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ABSTRACT:
With the exponential growth in unmanned aerial vehicle (UAV)-based applications, there is a need to ensure safe

and secure operations. From a security perspective, detecting and localizing intruder UAVs is still a challenge. It is

even more challenging to accurately estimate the number of intruder UAVs on the scene. In this work, we propose a

simple acoustic-based technique to detect and estimate the number of UAVs. Our method utilizes acoustic signals

generated from the motion of UAV motors and propellers. Acoustic signals are captured by flying an arbitrary num-

ber of ten UAVs in different combinations in an indoor setting. The recorded acoustic signals are trimmed, proc-

essed, and arranged to create an UAV audio dataset. The UAV audio dataset is subjected to time-frequency

transformations to generate audio spectrogram images. The generated spectrogram images are then fed to a custom

lightweight convolutional neural network (CNN) architecture to estimate the number of UAVs in the scene.

Following training, the proposed model achieves an average test accuracy of 93.33% as compared to state-of-the-art

benchmark models. Furthermore, the deployment feasibility of the proposed model is validated by running inference

time calculations on edge computing devices, such as the Raspberry Pi 4, NVIDIA Jetson Nano, and NVIDIA Jetson

AGX Xavier. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0020292

(Received 4 December 2022; revised 16 May 2023; accepted 10 July 2023; published online 27 July 2023)

[Editor: Haiqiang Niu] Pages: 533–546

I. INTRODUCTION

Advancements in chip miniaturization and wireless

connectivity have made unmanned aerial vehicle (UAV)-

based solutions attractive in various applications, such as

agriculture (Maddikunta et al., 2021), disaster management

(Wu et al., 2019), aerospace (Zhang et al., 2022), law

enforcement (de Moraes and de Freitas, 2020), etc. Their

widespread popularity can be attributed to their unparalleled

maneuverability, decreasing cost, and increased sophistica-

tion (Wilson et al., 2022). However, the advantages of

UAVs are also exploited for improper and illegal use (Wang

et al., 2021). Further, as UAVs are compact and small in

size, concerns regarding collisions with other airborne enti-

ties, privacy, security, delivery of dangerous payloads, etc.,

should also be addressed. Ground control stations should be

well-equipped with systems that can detect and monitor

UAV activity based on requirements.

There have been multiple attempts throughout the liter-

ature pertaining to the detection and tracking of small-size

UAVs. Some of these approaches include the use of WiFi

signals, radio frequency (RF) radiations, vision-based sen-

sors, radar-based approaches, and acoustic signatures (Nie

et al., 2021; Yang et al., 2021). However, compared to other

sensors, utilizing acoustic sensors for UAV detection has

been shown to exhibit a number of advantages. Acoustic

sensors are low-cost compact devices that detect pressure

fluctuations created by sound waves. Unlike traditional

vision and radar-based sensors, acoustic sensors are typi-

cally omnidirectional in nature. This allows them to sense

disturbances in all directions, making them an ideal choice

for collision-avoidance systems. Further, passive acoustic

sensors do not emit any radiation and, hence, are environ-

ment friendly. As acoustic signals are independent of the

UAV form factor, they fare well in comparison to radar sys-

tems that require a threshold radar cross-sectional area to

enable detection. The output data rate for acoustic sensors is

comparatively low as compared to vision- and radar-based

systems, facilitating seamless data acquisition and process-

ing. However, the limitation of acoustic systems is their low

detection range. For small inexpensive acoustic sensors, the

detection range is typically less than 300 m, facilitating only

short-range detection (Sedunov et al., 2019). In this effort,

we address the problem of detecting and estimating multiple

UAVs in an indoor environment using acoustic sensors and

machine learning techniques.

II. RELATED WORK

In this section, we provide a brief overview of the vari-

ous works in the literature pertaining to UAV detection

using acoustic signatures. It was observed that small multi-

rotor UAVs can produce complex acoustic fields due to

UAV motorization and propeller motion. The acoustic fielda)Electronic mail: linga.cenkeramaddi@uia.no
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thus produced contains complex harmonics and is arguably

a unique characteristic of the UAV. Investigations related to

the study of the UAV acoustic field can be found (Callanan

et al., 2020; Callanan et al., 2021; Iqbal et al., 2022) in the

literature. Callanan et al. (2020) investigated the effect of

UAV acoustics on human subjects in an indoor occupational

environment. They concluded that the ability to accurately

identify and record UAV acoustic signatures primarily

depends upon the sound pressure level of the UAV. The

study also found that an efficient redesign of multi-rotor

UAVs is essential to lower noise levels and regulate the

noise frequency spectrum produced by UAVs. A similar

study (Callanan et al., 2021) utilizes a large-aperture scan-

ning microphone array to measure the sound pressure level

of a hovering UAV. The obtained results are then used to

determine a better design of UAV acoustics and analyze the

UAV acoustic field. In Iqbal et al. (2022), the authors utilize

the experimental data obtained from Callanan et al. (2021)

to model the sound pressure level of an UAV acoustic field

using a physics-infused machine learning algorithm. The

physics-infused model is developed utilizing the interfer-

ence from sound pressure waves that are produced from

acoustic monopole sources. The above-mentioned works

indicate that UAV acoustic signatures are unique and

depend on a number of factors. Our work utilizes these

unique acoustic harmonic signatures generated by multiple

UAVs to detect and estimate their presence in an indoor set-

ting. In Secs. II A and II B, we provide a brief account of the

various techniques used for UAV detection based on acous-

tic signatures.

A. Conventional approach

The conventional approach relies on correlation and

other signal-processing techniques to detect UAVs from

acoustic signatures. One early approach by Tong et al.
(2016) uses a stationary microphone array to detect and

track the flight trajectory of low-altitude UAVs using their

engine sound. UAV detection is performed by exploiting the

Doppler shift of the engine sound. On the other hand, track-

ing is carried out by estimating the direction of arrival of the

UAV. The direction of arrival is obtained by utilizing the

acoustic phase shift over the microphone array. The real-

time performance of the proposed approach was evaluated

by performing field experiments. It was found that the prop-

agation delay of the acoustic delay impacts the UAV detec-

tion and tracking performance. Another approach in

Sedunov et al. (2016) utilized a modified cross correlation

technique for UAV detection. The proposed approach lever-

ages the differential Doppler shift that is created due to the

high-speed UAV motion and microphone array separation.

Using the differential Doppler shift property, the received

signals are successfully decorrelated from the ambient noise

to enable UAV detection. Measurements were carried out in

a controlled area with little noise. Ambient noise was later

added to the obtained data to evaluate the performance.

Another work (Sedunov et al., 2019) for UAV detection and

classification involved the development of a drone acoustic

detection system (DADS) using microphone nodes. In the

DADS, the detection of UAVs is performed using the

steered-response phase transform (SRP-PHAT) method,

while classification is obtained by utilizing the propeller fre-

quencies from the spectrogram of the measured acoustic sig-

natures. It is reported that the SRP-PHAT method provides

reliable performance with real UAVs in real-world scenar-

ios. However, the classification algorithm requires the

UAVs to obtain a threshold distance to achieve better per-

formance. The work by Kartashov et al. (2020), utilizes the

Barlett, Capon, and cross correlation method to study and

analyze the acoustic spectrum generated from UAVs. The

proposed approach utilizes additional high-pass filters to

obtain performance similar to the mel-frequency cepstral

coefficients (MFCC) method for UAV detection. Further

experiments also reveal that the cross correlation method

exhibited superior performance when followed by low-pass

filtering to remove noise. In comparison, Blanchard et al.
(2020) utilizes the intrinsic harmonics inherent in the acous-

tic field signatures for detection and three-dimensional (3D)

localization. The acoustic signal’s fundamental frequency

and a few relevant harmonics are extracted using a pitch

detection algorithm coupled with zero-phase bandpass fil-

ters. Experimental measurements have been carried out in

anechoic and outdoor environments for performance evalua-

tion. It was observed that the proposed approach fares well

when the UAV travels in simple vertical trajectories.

However, for complex trajectories with multiple UAVs, the

performance was low and required additional research. The

study by Ciaburro et al. (2020) also provides insights into

utilizing acoustic information to detect UAVs. In this work,

the authors measure the noise level using a sound level

meter in a controlled environment containing only one

UAV. After obtaining the noise-free measurements, anthro-

pogenic noise of people and background music was gener-

ated in the environment along with the UAV. Spectral

methods were used to analyze the frequency spectrum, and

it was reported that UAV detection was confirmed upon

observing a 5000 Hz frequency in the spectrum. The

research, however, fails to reproduce and verify the results

in a real-world environment with multiple UAVs. In Fang

et al. (2022), the authors have addressed the problem of

UAV detection through a biologically inspired vision

approach. The spectrogram signals obtained after perform-

ing time-frequency analysis on the audio signals provide

meaningful information that is embedded in noise. By pre-

processing these spectrogram images through a hoverfly

vision model, useful representations of these audio signals

can be retrieved. The extracted representations can be uti-

lized for UAV detection. It was shown through outdoor

field trials that the bioinspired technique can improve the

maximum UAV detectable distance between 30% and 50%

with respect to traditional narrowband and broadband tech-

niques. However, the proposed approach requires additional

verification by using more UAV experiments and flight

scenarios.
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B. Machine learning approach

The advent of machine learning has bought new capa-

bilities for UAV detection and classification (Bianco et al.,
2019; Ramamonjy et al., 2017). Machine learning techni-

ques identify the inherent hidden patterns from the data that

aid in UAV detection and classification (Taha and Shoufan,

2019). By utilizing these techniques with additional prepro-

cessing techniques, such as short-time Fourier transform

(STFT), principal component analysis (PCA), etc., a signifi-

cant improvement in detection and classification accuracy

has been reported (Anwar et al., 2019). In Secs. II B 1 and

II B 2, we explore some of the existing literature that uses

machine learning techniques for UAV detection and classifi-

cation in terms of unsupervised and supervised learning

algorithms.

1. Unsupervised learning

In unsupervised learning (Berry et al., 2019), the algo-

rithm learns to extract the hidden patterns from the data.

These algorithms work primarily on unlabeled data and

learn the inherent structure of the data without the need for

any human intervention. They are mainly used for tasks

such as clustering, association, and dimensionality reduc-

tion. In Gravirov et al. (2021), the authors studied the acous-

tic fields generated by various small quadcopter UAVs. The

data thus obtained were used along with simulation soft-

ware, such as COMSOL Multiphysics, to perform numerical

simulations and analysis. The study determined the influ-

ence of blade defects, directional patterns, and pressure var-

iations caused by UAV propellers on UAV acoustic fields.

The collected acoustic signatures were further provided to a

neural network that is trained on the cepstrum coefficients to

obtain UAV detection. In Yang et al. (2019) the authors

used multiple microphone nodes to detect and track an UAV

in a real-world environment with background noise. The

work used MFCC and STFT for preprocessing the data. This

was followed by using support vector machines (SVMs) and

convolutional neural networks (CNNs) for training.

Reported results indicate that the STFT-SVM model exhib-

ited better performance to detect a single UAV when the

UAV approaches the vicinity of a microphone node. Future

work can include experimenting with multiple UAVs and

also reducing background noise during preprocessing. The

work in Bernardini et al. (2017) utilized a multi-class SVM

for identifying UAVs in diverse environmental conditions.

A dataset was created that contains five 70 min audio sam-

ples from nature during the daytime, street traffic, train,

crowd, and flying UAVs. The audio files were trimmed to

5 s and 20 ms segments for analysis. Preprocessing was then

performed to extract temporal centroid, spectral roll-off,

spectral centroid, zero crossing rate (ZCR), MFCCs, etc., as

features. The extracted features were then fed to the SVM

classifier to obtain a high UAV detection accuracy of

96:4%. In Kim et al. (2017), the authors performed UAV

detection using two classifiers, plotted image learning (PIL)

and k nearest neighbors (KNN). Sound clips with a 1 s

duration of the DJI Phantom 1 and 2 were recorded sepa-

rately both indoors and outdoors in a noise-free environ-

ment. Later, outdoor environment sounds were added to

simulate real-world scenarios. The FFT was applied to the

sound clips, which are then fed to the different classifiers.

The authors reported that PIL showed 83% accuracy in

UAV detection as compared to KNN, which accounted for

61%. In Yue et al. (2018), the authors developed a distrib-

uted system using an acoustic wireless sensor network for

UAV detection and localization. Through trial experiments,

it was observed that the power spectral density (PSD) of

UAV sound differed significantly from the background

spectrum. On the basis of this concept, an acoustic dataset

was created. The dataset consisted of UAV sounds that were

augmented with background environment sounds. The

sound clips were low-pass filtered at 15 kHz, after which the

PSD was obtained using FFT. PCA was further performed

for dimension reduction. The preprocessed signals were

then divided for training, testing, and additional testing with

overlapped signals and subsequently fed to the SVM classi-

fier. It was reported that UAV detection was successful

when the introduced signal-to-interference ratio (SIR) was

greater than 10 dB. In Wang et al. (2022), the authors used

the blind source separation (BSS) method to detect UAVs in

the presence of multiple source interference. Three different

UAVs were used separately to capture the audio signatures.

The proposed method works by first estimating the number

of sources. After source estimation, three methods [indepen-

dent component analysis (ICA), PCA, or variational mode

decomposition (VMD)] were applied based on the type of

source separation (overdetermined, positive-definite, or

underdetermined) required. The features extracted were then

fed to different machine learning algorithms, such as SVM,

KNN, and decision trees, to evaluate the performance. It

was reported that SVM and KNN showed similar perfor-

mance, with SVM exhibiting slightly better performance.

Both algorithms exhibited an accuracy of more than 90%

for UAV detection, outperforming traditional filtering and

mixed-signal methods. Another approach for acoustic-based

UAV detection was performed by Anwar et al. (2019). In

this work, the sounds of amateur UAVs, birds, airplanes,

and thunderstorms were recorded in a noisy environment.

The authors used MFCC and linear predictive cepstral coef-

ficients (LPCC) for feature extraction. The extracted fea-

tures were then fed to SVMs with linear, cubic, and

quadratic kernels to detect and identify UAV acoustics.

Results showed that SVM with the cubic kernel when cou-

pled with MFCC features outperformed LPCC with an UAV

detection accuracy of around 96:7%.

2. Supervised learning

In contrast to unsupervised learning, supervised learn-

ing (Berry et al., 2019) utilizes labeled datasets as inputs

and outputs. The labeled data serve as a kind of supervision

to help the model learn the structure of the data. Supervised

algorithms can learn over time and improve the model’s
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accuracy based on the amount of labeled data and its inher-

ent structure. In Jeon et al. (2017), the authors performed a

comparative study to determine the best classifier for acous-

tic UAV detection. Acoustic signatures from various UAVs

were recorded individually and augmented with diverse

environmental noise to simulate real-world UAV scenarios.

The MFCCs from these signals were extracted and fed to

different classifiers, and their performance was evaluated. It

was reported that RNN provided the best performance, with

an F-score of 80%, followed by the Gaussian mixture model

(GMM) with 68% and CNN at 58%. The study in Seo et al.
(2018) used normalized STFT on UAV acoustic signals.

The UAV acoustic signatures were recorded using DJI

Phantom 3 or 4 models. The recorded sound clips were

trimmed to a length of 20 ms with 50% overlapping.

Normalized STFT was performed on these sound clips to

obtain 41 958 non-UAV and 68 931 UAV sound frames.

The non-UAV sound frames contained acoustic signatures

from scooters and motorcycles. The output obtained after

performing the STFT was then fed to the proposed CNN

architecture after adding additive white Gaussian noise

(AWGN). Results reported a 98:97% UAV detection accu-

racy and 1.28 false alarm rate (FAR). In Russell et al.
(2019), the sensory substitution of pre-existing and ambient

microphones along with CNN was used to detect remotely

piloted aircraft systems (RPASs) in urban environments.

Indoor and outdoor experiments were carried out individu-

ally with a diverse set of RPASs. Spectrogram images were

generated from the recorded audio clips. The spectrogram

images were then further used to train the Inception CNN

model via transfer learning. Results showed a RPAS detec-

tion accuracy of greater than 90% for all RPAS classes. The

work in Casabianca and Zhang (2021) used mel-

spectrograms to extract the features from the audio signals

of UAVs. The extracted features were then used with CNNs

and CRNNs for UAV classification. It was concluded that

CNNs exhibited superior performance in the classification

of UAVs from the obtained mel-spectrograms. Further, the

study also investigated the use of late fusion methods with

ensemble techniques to improve UAV detection perfor-

mance. Another work by Al-Emadi et al. (2019) also uti-

lized the audio spectrograms along with CNN, recurrent

neural network (RNN), and convolutional recurrent neural

network (CRNN) to identify and detect UAVs. The authors

conducted two experiments using two different UAVs in a

controlled environment. Real-world background noises were

augmented to obtain realistic audio information that can be

used for inference. Reported results indicate that CNN and

CRNN showed better performance over RNN in accurately

detecting and classifying UAVs. Our work also revolves

around a similar approach in which we utilize audio spectro-

grams to perform multiple UAV detection.

Table I summarizes the latest works in the literature

related to machine learning-based acoustic detection of

UAVs. As seen from Table I, the majority of the literature

focuses on detection for a single UAV scenario (Yang et al.,
2019; Bernardini et al., 2017; Jeon et al., 2017; Seo et al.,

2018; Russell et al., 2019; Anwar et al., 2019; Casabianca

and Zhang, 2021). The results obtained for detecting a single

UAV can widely vary in a multiple UAV scenario.

Similarly, the scenarios considered in the literature more or

less replicate controlled and well-defined UAV trajectories

(Bernardini et al., 2017; Al-Emadi et al., 2019; Jeon et al.,
2017; Seo et al., 2018; Wang et al., 2022). Such scenarios

may not completely provide a realistic UAV flight trajectory

and may affect detection accuracy. Furthermore, some of

the techniques described require the use of high-end sophis-

ticated computing infrastructure, which may not be always

feasible and available (Yue et al., 2018). Our work differs

from the previous works in detecting multiple UAVs rather

than a single UAV. To the best of our knowledge, this is the

first time acoustic signatures have been employed to esti-

mate the detection of a maximum of ten UAVs in a scene.

The scenarios considered comprise multiple UAVs maneu-

vering in random directions and speeds. Our work also uses

the inherent background noise while performing detection.

We have included one outdoor measurement that includes

background noise from wind and birds chirping. We use

supervised learning techniques in this work due to their

superior performance in the detection and classification of

targets. Although unsupervised techniques have the advan-

tage of extracting the inherent features from unlabeled data,

they fail in performance when the requirement calls for the

ability to identify specific classes of targets. Further, our

custom CNN architecture outperforms the current state-of-

the-art machine learning models in terms of accuracy and

model size. Owing to the relatively smaller model size, the

custom CNN architecture consumes fewer resources,

thereby enabling it to be deployed on lightweight edge com-

puting devices, such as Raspberry Pi 4, NVIDIA Jetson

Nano, etc. We test the model on these devices and also pro-

vide inference time for the same. As such, the major contri-

butions of this paper are as follows:

• An UAV acoustic-based dataset is created by utilizing a

total of ten UAVs. An arbitrary number of UAVs are

flown randomly within the measurement area, and the

acoustic field signatures are captured using a cardioid uni-

directional microphone.
• Time-frequency algorithms, such as continuous wavelet

transform (CWT; MathWorks, 2023), are applied to trans-

form the recorded acoustic field signatures to spectrogram

images.
• A custom lightweight CNN architecture is designed to

estimate the number of UAVs in the scene. The perfor-

mance of the proposed model is compared with state-of-

the-art benchmark machine learning models in terms of

accuracy and model size.

The remaining sections of this paper are organized as

follows: Sec. III provides the methodology of the proposed

approach. Section IV describes the measurement setup and

details regarding dataset creation. Section V focuses on the

data preprocessing and the machine learning algorithm that

is used. Section VI summarizes the standard benchmark
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machine learning models that are used to compare the per-

formance of the proposed model. Section VII provides an

overview of the edge computing devices on which the pro-

posed model is executed. Section VIII summarizes the

results obtained with the proposed approach. Section IX dis-

cusses the implications of the proposed approach along with

limitations and future work. Finally, the paper is concluded

in Sec. X.

III. METHODOLOGY

The proposed work utilizes the acoustic field generated

from UAV rotors and propellers. The high-speed motion of

rotors and propellers produces pressure differences leading

to the generation of an acoustic field. In the proposed work,

these acoustic field signatures are captured with the help of

a cardioid microphone. Acoustic signatures from ten UAV

combinations are captured and processed to generate audio

spectrogram images. These images are then used to train

CNN models to estimate the number of UAVs in the scene.

A simplified flow diagram of the methodology is shown in

Fig. 1.

IV. MEASUREMENT SETUP AND DATASET

A. Measurement setup

The primary measurement area was an indoor lab envi-

ronment that covers a semicircular area of 5 m in radius.

Experiments were designed to capture acoustic signatures

from a total of ten UAV combinations that were flown in a

random fashion within the prescribed area. The UAV

TABLE I. Summary of the latest works on machine learning-based acoustic detection of UAVs.

Reference Method Results Limitations

Jeon et al. (2017) MFCC coefficients are fed to RNN,

GMM, and CNN.

RNN showed best F-score with 80% fol-

lowed by GMM with 68% and CNN

with 58%.

� Augmented environmental noise.

�Multi-UAV detection is absent.

Bernardini et al. (2017) Preprocessing using ZCR, MFCC, spec-

tral centroid, etc. Extracted features are

fed to multi-class SVM.

UAV detection accuracy¼ 96%. � Single UAV case.

� Lacks real-world experiments and

background noise.

Kim et al. (2017) Preprocesing using FFT. Trained using

PIL and KNN.

PIL¼ 83% and KNN¼ 61% accuracy. � Sound clips from two UAVs recorded

separately.

Yue et al. (2018) PSD using FFT followed by PCA for

dimension reduction. Output fed to

SVM.

Best accuracy when SIR was greater

than 10 dB.

� SVM is more sensitive to bit error rate.

Seo et al. (2018) Normalized STFT features with CNN. UAV detection accuracy of 98:97%. � Considered only single UAV scenario.

� AWGN is added to simulate a noisy

environment.

Yang et al. (2019) Preprocessing with MFCC and STFT.

Obtained features fed to SVM and CNN.

STFT-SVM reported best performance. � Considered only single UAV case.

�Model accuracy is low.

Al-Emadi et al. (2019) Audio spectrograms with CNN, RNN,

CRNN.

CNN reported best detection accuracy

with 96:38% followed by CRNN with

94:72%. Experimented with two differ-

ent types of UAVs.

� Lacks real-world experiment

scenarios.

� Does not estimate the number of

UAVs.

Russell et al. (2019) Audio spectrograms with CNN. Used

different RPAS classes individually for

measurements.

Greater than 90% detection accuracy. �Multiple RPAS scenario is absent.

Anwar et al. (2019) MFCC and LPCC for feature extraction.

Features are fed to SVM with linear,

cubic, and quadratic kernels.

MFCC with SVM cubic kernel achieves

96:7% detection accuracy.

� Considers only single UAV scenario.

Gravirov et al. (2021) Trains neural network on cepstrum

coefficients.

Relatively high UAV detection rate. �Multiple UAV scenarios are absent.

Casabianca and

Zhang (2021)

Mel-spectrograms for feature extraction

followed by CNN and CRNNs.

CNN (94:7% accuracy) outperformed

CRNN (94:1% accuracy). Experimented

with real-world scenarios.

�Multiple UAV scenarios are absent.

Wang et al. (2022) BSS using ICA, PCA, or VMD features.

Obtained features are fed to SVM, KNN,

and Decision trees.

SVM and KNN reported more than 90%

accuracy.

� Lacks real-world scenarios with back-

ground noise.

FIG. 1. (Color online) Block diagram of the proposed work.
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models employed for the experiment include the DJI Mavic

2 Enterprise (DJI, 2018), DJI Mini 2 (DJI, 2020a), DJI Mini

SE (DJI, 2021), DJI Mini 3 Pro (DJI, 2023), DJI Tello EDU

(DJI, 2020b), and SYMA X30 (SYMA, 2018). Except for

the DJI Mavic 2 Enterprise, all the other UAVs fall into the

250 g category and have relatively smaller dimensions

[approximately 251� 362� 70 mm (DJI, 2023)]. The small

size of the UAVs makes them an excellent choice for testing

the estimation performance in a multi-UAV scenario. The

DJI Tello UAVs were operated programmatically to follow

a prescribed trajectory. The remaining UAVs were operated

manually to fly in a random fashion to simulate a near real-

time scenario. Further details regarding the experiment are

provided in Table II.

The UAV acoustic signatures were recorded using the

Shure MV7 microphone (Shure, 2020a). The microphone

has a unidirectional (cardioid) type polar pattern with an

output impedance of 314 ohms. It has a frequency response

ranging from 50 to 16 000 Hz with an adjustable gain span-

ning between 0 and þ36 dB (Shure, 2020b). Additional

details regarding the microphone are provided in Table II.

The microphone was mounted on a tripod stand and faced

toward the measurement area. As the microphone has a uni-

directional cardioid polar pattern, the acoustic disturbances

originating from UAVs flying in front of the microphone are

captured and amplified. However, the disturbances that orig-

inate from the rear end of the microphone are attenuated

and, hence, do not contribute to the output signal. Figure 2

shows the microphone setup that was used to capture the

acoustic signatures from UAVs.

Each measurement of the experiment consisted of flying

an arbitrary number of UAVs in the prescribed area for a

duration of 5 min. For example, the fifth measurement cap-

tured acoustic field signatures from five randomly flown

UAVs. The sixth measurement involved flying six UAVs in

a random manner. To improve variability, each measure-

ment of the experiment was designed to use different types

of UAVs as much as possible. However, due to availability

constraints, we resorted to similar UAV models for mea-

surements that required a greater number of UAVs. Figure 3

depicts a five-UAV measurement case. To provide addi-

tional variability in the acoustic field measurements, we per-

formed the second measurement outdoors. The outdoor

measurement area was roughly the same semicircular area

TABLE II. Measurement setup and experiment details.

Experiment parameters Details

Semicircular area Radius: 5 m

Measurement duration 5 min

Microphone Shure MV7

Frequency response 50–16 000 Hz

Output impedance 314 ohms

Sampling rate 48 000 Hz

Total UAVs 10

DJI Mavic 2 Enterprise 1

DJI Mini 2 1

DJI Mini SE 2

DJI Mini 3 Pro 1

DJI Tello EDU 4

SYMA X30 1

FIG. 2. (Color online) Shure MV7 setup used for measuring the UAV

acoustic signals.

FIG. 3. (Color online) Capturing acoustic signals for a five-UAV scenario.
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of radius 5 m with additional noise related to wind, birds

chirping, etc. Further, the first measurement was taken inde-

pendently using three different UAV models to increase the

number of samples.

B. Dataset details

The acoustic signatures that were recorded and captured

from the experiment are used to create a dataset comprising

UAV audio clips. Each recorded acoustic signature is of

5 min duration. The recorded signatures were carefully

trimmed to retain only the portion pertaining to UAV audio.

Each trimmed audio signal is of 4 min and 45 s (285 s) with

a sample rate of 48 000 Hz. To reduce latency and ensure

smooth processing, we divided each trimmed signal (285 s

duration) into 95 equal parts. Each one of the 95 parts is a

3 s audio clip with a sampling rate of 48 000 Hz. In total, the

dataset contains 1140 UAV audio clips of 3 s duration.

V. PREPROCESSING AND ALGORITHM DETAILS

In the preprocessing stage of the proposed approach, var-

ious signal-processing transformations were applied on the

prepared UAV audio dataset. After preprocessing, the result-

ing spectrogram images were then fed to lightweight CNN

models to estimate the number of UAVs present in the scene.

A. CWT

The CWT is a wavelet transform that decomposes a sig-

nal into its time and frequency components (Kim and Kim,

2001). Just like the STFT (Durak and Arikan, 2003), the

CWT measures the correlation between the original signal

f(t) and the analyzing wavelet w. Depending upon the corre-

lation with the original signal, the analyzing wavelet is

scaled and dilated by parameters p and q, respectively.

Assuming the scaling parameter p> 0 and dilation parame-

ter q, the CWT for a signal f(t) is computed as

Cðp; q; f ðtÞ;wðtÞÞ ¼
ð1
�1

f ðtÞ 1
p

w�
t� q

p

� �
dt; (1)

where * represents the complex conjugate (CWT). If the

CWT is applied to a real signal, then the obtained output is

also real-valued. By varying the parameters p and q continu-

ously, we obtained the C(p, q) coefficients, which were sub-

sequently used to plot the spectrogram of the signal. In the

proposed method, CWT is applied over the trimmed audio

clips. As each audio clip is 3 s long with a sample rate of

48 000 Hz, the resulting spectrogram exhibits time and fre-

quency components corresponding to these parameters. The

acoustic signatures along with their corresponding spectro-

gram outputs are plotted in Figs. 4 and 5.

B. CNN

CNNs are unique deep-learning architectures that uti-

lize artificial neural networks to detect and classify objects

from images. In the proposed approach, we develop a cus-

tom CNN architecture to extract feature information from

spectrogram images.

FIG. 4. (Color online) UAV acoustic signatures for scenarios with (a) one UAV, (b) two UAVs, (c) four UAVs, (d) six UAVs, (e) eight UAVs, and (f) ten

UAVs.
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While designing the custom CNN architecture, we

first checked the performance by varying the number of

layers as 5, 10, 15, and 20. We used tenfold cross-

validation with a dataset split of (80, 10, 10) for training,

testing, and validation. It was observed that CNNs with 20

layers or more provided better performance as compared

to the ones with a lower number of layers. Subsequently,

we varied the number of layers along with the image reso-

lution to obtain the best-performing architectures. Table

III provides the performance of the CNN architectures

with 18 layers and more. The change in performance is

also noted with respect to the change in image resolution.

It can be observed from Table III that the performance

gradually increases from 18 layers, peaks around 22 and

24 layers, and then gradually decreases. Of the five CNN

architectures (shown in bold in Table III) that exhibited

greater than 94% average test accuracy, we chose the

CNN architecture (22 layers, 500� 400� 3) for further

analysis after considering other performance metrics and

parameters.

The proposed CNN architecture that is made of 22

layers is shown in Fig. 6 and Table IV. The spectrogram

image obtained after performing CWT on the audio clips

has a resolution of 836� 716� 3 pixels. To be trained by

the custom CNN architecture, these spectrogram images are

resized to 500� 400� 3 pixels. The resized images are

then fed to the proposed CNN architecture through the input

layer. The proposed architecture consists of convolutional

layers with kernel dimensions 4� 4. We primarily use 8 or

16 convolutional kernels to extract the feature embeddings.

The final convolutional layer, however, additionally uses

dilation by a factor of 2. The process of dilation

intentionally expands the kernel size by introducing holes

between adjacent elements as shown in Fig. 7. This provides

a larger field of view that, in turn, helps in capturing intrin-

sic sequence information (Dayal et al., 2022).

FIG. 5. (Color online) Spectrogram images of scenarios with (a) one UAV, (b) two UAVs, (c) four UAVs, (d) six UAVs, (e) eight UAVs, and (f) ten UAVs.

TABLE III. Comparison of CNN architectures based on number of layers

and image resolution.

Sl. No. No. of layers Image resolution Avg. test accuracy (%)

1 18 300� 200� 3 92.29

2 18 400� 300� 3 92.40

3 18 500� 400� 3 86.05

4 18 600� 500� 3 94:73

5 18 700� 600� 3 93.55

6 20 300� 200� 3 89.37

7 20 400� 300� 3 88.50

8 20 500� 400� 3 89.56

9 20 600� 500� 3 88.89

10 20 700� 600� 3 88.00

11 22 300� 200� 3 92.19

12 22 400� 300� 3 94:24

13 22 500� 400� 3 94:74

14 22 600� 500� 3 93.86

15 22 700� 600� 3 94:05

16 24 300� 200� 3 92.98

17 24 400� 300� 3 92.98

18 24 500� 400� 3 93.56

19 24 600� 500� 3 93.86

20 24 700� 600� 3 94:24

21 26 300� 200� 3 91.13

22 26 400� 300� 3 91.61

23 26 500� 400� 3 89.76

24 26 600� 500� 3 86.34

25 26 700� 600� 3 88.11
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To expand the network with additional layers without

compromising performance, our model employs residual

blocks. Our model uses a total of two residual layers. The

architecture of the residual blocks used in the proposed

architecture is depicted in Fig. 6. Additionally, 3� 3 max

pooling is used throughout the architecture. Max pooling

downsamples the input feature representation (Boureau

et al., 2010). It essentially removes translational invariances

from the input representation, thereby improving computa-

tional efficiency for further layers. The proposed model also

utilizes batch normalization at the input layer and residual

layers as observed from Table IV. Batch normalization

resolves the problem of internal covariate shift (Ioffe and

Szegedy, 2015) by standardization of the input distribution

that involves re-centering and re-scaling. The final layers

comprise the flatten layer and the dense layer. The flatten

layer transforms the input vector to a one-dimensional out-

put, which is subsequently fed into the dense layer. The

dense layer outputs class probabilities, which are finally

used for detection and classification tasks. In the proposed

architecture, since we are estimating a maximum number of

ten UAVs, there are ten outputs from the dense layer.

The proposed CNN model is trained using the Adam

optimizer (Kingma and Ba, 2015) with the tanh activation

function. We have adjusted the learning rate to 0.001 and

batch size to 16 to reduce fluctuations in the accuracy/loss

curve during training. Training is performed using the Keras

deep-learning library (Keras, 2015) on two Tesla V100-

SXM3 graphics processing units (GPUs) with 32 GB RAM

(NVIDIA, 2018).

VI. BENCHMARK MODELS

Benchmark models are state-of-the-art models that have

distinct architectural features. For example, DenseNets

(Huang et al., 2017) are special CNNs where the feature

maps from each layer are fed to all the subsequent layers,

thereby preserving the feed-forward nature of the network.

ResNet architecture (He et al., 2016) introduces residual

blocks to improve performance. The residual blocks are

made up of skip connections that retain the abstractions lost

in the standard path. The EfficientNet family of CNNs uti-

lizes uniform scaling of the depth, width, and resolution of

the network to achieve better accuracy. MobileNet (Sandler

et al., 2018) models, on the other hand, are optimized to pro-

vide faster operations on mobile and embedded devices.

These models have a low memory footprint and offer a bet-

ter trade-off between resource utilization and accuracy. We

assess the performance of the proposed model by comparing

it with these existing benchmark models. We compare it

with 23 benchmark models that include models from

DenseNet (Huang et al., 2017), EfficientNet (Tan and Le,

2019), Inception (Szegedy et al., 2016), MobileNet (Sandler

et al., 2018), ResNet (He et al., 2016), NASNetMobile

FIG. 6. (Color online) Proposed CNN architecture.

TABLE IV. Layerwise architecture details of the proposed CNN model.

No. Layer Output size Parameter

1 Input (None, 500, 400, 3) 0

2 Batch normalization (1) (None, 500, 400, 3) 12

3 Conv2D (1) (None, 500, 400, 8) 392

4 MaxPooling2D (1) (None, 166, 133, 8) 0

5 Conv2D (2) (None, 166, 133, 8) 1032

6 Batch normalization (2) (None, 166, 133, 8) 32

7 Conv2D (3) (None, 166, 133, 8) 1032

8 Batch normalization (3) (None, 166, 133, 8) 32

9 Add (1) (None, 166, 133, 8) 0

10 Activation (1) (None, 166, 133, 8) 0

11 Conv2D (4) (None, 166, 133, 16) 1032

12 Batch normalization (4) (None, 166, 133, 8) 32

13 Conv2D (5) (None, 166, 133, 16) 1032

14 Batch normalization (5) (None, 166, 133, 8) 32

15 Add (2) (None, 166, 133, 8) 0

16 Activation (2) (None, 166, 133, 8) 0

17 Conv2D (6) (None, 166, 133, 16) 2064

18 MaxPooling2D (2) (None, 55, 44, 16) 0

19 Conv2D (7), dilation rate¼ 2 (None, 55, 44, 64) 16 448

20 MaxPooling2D (3) (None, 18, 14, 64) 0

21 Flatten (None, 16 128) 0

22 Dense (None, 10) 161 290
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(Zoph et al., 2018), VGG (Simonyan and Zisserman, 2014),

and Xception (Chollet, 2017). The benchmark models are

pre-trained on the ImageNet dataset (ImageNet, 2021). The

input image resolution fed to the benchmark models has a

resolution of 224� 224� 3. We compare the proposed

model with benchmark models in terms of total parameters,

model size, average test accuracy, and number of floating

point operations per second (FLOPs). The benchmark mod-

els are also further deployed on edge computing devices to

measure inference time.

VII. HARDWARE DEPLOYMENT

To obtain real-time performance with edge computing

devices, we deploy the proposed model on three embedded

devices, namely, the Raspberry Pi 4 model B, the NVIDIA

Jetson AGX Xavier, and the NVIDIA Jeton Nano. The

Raspberry Pi 4 model B board contains a quad-core ARM

Cortex-A72 processor with 1/2/4/8 GB RAM. The board is

well-equipped with various communication interfaces, such

as Bluetooth 5.0, BLE, and 2.4/5.0 GHz wireless LAN for

wireless information transfer. Additionally, the board also

provides two USB 3.0, two USB 2.0, and a Gigabit Ethernet

port to ensure seamless interfacing with other devices

(Raspberry, 2021). As compared to Raspberry Pi 4, the

NVIDIA Jetson Nano comes with a 128-core Maxwell GPU

architecture and quad-core ARM Cortex A5 central process-

ing unit (CPU). With 4 GB RAM and support for multiple

interfaces, such as USB 2.0 Micro-B, USB 3.0, Gigabit

Ethernet, I2C, I2S, SPI, and UART, the Jetson Nano serves

as an excellent choice for high computing edge computing

devices (NVIDIA, 2023b). For edge applications that

require even more computing capability, the NVIDIA Jetson

AGX Xavier is preferred. The Jetson AGX Xavier houses a

512-core Volta GPU architecture and an 8-core Carmel

ARM CPU along with 32 GB RAM. It has dedicated deep-

learning and vision accelerators for various machine learn-

ing and computer vision tasks. To interface with other

peripheral devices, the Jetson AGX Xavier provides stand-

ards such as USB-C, USB 2.0, UART, and RJ45 (NVIDIA,

2023a). To obtain the inference time on the various edge

computing devices, the proposed model and benchmark

models are first converted to their equivalent TensorFlow

Lite versions. TensorFlow Lite (TensorFlow, 2015) is an

open-source software developed by TensorFlow to deploy

pre-trained models on edge computing devices. By convert-

ing the model to its equivalent TensorFlow Lite format, the

model is optimized for inference time and model size,

allowing seamless deployment on various embedded devi-

ces. After converting to TensorFlow Lite versions, the pro-

posed model and benchmark models are deployed on these

embedded devices to obtain the inference time. The time

taken to predict the exact number of UAVs from the spectro-

gram images is collected, and the average inference time is

calculated.

VIII. RESULTS

The spectrogram images obtained after applying the

CWT transform are used to train the proposed CNN model.

We utilize 80% of the dataset for training, 10% for valida-

tion, and the remaining 10% for testing. We used tenfold

cross-validation (Scikit-Learn, 2013), where each fold is

trained for 50 epochs with a batch size of 16 and a learning

rate of 0.001. The tenfold cross-validation utilizes 80% of

the dataset for training and 10% for validation. The testing

is performed on the remaining 10% of the dataset to obtain

detection accuracy. Figures 8(a) and 8(b) show the loss and

accuracy curves obtained during training. It can be observed

from Fig. 8(a) that the training and validation loss decrease

significantly after ten epochs. Correspondingly, the accuracy

curves for training and validation converge close to 1 after

ten epochs, indicating that the proposed model requires less

training time.

Upon training, the model performance was evaluated

on the test set. Figure 9 depicts the confusion matrix

obtained after evaluating the proposed model on the test set.

It can be observed that the proposed model is able to cor-

rectly predict the number of UAVs for more than 90% of the

cases. In the remaining cases, the model incorrectly esti-

mates the number of UAVs present in the scene. This might

be due to the superposition of acoustic signatures from simi-

lar UAV models that can render the obtained signal unre-

solvable. The performance of the proposed model is also

compared with standard benchmark machine learning mod-

els as shown in Table V. We used the same dataset split

while calculating the performance metrics on the benchmark

models. The spectrogram images are resized to 224� 224

� 3 pixels before providing them as input to the standard

benchmark models. As observed in Table V, the proposed

FIG. 7. (Color online) Effect of dilated

convolution for a 3� 3 kernel on a

9� 9 feature map.
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model achieves a relatively high test accuracy of 93:33% as

compared to the benchmark models. It can also be observed

from Table V that the proposed model requires just 2.34 MB

of storage space as compared to the benchmark models,

ensuring seamless portability and deployability on various

edge computing devices. Additionally, the total parameters

employed by our model are fewer in number as compared to

other benchmark models. Moreover, the majority of the total

parameters used by the proposed model are trainable param-

eters showing efficient utilization of parameters. Table V

also lists the computational performance of our model with

respect to other benchmark models in terms of the number

of FLOPs (Son and Weiland, 2022). The FLOP count is

measured as GFLOPs, where 1 GFLOP is equal to 109

FLOPs. The FLOP count is obtained by using standard

open-source software available from PyTorch (torchstat;

PyPI, 2018) and TensorFlow (Model Profiler; Ilyas, 2021).

FIG. 8. (Color online) Loss and accu-

racy curves.

FIG. 9. (Color online) Confusion matrix for the proposed model.

TABLE V. Performance metrics comparison between proposed CNN model and benchmark models.

Sl. No. Model Total parameters Avg. test accuracy (%) Model size (MB)

Floating point

operations (GFLOPs)

1 DenseNet121 (Huang et al., 2017) 7 047 754 83.77 28.98 2.88

2 DenseNet169 (Huang et al., 2017) 12 659 530 87.28 51.76 3.42

3 DenseNet201 (Huang et al., 2017) 18 341 194 88.68 74.68 4.37

4 EfficientNetB0 (Tan and Le, 2019) 4 062 381 83.85 16.74 0.4

5 EfficientNetB1 (Tan and Le, 2019) 6 588 049 81.05 27.01 0.59

6 EfficientNetB2 (Tan and Le, 2019) 7 782 659 80.08 31.80 0.68

7 EfficientNetB3 (Tan and Le, 2019) 10 798 905 84.21 43.94 0.99

8 EfficientNetB4 (Tan and Le, 2019) 17 691 753 78.24 71.66 1.54

9 EfficientNetB5 (Tan and Le, 2019) 28 534 017 79.73 115.20 2.41

10 EfficientNetB6 (Tan and Le, 2019) 40 983 193 82.45 165.18 3.43

11 EfficientNetB7 (Tan and Le, 2019) 64 123 297 81.40 257.98 5.27

12 InceptionResnetV2 (Szegedy et al., 2017) 54 352 106 77.63 218.77 6.55

13 InceptionV3 (Szegedy et al., 2016) 21 823 274 78.42 87.97 2.89

14 MobileNetV2 (Sandler et al., 2018) 2 270 794 86.75 9.49 0.32

15 MobileNetV3Large (Howard et al., 2019) 4 239 242 86.92 17.42 0.23

16 MobileNetV3Small (Howard et al., 2019) 1 540 218 81.84 6.55 0.06

17 NASNetMobile (Zoph et al., 2018) 4 280 286 77.71 18.48 0.27

18 ResNet101V2 (He et al., 2016) 42 647 050 89.64 171.37 8.28

19 ResNet152V2 (He et al., 2016) 58 352 138 87.63 234.50 12.5

20 ResNet50V2 (He et al., 2016) 23 585 290 90.35 94.82 3.97

21 VGG16 (Simonyan and Zisserman, 2014) 14 719 818 87.98 58.98 15.5

22 VGG19 (Simonyan and Zisserman, 2014) 20 029 514 87.98 80.22 19.6

23 Xception (Chollet, 2017) 20 881 970 82.89 83.96 0.36

24 Proposed model 184 462 93.3 2.34 0.25
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It can be observed that our model has relatively fewer

FLOPs as compared to most of the benchmark models.

Specifically, MobileNetV3Small and MobileNetV3Large

have lower FLOP counts compared to the proposed model.

This reduction in computational cost might be due to the

width and resolution multiplier parameter introduced in the

MobileNet series (Sandler et al., 2018).

The proposed model has also been deployed on edge com-

puting devices, such as Raspberry Pi 4 model B, NVIDIA

Jetson Nano, and NVIDIA Jetson AGX Xavier. We perform

inference time calculation of the proposed model on all these

devices. The inference time calculation can serve as a useful

reference when deciding the deployment feasibility of the pro-

posed model for time-critical applications. In all three devices,

we used a randomly selected test set, which is 10% of the over-

all dataset. The trained model was executed on the Raspberry

Pi 4 board to obtain an average inference time of about 127 ms

over ten iterations. On the other hand, the execution on the

Jetson Nano reported an average inference time of about 219

ms. This is expected as the TensorFlow Lite models are not

utilizing the GPU resources onboard the Jetson Nano.

TensorFlow Lite does not support CUDA for GPU operations

(GPU Delegates; TensorFlow, 2021). However, the Jetson

devices only support CUDA for GPU operations (Ullah and

Kim, 2020), and hence, the observed increase in inference time

is expected. Similarly, the trained model was able to provide

an average inference time of about 81.4 ms when executed on

the NVIDIA Jetson AGX Xavier. The Jetson AGX Xavier

showcased faster inference time as compared to the Raspberry

Pi 4 and Jetson Nano. Although the GPU is not utilized, the

faster inference time can be attributed to the availability of

increased RAM of about 32 GB, which can increase the perfor-

mance of the system. Further, the Jetson AGX Xavier also has

access to additional computing resources as compared to the

other two devices. Table VI lists the inference time obtained for

the proposed model along with the benchmark models on vari-

ous edge computing devices. We used the same dataset split

while calculating the inference time on the benchmark models.

It can be observed that the proposed model is faster than most of

the benchmark models on all three embedded devices. The

MobileNet series of models, however, have a lower inference

time than the proposed model. This might be due to the width

and resolution multiplier parameter in the MobileNet series,

which reduces the computational cost of the model.

IX. DISCUSSION

In this work, we have provided a robust solution to esti-

mate the number of UAVs in a scene. The current setup

employs only one unidirectional cardioid-type microphone

to estimate the number of UAVs. It is to be noted that since

the polar pattern of the microphone follows a cardioid pat-

tern, the acoustic disturbances originating from UAVs flying

to the rear of the microphone are attenuated. This can

severely impact the estimated UAV number. A more practi-

cal approach to overcome this limitation is to position

multiple cardioid microphones, such that the acoustic distur-

bances originating from the full 360� of the scene are

TABLE VI. Inference time calculation on various edge computing devices.

Sl. No. Model

Inference time (s)

Raspberry Pi Jetson Nano Jetson AGX Xavier

1 DenseNet121 (Huang et al., 2017) 0.692 0.841 0.413

2 DenseNet169 (Huang et al., 2017) 0.832 1.009 0.483

3 DenseNet201 (Huang et al., 2017) 1.088 1.275 0.614

4 EfficientNetB0 (Tan and Le, 2019) 0.389 0.372 0.116

5 EfficientNetB1 (Tan and Le, 2019) 0.591 0.546 0.178

6 EfficientNetB2 (Tan and Le, 2019) 0.624 0.592 0.180

7 EfficientNetB3 (Tan and Le, 2019) 0.843 0.794 0.248

8 EfficientNetB4 (Tan and Le, 2019) 1.162 1.147 0.359

9 EfficientNetB5 (Tan and Le, 2019) 1.724 1.672 0.528

10 EfficientNetB6 (Tan and Le, 2019) 2.339 2.173 0.832

11 EfficientNetB7 (Tan and Le, 2019) 3.252 2.971 1.158

12 InceptionResNetV2 (Szegedy et al., 2017) 1.637 1.828 0.797

13 InceptionV3 (Szegedy et al., 2016) 0.700 0.819 0.378

14 MobileNetV2 (Sandler et al., 2018) 0.088 0.112 0.046

15 MobileNetV3Large (Howard et al., 2019) 0.072 0.090 0.036

16 MobileNetV3Small (Howard et al., 2019) 0.022 0.028 0.011

17 NASNetMobile (Zoph et al., 2018) 0.320 0.256 0.125

18 ResNet50V2 (He et al., 2016) 0.912 1.008 0.440

19 ResNet101V2 (He et al., 2016) 1.879 2.053 0.858

20 ResNet152V2 (He et al., 2016) 2.820 3.159 1.285

21 VGG16 (Simonyan and Zisserman, 2014) 3.903 4.042 1.699

22 VGG19 (Simonyan and Zisserman, 2014) 5.031 6.981 2.184

23 Xception (Chollet, 2017) 1.236 2.206 0.520

24 Proposed model 0:127 0:219 0:081
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captured. Microphones that exhibit an omnidirectional polar

pattern can also be utilized so that acoustic disturbances

from all directions are captured without significant signal

attenuation.

It can be observed from Tables V and VI that the pro-

posed CNN architecture provides relatively high accuracy

and fast inference time on embedded hardware, all the while

consuming fewer resources. The proposed model can, thus,

be employed for time-critical and resource-constrained

UAV detection scenarios. High detection performance cou-

pled with real-time scenarios also suggests that the proposed

technique can be deployed in practical ground control sta-

tions to function as an anti-UAV detection system. It can be

inferred from the obtained results that the proposed tech-

nique is capable of detecting more than ten UAVs in a

dynamic real-time scenario given additional UAV informa-

tion. In the future, the accuracy of the proposed technique

can be improved by utilizing other sensor modalities. With

the help of additional sensors, the work can also be extended

to identify the UAV model and/or type.

X. CONCLUSION

In this article, we addressed the problem of accurately esti-

mating the total number of UAVs present in a scene. We

developed an UAV acoustic dataset to recreate a real-world

scenario comprising ten UAV combinations flown in a random

manner. The acoustic information from the dataset was prepro-

cessed using time-frequency transformations to obtain their

respective spectrogram images. The generated spectrogram

images are then fed into a custom lightweight CNN model to

estimate the number of UAVs in the scene. The proposed

model provides a high average test accuracy in accurately esti-

mating the number of UAVs. Subsequently, the proposed

model has also been executed on various edge computing devi-

ces to measure inference time performance. In the future, this

work can be extended to identify the UAV model and/or type

by utilizing information from additional sensors.
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