class prediction for range-angle images from
all three datasets.

Class UAV Car Human None Total 

UAV 650 0 0 14 664 

Car 0 669 0 1 670 

Human 0 0 1955 14 1969 

 
 
 
 
 

Figure E.8: Confusion matrix

Interestingly, the average RMSE value of cars is greater than that of UAV and
humans. This is expected as it aligns with the fact that the car has more AoA
spread due to its large size. The proposed method implies that it is difficult to
accommodate the car to a single AoA due to its large size as compared to UAV and
human.

Table E.8 shows the advantages of the proposed method over other similar tech-
niques such as 2D-ESPRIT [26], DFT-ESPRIT [27], dual-smoothing [28], clustered
ESPRIT [29], and rotating radar [13] in terms of number of antennas, and target
classification. It is observed that the proposed method is similar to the rotating radar
technique as both utilize just a single transmitter-receiver antenna for detecting mul-
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tiple non-interacting targets. However, our method provides an added advantage of
target classification along with AoA estimation. Additionally, the proposed method
also has a lower RMSE error as compared to the rotating radar technique.

E.7 Conclusion

The AoA estimation using mmWave FMCW radars is not accurate due to limited
number of antennas. As a result, target localization is imperfect in critical appli-
cations involving UAVs and GCS. This work demonstrated that the FoV and AoA
estimation of mmWave FMCW radars can be improved by combining a mechanical
rotor setup with cutting-edge computer vision techniques such as Yolov3. The radar
setup’s range-angle images were fed into the Yolov3 algorithm, which detected, clas-
sified, and localized multiple targets in the scene. The proposed method achieved
very high accuracy for target classification with low AoA estimation error outper-
forming traditional techniques. Evaluating the proposed approach’s real-time per-
formance on UAVs and GCSs to reduce latency in target detection and localization
could be a potential future research direction.
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Hybrid BLE/LTE/Wi-Fi/LoRa Switch-
ing Scheme for UAV-Assisted Wire-
less Networks

Wilson A. N., Y. S. Reddy, A. Kumar, A. Jha, L. R. Cenkeramaddi

Abstract: The unmanned aerial vehicles are deployed in multi-
ple layers to monitor an area and report the information to the ground
control station. When we use a single communication protocol such as
Bluetooth Low Energy (BLE)/Wi-Fi with low range, the data has to pass
through multiple hops for data transfer. This in turn, increases the de-
lay for data transmission. Even though LoRa protocol supports longer
distances, the delay is more due to the limited bandwidth. Thus, in
this work, we propose a hybrid BLE/LTE/Wi-Fi/LoRa switching scheme
that consumes lower energy in addition to reducing the average delay in
the network. The proposed scheme switches between the communication
technologies based on the lower energy consumption. The performance
of the proposed hybrid switching scheme is compared with the individ-
ual communication protocols in terms of both energy consumption and
average delay. Through extensive numerical results, we show that the
proposed hybrid switching scheme performs better in comparison to the
individual communication technologies.

F.1 Introduction

Recent technological developments have brought unmanned aerial vehicles (UAVs)
in the forefront for several leading applications ranging from precision agriculture
[1], construction [2], mining [3], aerial photography [4], and disaster management
[5]. Due to these vast applications, market experts predict that the revenue from the
UAV market can exceed 8.5 billion dollars by 2027 [6]. UAVs are capable of providing
enhanced services due to their inherent ability to fly and take useful measurements
from the environment. The sensed information along with telemetry and other data
is transmitted to other UAVs or ground control station (GCS) so as to facilitate safe
and secure decision making. The transmission of this information is performed using
hardware communication modules. Depending on the application, the size of data,
and other factors, UAVs can be equipped with different communication modules [7].

Some of the communication modules used in UAVs are Bluetooth Low Energy
(BLE) [8], Wireless Fidelity (Wi-Fi) [9], Long Term Evolution for machine-type
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communication (LTE-M) [10], and Long Range (LoRa) [11]. BLE is capable of
transmitting data with sufficiently low energy for short distances (around 300 m)
[12, 13]. This makes them suitable for a variety of low power and short range UAV
applications that includes smart agriculture [14]. In [8], the authors have proposed
a scheme by which UAVs are utilized to collect the data from various sensor nodes
deployed in a large farmland. In this scheme, the crop health information from the
sensor nodes is sent to the nearby UAV by using BLE. In applications that demand
high data rates, the Wi-Fi communication protocol is favoured. In [9], the authors
have proposed a UAV system that can be used in disaster affected areas to send Voice
over Internet Protocol (VoIP) information to the GCS for monitoring. Here, Wi-Fi
is used as the communication protocol for sending the video information as it is
reliable and offers high data rates. LTE-M on the other hand is an enhanced version
of the popular LTE protocol which is designed for enabling seamless communication
for Internet-of-Things (IoT) devices. An analysis of the usage of LTE-M and other
Low Power Wide Area Network (LPWAN) protocols has been carried out in [10] for
UAV-assisted wireless networks. Here, the performance has been evaluated in terms
of latency and throughput by carrying out real world experiments. Finally, it has
been concluded that LTE-M and other LPWAN protocols can be effectively used
for reliable communication among high speed moving objects [10]. LoRa is one of
the most commonly used communication protocol for long distance communication.
LoRa stands for long range and it provides a coverage distance of around 10 km with
low power consumption of 0.025 watts [15, 16]. In [11], the authors have discussed
the reliability of various communication technologies such as LoRa, Wi-Fi, and LTE
from a UAV swarm perspective. Further, they have developed an open source named
EasySwarm in order to demonstrate the reliability of these protocols under different
scenarios. It has been observed that LoRa protocol offers better reliability for long
range communications with higher UAV swarm density when compared with Wi-Fi.

The usage of a single communication protocol may not be efficient to support
the needs of an adaptive UAV-assisted wireless network. For example, the LoRa
protocol can be used for long distance based communications. However, it fails to
offer higher data rates when the UAV moves near to the GCS due to its mobility.
In this case, switching to either BLE or Wi-Fi may offer higher data rates for the
same distance.

Motivated by this, in [17], the authors have considered a multi-layer ad-hoc UAV
network in which the BLE and Wi-Fi are used to improve the throughput and la-
tency of the network. Initially, the UAV-assisted network is divided into multiple
clusters. The authors have considered BLE for communication within a cluster and
between each cluster head and gateway UAV. Further, Wi-Fi is considered for the
communication between the gateway UAV and GCS. Simulations are performed in
Optimized Network Engineering Tool (OPNET) and the performance of the pro-
posed scheme and standalone communication protocols is evaluated and compared.
It has been concluded that the proposed scheme outperforms the individual stan-
dalone communication protocol in terms of throughout and latency. However, this
scheme has not provided sufficient emphasis on the energy consumption of the UAVs.
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Moreover, this scheme has not considered other communication protocols that can
facilitate long range communication between UAVs and GCS. Furthermore, the au-
thors have considered only the free space path loss model. This may not work well
for most practical scenarios wherein, there is multipath propagation.

Hence, in this paper, we aim to overcome some of these shortcomings and provide
a detailed analysis of a novel hybrid switching scheme for UAV-assisted wireless
networks. The key contributions of this work are given below:

• We propose a hybrid BLE/LTE/Wi-Fi/LoRa switching scheme for a multi-
layer UAV-assisted network.

• The proposed scheme aid in selecting the communication technology that con-
sumes low energy for transmitting the available data from a UAV to the GCS.

• We formulate the optimization problem in terms of total energy consumption
for each communication technology for transmitting the available data from a
UAV to GCS.

• We then propose an algorithm to solve the optimization problem for both free
space (FS) and free space and multipath (FSMP) energy consumption models.

• Through extensive simulations, we compare the performance of the proposed
scheme with individual communication protocols in terms of network energy
consumption and average delay incurred.

The remaining sections of this paper is organized as follows: Section F.2 discusses
the system model and the problem formulation. The proposed hybrid communica-
tion scheme is discussed in Section F.3. Section F.4 provides the definitions of the
key performance metrics which are employed in this paper. The extensive numerical
results are presented in Section F.5. Finally, Section G.8 concludes the paper with
potential future work.

F.2 System Model and Problem Formulation

We consider a multi-layer UAV scenario as shown in Fig. F.1 where, N UAVs
deployed randomly over an area of l x b m2. Further, the UAVs randomly select the
hovering height from the set ∈ {h1, h2, · · · , hm} where, m is the number of altitude
levels. These UAVs collect the data and transmit it to the GCS for monitoring which
is situated on ground at (l/2, b/2). We assume the packet arrival rate follows Poisson
distribution with parameter chosen randomly [18]. After successful transmission
of data to the GCS, each UAV moves to another location, in a randomly chosen
direction, with a velocity of V m/s for a time interval t.

We consider four communication technologies such as BLE, Wi-Fi, LTE-M, and
LoRa for communication between each UAV and GCS that exhibit their own unique
attributes. Some of these attributes that are considered includes transmit power
(PT ), delay (Td), data rate (R), and path loss reference distance (dg0). We consider

246



Ground Control Station

Bluetooth Low Energy
WiFi
LTE-M
LoRa

Figure F.1: System model.

FS path loss model that follows d2 energy consumption model within a maximum
range of r [19]. We also consider FSMP model wherein, the energy consumption
follows d2 model for dg ≤ dg0 and d4 energy consumption model for dg > dg0 [19],
where dg is the geographical distance from the UAV to the GCS.

F.2.1 Problem Formulation

In this section, we formulate the problem in terms of the total energy consumed for
transmitting the data from a UAV which is located at a distance, dg, to the GCS.

The overall energy consumption is obtained as the sum of the energy consumed
for transmitting the total data and the energy consumed for transmitting this data
over a distance. The energy consumed for transmitting k-bits of information is given
by [20]

E1 =
PTk

R
, (F.1)

where, PT denotes the transmit power and R denotes the data rate. As described
earlier, the distance based energy consumption model depends on the consideration
of the path loss model [19]. We describe the energy consumption models for both
FS model and FSMP model in the following sections.
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F.2.1.1 Free space model

We consider the d2 energy consumption model. However, this model is restricted by
a maximum range for each communication technology. Thus, the amount of energy
consumed for transmitting k-bits of information over a distance dg (dg < ri) is given
as [19]

E2 = kEe + kEfsd2g (F.2)

where Ee represents the energy losses due to the electronic circuit per
bit and Efs is the power amplification energy in free space. Here, ri for
i ∈ {Bluetooth, LTE-M, Wi-Fi, LoRa} represent the maximum range for transmit-
ting with BLE, LTE, Wi-Fi, and LoRa communication technologies, respectively.
Beyond this range, the communication protocol does not support the transmission.
In this case, there will be multi-hop based communication. We consider conven-
tional shortest path routing method for packet transmission from a UAV to the
GCS.

F.2.1.2 Free space and multipath model

In this model, d2 energy consumption model is followed for a distance dg ≤ dg0 (free
space model). Beyond this threshold, the energy consumption follows d4 model due
to multipath. The energy consumed for transmitting k-bits of data over a distance
dg is obtained as [19]

E2 =

{
kEe + kEfsd2g, when dg < dg0 ;

kEe + kEmpd
4
g, when dg ≥ dg0 .

(F.3)

For the simulation, we have used Ee = 25×10−9 J/bit and Efs = 10×10−12 J/bit/m2.
The parameter Emp refers to the power amplification energy in the multipath fading
model and is given by,

Emp =
Efs
d2g

(F.4)

Thus, the total energy consumption is given by,

E = E1 + E2 (F.5)

Finally, the cost for transmitting the data from all UAVs to GCS is obtained as

C =
N∑
i=1

Ei,GCS . (F.6)

where, Ei,GCS is the total energy consumed for transmitting the data from i-th UAV
to GCS.
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F.3 Proposed Scheme

In this section, we describe the algorithm for the proposed hybrid switching scheme
for minimizing the overall cost of the network described (F.4).

As the overall objective is to minimize the energy consumption of the network,
each UAV should choose the communication protocol which uses minimum energy
for transmitting the available data. Based on two energy models that are employed
we have two different approaches:

F.3.0.1 For the case of free space model

Each UAV checks the possible communication technologies for transmission based on
its distance from the GCS. Then, it calculates the energy consumed for transmitting
the data. A UAV selects the communication technology that consumes less energy
in comparison to other protocols. This in turn, reduces the energy consumption for
transmitting the same data as described in Algorithm. 5.

F.3.0.2 For the case of free space and multipath model

As described earlier, a UAV can communicate with the GCS by using any of the
available communication technologies. However, the energy consumption changes
based on its distance with respect to the threshold. Thus, each UAV calculates the
amount of energy consumed by each communication technology for transmitting
the available data. Then, it switches to the communication technology that con-
sumes less energy in comparison to other communication technologies as described
in Algorithm. 5.

F.4 Performance Metrics

In this section, we describe the performance metrics such as average delay and
network energy consumption for the evaluation of the proposed model.

F.4.1 Average Delay

It is defined as the ratio of the sum of delays for transmitting the data from all
UAVs to GCS and the total number of UAVs. Total delay from a UAV to GCS is
obtained as the sum of the propagation delay and transmission delay.

F.4.1.1 Transmission delay

It is the delay for transmitting a packet from one UAV to GCS. It usually depends
on the data rate of the communication technology. For transmitting n packets of
k-bits each over a communication channel, the incurred transmission delay is given
by

Ttrans =
nk

R
, (F.7)
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Algorithm 5: Proposed hybrid switching algorithm.
Input: N , dg
Output: Average network delay and energy consumption

1 if Employed energy model is free space model then
2 Calculate the energy for each communication technology using (F.1),

(F.2) and (F.4);
3 if dg < rBluetooth then
4 Select protocol with minimum energy from the set

{EBluetooth, ELTE−M , EWiFi, ELoRa};
5 else if dg < rLTE−M then
6 Select protocol with minimum energy from the set

{ELTE−M , EWiFi, ELoRa};
7 else if dg < rWiFi then
8 Select protocol with minimum energy from the set {EWiFi, ELoRa};
9 else

10 Select the LoRa communication protocol;
11 end
12 else
13 Employed energy model is free space and multipath model
14 Calculate the energy for each communication technology using (F.1),

(F.3) and (F.4);
15 Select protocol consuming minimum energy from the set

{EBluetooth, ELTE−M , EWiFi, ELoRa};
16 end
17 Obtain the average network delay and energy consumption ;

where, R is the data rate of the respective communication protocol.

F.4.1.2 Propagation delay

It is the delay incurred for propagating data from a UAV to GCS over a distance of
dg. The expression for the propagation delay is obtained as

Tprop =
dg
c
, (F.8)

where, c is the speed of light which is 3× 108 m/s and dg is the distance of the UAV
from the GCS. From (F.7) and (F.8), the total delay is obtained as

Td = Ttrans + Tprop , (F.9)

Finally, the expression for average delay of the network is given as

Tavg =
1

N

N∑
i=1

Tdi . (F.10)
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Table F.1: Various communication protocol attributes

Protocol Transmit Data rate Path loss reference
Power (W) (bits/second) distance (Normalized) dg0

Bluetooth [21] 0.01 1360 x 103 200

LTE-M [22], [23] 0.1 1 x 106 400

WiFi [24], [15] 2 1 x 107 600

LoRa [15], [16] 0.025 50 x 103 1500

F.4.2 Network Energy Consumption

The network energy is defined as the sum of the energies consumed for transmitting
the data from each of the N UAVs to GCS. The expression for network energy
consumption is given by

Etotal =
N∑
i=1

Ei,GCS . (F.11)

F.4.3 Packet Arrival Rate

We assume the packet arrival rate follows Poisson distributed random variable which
is defined as

Pr(X = n) =
λne−λ

n!
(F.12)

F.5 Numerical results

In this section, we provide the simulation comparison of the proposed scheme with
the other protocols in terms of average delay and energy consumption.

F.5.1 Experimental setup

We consider a scenario of N = 500 UAVs that are deployed randomly over a
1000 x 1000 m2 area and a random hovering height h selected from the set
{100, 200, 300, 400}. After each transmission, a UAV transits with a speed of 5

m/s for a duration of 60 seconds in a randomly chosen direction within the given
area. Further, GCS is located at the center of the deployed area with coordinates
(50, 50, 0).

The UAVs are equipped with communication modules such as BLE, Wi-Fi, LTE-
M, and LoRa. We have considered the typical values of different attributes for each
communication technology as given in Table F.1. We consider that the packet
arrival rate follows Poisson distribution with parameter chosen randomly from the
set {1, 2, · · · , 100} and each packet is of 128 bits.
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Figure F.2: (a) Total network energy consumption for free space energy model and
(b) total network energy consumption for free space and multipath energy model.
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F.5.2 Results

Fig. F.2a shows the variation of network energy consumption in each scenario with
free space model. From Fig. F.2a, it is observed that the energy consumption of
the proposed hybrid scheme is comparable to the energy consumption model when
Wi-Fi is used alone for transmission. However, the proposed model provides better
energy consumption than a standalone LoRa based scheme. The amount of energy
consumed by stand alone BLE is less compared to the hybrid model due to the lower
transmit power.

Fig. F.2b shows the simulation comparison of the proposed model with the
individual communication technologies in terms of network energy consumption for
FSMP model. From Fig. F.2b, it is observed that the hybrid scheme consumes
less energy in comparison to the individual communication protocols due to the
switching technique. In case of BLE, the energy consumption is more as most of the
UAVs which are farther from threshold follows d4 energy consumption model.

Figs. F.3a and F.3b show the variation of the delay for FS and FSMP models,
respectively. The delay depends upon number of bits to be transmitted and the
distance over which the transmission occurs. Hence, it can be observed that the
delay doesn’t show significant variation for the proposed hybrid switching technique
even with both energy models. In case of standalone communication protocols, the
delay depends primarily on the total number of bits to be transmitted. Here, the
overall delay depends mostly on the transmission delay as the propagation delay
does not contribute much. Hence, it is concluded that the FSMP energy model for
the hybrid switching communication scheme outperforms existing standalone com-
munication technologies by providing minimum energy consumption and reduced
average network delay as can be observed from Figs. F.2b and F.3b, respectively.

Figs. G.8a and G.8b show the simulation comparison in terms of energy con-
sumption and average delay, respectively, for the hybrid scheme with FS and FSMP
models. From Fig. G.8a, it is observed that the network energy consumption for
both the models are similar with the FSMP model showing lower energy consump-
tion. However, the average delay is varies greatly as can be observed from Fig.
G.8b. This is due to the fact that the number of UAVs that are connected to BLE,
Wi-Fi, LTE-M, and LoRa are 14, 279, 153, and 54, respectively, in the case of FS
model. However, in case of FSMP model, the number of UAVs connected to BLE
has increased to 21 and the number UAVs connected to LTE-M has increased to
162. Further, the number of UAVs connected to LoRa has reduced to 38. Since
both BLE and LTE-M offers higher data rates in comparison to LoRa, the overall
delay is less for FSMP model relative to FS model.

F.6 Conclusion

In this paper, we have proposed a hybrid BLE/Wi-Fi/LTE/LoRa switching scheme
for UAV-assisted wireless networks. In the proposed scheme, each UAV switches the
communication protocol based on the lower energy consumption for transmitting
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Figure F.3: (a) Average network delay for free space energy model and (b) average
network delay for free space and multipath energy model.
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Figure F.4: Total network energy comparison with proposed method for free space
and free space and multipath energy models.
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the available data. Further, the performance of the proposed scheme has been
evaluated for both free space (FS) and free space and multipath (FSMP) models.
We have evaluated the performance of the proposed approach against the standalone
communication protocols in terms of network energy consumption and average delay.
It has been concluded that the proposed hybrid scheme outperformed other protocols
for the FSMP model. Further, the proposed scheme performs well with FSMP model
as compared to FS model. In future, we will analyze the performance of the proposed
scheme in terms of additional parameters such as network lifetime and throughput.
Additionally, the analytical expressions corresponding to all the performance metrics
will be derived.
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RL-based Energy-Efficient Data Trans-
mission over Hybrid BLE/LTE/Wi-
Fi/LoRa UAV-Assisted Wireless Net-
work

W. A. Nelson, S. R. Yeduri, A. Jha, A. Kumar, L. R. Cenkeramaddi

Abstract: The lifetime of a UAV-assisted wireless network is de-
termined by the amount of energy consumed by the UAVs during flight,
data collection, and transmission to the ground station. Routing proto-
cols are commonly used for data transmission in a communication net-
work. However, because of the mobility of UAVs, using a routing protocol
with a single communication technology results in higher delay and more
energy consumption in a UAV-assisted wireless network. To overcome
this, we propose two reinforcement learning (RL) algorithms, Q-learning
and deep Q-network (DQN), for energy-efficient data transmission over a
hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network. We con-
sider BLE, LTE, Wi-Fi, and LoRa for communication over a UAV-GS
link. The RL algorithms take any random network as input and learn
the best policy to output the network with less energy consumption. The
reward/penalty is chosen in such a way that the network with the highest
energy consumption is penalized and the one with the lowest is rewarded,
thereby minimizing total network energy consumption. Based on learn-
ing, it creates a hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless
network by assigning the best communication technology to a UAV-GS
link. Further, we compare the performance of proposed RL algorithms
with a rule-based algorithm and random hybrid scheme. In addition, we
propose a theoretical framework for constructing hybrid network for both
free space and free space multipath path loss models. We demonstrate
the performance comparison of the proposed work with the conventional
shortest path routing algorithm in terms of network energy consumption
and average network delay using extensive results. Finally, the effect of
the velocity of the UAV and the number of packets on the performance
of the proposed framework is analyzed.
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G.1 Introduction

Technological advances and ease of regulations in today’s world have helped un-
manned aerial vehicle (UAV) technology to serve the ever-growing demand of mod-
ern applications. UAVs are used in a number of applications that include precision
agriculture [1], space exploration [2], providing connectivity to terrestrial networks
[3], and public safety [4]. Their ability to maneuver and access remote locations
has made them suitable for remote sensing and disaster management applications
[5]. UAV swarms with high precision control have recently paved the way for UAV
light-shows in various events thereby reducing pollution due to explosives [6].

To ensure safe and secure UAV operations, UAV communication plays a vital
role. UAVs are equipped with various communication modules such as Bluetooth
Low Energy (BLE), Long Term Evolution (LTE), Wireless Fidelity (Wi-Fi), and
Long Range (LoRa). These communication technologies ensure that UAVs are trans-
mitting the required control and telemetry data to the ground control stations (GS).
UAV health and trajectory are monitored by continuously sending signals to the GS
and if required, to other UAVs.

Various works have been proposed in this regard. A dual radio internet-of-
things (IoT) architecture has been proposed in [7] for the application of wildlife
monitoring systems. The proposed approach in [7] leverages BLE in low power
wide area network (LPWAN) based on the proximity among the wildlife animal
herd. Finally, an analytical model for energy consumption has been presented to
evaluate the performance of the proposed approach [7]. It has been shown that the
proposed dual radio network improves energy efficiency when compared to a network
utilizing LPWAN alone [7]. In [8], the authors have proposed an indoor hybrid
RF/PLC/VLC communication system to switch the device connections among the
RF, PLC, and VLC in order to improve the sum rate capacity. Further, the transmit
power minimization problem has been formulated and analyzed in [9]. However, no
literature is presented focusing on the hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted
wireless network for energy-efficient data transmission.

Further, many works have been presented in the literature focusing on the ap-
plication of reinforcement learning (RL) in UAV-assisted wireless networks. A deep
learning (DL) algorithm has been proposed in [10] for the collection of data in a
UAV-assisted wireless network. In [11], several DL-based artificial intelligence (AI)
methods such as point learning, multi-agent deep deterministic policy gradient, and
federated DL have been proposed to solve the optimization problem of energy ef-
ficiency in a UAV-assisted wireless network. In [12], a combination of echo state
learning and RL is used to solve the joint flight control and spectrum access prob-
lem in TeraHertz-band for UAV-assisted wireless networks. A deep reinforcement
learning (DRL) approach has been proposed in [13] for resource allocation in terms of
throughput, bandwidth, and power consumption in UAV-assisted wireless networks.
In [14], the authors utilize the stochastic learning automata (SLA) algorithm to
perform joint optimization of channel and relay selection in UAV-aided device-to-
device (D2D) networks. However, none of these works focused on utilizing RL al-
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gorithms for energy-efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa
UAV-assisted wireless network. Motivated by this, we propose two RL algorithms
for energy-efficient data transmission over a hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network. The main contributions of this paper are:

• A hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network is formed
with free space (FS) and free space multipath (FSMP) energy models.

• Analytical expressions corresponding to network energy consumption and av-
erage network delay are derived for the data transmission over the hybrid
BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network.

• Further, two RL algorithms namely, Q-learning and deep Q-network (DQN)
are proposed for energy-efficient data transmission over hybrid BLE/LTE/Wi-
Fi/LoRa UAV-assisted wireless network. The performance of the proposed
RL algorithms is compared with the rule-based algorithm and random hybrid
scheme.

• Through extensive numerical results, we show that the proposed RL algorithms
result in energy-efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa
UAV-assisted wireless network. We also compare the performance of the pro-
posed hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network in terms
of the network energy consumption and average network delay with conven-
tional shortest path routing algorithm considering individual communication
technology.

The remaining sections of this article are structured as follows: Section G.2
discusses the system model and problem formulation. The proposed theoretical
framework for energy-efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa
UAV-assisted wireless network is presented in Section G.3. The analytical expres-
sions corresponding to network energy consumption and average network delay for
FS and FSMP models are derived in Section G.4. Section G.5 describes the proposed
RL algorithms for energy-efficient data transmission over hybrid BLE/LTE/Wi-
Fi/LoRa UAV-assisted wireless network. Evaluation metrics are described in Sec-
tion G.6 and the numerical results are discussed in Section G.7. Finally, Section G.8
concludes the paper by providing a summary and possible future research directions.

G.2 System model and problem formulation

We consider a UAV-assisted wireless network wherein, N UAVs are deployed ran-
domly over B2 area over l layers of height h1, h2, · · · , hl, respectively, as shown in
Fig. G.1. These UAVs collect the data and send it to the GS which is situated
on the ground at (B/3, B/3). We consider GS to have access to all communication
technologies to collect the data and process it. Here, the data arrival at each UAV is
assumed to follow the Poisson process. After a successful transmission of data from
one location, the UAV moves to another location randomly to collect the data.
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Table G.1: Summary of important parameters used in this work.

Notation Definition

C Cost of the network in terms of en-
ergy consumption

N Number of UAVs present in the net-
work

hi Height of the ith layer
l Total number of layers
B2 Area of each layer over which UAVs

are deployed
PT Transmit power
R Data rate over the transmission

link
dg Radial distance
k Number of bits
Ee Energy consumed by the electronic

circuit for transmitting one bit
Efs Free space power amplification en-

ergy
Emp Power amplification energy in the

multipath fading model
ETr Energy consumed for transmitting

k bits of data
Ed Energy consumed for transmitting

k bits of data over dg distance
τ Communication technology
rτ Range of the communication tech-

nology
λ Learning rate for the proposed RL

algorithms
γ Reward parameter for the proposed

RL algorithms
∆ Discount parameter for the pro-

posed RL algorithms
TTr Transmission delay
Tprop Propagation delay
Aτ Area occupied by the communica-

tion technology
Ppr Probability that a UAV present Aτ

W1 Weighing parameter corresponding
to ETr

W2 Weighing parameter corresponding
to Ed

EN/W Total energy consumed by the net-
work

w Weights of the policy neural net-
work

ŵ Weights of the target neural net-
work

ζ Interval after which target network
weights are updated (in terms of
number of steps)

ϕ Denotes if terminal state is reached

A UAV-GS link is considered to select one of the four communication technologies
from BLE, LTE, Wi-Fi, and LoRa. Once a communication link is established to a
UAV-GS link, the data will be transmitted with a transmit power of PT and a
data rate of R. This will incur a delay of Td seconds. Further, two path loss models

265



Ground Control
Station

Figure G.1: System model for the hybrid BLE/LTE/Wi-Fi/LoRa scheme for two
layers.

such as FS and FSMP are considered for inserting a communication technology for a
UAV-GS link. In the FS model, a UAV-GS link can select one of the communication
technologies, if the radial distance of the link is less than rτ where τ represents one of
the four communication technologies BLE, LTE, Wi-Fi, or LoRa. In the FS model,
the energy consumption follows d2 model. In the FSMP model, a UAV-GS link
can select any of the communication links irrespective of its distance. However, the
energy consumption follows d2 model if the radial distance is less than rτ , else, the
energy consumption follows d4 model.

G.2.1 Problem Formulation

In this work, our aim is to minimize the network energy consumption. Thus, we
first obtain the overall network energy consumption. The total network energy con-
sumption is obtained as the sum of the energy consumption at each UAV-GS link.
The energy consumption at a UAV-GS link is the sum of the energy consumption
for transmitting the data with a transmit power and the energy consumed for trans-
mitting this data over a radial distance dg. With PT being the transmit power and
R as the data rate, the energy consumed for transmitting k bits of data is obtained
as [15]

ETr =
kPT

R
. (G.1)

As mentioned earlier, the energy consumption depends on the path loss model
and the radial distance. Next, we derive the energy consumption for the FS model
and FSMP model.

266



G.2.1.1 FS Model

In the FS model, a link can be connected to a communication technology in case
the radial distance is less than the threshold distance, rτ , of that communication
technology. With dg being the radial distance, the energy consumed for transmission
of data over a distance dg is obtained as [16]

Ed,fs = kEe + kEfsd2g, (G.2)

where Ee is the energy consumed by the electronic circuit for transmitting one bit
and Efs denotes the free space power amplification energy.

G.2.1.2 FSMP Model

In the FSMP model, a UAV-GS link will be assigned with any of the communication
technologies irrespective of its radial distance. The energy consumed for transmit-
ting k bits of data over a radial distance of dg is obtained as [16]

Ed,fsmp =

{
kEe + kEfsd2g, when dg < rτ ;

kEe + kEmpd
4
g, when dg ≥ rτ .

(G.3)

Here, Emp = Efs/r2τ denotes the power amplification energy in the multipath fading
model. We consider Ee = 25 × 10−9 J/bit and Efs = 10 × 10−12 J/bit/m2 for the
simulation evaluation [17].

Finally, the total cost of the UAV-assisted wireless network in terms of energy
consumption is obtained as

C =
N∑
i=1

(ETr,i + Ed,i). (G.4)

The aim of this work is to minimize the cost, defined in (G.4), of the network in
terms of energy consumption.

G.3 Energy-Efficient Data Transmission over Hy-
brid BLE/LTE/Wi-Fi/LoRa UAV-Assisted
Wireless Network Formation

The proposed scheme aims at the creation of a hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network for energy-efficient data transmission. We consider two
path loss models for generating the network which are described below.

G.3.1 FS model

In the FS model, a UAV-GS link can select a communication technology in case the
radial distance is less than the threshold distance rτ .
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Algorithm 6: Algorithm to obtain the FS model-based Hybrid
BLE/LTE/Wi-Fi/LoRa UAV-Assisted Wireless Network.
Input: N , dg
Output: Network energy consumption and average network delay

1 if dg < rBLE then
2 Calculate the energy consumed over a UAV-GS link using (G.1) and

(G.2) for all communication protocols;
3 Emin = min{EBLE, ELTE, EWi-Fi, ELoRa};
4 Choose the communication protocol with Emin;

5 else if dg < rLTE then
6 Calculate the energy consumed over a UAV-GS link using (G.1) and

(G.2) for LTE, Wi-Fi, and LoRa;
7 Emin = min{ELTE, EWi-Fi, ELoRa};
8 Choose the communication protocol with Emin;
9 else if dg < rWi-Fi then

10 Calculate the energy consumed over a UAV-GS link using (G.1) and
(G.2) for Wi-Fi and LoRa;

11 Emin = min{EWi-Fi, ELoRa};
12 Choose the communication protocol with Emin;
13 else
14 Choose the LoRa communication protocol;
15 end
16 Obtain network energy consumption and average network delay

Table G.2: Transmit power, data rate, and the path loss reference distance for all
the communication protocols considered in this work.

Protocol PT (W) R (Mbps) PT/R rτ
BLE [18], [19] 0.01 1.36 0.007× 10−6 200

LTE [20], [21] 0.1 1 0.1× 10−6 400

Wi-Fi [22], [23] 2 10 0.2× 10−6 600

LoRa [23], [24], [25] 0.025 0.050 0.5× 10−6 1500

Algorithm 6 describes the steps involved in the selection of a communication
protocol for a UAV-GS link. From Table G.2, it is observed that the threshold
distance of BLE is less than that of LTE. This will be followed by Wi-Fi and LoRa.
When the radial distance of a link is less than rBLE, the link will be assigned to one
of the four communication technologies that consume less energy. When the radial
distance is less than rLTE, the link will be assigned to one of the communication
technologies from LTE, Wi-Fi, and LoRa based on minimum energy consumption.
When the radial distance is less than rWi-Fi, the link will be assigned with one of
the communication technologies from Wi-Fi and LoRa based on minimum energy
consumption. Else, it will be connected to LoRa.
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Algorithm 7: Algorithm to obtain the FSMP model-based Hybrid
BLE/LTE/Wi-Fi/LoRa UAV-Assisted Wireless Network.
Input: N , dg
Output: Network energy consumption and average network delay

1 Calculate the energy consumed over a UAV-GS link using (G.1) and (G.3)
for all communication protocols

2 Emin = min{EBLE, ELTE, EWi-Fi, ELoRa}
3 Choose the communication protocol with Emin

4 Obtain network energy consumption and average network delay

G.3.2 FSMP model

In the FSMP model, a link will be assigned with one of the communication links
based on the energy consumption irrespective of its radial distance.

Algorithm 7 describes the procedure for the creation of hybrid BLE/LTE/Wi-
Fi/LoRa UAV-assisted wireless network to evaluate the energy consumed over a
link for different communication technologies. Assign the communication technology
that consumes less energy for transmission.

G.4 Analytical model for Energy-Efficient Data
Transmission over Hybrid BLE/LTE/Wi-
Fi/LoRa UAV-Assisted Wireless Network

In this section, we derive the mathematical expressions for the network energy con-
sumption for both FS and FSMP models.

G.4.1 FS Model

In the FS model, a link can be assigned to a communication technology in case the
radial distance is less than the threshold distance. This implies that the energy
consumption follows d2 model. Thus, the connection to a communication protocol
completely depends on the ETr as the Ed is the same for all the communication
protocols. From Table G.2, it can be observed that the PT/R ratio is less for BLE,
followed by LTE, Wi-Fi, and LoRa. Thus, the number of UAV-GS links connected
to any of the communication technologies depends on the presence of the UAV in
its communication range. For example, if a UAV is present in the BLE range, it will
be connected to BLE. In case the UAV is present in the LTE range and not in the
BLE range, then it will be connected to LTE. The same applies for Wi-Fi. In case
the UAV is not present in the Wi-Fi range, it will be connected to LoRa. Thus,
each communication technology occupies a circular range for its connection. Thus,
the circular area over which each communication technology occupies in a layer of
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height hi is obtained as

Aτ =


πx2BLE,fs, for BLE

πx2LTE,fs − πr2BLE,fs, for LTE

πx2Wi-Fi,fs − πr2LTE,fs, for Wi-Fi

B2 − πx2Wi-Fi,fs, for LoRa

(G.5)

where, τ represents the different communication technologies and xτ is given as

xτ =


√
r2τ − h2i , if rτ > hi;

0, otherwise,
(G.6)

Let Ppr represent the probability that a UAV is present in the area corresponding
to a communication technology which is obtained as

Ppr,τ =
Aτ

B2
. (G.7)

Thus, the number of UAV-GS links connected to a communication technology is
obtained as

nτ = Ppr,τN (G.8)

The energy consumed by communication technology is obtained as

Eτ = Ppr,τN(ETr + Ed,fs,avg) (G.9)

Finally, the total energy consumed by the network is obtained as

EN/W =
∑
τ

Ppr,τN(ETr,τ + Ed,fs,τ,avg) (G.10)

Here, Ed,fs,τ,avg represents the average energy consumption incurred by the commu-
nication technology τ . The average energy Ed,fs,τ,avg over an area D can be obtained
as [26]

Ed,fs,τ,avg =
1

D

∫∫
D

f(r, θ) r dr dθ (G.11)

Evaluating the above integral over the region D defined as the area between two
concentric circles with radius ra and rb (rb > ra) gives

Ed,fs,τ,avg =
1

π(r2b − r2a)

∫ 2π

0

∫ rb

ra

(kEe + kEfsr2)r dr dθ (G.12)

Upon solving, we obtain the generalized closed form expression for Ed,fs,τ,avg as

Ed,fs,τ,avg = kEe +
kEfs
2

(r2a + r2b ) (G.13)
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where ra and rb are defined as

ra =


0, for BLE

rBLE,fs, for LTE

rLTE,fs, for Wi-Fi

rWi-Fi,fs, for LoRa

(G.14)

and

rb =


rBLE,fs, for BLE

rLTE,fs, for LTE

rWi-Fi,fs, for Wi-Fi

rLoRa,fs, for LoRa

(G.15)

Similarly the average delay of the network Tavg,fs can be derived as,

Tavg,fs =
1

π(r2b − r2a)

∫ 2π

0

∫ rb

ra

(Ttrans + Tprop)r dr dθ (G.16)

where the expressions for Ttrans and Tprop are detailed in Section G.6. On solving,
we obtain the expression for the average network delay Tavg,fs as,

Tavg,fs =
k

R
+

2(r2a + r2b + rarb)

3c(ra + rb)
(G.17)

where ra and rb are defined as above. The parameter c is the speed of light in vaccum
which is equal to 3× 108 m/s.

G.4.2 FSMP Model

In contrast to the FS model, a link can be assigned with any of the communication
technology irrespective of its radial distance. Thus, the connection to a communica-
tion technology depends on both ETr and Ed. As described in the previous section,
the link will be connected to a communication protocol if the UAV is present in the
range of that communication protocol. Now we need to obtain the range beyond
which a communication protocol extends for energy-efficient data transmission over
hybrid UAV-assisted wireless network. For example, the BLE can be assigned to a
link even if the radial distance is greater than the threshold distance. The require-
ment is that the total energy consumed with d4 model of BLE should be less than
the total energy consumed with d2 model of LTE which is defined as

ETr,BLE + Ed,fsmp,BLE < ETr,LTE + Ed,fs,LTE (G.18)

We need to derive the range of BLE, rBLE by considering equality in (G.18).

kPT,BLE

RBLE

+ kEe + kEmpd
4
g =

kPT,LTE

RLTE

+ kEe + kEfsd2g (G.19)
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Solving the above equation, we get the threshold distance corresponding to BLE
which is defined as

rBLE =

√√√√Efs ±√
E2fs − 4(

PT,BLE

RBLE
− PT,LTE

RLTE
)

2Emp

(G.20)

Similarly, we can obtain the range for LTE, Wi-Fi, and LoRa. With the new range,
we can obtain the area over which BLE, LTE, Wi-Fi, and LoRa exist.

Aτ =


πx2BLE,fsmp, for BLE

πx2LTE,fsmp − πr2BLE,fsmp, for LTE

πx2Wi-Fi,fsmp − πr2LTE,fsmp, for Wi-Fi

B2 − πx2Wi-Fi,fsmp, for LoRa

(G.21)

where, τ represents the different communication technologies and xτ is given as

xτ =


√
r2τ − h2i , if rτ > hi;

0, otherwise,
(G.22)

Let Ppr represents the probability that a UAV is present in the area corresponding
to a communication technology which is obtained as

Ppr,τ =
Aτ

B2
. (G.23)

Thus, the number of UAV-GS links connected to a communication technology is
obtained as

nτ = Ppr,τN (G.24)

The energy consumed by communication technology is obtained as

Eτ = Ppr,τN(ETr + Ed,fsmp,avg) (G.25)

Finally, the total energy consumed by the network is obtained as

EN/W =
∑
τ

Ppr,τN(ETr,τ + Ed,fsmp,τ,avg) (G.26)

Similar to (G.12) for the FS model, the average FSMP energy consumption
Ed,fsmp,τ,avg for a communication technology τ is obtained as

Ed,fsmp,τ,avg =
1

π(r2b − r2a)

∫ 2π

0

[∫ rc

ra

(kEe + kEfsr2)r dr dθ+∫ rb

rc

(kEe + kEmpr
4)r dr dθ

]
(G.27)
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Solving the above equation, the expression for the average energy consumption
Ed,fsmp,τ,avg is given as

Ed,fsmp,τ,avg = kEe +
k

(r2b − r2a)

[
kEfs
2

(r4c − r4a) +
kEmp

3
(r6b − r6c )

]
(G.28)

where ra, rb, and rc are defined as

ra =


0, for BLE

rBLE,fsmp, for LTE

rLTE,fsmp, for Wi-Fi

rWi-Fi,fsmp, for LoRa

(G.29)

rb =


rBLE,fsmp, for BLE

rLTE,fsmp, for LTE

rWi-Fi,fsmp, for Wi-Fi

rLoRa,fsmp, for LoRa

(G.30)

and

rc =


rBLE,fs, for BLE

rLTE,fs, for LTE

rWi-Fi,fs, for Wi-Fi

rLoRa,fs, for LoRa

(G.31)

Similarly the average delay of the network Tavg,fsmp can be derived as,

Tavg,fsmp =
1

π(r2b − r2a)

∫ 2π

0

∫ rb

ra

(Ttrans + Tprop)r dr dθ (G.32)

where the expressions for Ttrans and Tprop are detailed in Section G.6. Solving the
above equation, we obtain the expression for the average network delay Tavg,fsmp as,

Tavg,fsmp =
k

R
+

2(r2a + r2b + rarb)

3c(ra + rb)
(G.33)

where ra, rb, and c are defined as above. It can be observed that the average network
delay for both the hybrid FS and FSMP schemes is equal. This is expected as the
delay in both cases is directly proportional to dg. This is also verified through
simulations in the subsequent sections.

G.5 RL-Based Energy-Efficient Data Transmission
over Hybrid BLE/LTE/Wi-Fi/LoRa UAV-
Assisted Wireless Network Formation

RL is a branch of machine learning in which an agent learns the optimal policy
strategy through a set of actions. In a RL framework, the agent is the entity that
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Environment Agent

Action

State

Reward 

Figure G.2: An illustration of Q-learning.

Table G.3: Q-table corresponding to state-action pairs.

St
at
es

Actions

tries to learn and model the environment that it interacts with. The agent interacts
with the environment through a set of trial-and-error actions. Based on these actions
the environment either rewards or penalizes the agent. The feedback thus obtained
allows the agent to navigate the environment by transitioning to new states, thereby
updating its optimal policy strategy. RL is generally used to solve problems involving
Markov Decision Process (MDP) where the state transition probability of moving
to the next state is dependent only on the present state and not the previous other
states. In this paper, we consider two RL algorithms such as Q-learning and DQN
which are described next.
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G.5.1 Q-Learning

In this section, we describe the proposed Q-learning approach for energy-efficient
data transmission over hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless net-
work. Q-learning is a model-free reinforcement learning algorithm in which the
agent directly interacts with the environment to achieve the optimal policy. The
algorithm is value-based and finds the value function without any prior knowledge
of the state transition probabilities [27]. Compared to model-based algorithms, Q-
learning offers relatively less execution time and storage cost, provided the state
and action space are not large. Since the algorithm operation is reward-dependent,
proper design of the reward function is crucial for the algorithm’s performance and
conduct [28, 29]. In this work, the goal of the Q-learning algorithm is to transmit the
data from UAV to GS with minimum energy consumption. In our hybrid system,
the states, actions, and rewards as shown in Fig. G.2 are detailed as follows:

G.5.1.1 States

Let S = {sn} represent a set of N states for the Q-learning algorithm where n =

1, 2, ..., N . In this work, each state represents the communication link between the
UAV and GS. Since there are N UAVs in the network, the number of UAV-GS
communication links is N , and hence the number of states is N .

G.5.1.2 Action

Let each state sn ∈ S be associated with a set of M actions A = {am}, where
each action represents the agent choosing a communication technology to assign to
a UAV-GS link. In our hybrid system, there are four communication technologies
and hence, there are four actions i.e., M = 4 in our Q-learning algorithm.

G.5.1.3 Reward/Penalty

Based on the action, the agent receives a reward/penalty from the environment. If
γ is denoted as the reward/penalty, then γ = γ(sn, am) is the reward/penalty that
an agent obtains when it is present in state sn and performs an action am. In our
hybrid system, the agent will receive the reward/penalty after selecting the commu-
nication technology for the UAV-GS link. Since the objective of the proposed work
is energy-efficient data transmission over a hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network, γ is considered in terms of the network energy consump-
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tion. The expression for γ is defined as

γ =



10−6

EN/W

1

EN/W

e−EN/W

W1

E1,N/W

+
W2

E2,N/W

,

(G.34)

(G.35)

(G.36)

(G.37)

where, E1,N/W and E2,N/W denote the network energy consumed for transmitting
k-bits of information and the network energy consumed for transmitting over a
distance. Further, W1 and W2 are the weights assigned for E1,N/W and E2,N/W ,
respectively. Since a higher reward translates to an optimized network, we consider
γ as the inverse function of energy.

G.5.1.4 Updating the Q-value

The reward/penalty from the agent is used to update the Q-value corresponding to
a state-action pair as given in Table G.3. When a UAV-GS link is assigned to a
communication protocol, it results in a reward. The new Q-value is obtained as

Q(st, at)← (1− λ)Q(st, at) + λ(γ +∆max
a
Q(st+1, a)), (G.38)

where, λ and ∆ are the learning rate and discount corresponding to the Q-learning
approach, respectively. Here, maxaQ(st+1, a) takes the maximum of the future
reward and applies it to the reward for the current state.

Algorithm 8 describes the Q-learning approach proposed in this work. In the
proposed Q-learning algorithm, initialize the Q-matrix with the number of UAV-
GS links as rows and the communication protocols as columns. The UAV-GS links
are ordered as rows in decreasing order of their distance to the ground station.
Now, starting from the first row of the Q-matrix, randomly select a communication
protocol. With the selected communication protocol, calculate the network energy
consumption. Calculate the reward using (G.34), (G.35), (G.36), and (G.37) and
update the Q-value of the link using (G.38). Next, transition to the next state based
on the decreasing distance to the ground station. The state transition rule employed
in this work is partially motivated by [30], where the authors have used decreasing
channel state information as a means to transition to the next state. Repeat the
above procedure until the UAV-GS link closest to the ground station is updated.
The above steps are repeated again for a large number of iterations such that all links
and communication protocols are covered. Once the training is completed, connect
the UAV-GS link with a communication protocol which results in the highest Q-
value. Calculate the network energy consumption and average network delay for
the energy-efficient data transmission over a hybrid BLE/LTE/Wi-Fi/LoRa UAV-
assisted wireless network. With the increase in the number of state-action pairs, the
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Algorithm 8: Q-learning approach to determine the optimized hybrid
UAV-assisted communication network
Input: N UAVs, M communication technologies, Maximum number of

episodes Kmax, λ, ∆, exploration-exploitation factor ε
Output: Network energy consumption and average network delay

1 Initialize the rows and columns of the Q-matrix with zeros;
2 Assign the UAV-GS links to the rows of the Q-matrix in descending order of

distance to the ground station;
3 Assign the communication technologies to the columns of the Q-matrix;
4 Training
5 for i = 1 to Kmax do
6 Select the first state s0;
7 for t = 1 to N do
8 Generate a random number u ∈ (0, 1);
9 if u > ε then

10 Select action from Q-matrix which has maximum Q-value
at = maxaQ(st, at);

11 else
12 Select a random communication technology as action at;
13 end
14 Calculate the network energy consumption using (G.1), (G.3), and

(G.4);
15 Obtain γ using (G.34), (G.35), (G.36), and (G.37);
16 Update the Q-value using (G.38);
17 if st == sN then
18 break;
19 else
20 Update to next state st = st+1 in the order of decreasing distance

to ground station;
21 end
22 end
23 end
24 Validation
25 In each row of the Q-matrix, select the indices with maximum Q-value;
26 Assign the communication technology with the highest Q-value to the

UAV-GS link;
27 Calculate the network energy consumption and average network delay;

Q-matrix employed in the Q-learning algorithm would require additional memory
to store the Q-values. This can often lead to increased memory overhead thereby
affecting the performance of the algorithm [30]. The DQN algorithm is set to resolve
these issues by using a neural network to approximate the Q-values [31]. By using
a neural network, the DQN algorithm essentially preserves the relative significance
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Figure G.3: Neural network model used in DQN.

between the Q-values and hence provides similar results as that of Q-learning [32].
Next, we discuss the details of the proposed DQN algorithm.

G.5.2 Deep Q-Network (DQN)

In this section, we present the DQN algorithm for energy-efficient data trans-
mission over hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network.

The DQN algorithm when applied to this work follows a similar construct as the
Q-learning algorithm. States and actions follow the same descriptions as defined for
Q-learning. Hence, for a UAV-assisted wireless network with N UAVs, the number
of UAV-GS communication links is N , and hence the number of states is N . As
there are four communication technologies to choose from, there are four actions.
For a state st, the DQN algorithm follows a ε-greedy policy to select an action at.
This means that a random action is selected (exploration) with a probability ε and
the action corresponding to maximum Q(st, at) is selected with probability (1 − ε)
(exploitation). Thus an exploration-exploitation tradeoff is provided so that the
DQN algorithm is able to train successfully without falling into a local optima [30].
At any step t, the reward/penalty γt for state st and action at is calculated based
on (G.35).

The DQN network is primarily made up of two neural network models, a policy
network and a target network. Each UAV-GS link with its corresponding length is
given as input to the neural networks. As shown in Fig. G.3, a fully connected neural
network with two hidden layers forms the policy network. The first hidden layer
consists of 256 neurons while the second hidden layer contains 128 neurons. All the
layers are activated using the ReLu activation function during training. The target
network is a cloned replica of the policy network. It has the same architecture as the
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Environment

Experience replay
memory

Figure G.4: Block diagram for the DQN algorithm.

policy network and serves the purpose of providing stability to the DQN algorithm
while training. The output layer of the policy network consists of 4 outputs with
a linear activation. The outputs correspond to the prediction of the state-action
values Q(st, at) at step t.

As shown in Fig. G.4, the action at for state st is selected based on ε-greedy
policy. Choosing action at results in a state transition from state st to state st+1

and a reward γt. The state transition follows the same distance-based rule used
in Q-learning. The tuple K = {st, γt, at, st+1, ϕt} is then stored as a deque in the
experience replay memory. Here, ϕt is a variable that indicates the final state. In
the next step, a random mini-batch sample (s′t, γ

′
t, a

′
t, s

′
t+1, ϕ

′
t) is selected which is

used for training the policy network. The intention of selecting a random sample
is to reduce the correlations between states and provide stability to the training
process. The training is now carried out and the loss function is minimized. The
loss function for step t is obtained as [30]

Lt = E

[(
γt +∆max

a
Q̂(st+1, a, ŵ)−Q(st, at, w)

)2
]

(G.39)

where ∆ represents the discount factor (∆ ∈ [0, 1]), Q(st, at, w) represents the Q-
value predicted using the policy network when trained with weights w, and (γt +

∆maxa Q̂(st+1, a, ŵ) represents the output from the target network that is trained
with weights ŵ. It is to be noted that the weights of the target network ŵ are copied
from the policy network every ζ step. Both the policy network and target network
are trained using the Adam optimizer. The policy network is updated using the
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below equation [30]

Q∗(st, at)← Q(st, at) + λ(γt +∆max
a
Q̂(st+1, a)−Q(st, at)) (G.40)

where λ is the learning rate and Q∗(st, at) is the new updated Q-value. The detailed
steps of the proposed DQN algorithm are described in Algo. 9.

G.6 Evaluation Metrics

In this section, we derive the expressions for the performance metrics such as network
energy consumption, and average network delay considered for the evaluation of the
performance of the proposed method.

G.6.1 Average Network Delay

It is defined as the ratio of the sum of the delays incurred for transmitting the data
in each UAV-GS link, to the total number of UAVs. The total delay of a UAV-GS
link is the sum of the propagation delay and the transmission delay of the link.

G.6.1.1 Propagation delay

It is the delay incurred over a UAV-GS link for propagating the data over a radial
distance dg [33]. The expression for propagation delay is obtained as

Tprop =
dg
c
, (G.41)

where c is the velocity of the light which is equal to 3× 108 m/s.

G.6.1.2 Transmission delay

It is the delay incurred for transmitting k bits of information over a UAV-GS link
[33]. The expression for transmission delay is obtained as

TTr =
k

R
. (G.42)

Thus, the average network delay is obtained as

Tavg =
1

N

N∑
i=1

Ttotal,i, (G.43)

where Ttotal = Tprop + TTr.

G.6.2 Network Energy Consumption

It is the total energy consumed for transmitting the data from each UAV to the GS.
It is expressed as

Etotal =
N∑
i=1

(ETr,i + Ed,i). (G.44)
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Algorithm 9: DQN approach to determine the optimized hybrid UAV-
assisted wireless network
Input: N UAVs, M communication technologies, Number of episodes

Kmax, λ, ∆, ε, ζ
Output: Network energy consumption and average network delay

1 Initialize the experience replay memory, policy network weights w, and
target network weights ŵ;

2 Arrange the UAV-GS links (states) in decreasing order of distance to the
ground station;

3 Training
4 for i = 1 to Kmax do
5 Select the first state s0 (first UAV-GS link) from the sorted list;
6 ϕ0 = 0, j = 0;
7 for t = 1 to N do
8 Generate a random number u ∈ (0, 1);
9 if u > ε then

10 Select action at = maxaQ(st, at, w);
11 else
12 Select a random action at;
13 end
14 Calculate the network energy consumption using (G.1), (G.3), and

(G.4);
15 Obtain reward γt, using (G.35) ;
16 Obtain next state st+1 in order of decreasing distance to ground

station;
17 if st+1 == sN then
18 ϕt = 1, j = j + 1;
19 end
20 Update experience replay memory with K = (st, γt, at, st+1, ϕt) ;
21 if ϕt = 1 then
22 break;
23 end
24 When replay memory is full, randomly select a minibatch sample

(s′t, γ
′
t, a

′
t, s

′
t+1, ϕ

′
t) ;

25 Predict Q(st, at, w) from policy network;
26 Predict (γt +∆maxa Q̂(st+1, a, ŵ) from target network;
27 Compute loss using (G.39);
28 Update weights w of policy network using (??);
29 if j == ζ then
30 Update the weights of target network ŵ;
31 end
32 end
33 Decrease ε with a decay rate;
34 end
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35 Validation
36 For each UAV, obtain the Q-values from the trained policy network;
37 Assign the communication technology with the highest Q-value to the

UAV-GS link;
38 Calculate the network energy consumption and average network delay;

G.6.3 Energy Consumption for UAV Movement

The energy consumed by a UAV (in joules) to move a distance d is given by [34]

Ev = T · d (G.45)

where T represents the thrust force to move forward that is measured in Newtons
(kg-m/sec2). The thrust force is obtained as

T =
m× g
r

(G.46)

where m is the total weight of the aircraft (in kg), g is the acceleration due to
gravity (9.8 m/sec2), and r is a unitless parameter defined as the lift-to-drag ratio
[34]. The lift-to-drag ratio essentially denotes the efficiency of aircraft design. A
recommended lift-to-drag ratio is required to keep the aircraft airborne during steady
flight. Commercial passenger aircraft have a lift-to-drag ratio between 10-20 whereas
r for cruising helicopters is about 4. Typical lift-to-drag value for small and large
scale UAVs is 3 [34].

G.7 Numerical Results

In this section, we first present the simulation setup considered for generating the
simulation results. Then, we present the simulation results corresponding to both
FS and FSMP models to verify the analytical derivations. We also present the
simulation results to show the effect of the velocity of UAVs and packet size on the
network energy consumption and average delay. Finally, the simulation results are
presented to compare the performance of the proposed RL algorithms with other
models.

G.7.1 Simulation Setup

The simulation setup is considered over a 1500 × 1500 m2 area where the GS is
located at (500, 500, 0). A total of 500 UAVs are deployed over the area with varying
heights of 100, 200, 300, and 400 meters. Each UAV is equipped with four different
communication technologies such as BLE, LTE, Wi-Fi, and LoRa. The packet
arrival rate follows Poisson distribution with randomly chosen mean taken from the
set {1, 2, · · · , 100}. Each packet contains 128 bits and hence the total number of
bits received for each UAV follows a random distribution. The various simulation
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Table G.4: The values of the parameters used for the performance evaluation and
comparison of different methods.

Parameter Value
Horizontal area 1500× 1500

Hovering heights {100, 200, 300, 400}
Number of UAVs, N 500
Location of GS (500, 500, 0)

Velocity of UAV, ν 2

Packet length, k 128 bits
The parameter of Poisson distribution, λ 100

Speed of the transmission, c 3× 108

Ee 25 nJ/bit
Efs 10 pJ/bit/m2

Initial energy at a UAV E 10 Joules

x (meters)

0 250 500 750100012501500 y (m
eters

)
0

250500
7501000

12501500

h 
(m

et
er
s)

0

100

200

300

400

(a)

x (meters)

0 250 500 750100012501500 y (m
eters

)
0

250500
7501000

12501500

h 
(m

et
er
s)

0

100

200

300

400

(b)

Figure G.5: An illustration of the UAV-assisted wireless network topology for (a)
FS configuration and (b) FSMP configuration. Here, GS is considered to be located
at (500, 500, 0) which is the center of the terrestrial area. The colors green, yellow,
orange, and red depict BLE, LTE, Wi-Fi, and LoRa communication protocols re-
spectively.

parameters utilized for the different runs are listed in Table G.4. Additionally, the
communication parameters for each specific technology are also provided in Table
G.2.

G.7.2 Simulation Results (FS and FSMP)

Based on the above simulation parameters, we discuss the various numerical results
obtained.

Fig. G.5a depicts the topology of the proposed hybrid BLE/LTE/Wi-Fi/LoRa
UAV-assisted wireless network following the FS energy model. It can be observed
from Fig. G.5a that the majority of the UAVs utilize the LoRa protocol (depicted
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Figure G.6: Variation of network energy consumption for (a) free space and (b) free
space and multipath model for random UAV configurations. The analytical plots
are obtained using equations (G.10) and (G.26), respectively. The ground station is
located at (500, 500, 0) for all the random configurations.

in red) to connect to the GS. The UAVs at medium range utilize Wi-Fi (yellow) and
LTE (orange) to establish the UAV-GS link. The UAVs that are closer to the GS are
connected via the BLE (green) communication protocol. When UAVs are closer to
the GS, the BLE communication protocol consumes minimum energy as compared
to other protocols. Hence, a small concentration of UAVs connected to BLE can be
observed closer to the GS in Fig. G.5a. For UAVs situated farther than the path loss
distance of BLE, the communication protocol with minimum energy consumption
is connected. When the UAV-assisted wireless network follows the proposed hybrid
scheme according to the FSMP energy model, the UAV-GS link connections are
switched as shown in Fig. G.5b. It can be observed from Fig. G.5b that a small
number of UAVs switch their communication protocol from LTE to BLE. This is
due to the fact that the energy consumption of BLE while following the d4 energy
model is less than the energy consumption of LTE that is following the d2 energy
model. Similar changes can be observed between other communication protocols.

In Fig. G.6a, the network energy consumption for the proposed hybrid approach
is compared with the conventional shortest path routing algorithm with individual
communication technology while considering the FS path loss model. It can be
observed from Fig. G.6a that the energy consumption exhibited by the proposed
hybrid approach matches the energy consumption of the conventional approach for
Wi-Fi protocol. However, the energy consumption is greater than that of BLE. This
is due to the lower transmit power of BLE as compared to the average transmit
power in the proposed hybrid scheme. The conventional approach for individual
communication technology utilizes the hop-based shortest path algorithm to send
packets from the UAV to GS. It is observed from Fig. G.6a that the energy con-
sumption from the analytical model is equal to that of the simulation results, which
is as expected. In Fig. G.6b, the proposed hybrid approach is compared to the
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Figure G.7: Variation of average network delay for (a) free space and (b) free space
and multipath energy models for random UAV configurations. The analytical plots
are obtained using equations (G.17) and (G.33), respectively. For all the configura-
tions, the GS is located at (500, 500, 0).
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Figure G.8: Variation of (a) network energy consumption and (b) average network
delay for the proposed hybrid network. The plots corresponding to the analytical
results are obtained using equations (G.10), (G.17), (G.26), and (G.33), respectively.
In all these configurations, the GS is located at (500, 500, 0).

conventional shortest path routing algorithm with individual communication tech-
nology in terms of network energy consumption. Here, we consider the FSMP path
loss model. It can be observed from Fig. G.6b that the energy consumption with
the proposed hybrid approach is lower than the conventional approach. It is also
observed that the conventional approach utilizing BLE consumes more energy as
compared to other approaches. This is due to the fact that rτ is very low for BLE,
resulting in a higher number of UAV-GS links following the d4 model. Further, Fig.
G.6b also illustrates the variation of the analytical results of the proposed approach.
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It is observed from Fig. G.6b that the analytical results are matching with the
simulation results verifying the analytical derivations.

Figs. G.7a and G.7b provide the variation of average network delay for the
proposed hybrid scheme with the conventional shortest path routing algorithm for
individual communication technology. It can be observed from Figs. G.7a and G.7b
that there is no significant variation in the delay for the proposed hybrid scheme
that is following the FS and FSMP energy models. This can be attributed to the
delay parameter that primarily depends on the transmission delay. The transmission
delay depends on the data rate of the communication protocol. As LoRa has a low
data rate compared to other communication protocols, LoRa has a higher delay.
Thus, as observed from Figs. G.6b and G.7b, the proposed hybrid scheme following
the FSMP energy model offers superior performance in terms of minimum energy
consumption and low average network delay compared to the conventional shortest
path routing algorithm with individual communication technology.

The variation of network energy consumption for the proposed hybrid scheme
following the FS and FSMP energy models is depicted in Fig. G.8a. It is observed
from Fig. G.8a, that the network energy consumption for the proposed hybrid
scheme is similar across both the FS and FSMP energy models. Fig. G.8b shows the
average network delay for the proposed hybrid scheme following the FS and FSMP
energy models. It can be observed from Fig. G.8b that the proposed hybrid scheme
with the FSMP energy model exhibits lower delay as compared to the proposed
hybrid scheme following the FS energy model. This can be explained by observing
the individual connections for each communication technology in both schemes. In
the proposed hybrid scheme following the FS energy model, the distribution of UAVs
connected to the different communication technologies are as follows: 14 connected
to BLE, 153 connected to LTE, 279 connected to Wi-Fi, and 54 connected to LoRa.
This distribution is altered when the proposed hybrid scheme with the FSMP energy
model is used. The connections are switched with 21 UAVs connected to BLE and
162 UAVs connected to LTE. Moreover, the number of UAVs connected to LoRa
reduces to 38. This change in the connection distribution decreases the delay in the
proposed hybrid scheme utilizing the FSMP energy model. As BLE and LTE offer
higher data rates as compared to the LoRa protocol, a lower delay is observed in
the proposed hybrid scheme following the FSMP energy model. Thus the proposed
hybrid scheme with FSMP energy model offers minimum energy consumption and
reduced delay for the overall connected network.

G.7.2.1 Effect of UAV Velocity

In this section, we show the effect of UAV velocity on the performance of the pro-
posed hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wireless network. To obtain the
variation of network energy consumption and average network delay, the velocity of
each UAV is increased linearly from 0 to 3.8 m/s in steps of 0.2 m/s.

Figs. G.9a and G.9b show the variation of the network energy consumption and
average delay with increasing velocity of the UAV. Here, the time of travel (moving
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Figure G.9: Effect of UAV velocity on (a) network energy consumption and (b)
average network delay for both FS and FSMP model for random UAV configurations.
GS is located at (500, 500, 0) for all the random configurations.
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Figure G.10: Effect of increasing the number of packets on (a) network energy con-
sumption and (b) average network delay for both FS and FSMP model for random
UAV configurations. GS is located at (500, 500, 0) for all the random configurations.

time) for each UAV is considered to be 1 second. It is observed from Fig. G.9a
that the energy consumption increases linearly with velocity. This is because, for
a fixed time of travel, the distance traveled increases with increased velocity which
consumes more energy. From Fig. G.9b, it can be observed that the velocity has a
constant effect on the average delay as the time of travel is fixed for all velocities of
UAVs.

G.7.2.2 Effect of Packet Size

In this section, we show the effect on the performance of the proposed hybrid system
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Figure G.11: Effect of increasing the mean of the packet arrival rate on (a) network
energy consumption and (b) delay for both FS and FSMP model for random UAV
configurations. GS is located at (500, 500, 0) for all the random configurations.

when the number of packets is increased. First, we consider a constant number of
packets at each UAV which we increase from 1 to 600. Thereafter, we vary the mean
of the Poisson distribution (packet arrival distribution) from 1 to 600.

Figs. G.10a and G.10b show the variation of the network energy consumption
and average delay, respectively, for increasing values of the available packets at each
UAV. Here, we varied the number of packets from 1 to 600. It is observed from Fig.
G.10b that the energy consumption and average delay increase linearly with the
number of packets. Further, Fig. G.10b also shows that the average delay is more
for the FS model as compared to the FSMP model. This is due to the presence
of multi-hop communication in the FS model which adds the queuing delay and
processing delay at each hop.

Figs. G.11a and G.11b show the variation of the network energy consumption
and average delay, respectively, for increasing values of the mean of the packet
arrival rate. It is observed that an increase in the mean linearly increases the
energy consumption and average delay as can be seen from Figs. G.11a and G.11b,
respectively. Further, it is observed from Fig. G.11b that the average delay is more
for the FS model as compared to the FSMP model. This is due to the presence
of multi-hop communication in the FS model which adds the queuing delay and
processing delay at each hop.

G.7.3 Performance Evaluation of the Proposed RL Algo-
rithms

In this section, we present the numerical results comparing the performance of the
proposed Q-learning (Algorithm 8) and DQN (Algorithm 9) algorithms with rule-
based algorithm and hybrid random approach in which UAV-GS links are selected
uniformly at random from BLE, LTE, Wi-Fi, and LoRa. Further, we show the
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Figure G.12: An illustration of hybrid UAV-assisted wireless network topology
formed with (a) random hybrid scheme, (b) rule-based algorithm, (c) proposed Q-
learning algorithm, and (d) proposed DQN algorithm. Here, GS is considered to
be located at (500, 500, 0) which is the center of the terrestrial area. The colors
green, yellow, orange, and red depict BLE, LTE, Wi-Fi, and LoRa communication
protocols, respectively.

effectiveness of the proposed algorithms, by considering the PHY layer parameter,
which denotes the number of transmissions required for a packet to get successfully
delivered. The simulation setup is similar to the previous scenario wherein an area
of 1500× 1500 m2 is considered and the GS is placed at (500, 500, 0). We consider a
total of 100 UAVs deployed randomly over the considered area with varying heights
of 100, 200, 300, and 400 meters. All other simulation parameters remain the same
as defined in the previous section.

To study the behavior of Q-learning parameters we carried out extensive simula-
tions using the learning rate and discount with different reward/penalty expressions
defined in (G.34), (G.35), (G.36), and (G.37). When the reward is chosen from
(G.34), (G.35), and (G.36), the Q-learning algorithm results in the optimized hy-
brid network at λ = 0.7 and ∆ = 0.7.

For the reward defined in (G.34), (G.35), and (G.36), we varied the Q-learning
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Figure G.13: Performance comparison of the proposed Q-learning algorithm, pro-
posed DQN algorithm, rule-based algorithm, and random hybrid scheme in terms of
(a) network energy consumption and (b) average delay for random UAV configura-
tions. The ground station is located at (500, 500, 0) for all the random configurations.

Table G.5: Variation of network energy consumption as a weighted sum of individual
energy components E1,N/W and E2,N/W . Here, W1 and W2 represent the weights.

W1 W2 Etotal (J)
0.1 0.9 0.0204
0.2 0.8 0.0287
0.3 0.7 0.0392
0.4 0.6 0.0512
0.5 0.5 0.0650
0.6 0.4 0.0797
0.7 0.3 0.1002
0.8 0.2 0.1430
0.9 0.1 0.2589

parameters λ and ∆ from 0.1 to 0.9 in intervals of 0.1. It is observed that the
Q-learning algorithm started to attain the hybrid network with minimum energy
consumption when λ is between 0.4 to 0.9 for all ∆. Table G.5 lists the network
energy consumed for different weights when the reward is chosen as (G.37). Here,
the weights are chosen from {0.1, 0.2, · · · , 0.9}. We consider λ = 0.7 and ∆ = 0.6

which are best fit for the proposed Q-learning algorithm. As seen from Table G.5,
W1 = 0.1 and W2 = 0.9 lowers the energy consumption. This means that E2,N/W

has a higher impact than E1,N/W to attain the hybrid network with minimum energy
consumption. This is due to the fact that for a UAV-GS link with k-bits of data, the
energy consumed for transmission, E1,N/W , is fixed, whereas, the energy consumed
for the propagation, E2,N/W varies with the radial distance of the link. The DQN
algorithm is trained under the same simulation setting as that of Q-learning. The
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Table G.6: Parameters used for the DQN algorithm.

Parameter Value
Number of hidden layers 2

Number of neurons in first layer 256

Number of neurons in first layer 128

Learning rate (neural network) 0.01

Discount factor 0.4

Batch size 64

Replay memory size 50000

Number of episodes 6400

Minibatch size 64

Epsilon 1 to 0.001

policy and target network are made up of fully-connected neural networks each with
two hidden layers that contain 256 and 128 neurons, respectively. The exploration-
exploitation factor ε is set to vary from 1 to 0.001. Other parameters related to
the DQN algorithm are provided in Table G.6. We achieved the best performance
when the learning rate and discount factor were set to 0.01 and 0.4, respectively.
The DQN algorithm converged after 6400 episodes resulting in the formation of the
hybrid UAV-assisted wireless network with minimum network energy consumption.

Fig. G.12a depicts the topology of the hybrid random network. Here, BLE is
represented with green lines, LTE with yellow lines, Wi-Fi with orange lines, and
LoRa with red lines. It can be observed from the figure that the connections are
evenly distributed among the four protocols irrespective of any criteria due to the
random distribution. Fig. G.12b shows the UAV-assisted wireless network obtained
with the rule-based algorithm. From Fig. G.12b, it can be noticed that UAVs
further away from the GS with high radial distance are connected to the LoRa
protocol while the ones closer to the GS are connected to BLE. Figs. G.12c and
G.12d show the hybrid network obtained with the proposed Q-learning and DQN
algorithms, respectively. From Fig. G.12c and G.12d, it can be noticed that a
UAV-GS link is connected to a communication technology that consumes minimum
energy with the number of transmissions required.

We compare the performance of the proposed algorithms with the rule-based
algorithm [35] and random hybrid scheme in terms of network energy consumption
and average network delay as shown in Figs. G.13a and G.13b, respectively. The Q-
learning algorithm utilizes the reward defined in (G.35) for generating these results.
It is observed that the Q-learning and DQN algorithms outperform the rule-based
algorithm in terms of both energy consumption and average delay as shown in Figs.
G.13a and G.13b, respectively. This is primarily due to the learning characteristic
of RL algorithms. In RL algorithms, the environment characteristics are learned
during the training or exploration phase by which an accurate estimation of the
network energy consumption is obtained. However, the rule-based algorithm assigns
the communication technology based on the distance irrespective of the PHY layer
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characteristics. The unknown PHY layer characteristics increase the number of re-
transmissions required for successful transmission of bits which in turn will further
increase the energy consumption and delay. The proposed RL algorithms thus ex-
hibit an edge over other schemes in learning and incorporating additional parameters
that can affect the communication link in a seamless manner. It is also observed that
the random hybrid scheme consumes a large amount of energy when compared to
the proposed and rule-based algorithms. This is due to the fact that the number of
UAVs connected with BLE for hybrid random network configuration is higher than
the RL-based hybrid network as can be observed from Figs. G.12a and G.12c. This
increases energy consumption as most of these links’ geographical distance is greater
than r which leads to d4 energy consumption. Since the BLE offers a higher data rate
than other communication technologies, the transmission delay is much less, which
lowers the average network delay as can be observed from Fig. G.13b. To provide
additional clarity on the performance of all the schemes, we provide explicit values
from the simulation. In the 10-th iteration, the hybrid random network exhibits a
network energy consumption of 1160 Joules and the rule-based algorithm expends
190 Joules of energy. The proposed algorithms however outperform all the schemes
with the minimum network energy consumption of about 151 Joules as can be seen
from Fig. G.13a. In terms of average network delay, the rule-based algorithm offers
an average delay of about 0.71 seconds, the random hybrid scheme offers an average
delay of about 0.344 seconds, and the proposed RL algorithms exhibit 0.5 seconds
at 10-th iteration as can be seen from Fig. G.13b. From Figs. G.13a and G.13b,
it can be observed that the DQN algorithm displays similar performance as that
of the Q-learning algorithm. This is expected as DQN essentially follows the same
mathematical principles as that of Q-learning. Compared to Q-learning, the DQN
algorithm utilizes a neural network to learn features from the input and provide an
approximate Q-value. If the amount of data increases, storing and searching for
Q-values using Q-learning can lead to performance degradation. In this scenario,
DQN outperforms Q-learning in terms of reduced memory consumption and compu-
tational efficiency. However, the DQN algorithm requires significantly large training
time and fine-tuning as compared to Q-learning. For example, the simulation time
required to train Q-learning is 20 minutes whereas DQN requires approximately 6

hours.

G.8 Conclusion and Future Work

In this work, we have proposed two RL algorithms such as Q-learning and DQN for
energy-efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted
wireless network. The proposed RL algorithms take any random network as an input
and learn it. Based on the learning, a hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted
wireless network is formed by assigning the best communication technology to a
link based on learning. We have also proposed the theoretical framework for energy-
efficient data transmission over hybrid BLE/LTE/Wi-Fi/LoRa UAV-assisted wire-
less network for both free space and free space multipath path loss models. Further,
we have derived the analytical expressions for the network energy consumption and
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average network delay. Through extensive results, we verified the analytical expres-
sions. We have also analyzed the effect of the velocity of UAVs and the number of
packets on the performance of the proposed framework. Finally, it has been shown
that the proposed RL algorithms result in better performance in terms of network
delay and energy consumption when compared to rule-based algorithm and random
hybrid scheme. In the future, we plan to incorporate the dataset obtained from
physical layer parameters to evaluate the performance of the proposed algorithms.
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