
Reimagining Data Exchange: OPC
UA to MQTT and OCPP Conversion
for Mobile Charging Stations
Developing Node-RED flows for converting OPC UA data to MQTT
Sparkplug B and OCPP messages, and back again, deployable on remote
terminal units for mobile charging stations at emission-free construction
sites.

VICTORIA VIUM LUND

SUPERVISORS
Harsha Sandaruwan Gardiyawasam Pussewalage
Indika Anuradha Mendis Balapuwaduge

University of Agder, 2024
Faculty of Engineering and Science
Department of Information and Communication Technology

Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer for
bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og hvilke
konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at vår besvarelse er vårt eget arbeid, og at vi ikke har
brukt andre kilder eller har mottatt annen hjelp enn det som er nevnt i
besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdeling/univer-
sitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd på ovennevnte er å betrakte som fusk og kan med-
føre annullering av eksamen og utestengelse fra universiteter og høgskoler i
Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og Forskrift om ek-
samen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja
5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor det

forligger mistanke om fusk etter høgskolens retningslinjer for behandling av
saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og referanser
på biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merkbart
forskjellig og ønsker dermed å vurderes individuelt. Ordinært vurderes alle
deltakere i prosjektet samlet.

Nei

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant
annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven tilgjengelig
for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei

Acknowledgements

I would like to extend my deepest gratitude to all those who have supported me throughout
the course of my master’s thesis. First and foremost, I would like to thank my supervi-
sor, Harsha Sandaruwan Gardiyawasam Pussewalage, and co-supervisor, Indika Anuradha
Mendis Balapuwaduge, for their support, valuable guidance, and constant encouragement
throughout my research. I am also grateful to Nordic Booster for allowing me access to their
offices to work, and Theodor Skaufel, of Nordic Booster, for his project suggestion, support,
technical guidance, and troubleshooting help.
I am indebted to my classmates and friends, for the brainstorming sessions, and their con-
structive criticisms, stimulating discussions, moral support, and the occasional distractions.
Additionally, I am immensely grateful for the support and resources provided by the Uni-
versity of Agder throughout my master’s thesis journey. The conducive work environment
and access to academic facilities have been instrumental in the successful completion of this
work.
I would like to express my heartfelt thanks to my family and friends for their unwavering
support and understanding throughout this journey. To my parents, for their continuous
encouragement and belief in me, and to my partner, Ingvild, for her patience, insights,
and unwavering support. Lastly, I extend my thanks to anyone who, in one way or another,
contributed to the successful completion of this thesis. Your support and encouragement have
been greatly appreciated, and I would also like to acknowledge ChatGPT for its invaluable
assistance with grammar and sentence structure, verbal prompt assistance, and inspiration
throughout the writing process.

ii

Abstract

As the adoption of emission-free construction sites becomes more prevalent, the need for
interoperable mobile charging stations increases. This thesis, titled ’Reimagining Data Ex-
change: OPC UA to MQTT and OCPP Conversion for Mobile Charging Stations,’ explores
a novel approach to enabling efficient and reliable data communication between different pro-
tocols within said charging stations. Using Node-RED technology, the project creates data
flows converting OPC UA data to MQTT Sparkplug B and OCPP messages, enhancing
station interoperability and adaptability.
The results demonstrate the system’s intended functionality, showcasing Node-RED’s capa-
bility to convert communication protocols effectively. Despite being tested solely in controlled
environments, the system’s feasibility in addressing communication protocol challenges is ev-
ident. However, limitations include reliance on local testing environments and absence of
testing with live systems and actual monitoring platforms, potentially impacting real-world
applicability.
Nevertheless, the system’s validity is asserted, offering a solution to convert communication
protocol messages for mobile charging stations and their further development. Future work
will focus on extensive testing with live systems, integration of other communication pro-
tocols, and automation improvements. This thesis contributes a practical and cost-effective
solution, supporting the transition towards sustainable construction practices.

iii

Contents

Acknowledgements ii

Abstract iii

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Objectives . 2
1.4 State of the Art . 2
1.5 Structure of Thesis . 2

2 Background 3
2.1 Mobile Charging Stations for Emission-Free Construction Sites 3
2.2 OPC UA: Open Platform Communications Unified Architecture 4
2.3 MQTT and Sparkplug B . 5

2.3.1 Sparkplug B . 6
2.4 OCPP 2.0.1: Open Charge Point Protocol 2.0.1 8
2.5 Node-RED: A Programming Tool for Flow-Based Development 8

3 Methodology 11
3.1 System Overview . 11
3.2 Software Tools . 12

3.2.1 Node-RED for Flow-Based Programming 12
3.2.2 OPC UA Server - Prosys OPC . 18
3.2.3 MQTT Broker - Ignition . 19

3.3 Testing and Validation Procedures . 20
3.3.1 OPC UA to MQTT Sparkplug B and back 20
3.3.2 OPC UA to OCPP and back . 22

4 System Design 24
4.1 System Architecture . 24
4.2 OPC UA to MQTT Sparkplug B flow . 25

4.2.1 Creating MQTT Sparkplug Definitions from OPC UA Data - Set Topics 25
4.2.2 Publishing the OPC UA data to the MQTT Sparkplug B Broker -

Publish to Topics . 27
4.2.3 Write to OPC UA from MQTT Sparkplug B 28

4.3 OPC UA to OCPP Flow - Proof of Concept 28
4.3.1 Subscribing to OPC UA server and Storing Data 29
4.3.2 OCPP Charging Station . 30

iv

5 Results 33

6 Discussion 38

7 Conclusion 39

Bibliography 40

A GitHub Repository Link 44

B System Architecture Diagram 45

C Complete OCPP Test Visual 46

v

List of Figures

2.1 Example of a mobile charging station - Nordic Booster’s Hummingbird [13] . 3
2.2 Open Platform Communications Unified Architecture (OPC UA) Client Server

architecture . 4
2.3 MQTT client server publish/subscribe model architecture 5
2.4 MQTT topic example [23] . 6
2.5 MQTT Sparkplug B architecture [30] . 7
2.6 Open Charge Point Protocol (OCPP) client server architecture 8
2.7 Nodes in the node-red-contrib-opcua node set 9
2.8 Nodes in the MQTT-Sparkplug-Plus node set 9
2.9 Nodes in the @anl-ioc/node-red-contrib-ocpp2 node set 9

3.1 High-level overview of the proposed solution 11
3.2 OPC UA nodes used in solution . 13
3.3 OPC UA client structures . 13
3.4 Properties of the OPC UA client and server nodes 14
3.5 MQTT Sparkplug B nodes used in solution 14
3.6 MQTT Sparkplug B metrics definitions and metrics format 15
3.7 Configuring the MQTT broker in Node-RED 15
3.8 Properties of the mqtt-sparkplug-device, mqtt-sparkplug-in and mqtt-sparkplug-

out nodes . 16
3.9 OCPP nodes used in solution . 16
3.10 Charging Station (CS) response message structures [33] 17
3.11 Charging Station Management System (CSMS) request message structures [33] 17
3.12 Properties of the OCPP 2.0.1 nodes . 18
3.13 Populating the Prosys OPC OPC UA Simulation Server 19
3.14 Prosys OPC OPC UA Simulation Server populated with dummy data 19
3.15 The Ignition Designer showing the data from the OPC UA server, organized

by tags . 20
3.16 The flow for testing and validating the OPC UA to/from MQTT Sparkplug

B part of the system . 21
3.17 Converting MQTT Sparkplug B messages to OPC UA data before writing it

to the OPC UA server . 21
3.18 Dashboard of the MQTT Sparkplug B testing and validation flow 22
3.19 Part of the OCPP CSMS Node-RED flow showing getVariables, setVariables

and the CSMS node . 22
3.20 Part of the OCPP CSMS Node-RED flow showing the CSMS node and dash-

board nodes to visualize the data . 23
3.21 Dashboard of the OCPP CSMS testing and validation flow 23

4.1 Architecture diagram of the proposed solution 24
4.2 Diagram showing how the system (Remote Terminal Unit (RTU)) connects

to the outside world . 25
4.3 High-level architecture diagram of the OPC UA to MQTT Sparkplug B solution 25

vi

4.4 The part of the flow where MQTT Sparkplug definitions are created from
OPC UA data . 26

4.5 Setting the node IDs . 26
4.6 OPC UA client and switch node . 26
4.7 The part of the flow that creates Sparkplug definitions based on the data from

the OPC UA server . 27
4.8 The part of the flow that subscribes to OPC UA items and converts the data

to MQTT Sparkplug metrics . 27
4.9 Delete subscription . 27
4.10 Get node IDs part of the flow . 27
4.11 Convert OPC UA data to MQTT Sparkplug metrics 28
4.12 Write to OPC UA from MQTT Sparkplug B 28
4.13 High-level architecture diagram of the OPC UA to OCPP solution 29
4.14 Setting the node IDs . 29
4.15 Get node IDs to subscribe to . 29
4.16 Store the data from the subscribed variables 30
4.17 OCPP charging station flow . 30
4.18 OCPP charging station message routing . 30
4.19 Function nodes that handle the getVariables request 31
4.20 Function nodes that handle the setVariables request 31

5.1 Conversion of data from OPC UA to MQTT Sparkplug B 33
5.2 Conversion of data from MQTT Sparkplug B to OPC UA 34
5.3 Conversion of data from MQTT Sparkplug B to OPC UA 34
5.3 Conversion of data from MQTT Sparkplug B to OPC UA 35
5.4 Conversion of data from OPC UA to OCPP 35
5.4 Conversion of data from OPC UA to OCPP 36
5.5 Conversion of data from OPC UA to OCPP 36
5.5 Conversion of data from OCPP to OPC UA 37

B.1 System architecture diagram . 45

C.1 The complete image of the OPC UA to/from OCPP test flow 46

vii

List of Tables

2.1 Overview of the nodes included in the node-red-contrib-opcua node set and a
simple description of their function [37][38] 9

2.2 Overview of the nodes available in the MQTT-Sparkplug-Plus node set and a
simple description of their function [39] . 9

2.3 Overview of the nodes available in the @anl-ioc/node-red-contrib-ocpp2 node
set and a simple description of their function [40] 10

3.1 Overview of the core/standard Node-RED nodes used [44][35] 12
3.2 Overview of the @flowfuse/node-red-dashboard widget nodes used [43][45] . . 12

viii

Acronyms

CBID Chargebox Identity

CS Charging Station

CSMS Charging Station Management System

EoN Edge of Network

IIoT Industrial Internet of Things

IoT Internet of Things

M2M Machine to Machine

OCPP Open Charge Point Protocol

OPC UA Open Platform Communications Unified Architecture

QoS Quality of Service

RTU Remote Terminal Unit

ix

Chapter 1

Introduction

As the world moves towards more sustainable practices, the construction industry faces the
challenge of reducing its environmental impact. One promising solution is the adoption of
emission-free construction sites, which rely heavily on mobile charging stations for electric
vehicles and equipment [1]. This thesis, titled "Reimagining Data Exchange: OPC UA to
MQTT and OCPP Conversion for Mobile Charging Stations," explores a novel approach to
facilitating efficient and reliable data communication between different protocols used in and
with these charging stations. This project leverages Node-RED to create data flows that
convert OPC UA data to MQTT Sparkplug B and OCPP messages, and vice versa. By
enhancing the interoperability of these stations, this solution ensures they are not locked
to one or two specific communication protocols, thereby increasing their adaptability and
integration capabilities in construction site environments. The outcome aims to enhance the
operational efficiency and flexibility of mobile charging stations, supporting the broader goal
of sustainable and emission-free construction practices.

1.1 Motivation

The inspiration for this project arose from a suggestion from Nordic Booster, a company
dedicated to promoting innovative and sustainable solutions in the construction industry
[2]. Recognizing the lack of options to easily integrate and communicate between various
protocols used in and around mobile charging stations, Nordic Booster identified a need
to create a lightweight, open-source, easily adaptable, and free solution to streamline data
communication between various protocols used in these stations.
Nordic Booster was originally interested in converting various communication protocols
(Modbus, OPC UA, etc.) to MQTT Sparkplug B, as that’s what their monitoring systems
communicate on [3][4][5]. However, Klimaetaten ved Oslo Kommune1 recently published a
paper that recommends the communication between mobile charging stations and charging
station platforms in Oslo municipality (where Nordic Booster is based) is done via OCPP
[6], which in turn changed the scope of the project to be converting OPC UA to MQTT
Sparkplug B and OCPP. This project aims to address this challenge by leveraging Node-
RED to create an efficient, lightweight, and open-source system that converts OPC UA data
to MQTT Sparkplug B and OCPP messages and vice versa.

1.2 Problem Statement

The primary focus of this project is to address the challenge of converting OPC UA data to
MQTT Sparkplug B and OCPP messages, for use in mobile charging stations at emission-
free construction sites, using an open-source, low-cost (free) and lightweight program. This
involves designing and implementing an open source system that can seamlessly bridge the

1The Climate Agency of Oslo municipality

1

gap between OPC UA, OCPP, and MQTT protocols, enabling real-time data exchange and
control in a reliable and efficient manner.

1.3 Objectives

1. Convert OPC UA data to MQTT Sparkplug B messages using Node-RED

2. Convert MQTT Sparkplug B messages to OPC UA messages using Node-RED

3. Convert OPC UA data to OCPP messages using Node-RED

4. Convert OCPP messages to OPC UA messages using Node-RED

1.4 State of the Art

There are several existing solutions that attempt to bridge the gap between different in-
dustrial protocols. For example, commercial products such as Kepware’s KEPServerEX [7]
and Inductive Automations’s Ignition [8] offer connectivity solutions that integrate OPC
UA with various other protocols, including MQTT and MQTT Sparkplug B. However, these
solutions are often proprietary, costly, and may not provide the flexibility needed for specific
use cases like mobile charging stations.
Then there is OPC UAs PubSub communication model, which utilizes the publish subscribe
pattern to transport information either with UDP transport or with the use of messaging
protocols (MQTT, etc.). Which could offer a possible solution, but only between OPC UA
and MQTT and MQTT Sparkplug B, and not OCPP or other communication protocols [9].
However, comprehensive solutions that seamlessly integrate OPC UA, MQTT Sparkplug B,
and OCPP in a unified framework tailored for mobile charging stations remain limited.

1.5 Structure of Thesis

The structure of the rest of this report is as follows:
Chapter 2 - Background
Chapter 2 provides background information on key technologies, including Node-RED, OPC
UA, OCPP, and MQTT.
Chapter 3 - Methodology
Chapter 3 outlines the methodology employed in the development and implementation of
the proposed solution.
Chapter 4 - System Design
Chapter 4 presents the system design and architecture, detailing the specific components
and their interactions
Chapter 5 - Results
Chapter 5 discusses the results of the system, including testing and validation procedures.
Chapter 6 - Discussion
Chapter 6 offers a discussion of the findings, limitations of the solution.
Chapter 7 - Conclusion
Chapter 7 concludes the thesis and discusses future directions of the system.

2

Chapter 2

Background

This chapter explores the foundational concepts and technologies pertinent to this project.
It begins with an overview of mobile charging stations, examining their purpose and func-
tionality. Next, the chapter will delve into the communication protocols OPC UA, MQTT,
MQTT Sparkplug B, and OCPP. Lastly, it will introduce Node-RED, a flow-based develop-
ment tool, and some of its features.

2.1 Mobile Charging Stations for Emission-Free Construction Sites

As the construction industry seeks to reduce its environmental impact, the adoption of
electrical construction machinery has increased and with it the energy and power demand
at construction sites [1], thereby increasing the need for charging solutions that can be used
anywhere and that reduce the charging time. That’s where mobile and battery-powered
charging stations come into play.
Mobile charging stations are portable units equipped with high-capacity batteries or gen-
erators and often feature multiple charging ports and fast-charging capabilities. The main
advantage of the stations are that they are portable, meaning they can be moved around to
different locations without being dependent on the power grid, making them great for re-
mote construction sites. There are a few companies in Norway that produce mobile charging
stations, Kverneland Energi [10], Aneo [11], and Hafslund Boost [12], among others. Nordic
Booster, however, were the first to develop mobile fast charging station [2], and have been a
part of a pilot project for emission-free construction sites in Oslo [1].
Mobile charging stations are a key component in the move towards emission-free construction
sites. They offer significant environmental and operational benefits, though challenges such
as initial costs and battery performance must be managed. As technology advances and the
industry increasingly prioritizes sustainability, mobile charging stations are set to become
an integral part of modern construction practices.

Figure 2.1: Example of a mobile charging station - Nordic Booster’s Hummingbird [13]

3

2.2 OPC UA: Open Platform Communications Unified Architec-
ture

OPC UA is a machine-to-machine, "platform-independent, service-oriented architecture"
[14], developed by the OPC Foundation, that provides a set of specifications for the stan-
dardization of communication in industrial automation. It was built on OPC Classic and
integrates all the different parts of OPC Classic into one framework. The protocol uses an
information model to define the structure and semantics of the data, including types, rela-
tionships, and behaviors of objects in a hierarchical manner [15]. This model is implemented
and represented in the address space, which is the framework where all the data, metadata,
and their relationships are structured [16]. Each entity in the address space is identified by
a unique NodeId, which ensures that every node can be precisely addressed and accessed,
facilitating reliable communication and data exchange.
OPC UA has two different communication models, the Client Server model and the PubSub
model, though the latter is still relatively new [17]. The OPC UA Client Server model uses
a request/response pattern, where the client can access information from a server using stan-
dardized sets of services defined in the OPC UA specification [18]. The specification defines
several transport protocols that the Client Server model can use to communicate, such as
TCP, SOAP/HTTP, WebSockets, etc. [19]. A client can connect to multiple servers and
vice versa, and an OPC UA application can also combine the server and client components,
allowing it to interact with both servers and clients [20].

Figure 2.2: OPC UA Client Server architecture

The client starts by opening a connection to the Server, creating a session, it can then re-
quest different services from the server, such as Read, Write, Subscribe and Browse. When
the client is done, it closes the session and disconnects [21]. Usually in Client Server models,
every time one wants to read data from the server, the client must request it, quickly becom-
ing tedious, unless an automatic read request trigger is created. Which is the basic concept
of the subscription service (not to be confused with subscribe in PubSub). The client creates
a subscription which includes a set of MonitoredItems and a publishing interval. When the
subscription has been created, the client will send Publish requests at the publishing interval

4

specified, and if there are Notifications to report (changes in data), the server with send a
notificationMessage in response [18][21][9].
OPC UA ensures secure and reliable data exchange and is widely adopted due to its robust-
ness and versatility in various industrial applications. It supports complex data structures
and offers high-level communication between devices and systems. However, its implementa-
tion complexity and resource requirements pose challenges for its use in resource-constrained
environments like mobile charging stations [9][14][21].

2.3 MQTT and Sparkplug B

"MQTT1 is a Client Server publish/subscribe messaging transport protocol" [24, p. 1][25,
p. 1]. Originally it was created as a way of connecting with oil pipelines via satellite with
minimal battery loss and minimal bandwidth, until 2010 when MQTT v3.1 was released as a
royalty-free version, where anyone can use the protocol [23]. Since then, MQTT became an
officially approved OASIS standard (2014), and several versions have been released, MQTT-
SN (2013) [26], MQTT v3.1.1 (2014) and MQTT v5.0 (2017) [27]. MQTT is lightweight
and bandwidth efficient, easy to implement, and open, making it an ideal protocol to use for
Machine to Machine (M2M) and Internet of Things (IoT) contexts [24][25]. Due to this it
has a wide variety of use cases and is used in many different industries, including automotive,
manufacturing, smart home and oil & gas [28].

Figure 2.3: MQTT client server publish/subscribe model architecture

MQTT’s client-server publish/subscribe model means that clients communicate through a
server, known as a broker, using a publish/subscribe pattern (figure 2.3 shows the architec-
ture of the client server publish/subscribe model). The publish/subscribe pattern decouples
clients from each other, they are never in direct contact with each other and are unaware that
other clients exist, this is instead handled by the broker. An MQTT client is "a program or
device that uses MQTT" [24, p. 9][25, p. 11], and it can initiate and close connections to the
server (broker), send messages (publish to topics), and receive messages (subscribe to top-
ics). An MQTT client can act as both a publisher and a subscriber [24][25][23]. An MQTT

1MQTT used to stand for MQ Telemetry Transport or Message Queuing Telemetry Transport, however, since
2013 it is no longer considered an acronym and is now only the name of the protocol [22][23]

5

broker, on the other hand, is "a program or device that acts as an intermediary between
clients which publish application messages and clients which have made subscriptions" [24,
p. 9][25, p. 11]. The broker manages client connections, receives messages from publishers,
filters messages based on the topic, and distributes messages to the correct subscribers ac-
cording to the specified Quality of Service (QoS) [24][25][23]. MQTT offers three levels of
QoS: QoS 0 (at most once delivery), QoS 1 (at least once delivery), and QoS 2 (exactly once
delivery), each providing different levels of delivery assurance. For MQTT, QoS is between
the client and the broker and not between the sending client and the receiving client(s),
which means that publishers define the QoS level of the message that is to be sent to the
broker and subscribers define the QoS level of the message that is to be sent to them by the
broker [24][25][23].
Topics in MQTT are strings that are attached to messages as a type of label, they are hier-
archical and contain one or more levels, separated by forward slashes (shown in figure 2.4).
A topic does not need to be initialized before it is published or subscribed to, clients can
start publishing and subscribing as soon as they are connected to the broker. Clients can
subscribe to an exact topic or multiple topics simultaneously using wildcards, single-level
and multi-level. A single-level wildcard, represented by a ’+’, replaces one topic level. It
can be placed at any level, and it can be used more than once in a single topic and can be
combined with the multi-level wildcard. A multi-level wildcard, represented by a ’#’, covers
many topic levels. It can be used on its own or behind a topic level separator, but it must
be the last character in the topic [24][25][23].

Figure 2.4: MQTT topic example [23]

The operation of MQTT begins with clients establishing a connection to the broker using
the TCP/IP protocol. The client sends a CONNECT message to the broker, including a
unique client identifier, and the broker responds with a CONNACK message to acknowledge
the connection. When publishing messages, the publisher sends a PUBLISH message to the
broker containing the topic and the message payload. The broker then routes this message
to all subscribers of the topic. Subscribers indicate their interest by sending a SUBSCRIBE
message to the broker, specifying the topics they are interested in. The broker confirms this
subscription with a SUBACK message. Upon receiving messages published to a subscribed
topic, the broker sends a PUBLISH message to the subscriber. Figure 2.3 shows the processes
of publishing and subscribing. Clients can gracefully terminate the connection by sending a
DISCONNECT message to the broker, which then cleans up any state information associated
with the client.

2.3.1 Sparkplug B

MQTT Sparkplug is an extension of the MQTT protocol specifically designed for Industrial
Internet of Things (IIoT). While MQTT is highly effective for transmitting data, it lacks
standardization for the data formats and topics, meaning that all devices/applications wish-
ing to communicate via MQTT must know where to subscribe to the data, which can lead
to interoperability challenges in complex industrial environments [29][30][31].
Sparkplug B2 addresses these challenges by defining a standard payload format, topic names-

2Sparkplug A is deprecated, so "Sparkplug" and "Sparkplug B" will be used interchangeably throughout the
report [30]

6

pace for MQTT messages and MQTT state management, ensuring that all devices using
Sparkplug B can interpret the data correctly, fostering interoperability and simplifying the
integration process. It includes mechanisms for device birth and death certificates, which
inform the system when devices come online or go offline, enhancing the reliability and ro-
bustness of the network [29][30]. In operation, Sparkplug B works by specifying how devices
should publish their data to an MQTT broker and how other devices should subscribe to
these topics to receive the data. The payload format is based on Google’s Protocol Buffers,
providing a compact, efficient way to serialize structured data [30].

Figure 2.5: MQTT Sparkplug B architecture [30]

To use MQTT Sparkplug B, the broker being used must implement MQTT v3.1.1, because
Sparkplug requires QoS level 0 and 1, retained messages and Last Will and Testament [29].
The architecture of Sparkplug B is a bit more in depth than MQTT’s architecture, which
can be seen in figure 2.5. The central element of the Sparkplug architecture is the MQTT
Server (broker), which functions the same as in MQTT. Then there are the MQTT edge
nodes, which represent physical/virtual devices at the edge of the network, such as sensors,
gateways, etc. These edge nodes communicate with the MQTT server by publishing data to
designated topics and subscribing to topics to receive commands or updates. The primary
host application is an MQTT client application responsible for processing and analyzing the
data collected from MQTT edge nodes and devices (can also be reffered to as the SCADA
host or IIoT Host). The Sparkplug host application refers to the software application or
system that implements the Sparkplug B specification for handling MQTT messages within
the IIoT environment. This application interprets the Sparkplug B payload format, enforces
the Sparkplug B topic namespace, and manages device lifecycle events such as device birth
and death certificates. The Sparkplug host application is any Sparkplug MQTT client "that
consumes the real-time Sparkplug messages or any other data being published with proper

7

permission and security" [30]. It can be thought of as a software platform that integrates
data from divers IoT devices [29][30].

2.4 OCPP 2.0.1: Open Charge Point Protocol 2.0.1

The OCPP is "the industry-supported de facto standard for communication between a
Charging Station (CS) and a Charging Station Management System (CSMS)" [32], and
an open standard. Developed by the Open Charge Alliance, OCPP allows for the seamless
exchange of information regarding the status, usage, and maintenance of EV charging sta-
tions. It supports a variety of functions such as remote monitoring, diagnostics, and firmware
updates, which helps in managing charging stations effectively and efficiently.
OCPP works by establishing a set of rules and data formats that both CS and CSMS adhere
to [33]. When an EV is connected to a CS, the station communicates with the CSMS using
OCPP messages. These messages can include requests for authorization, charging status
updates, meter readings, and error reports. The CSMS, in turn, can send commands to
the charging station for actions such as starting or stopping a charging session, locking or
unlocking the connector, and updating the station’s firmware [33]. By using OCPP, charging
network operators can integrate various brands and models of charging stations into a unified
system, ensuring compatibility and flexibility across different manufacturers and regions [32].
The protocol operates on a client server architecture (figure 2.6) and defines two roles:
Charging Station (client) and Charging Station Management System (server), who, as of
OCPP 2.0.1, communicate over WebSocket using JSON [34].

Figure 2.6: OCPP client server architecture

2.5 Node-RED: A Programming Tool for Flow-Based Development

Node-RED is a flow-based programming tool for wiring together hardware devices, APIs,
and online services in a flow-based development environment. It provides a browser-based
interface for creating event-driven applications by connecting pre-built nodes (black box
processes), which represent different functions or services, in a flowchart-like manner. It
can be further customized by installing new nodes created by the community [35]. Some of
these node sets or packages are node-red-contrib-opcua, MQTT-Sparkplug-Plus, and @anl-
ioc/node-red-contrib-ocpp2, which are used in this project. The nodes in the node sets and
their functions are described below, chapter 3 provides a more in depth explanation of how
they’re used in the system. Node-RED is lightweight, easy to use and can run on different
platforms making it particularly useful for IoT projects [36].

OPC UA in Node-RED

Figure 2.7 shows the nodes included in the node set node-red-contrib-opcua and table 2.1
describes their function.

8

Figure 2.7: Nodes in the node-red-contrib-opcua node set

Node Function
OpcUa-Item Defines an OPC UA item, type and value
OpcUa-Client Creates an OPC UA client that connects to an OPC UA server
OpcUa-Server Creates OPC UA server with own variables, object structures and methods
OpcUa-Browser Browses an OPC UA server or specific items in an OPC UA server
OpcUa-Event Defines the events that will be subscribed from the server
OpcUa-Method Calls methods from the server
OpcUa-Rights Sets object/variable access level, user access level and permissions
OpcUa-Discovery OPC UA Discovery server for OPC UA servers to register themselves

Table 2.1: Overview of the nodes included in the node-red-contrib-opcua node set and a simple
description of their function [37][38]

MQTT Sparkplug B in Node-RED

MQTT-Sparkplug-Plus has 3 nodes: mqtt sparkplug device, mqtt sparkplug in, and mqtt
sparkplug out (figure 2.8), table 2.2 describes their function.

Figure 2.8: Nodes in the MQTT-Sparkplug-Plus node set

Node Function
mqtt sparkplug device Acts as an MQTT Edge of Network Node
mqtt sparkplug in Acts as a subscriber
mqtt sparkplug out Acts as a publisher

Table 2.2: Overview of the nodes available in the MQTT-Sparkplug-Plus node set and a simple
description of their function [39]

OCPP 2.0.1 in Node-RED

The node set @anl-ioc/node-red-contrib-ocpp2 has two nodes: CSMS and CS (shown in
figure 2.9 and described in table 2.3).

Figure 2.9: Nodes in the @anl-ioc/node-red-contrib-ocpp2 node set

9

Node Function
CSMS OCPP 2.0.1 CSMS messaging node, handles connecting, sending and receiving

OCPP 2.0.1 messages to the CS
CS OCPP 2.0.1 CS messaging node, handles connecting, sending and receiving

OCPP messages to the CSMS

Table 2.3: Overview of the nodes available in the @anl-ioc/node-red-contrib-ocpp2 node set and a
simple description of their function [40]

10

Chapter 3

Methodology

This chapter will go through the methodology employed in the development and evaluation
of the proposed solution. It outlines a high-level overview of the system, the software tools
used, implementation details, and how testing and validation was undergone. By providing
a systematic overview of the methodology used to create the solution, this chapter aims to
ensure the validity, reliability and credibility of the findings.

3.1 System Overview

The purpose of the system is to use Node-RED to make it possible to read and write OPC UA
data from/to a mobile charging station via different monitoring platforms that communicate
via OCPP and MQTT Sparkplug B (figure 3.1 shows the high-level overview of the proposed
solution). To achieve this, the system must be able to connect to an OPC UA server, MQTT
Sparkplug B broker, and an OCPP CSMS, and receive, transform, and send data in the
correct format to/from the different entities. To be able to connect to the entities mentioned
above, the system must act as an OPC UA client, MQTT Sparkplug B client, and an OCPP
CS. After the system is connected to the different entities, it should then be able to get data
from the OPC UA server, convert it to MQTT Sparkplug B and OCPP messages, send those
messages, receive MQTT Sparkplug B and OCPP messages, convert them to OPC UA data,
and send the converted data to the OPC UA server.

Figure 3.1: High-level overview of the proposed solution

11

3.2 Software Tools

3.2.1 Node-RED for Flow-Based Programming

Node-RED was used to design, implement and test flows that facilitate the conversion of
data between OPC UA, OCPP, and MQTT Sparkplug B. It was primarily used for the
implementation of the system, but it was also used to test and validate it (described later
in this chapter).
For this project, it was run locally on a Windows machine and was installed and set up using
the instructions provided on Node-RED’s website [41]. To further configure Node-RED to
be compatible with OPC UA, OCPP, and MQTT Sparkplug B and to test the system, the
following packages were installed using the palette manager:

• node-red-contrib-opcua [42]

• node-red-contrib-mqtt-sparkplug-plus [39]

• @anl-ioc/node-red-contrib-ocpp2 [40]

• @flowfuse/node-red-dashboard [43]

The next subsections describe which nodes are used from the first three packages from the
above list, and how they were configured. Other than those nodes, the core/standard nodes
described in table 3.1 and the dashboard nodes described in table 3.2 were used to include the
needed functionality to get, transform and send data between the OPC UA server, MQTT
broker, and OCPP CSMS and validate the system.

Node Function
Inject Used to trigger a flow, either manually or automatically
Function Used to contain JavaScript code, to be run against messages received by it
Debug "Used to display messages in the debug sidebar" [44]
Switch Used to route messages to different branches of a flow based on the rules set
Change Used to modify the properties of a message, flow context or global context
Link in Used to create virtual wires between flows, connects to any link out node
Link out Used to create virtual wires between flows, connects to any link in node
Delay Used to delay messages passing through

Table 3.1: Overview of the core/standard Node-RED nodes used [44][35]

Widget Function
ui-button Clickable button
ui-dropdown Dropdown menu
ui-gauge Customizable gauge chart
ui-switch Toggle switch
ui-text Non-editable text field
ui-text-input Editable text field, with configurable "type"

Table 3.2: Overview of the @flowfuse/node-red-dashboard widget nodes used [43][45]

OPC UA with Node-RED

To get the system to communicate with an OPC UA server, only two OPC UA nodes were
used: OpcUa-Browser and OpcUa-Client. The client node is used in two different ways,
SUBSCRIBE, for getting the data from the OPC UA server, and WRITE, for writing to the
OPC UA server. To subscribe to the data, the SUBSCRIBE client node must be given items,

12

in the correct format, to monitor, which is done by sending an array of node IDs into the
input (figure 3.3a shows the structure of the array of OPC UA items to monitor). To write
to the OPC UA server, the WRITE client node must be given an item, in the correct format,
to be written to the server (figure 3.3b shows the structure of an OPC UA item to be written
to the OPC UA server). The browser node is used to browse a specific folder on the OPC
UA server that has the variables to be subscribed to from the "charging station", by defining
the item address (ex. ns=0;i=85). This is so the node IDs of the wanted variables can be
saved in an array that can be used to with the SUBSCRIBE client node.

Figure 3.2: OPC UA nodes used in solution

(a) Structure of array of monitored OPC
UA items for the OPC UA client to sub-
scribe to

(b) Structure of an OPC UA item to be
written to the OPC UA server

Figure 3.3: OPC UA client structures

To be able to use the OPC UA browser and client nodes as intended, they have to be con-
figured correctly. The browser node must define the properties "Endpoint", the connection
address of the OPC UA server, and "Topic", the OPC UA item address, while the client
node must define the properties "Endpoint", the connection address of the OPC UA server,
and "Action", the action to be taken by the client. If the client’s action is set to SUBSCRIBE
the property "Interval" must also be defined.

13

(a) The properties of the OPC UA client node
with Write action

(b) The properties of the OPC UA client node
with Subscribe action

(c) The properties of the OPC UA browser node

Figure 3.4: Properties of the OPC UA client and server nodes

For this solution, the "Endpoint" of all the OPC UA nodes was set to the OPC UA simulation
server connection address (mentioned later in this chapter), and the "Topic" of the browser
node was set to the OPC UA item address of the folder to be browsed. Figure 3.4 shows the
properties of the browser and client nodes.

MQTT Sparkplug B with Node-RED

Figure 3.5: MQTT Sparkplug B nodes used in solution

For this system to communicate with an MQTT broker, all the MQTT Sparkplug B nodes
were used: mqtt sparkplug device for the system and mqtt sparkplug in and mqtt sparkplug
out for testing and validating the system. As mentioned in table 2.2, the Sparkplug device
node acts as an MQTT Sparkplug B Edge of Network (EoN) node, which means it acts as
both a publisher and subscriber, and it’s used to connect the system to the MQTT Broker,
to pass the converted OPC UA data between the system and the monitoring system that
uses MQTT Sparkplug B to communicate. To be able to publish Sparkplug B messages to
the MQTT broker, the Sparkplug device node must be given metrics definitions first, then
the metrics, both in the correct format. The correct format for metrics definitions is shown
in figure 3.6a, and the correct format for metrics is shown in figure 3.6b. On the other hand,
the mqtt sparkplug in node acts only as a subscriber, while the mqtt sparkplug out node acts
only as a publisher (table 2.2), and they are used to validate the system by subscribing to
the MQTT broker and publishing any changes made, to the MQTT broker.
To be able to connect the Sparkplug nodes to the MQTT broker, they and the mqtt-sparkplug-
broker node1have to be configured correctly in Node-RED. To configure the MQTT bro-
ker node, the MQTT broker’s server address and port must be defined (figure 3.7a), the
Sparkplug "Name" and "Group" must also be given (figure 3.7b). For the mqtt spark-
plug device node, configuring it properly involves giving the device a name and choosing
the MQTT broker (figure 3.8a). To configure the mqtt sparkplug in node, the MQTT

14

broker needs to be chosen, as well as specifying the topic to subscribe to and the QoS
level of the subscription (figure 3.8c). As mentioned in chapter 2, it is not possible to
subscribe to specific metrics within topics with Sparkplug B, instead the topic is set to
namespace/group_id with the multi-level wildcard at the end to make sure all data is re-
ceived. Configuring the mqtt sparkplug out node requires the same properties to be set as
the mqtt sparkplug in node, as well as setting the retain flag (figure 3.8b). The topic for
the publisher node is slightly different from the subscriber node, it uses the entire Sparkplug
topic namespace: namespace/group_id/message_type/edge_node_id/[device_id]. The
message type component DCMD is used so that the messages published to the MQTT broker,
get further published to the mqtt sparkplug device, so that the message gets sent to the OPC
UA server.

(a) Metrics definitions format (b) Metrics format

Figure 3.6: MQTT Sparkplug B metrics definitions and metrics format

(a) mqtt-sparkplug-broker connection properties (b) mqtt-sparkplug-broker Sparkplug properties

Figure 3.7: Configuring the MQTT broker in Node-RED

1This is not a physical node in Node-RED, it’s a property that is available to the entire node set when editing
the nodes

15

(a) mqtt-sparkplug-device node properties (b) mqtt-sparkplug-out node properties

(c) mqtt-sparkplug-in node properties

Figure 3.8: Properties of the mqtt-sparkplug-device, mqtt-sparkplug-in and mqtt-sparkplug-out
nodes

OCPP with Node-RED

Figure 3.9: OCPP nodes used in solution

For this system to communicate over OCPP, both the nodes from the @anl-ioc/node-red-
contrib-ocpp2 package are used (figure 3.9. The CS node is used to so that the system
can take on the role of a CS and receive and respond to requests made by the CSMS,
with converted OCPP data. Receiving a request is handled automatically by the CS node,
responding to a request, on the other hand, requires that the "respond" messages follow the
correct OCPP structure based on the request. If it’s the GetVariables request, the response
message must follow the getVariableResult structure shown in figure 3.10a and if it’s the
SetVariables request, the response message must follow the setVariableResult structure
shown in figure 3.10b.
The CSMS node is used to test the system by taking on the role of a CSMS, so it can
send requests to the system’s CS. Sending a request to the CS node, requires the "request"
messages to follow the correct OCPP structure based on the type of request it’s sending.
If it’s the GetVariables request, the message must follow the getVariableData structure
shown in figure 3.11a and if it’s the SetVariables request, the message must follow the
setVariableData structure shown in figure 3.11b.

16

(a) OCPPgetVariableResult structure (b) OCPPsetVariableResult structure

Figure 3.10: CS response message structures [33]

(a) OCPPgetVariableData structure (b) OCPPsetVariableData structure

Figure 3.11: CSMS request message structures [33]

The CS node is configured by giving it a name and Chargebox Identity (CBID), choosing the
target CSMS URL, and setting a password (figure 3.12b). Choosing the target CSMS URL
requires a target-csms node to be added which requires the CSMS node to be configured
first, this is done by giving it a name, assigning it a port (any port that isn’t currently
being used), creating a path, and setting up the CS authentication list (figure 3.12a). The
target CSMS URL can then be added using the IP address of the CSMS (localhost as it’s

17

running on the same machine as the system), plus the port and path that was just created
(figure 3.12c).

(a) CSMS node properties (b) CS node properties

(c) target-csms node properties

Figure 3.12: Properties of the OCPP 2.0.1 nodes

3.2.2 OPC UA Server - Prosys OPC

There are not a lot of free OPC UA simulation servers available, two of the choices were
Integration Objects’ OPC UA Server Simulator [46] and Prosys OPC’s OPC UA Simulation
Server [47]. In the end, Prosys OPC’s OPC UA simulation server was chosen because it was
simple to use, there were lots of guides online showing Node-RED interacting with Prosys
OPC’s OPC UA server, and Prosys OPC also offer an OPC UA Browser, to test that the
server was set up correctly.
The Prosys OPC UA Simulation Server is a software tool designed for simulating OPC
UA-enabled industrial devices and systems. It allows developers to test OPC UA client ap-
plications without access to physical equipment, providing a virtual environment for learning,
prototyping and validation. The Simulation Server generates simulated data based on con-
figurable models for instant use, or a developer can create their own data models for more
accurate simulation [47].

Setting Up the Simulation Server

The OPC UA simulation server didn’t need to be configured, it was ready to use as soon as
it was installed. The browser was also ready to go after it was installed, it just needed to
be connected to a server to be able to use it as intended, which just requires the connection
address of the OPC UA server.
With the simulation server and browser up and running, the only thing left to do was create
dummy data to help test the system. This was done by first adding a folder by assigning it
a unique node ID, choosing the namespace it was to be attached to, and giving it a name
(figure 3.13a). After a folder was created, it was then populated with variables representing

18

possible data from a mobile charging station. Variables were created by choosing the names-
pace, reference type ("read only" - Organizes or "read and write" - DataSetToWriter), and
datatype and giving them unique node IDs and names (figure 3.13b). Figure 3.14 shows the
simulation server populated with dummy data for testing and validating the system.

(a) Adding a folder to the OPC UA simulation
server

(b) Adding a variable to the OPC UA simulation
server

Figure 3.13: Populating the Prosys OPC OPC UA Simulation Server

Figure 3.14: Prosys OPC OPC UA Simulation Server populated with dummy data

3.2.3 MQTT Broker - Ignition

Ignition is an industrial application platform that "acts as the hub for everything on your
plant floor for total system integration" [8]. It supports various communication protocols,

19

database systems, and scripting languages, enabling seamless integration with existing in-
frastructure and easy customization to meet specific requirements.
One of the communication protocols that it supports is MQTT, through the use of Cirrus
Link IIoT modules, and as an official Sparkplug Compatible software platform [48][49],
Ignition makes an ideal MQTT Sparkplug broker.
There are a few different MQTT brokers available, such as EMQX [50], HiveMQ [51], and
Ignition [8], however while all three are Sparkplug compatible [52][53][49] (though EMQX is
not on the list of Sparkplug Compatible Software [48]), it wasn’t easy to tell if the data was
being received by the EMQX and HiveMQ brokers. Ignition much better for this with the
Cirrus Link MQTT modules.

Setting Up the MQTT Broker

Installing Ignition was done by following the Ignition User Manual [54]. To make it MQTT
Sparkplug B ready, two system modules were installed: MQTT Engine (acts like a Sparkplug
EoN device [55]) and MQTT Distributor (an MQTT broker [56]). The installation and
configuration of these modules was done by following the videos published by Inductive
Automation about "Implementing MQTT in Ignition" [57][58]. The last step before the
Ignition MQTT broker was ready to use for testing and validating the system was to install
Ignition Designer [59]. The designer automatically organizes the data, by the tags (topics),
published by the Node-RED Sparkplug device using the MQTT Engine (figure 3.15).

Figure 3.15: The Ignition Designer showing the data from the OPC UA server, organized by tags

3.3 Testing and Validation Procedures

3.3.1 OPC UA to MQTT Sparkplug B and back

To test and validate that the system is able to convert OPC UA data to MQTT Sparkplug
B messages and back again, a separate Node-RED flow, with a publisher node, subscriber

20

node, and dashboard nodes, was created (figure 3.16 shows the flow and figure 3.18 shows the
dashboard created in the flow). This flow starts with a subscriber that subscribes to all the
data published to the topic spBv1.0/Master/ on the MQTT broker. The data published to
the subscriber is then split up based on the metric names and sent to the different dashboard
nodes to visualize them. The widgets of the 5 writable variables are connected to function
nodes that put the written value into a Sparkplug metric format, before sending it to the
publisher node to be published to the MQTT broker, and subsequently to the Sparkplug
EoN node, that converts the MQTT Sparkplug B message to OPC UA data before sending
it to the OPC UA server (shown in figure 3.17).

Figure 3.16: The flow for testing and validating the OPC UA to/from MQTT Sparkplug B part
of the system

Figure 3.17: Converting MQTT Sparkplug B messages to OPC UA data before writing it to the
OPC UA server

21

Figure 3.18: Dashboard of the MQTT Sparkplug B testing and validation flow

3.3.2 OPC UA to OCPP and back

To test and validate that the system is able to convert OPC UA data to OCPP messages and
back again, a separate Node-RED flow, that acts as an OCPP CSMS, was created (shown
in figure 3.19 and figure 3.20, appendix C shows the complete image). This flow has nodes
for getVariables, setVariables, the CSMS, and visualizing the data (figure 3.21 shows
the dashboard created in the flow). The test starts by either choosing which variables to
get with getVariables or by choosing which variables to set and the value they’re to be
set to with setVariables. The request is sent into the CSMS node, which sends it to the
connected CS node. When the CS node responds, the CSMS node sends the messages to be
processed and transformed into data that can be visualized on the dashboard.

Figure 3.19: Part of the OCPP CSMS Node-RED flow showing getVariables, setVariables and the
CSMS node

22

Figure 3.20: Part of the OCPP CSMS Node-RED flow showing the CSMS node and dashboard
nodes to visualize the data

Figure 3.21: Dashboard of the OCPP CSMS testing and validation flow

23

Chapter 4

System Design

In this chapter, the system design and architecture of the proposed solution is presented,
detailing the specific components and their interactions. Before delving into the design
specifics, it is important to note that certain design choices have been influenced by the
fact that the system has only been connected to simulation programs and not actual outside
systems. Also, the OPC UA to MQTT Sparkplug B flow was based on a proof of concept
flow provided by Nordic Booster, that will not be made public.

4.1 System Architecture

The system architecture is designed to facilitate the seamless conversion of OPC UA data
to OCPP and MQTT Sparkplug B messages. These messages and protocols are utilized
by mobile charging stations, and communication between the mobile charging stations and
monitoring platforms. The architecture consists of an OPC UA browser and client that
subscribes to data from the OPC UA server (mobile charging station), function nodes that
convert the OPC UA data to MQTT Sparkplug B and OCPP compliant messages, a Spark-
plug EoN node that sends the converted OPC UA data, and an OCPP CS node that handles
the converted OPC UA data based on the request from the CSMS node. The following dia-
gram illustrates the architecture of the system (a larger version is shown in appendix B):

Figure 4.1: Architecture diagram of the proposed solution

In use, this system connects to the "outside world" in different ways (figure 4.2). The RTU
running the Node-RED flows, interfaces with the MQTT Sparkplug B compliant broker,
the OCPP CSMS, and the OPC UA server on the mobile charging station, which interfaces

24

with the battery and charging equipment and collects real-time data. The Node-RED flows
retrieve the OPC UA data, process it, and will send it to the OCPP CSMS, when requested
and at the same time, publish the data to the MQTT broker whenever the data changes.
The MQTT broker then distributes the messages to subscribers, such as monitoring and
control systems at the construction sites.

Figure 4.2: Diagram showing how the system (RTU) connects to the outside world

4.2 OPC UA to MQTT Sparkplug B flow1

This Node-RED flow, figure 4.3, is designed to achieve efficient and reliable conversion of
OPC UA data into MQTT Sparkplug B messages and back again, in a way that doesn’t
require re-coding when changes to the server occur (i.e. variables are removed or added).
It is composed of several nodes, each performing a specific function, some of which include
data retrieval from the OPC UA server, data transformation, message publication to the
MQTT broker, and writing data to the OPC UA server.

Figure 4.3: High-level architecture diagram of the OPC UA to MQTT Sparkplug B solution

4.2.1 Creating MQTT Sparkplug Definitions from OPC UA Data - Set Topics

The initial step in the Node-RED flow is to create MQTT Sparkplug definitions from the
OPC UA variables so that the MQTT Sparkplug B broker knows the data type to expect for
each topic (figure 4.4). This involves getting the node IDs of the relevant OPC UA variables,
subscribing to them, mapping them to a Sparkplug B definition structure and sending the
definitions to the MQTT Sparkplug B broker, without hard-coding the variables’ node IDs.
This process ensures that each piece of data from the OPC UA server is correctly identified
and formatted for MQTT transmission.

1The code in this flow is based on Nordic Booster’s proof of concept, and some code snippets have been modified
from ChatGPT answers [60]

25

Figure 4.4: The part of the flow where MQTT Sparkplug definitions are created from OPC UA
data

Getting the node IDs of the relevant OPC UA variables, without hard-coding them, starts
with an inject node that initiates the nodes connected to it when pressed (a decision influ-
enced by the system’s current simulation programs), the OPC UA Browser and SUB Topics
- F nodes. The OPC UA browser node connects to the OPC UA server and browses the
OPC UA item address specified. At the same time, the function node, SUB Topics - F,
sets the Flow context SUB_topics to false and initializes the Flow context definitions,
used later in the flow. The output of the browse node is sent as in input into a function
node Set_NodeIDs, which takes the payload of the message, extracts only the node IDs from
the variables into an array, saves the array in the Flow context NODEIDS, and sets the new
payload of the message as the array of node IDs. Shown in figure 4.5.

Figure 4.5: Setting the node IDs

The message with the array of node IDs is sent into the OPC UA Client node (shown on the
left in figure 4.6) with the action SUBSCRIBE, to be subscribed to by the client, at an interval
of one second. Each variable that has been subscribed to, is published as an individual
message, each of which goes through a switch node (shown on the right in figure 4.6) that
checks the value of the Flow context SUB_topics, and is subsequently routed up to Decode
and set definitions due to SUB_topics being set to false earlier (figure 4.7).

Figure 4.6: OPC UA client and switch node

For each message, the node ID is transformed into an MQTT topic by removing the first part
of the OPC UA node ID ("ns=x ;s=") and replacing the underscores with forward slashes.
The node then checks if the msg.payload field exists and if it has a value property, if both
conditions are true, the Flow context set_payload_check is set to true, otherwise it is set
to false. This is done so a message containing the subscription ID isn’t sent to the Sparkplug
EoN, causing an error. The datatype is also remapped so that it’s readable for MQTT. The
remapped datatype, along with the topic, is used to create a new object with the correct
MQTT message structure. This object is stored in the Flow context definitions, which
is then set as the new payload of the message being sent out. The message is sent through
Payload check where it checks what set_payload_check is set to, if it’s true the message
will be routed to the Sparkplug EoN and published to the MQTT Sparkplug B broker. If
it’s false, the message will not be routed any further.

26

Figure 4.7: The part of the flow that creates Sparkplug definitions based on the data from the
OPC UA server

4.2.2 Publishing the OPC UA data to the MQTT Sparkplug B Broker - Publish
to Topics

After creating the MQTT Sparkplug B definitions, the next step in the Node-RED flow is
to publish the OPC UA data to the MQTT broker (figure 4.8). This involves deleting the
active subscription from earlier, subscribing to the stored node IDs, converting the variables
to MQTT Sparkplug B metrics, and sending the metrics to the MQTT Sparkplug B broker.
This step ensures that the data complies with the Sparkplug B specification, facilitating
interoperability and efficient transmission.

Figure 4.8: The part of the flow that subscribes to OPC UA items and converts the data to
MQTT Sparkplug metrics

This starts with deleting the subscription created when setting the node IDs (shown in
figure 4.9), so that there aren’t multiple subscriptions to the same items. Then an inject
node is pressed, triggering the Get_NodeIDs and SUB Topics - T nodes. The SUB Topics
- T node sets the Flow context SUB_topics to true, while the Get_NodeIDs node gets the
Flow context NODEIDs and sets it as the payload of the message (figure 4.10).

Figure 4.9: Delete subscription

Figure 4.10: Get node IDs part of the flow

The message containing the node IDs of the OPC UA variables is sent to the OPC UA Client
node to be subscribed to (shown on the left in figure 4.6). Each variable that has been sub-
scribed to, is published as an individual message, each of which goes through a switch node
(shown on the right in figure 4.6) that checks the value of the Flow context SUB_topics,
and is subsequently routed to Convert to Sparkplug Metrics due to SUB_topics being set
to true earlier.

27

As before in Decode and set definitions, for each message, the node ID is transformed into
an MQTT topic by removing the first part of the OPC UA node ID ("ns=x ;s=") and
replacing the underscores with forward slashes. The node then checks if the msg.payload
field exists and if it has a value property, if both conditions are true, the Flow context
set_payload_check is set to true, otherwise it is set to false. This is done, so an empty
message isn’t sent to the Sparkplug EoN, causing an error. The newly created topic and
variable value are used to create an MQTT Sparkplug B metric that is then sent to Payload
check where it checks what set_payload_check is set to, if it’s true the message will be
routed to the Sparkplug EoN and the metrics are published to the MQTT Sparkplug B
broker. If it’s false, the message will not be routed any further. This is shown in figure 4.11.

Figure 4.11: Convert OPC UA data to MQTT Sparkplug metrics

OPC UA data will now get converted into MQTT Sparkplug B messages and get published
to the MQTT broker, whenever the OPC UA Client receives a response from the OPC UA
server that variables have changed value. If changes occur to the server, i.e. variables are
removed or added, the current subscription will have to be deleted, and the prior steps will
have to be repeated.

4.2.3 Write to OPC UA from MQTT Sparkplug B

The last step in the Node-RED flow is to convert variables that have been changed via
the monitoring platform from MQTT Sparkplug B message structure to OPC UA message
structure (figure 4.12). When a writable variable is changed via the monitoring platform,
the change is published to the broker and the Sparkplug EoN node. From the Sparkplug
EoN node, the change is then sent as a message from the Sparkplug EoN node and into
Decode for OPC UA where the datatype and value are extracted and the name (or topic)
of the variable is transformed back into the OPC UA node ID by adding "ns=7;s=" and
replacing forward slashes with underscores. The node ID, value, and datatype are then used
to create a new object with the desired structure (mentioned in section 3.2 under "OPC UA
with Node-RED", and shown in figure 3.3b), which is then set as the new message. The
new message is then sent into an OPC UA Client node set to the action WRITE, to then
be written to the OPC UA server.

Figure 4.12: Write to OPC UA from MQTT Sparkplug B

4.3 OPC UA to OCPP Flow - Proof of Concept2

This Node-RED flow is designed to be show that it is possible to achieve conversion of OPC
UA data into OCPP messages and back again, via Node-RED. This means that this flow

2Some of the code in this flow is based on Nordic Booster’s proof of concept, some of the code is taken from
node-red-contrib-ocpp2 example flows [61], and some code snippets have been modified from ChatGPT answers [60]

28

does not have all functionality for the OCPP components set up, mainly that the OCPP CS
is only set up to handle getVariables and setVariables request messages from an OCPP
CSMS.
The flow is composed of several nodes, each performing a specific function, some of which
include handling connecting, sending, and receiving OCPP 2.0.1 messages to an OCPP 2.0.1
CSMS, data retrieval from the OPC UA server, data transformation, and writing data back
to the OPC UA server.

Figure 4.13: High-level architecture diagram of the OPC UA to OCPP solution

4.3.1 Subscribing to OPC UA server and Storing Data

The initial step in the Node-RED flow is subscribing to the OPC UA data and then storing it
in a Flow context, so the OCPP CS node can access the data easily (figure 4.14). Subscribing
to the OPC UA data is done the same way it was done for OPC UA to MQTT Sparkplug
B: getting the node IDs from the OPC UA server using the OPC UA browser node, storing
them, then using the stored node IDs to subscribe to the OPC UA Client (figure 4.15).

Figure 4.14: Setting the node IDs

Figure 4.15: Get node IDs to subscribe to

Each variable that has been subscribed to, is published as an individual message that is
routed to the function node Store OCPP variables (figure 4.16). This node extracts the

29

variable name by removing "ns=7;s=", as well as the variable value and stores them in a
Flow context with the variable name as the key and the variable value as the value.

Figure 4.16: Store the data from the subscribed variables

4.3.2 OCPP Charging Station

The next step in the Node-RED flow is the OCPP CS handling the messages to and from
the OCPP CSMS (figure 4.17). The standard output of the CS node is connected to the
switch node, Topic switch, that routes the message to one of four outputs based on what
the msg.topic is equal to. After the switch node, messages are routed to the change node
CSMS:Req which sets the msg.target field to msg.ocpp.cbid + :REQ: + msg.ocpp.command,
then returned to the flow, where the message is routed to the next node, the switch node
Command switch. With the msg.topic field set to the OCPP command, the Command
switch node can then route the message to the correct output based on what the OCPP
command is, so that the correct response message is created to send back to the CSMS.
Figure 4.18 shows a closer look at the nodes that route the messages after the CS receives
them.

Figure 4.17: OCPP charging station flow

Figure 4.18: OCPP charging station message routing

If the OCPP request from the CSMS is getVariables, the response from the CS to the
CSMS must include the attribute statue, component name as well as the type, name, and
value of each variable requested, and if the OCPP request from the CSMS is setVariables,
the response from the CS to the CSMS must include the attribute status, component name
and variable name for each variable the CSMS requested to be set.

Get Variables from OPC UA to OCPP

If the OCPP command from the CSMS is getVariables, the request message is then routed
to the GetVariables function node (the node on the far left in figure 4.19). This function node
clones the getVariableData array, ensuring that the original message remains unaltered,

30

this is important because the ocpp portion of the message is needed so that the node knows
"to repackage the message with the same MessageId" [40]. The cloned array is then added
into the msg.payload field and given msg.Type 3 signifying that this message is a response
message.

Figure 4.19: Function nodes that handle the getVariables request

The altered message is then routed to the function node Get from Flow (the node in the
middle in figure 4.19) which loops through each item in the cloned array, and for each item
it determines the attribute type (defaulting to "Actual" if it isn’t specified), extracting the
variable name, and getting the value of the variable from the Flow context, if there is one. If
the Flow context for the variable has a value, an OCPP response is created for the variable
and added to an array to store all the responses created. The array is then assigned to the
getVariableResult field in the payload of the message, which is then returned to the flow
to be routed into the input of the CS node, using link in and link out nodes (the node on the
far right in figure 4.19) which sends the getVariables OCPP response back to the CSMS.

Set Variables from OCPP to OPC UA

If the OCPP command from the CSMS is setVariables, the request message is routed to
the SetVariables function node (the node to the far left in figure 4.20). This node starts
in the same manner as the GetVariables node, by cloning the incoming message to keep
the original unchanged. It then prepares the original message payload with the msgType 3
(response message), generates a unique set ID, and initializes an item ID. Then every variable
in the setVariableData field of the cloned message is iterated through, where individual
set commands are created, and the payload of each set command is simultaneously stored
in the itemArray array and sent as the second output of the node, to be processed further.
The setId and item array are added to the original message and returned to the flow as the
first output to be processed further.

Figure 4.20: Function nodes that handle the setVariables request

The messages sent as the second output of the node are routed into the Accepted function
node, which sets the variable status based on the datatype of the value and stores it in a
unique Flow context based on the msg.payload.setId. If the value the variable is being
requested to be set to is a string then the variable status is set to Accepted and the message
is returned to the flow, otherwise it’s set to InvalidValue, in which case null is returned.
If the message is returned to the flow, it is routed to the Decode for OPC UA function
node, which creates an OPC UA node ID from the variable name, converts the value from a
string to a datatype the OPC UA client expects, and assigns the correct datatype identifier.
The node ID, converted value, and datatype are then used to create a new object with the
desired structure (mentioned in section 3.2 under "OCPP with Node-RED", and shown in
figure 3.11b), which is then set as the new message. The new message is then sent to the

31

OPC UA Client node set to the action WRITE, which writes to the OPC UA server. This
process is shown in figure 4.20, the bottom three nodes.
The messages sent as the first output of the node are routed to a delay node that waits
one second before routing the message onto the SetVariableResult function node. This node
starts by retrieving the array of variable statuses for the given setId, and determining the
overall status of the variables; if all the status’ are Accepted the overall status is set to
Accepted, otherwise it’s set to Rejected. Then each item in the itemArray is iterated
over, creating a setVariableResult object, with the overall status, component name, and
variable name, for each item. Each object is then added into an array, which is then set
as the setVariableResult field in the payload of the message. The modified message is
returned to the flow, being routed into the input of CS node, which sends the setVariables
OCPP response back to the CSMS (the top two nodes in figure 4.20).

32

Chapter 5

Results

This section presents the results demonstrating the system’s ability to convert data between
OPC UA and MQTT Sparkplug B, as well as OPC UA and OCPP. The results are shown
with a series of images that capture the reading/writing of data and validate the system’s
functionality. The system aims to facilitate data exchange between different industrial com-
munication protocols: OPC UA, MQTT Sparkplug B, and OCPP. These protocols are widely
used in industrial automation and electric vehicle charging infrastructure, respectively.

OPC UA to MQTT Sparkplug B Conversion

Figure 5.1 shows data in OPC UA format being successfully converted to MQTT Sparkplug
B format. The OPC UA data is displayed on the left, and the converted MQTT Sparkplug
B data is displayed on the Ignition Designer in the middle, and on the Node-RED dashboard
"MQTT Sparkplug Visuals" on the right.

Figure 5.1: Conversion of data from OPC UA to MQTT Sparkplug B

33

MQTT Sparkplug B to OPC UA Conversion

Figure 5.2 and figure 5.3 illustrate the conversion of data from MQTT Sparkplug B back
to OPC UA format. Figure 5.2 shows the writing of a boolean, while figure 5.3 shows the
writing of an integer.

(a) Start of writing "true" to the variable Battery/W-Restart OPC UA server from the MQTT
Sparkplug B Node-RED dashboard

(b) After writing "true" to the variable Battery/W-Restart OPC UA server from the MQTT
Sparkplug B Node-RED dashboard

Figure 5.2: Conversion of data from MQTT Sparkplug B to OPC UA

(a) Start of writing "50" to the variable Battery/W-Voltage OPC UA server from the MQTT
Sparkplug B Node-RED dashboard

Figure 5.3: Conversion of data from MQTT Sparkplug B to OPC UA

34

(b) After writing "50" to the variable Battery/W-Voltage OPC UA server from the MQTT
Sparkplug B Node-RED dashboard

Figure 5.3: Conversion of data from MQTT Sparkplug B to OPC UA

OPC UA to OCPP Conversion

Figure 5.5 demonstrates the conversion process from OPC UA to OCPP format. The OPC
UA data is shown on the right of both images, and the converted OCPP data is on the left,
highlighting the successful getVariables request.

(a) Triggering conversion of data from OPC UA to OCPP

Figure 5.4: Conversion of data from OPC UA to OCPP

35

(b) Result of conversion of data from OPC UA to OCPP

Figure 5.4: Conversion of data from OPC UA to OCPP

OCPP to OPC UA Conversion

Figure 5.5 demonstrates the conversion process from OCPP to OPC UA format. The OPC
UA data is shown on the right of both images, and the converted OCPP data is on the left,
highlighting the successful setVariables request.

(a) Start of writing to the OPC UA server from the OCPP CSMS Node-RED dashboard

Figure 5.5: Conversion of data from OPC UA to OCPP

36

(b) Result of writing to the OPC UA server from the OCPP CSMS Node-RED dashboard

Figure 5.5: Conversion of data from OCPP to OPC UA

The images above serve as a visual validation of the system’s functionality. Initially, data in
OPC UA format is ingested by the system, which then processes and converts it into MQTT
Sparkplug B and OCPP formats. The reverse conversions are also illustrated, showcasing the
system’s bidirectional conversion capabilities. The results demonstrate the system’s ability
to convert data between OPC UA, MQTT Sparkplug B, and OCPP formats.

37

Chapter 6

Discussion

The results of the project demonstrate that the system functions as intended. It shows
that Node-RED technology can be used to construct data flows capable of converting OPC
UA data to MQTT Sparkplug B and OCPP messages, and vice versa. This integration
enhances the interoperability of mobile charging stations, expanding their adaptability within
construction site environments. However, it’s important to note that the system was tested
solely in a controlled environment, either locally on the same machine or across different
machines within the same network.
The system’s operability should not be affected by testing/running it on different machines
on different networks, but the transmission times and reliability might change. A few tests
were run, testing the difference in transmission times, in a purely OPC UA system run on
different machines on different networks, with multiple OPC UA Client nodes subscribed to
the OPC UA server, all with a large set of MonitoredItems. However, the results of these
tests were not reliable, as the system time of the machines were not equal and the difference
between the times varied constantly. Therefore, the results were not included in the result
section.
The system also wasn’t tested with actual monitoring platforms (mobile charging station
monitoring systems or OCPP CSMSs) or a live OPC UA server, so the results from testing
with an OPC UA simulation server and monitoring systems running locally on Node-RED
might not be an accurate representation of the system’s ability to connect and communicate
with the three protocols nearly simultaneously.
Despite these limitations, the overall validity of the system was proven, because the outcome
of the tests show that it is possible to convert the different communication protocol messages
using Node-RED nodes. Which addresses and provides and solution to the challenge of
converting OPC UA data to MQTT Sparkplug B and OCPP messages, for use in mobile
charging stations at emission-free construction sites, using an open-source, low-cost (free)
and lightweight program.

38

Chapter 7

Conclusion

In conclusion, this thesis presents a novel approach to enhancing the interoperability of
mobile charging stations within emission-free construction sites. The results demonstrate
the effectiveness of using Node-RED technology to construct data flows for converting OPC
UA data to MQTT Sparkplug B and OCPP messages, thereby increasing the adaptability
and integration capabilities of these stations. While the testing environment was limited to
local setups, the outcomes of the tests underscore the feasibility of the proposed system in
addressing the challenge of communication protocol conversion.
Moving forward, future work on this system will include extensive testing using live systems,
integrating other communication protocols used at emission-free construction sites, like Mod-
bus, and making the system more automatic (remove the inject nodes). By addressing these
areas, the proposed solution aims to contribute to the broader goal of promoting sustainable
and emission-free construction practices.
In summary, this thesis provides a valuable contribution to the field by offering a practical and
cost-effective solution for facilitating data exchange using multiple communication protocols,
in mobile charging stations. Through continued refinement and validation, the proposed
system holds promise in supporting the transition towards more sustainable construction
practices.

39

Bibliography

[1] Pilot testing of technology for emission-free construction sites is complete - and here are the
results! (in Norwegian), Aneo, Nov. 14, 2023. [Online]. Available: https://www.aneo.com/
tjenester/build/nyheter/enova-pilot-ferdig/.

[2] About Us - Nordic Booster, Nordic Booster. [Online]. Available: https://www.nordicbooster.
com/en/om-oss.

[3] Hummingbird |, Nordic Booster. [Online]. Available: https://www.nordicbooster.com/
hummingbird-1.

[4] Boost Point |, Nordic Booster. [Online]. Available: https : / / www . nordicbooster . com /
boostpoint-1.

[5] Boost Charger |, Nordic Booster. [Online]. Available: https://www.nordicbooster.com/
boostcharger-1.

[6] Hordnes, Eirik and Nguyen, Linna V., “Today’s power requirements at construction sites,” (in
Norwegian), Klimaetaten ved Oslo kommune and Sweco, Tech. Rep., 2023. [Online]. Avail-
able: https://www.klimaoslo.no/wp- content/uploads/sites/2/2024/01/Sweco_
Kartlegging-av-effekt-og-energibehov-pa-utslippsfri-bygge-og-anleggsplass.
pdf.

[7] KEPServerEX: One Data Source for Your Industrial Automations, PTC. [Online]. Available:
https://www.ptc.com/en/products/kepware/kepserverex.

[8] Ignition - The Platform for Unlimited Digital Transformation, Inductive Automation. [Online].
Available: https://inductiveautomation.com/ignition/.

[9] OPC 10000-14: UA Part 14: PubSub, version 1.05.03, OPC Foundation, Dec. 13, 2023.

[10] Mobil lynlading, Kverneland Energi. [Online]. Available: https://kvernelandenergi.no/
losninger/mobil-lynlading.

[11] Våre ladeløsninger, Aneo. [Online]. Available: https://www.aneo.com/tjenester/build/
produkter.

[12] Lading til byggeplass - Hafslund Mobil Energi, Hafslund Boost. [Online]. Available: https:
//www.hafslundboost.no/produkter.

[13] Nordic Booster, Nordic Booster. [Online]. Available: https://www.nordicbooster.com.

[14] Unified Architecture, OPC Foundation. [Online]. Available: https://opcfoundation.org/
about/opc-technologies/opc-ua/.

[15] OPC 10000-5: UA Part 5: Information Model, version 1.05.03, OPC Foundation, Dec. 13,
2023.

[16] OPC 10000-3: UA Part 3: Address Space Model, version 1.05.03, OPC Foundation, Dec. 13,
2023.

[17] OPC Foundation Announces OPC UA PubSub Release, OPC Connect, 2018. [Online]. Avail-
able: https://opcconnect.opcfoundation.org/2018/04/opc-foundation-announces-
opc-ua-pubsub-release.

[18] OPC 10000-4: UA Part 4: Services, version 1.05.03, OPC Foundation, Dec. 13, 2023.

[19] OPC 10000-6: UA Part 6: Mappings, version 1.05.03, OPC Foundation, Dec. 13, 2023.

40

https://www.aneo.com/tjenester/build/nyheter/enova-pilot-ferdig/
https://www.aneo.com/tjenester/build/nyheter/enova-pilot-ferdig/
https://www.nordicbooster.com/en/om-oss
https://www.nordicbooster.com/en/om-oss
https://www.nordicbooster.com/hummingbird-1
https://www.nordicbooster.com/hummingbird-1
https://www.nordicbooster.com/boostpoint-1
https://www.nordicbooster.com/boostpoint-1
https://www.nordicbooster.com/boostcharger-1
https://www.nordicbooster.com/boostcharger-1
https://www.klimaoslo.no/wp-content/uploads/sites/2/2024/01/Sweco_Kartlegging-av-effekt-og-energibehov-pa-utslippsfri-bygge-og-anleggsplass.pdf
https://www.klimaoslo.no/wp-content/uploads/sites/2/2024/01/Sweco_Kartlegging-av-effekt-og-energibehov-pa-utslippsfri-bygge-og-anleggsplass.pdf
https://www.klimaoslo.no/wp-content/uploads/sites/2/2024/01/Sweco_Kartlegging-av-effekt-og-energibehov-pa-utslippsfri-bygge-og-anleggsplass.pdf
https://www.ptc.com/en/products/kepware/kepserverex
https://inductiveautomation.com/ignition/
https://kvernelandenergi.no/losninger/mobil-lynlading
https://kvernelandenergi.no/losninger/mobil-lynlading
https://www.aneo.com/tjenester/build/produkter
https://www.aneo.com/tjenester/build/produkter
https://www.hafslundboost.no/produkter
https://www.hafslundboost.no/produkter
https://www.nordicbooster.com
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcconnect.opcfoundation.org/2018/04/opc-foundation-announces-opc-ua-pubsub-release
https://opcconnect.opcfoundation.org/2018/04/opc-foundation-announces-opc-ua-pubsub-release

[20] OPC 10000-1: UA Part 1: Overview and Concepts, version 1.05.02, OPC Foundation, Nov. 1,
2022.

[21] OPC UA PubSub Explained - Prosys OPC, Prosys OPC, Dec. 14, 2021. [Online]. Available:
https://prosysopc.com/blog/opc-ua-pubsub-explained.

[22] “OASIS MQTT Technical Committee Minutes of for the meeting of Thursday, 25th April 2013
Teleconference,” OASIS MQTT TC, Apr. 25, 2013. [Online]. Available: https://groups.
oasis - open . org / higherlogic / ws / public / document ? document _ id = 49028 (Accessed
May 23, 2024).

[23] HiveMQ, MQTT & MQTT 5 Essentials. HiveMQ GmbH, 2020. [Online]. Available: https:
//www.hivemq.com/resources/download-mqtt-ebook/ (Accessed May 23, 2024).

[24] A. Banks and R. Gupta, Eds., MQTT Version 3.1.1, OASIS Standard, Oct. 29, 2014. [Online].
Available: http://docs.oasis- open.org/mqtt/mqtt/v3.1.1/mqtt- v3.1.1.html.
(Accessed May 23, 2024).

[25] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, Eds., MQTT Version 5.0, OASIS Standard,
Mar. 7, 2017. [Online]. Available: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-
v5.0.html (Accessed May 23, 2024).

[26] A. Stanford-Clark and T. H. Linh, Eds., MQTT For Sensor Networks (MQTT-SN) Protocol
Specification Version 1.2, IBM, Nov. 14, 2013. [Online]. Available: https://groups.oasis-
open.org/higherlogic/ws/public/document?document_id=66091 (Accessed May 23,
2024).

[27] Standards, OASIS Open. [Online]. Available: https://www.oasis- open.org/standards
(Accessed May 23, 2024).

[28] Use Cases, MQTT.org. [Online]. Available: https://mqtt.org/use-cases (Accessed May 23,
2024).

[29] HiveMQ, MQTT Sparkplug Essentials - Getting Started with this Open IIoT Specification.
HiveMQ GmbH. [Online]. Available: https://www.hivemq.com/resources/download-
sparkplug-ebook/ (Accessed May 23, 2024).

[30] Sparkplug 3.0.0 Sparkplug Specification, Eclipse Foundation, Nov. 16, 2022. [Online]. Available:
https://www.eclipse.org/tahu/spec/sparkplug_spec.pdf (Accessed May 31, 2024).

[31] MQTT and Sparkplug B Simplified, Corso Systems. [Online]. Available: https://corsosystems.
com/posts/mqtt-and-sparkplug-b-simplified.

[32] OCPP 2.0.1 Part 0 - Introduction, 3rd ed., Open Charge Alliance, May 6, 2024. [Online].
Available: https://openchargealliance.org/my-oca/ocpp/.

[33] OCPP 2.0.1 Part 2 - Specification, 3rd ed., Open Charge Alliance, May 6, 2024. [Online].
Available: https://openchargealliance.org/my-oca/ocpp/.

[34] OCPP 2.0.1 Part 4 - JSON over WebSockets implementation guide, 3rd ed., Open Charge
Alliance, May 6, 2024. [Online]. Available: https://openchargealliance.org/my- oca/
ocpp/.

[35] Node-RED, OpenJS Foundation & Contributors. [Online]. Available: https://nodered.org/.

[36] Getting Started : Node-RED, OpenJS Foundation & Contributors. [Online]. Available: https:
//nodered.org/docs/getting-started.

[37] FlowFuse and M. Karaila, Getting started with opc-ua and node-red, Aug. 31, 2023. [Online].
Available: https://www.youtube.com/watch?v=9Kfo79Rkk2w (Accessed May 20, 2024).

[38] M. Karaila, Node-red-contrib-opcua/opcua. [Online]. Available: https://github.com/mikakaraila/
node-red-contrib-opcua/tree/master/opcua (Accessed May 20, 2024).

[39] T. Sorensen, Node-red-contrib-mqtt-sparkplug-plus. [Online]. Available: http://flows.nodered.
org/node/node-red-contrib-mqtt-sparkplug-plus.

41

https://prosysopc.com/blog/opc-ua-pubsub-explained
https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=49028
https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=49028
https://www.hivemq.com/resources/download-mqtt-ebook/
https://www.hivemq.com/resources/download-mqtt-ebook/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=66091
https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=66091
https://www.oasis-open.org/standards
https://mqtt.org/use-cases
https://www.hivemq.com/resources/download-sparkplug-ebook/
https://www.hivemq.com/resources/download-sparkplug-ebook/
https://www.eclipse.org/tahu/spec/sparkplug_spec.pdf
https://corsosystems.com/posts/mqtt-and-sparkplug-b-simplified
https://corsosystems.com/posts/mqtt-and-sparkplug-b-simplified
https://openchargealliance.org/my-oca/ocpp/
https://openchargealliance.org/my-oca/ocpp/
https://openchargealliance.org/my-oca/ocpp/
https://openchargealliance.org/my-oca/ocpp/
https://nodered.org/
https://nodered.org/docs/getting-started
https://nodered.org/docs/getting-started
https://www.youtube.com/watch?v=9Kfo79Rkk2w
https://github.com/mikakaraila/node-red-contrib-opcua/tree/master/opcua
https://github.com/mikakaraila/node-red-contrib-opcua/tree/master/opcua
http://flows.nodered.org/node/node-red-contrib-mqtt-sparkplug-plus
http://flows.nodered.org/node/node-red-contrib-mqtt-sparkplug-plus

[40] Nystrom, Bryan and Argonne National Library, @anl-ioc/node-red-contrib-ocpp2. [Online].
Available: https :/ /flows . nodered. org /node /@anl - ioc /node - red - contrib - ocpp2
(Accessed Jun. 5, 2024).

[41] Running on Windows, OpenJS Foundation & Contributors. [Online]. Available: https://
nodered.org/docs/getting-started/windows.

[42] M. Karaila and K. Landsdorf, Node-red-contrib-opcua. [Online]. Available: http://flows.
nodered.org/node/node-red-contrib-opcua.

[43] @flowfuse/node-red-dashboard, FlowFuse. [Online]. Available: https://flows.nodered.org/
node/@flowfuse/node-red-dashboard (Accessed Jun. 6, 2024).

[44] The Core Nodes : Node-RED, OpenJS Foundation & Contributors. [Online]. Available: https:
//nodered.org/docs/user-guide/nodes (Accessed Jun. 6, 2024).

[45] Widgets | Node-RED Dashboard 2.0, FlowFuse. [Online]. Available: https://dashboard.
flowfuse.com/nodes/widgets.html (Accessed Jun. 6, 2024).

[46] OPC UA Server Simulator, Integration Objects. [Online]. Available: https://integrationobjects.
com/sioth-opc/sioth-opc-unified-architecture/opc-ua-server-simulator (Accessed
May 7, 2024).

[47] OPC UA Simulation Server, Prosys OPC. [Online]. Available: https://prosysopc.com/
products/opc-ua-simulation-server/.

[48] Sparkplug Compatible Program, Eclipse Foundation. [Online]. Available: https://sparkplug.
eclipse.org/compatibility/compatible-software/.

[49] Ignition IIoT Software, Inductive Automation. [Online]. Available: https://inductiveautomation.
com/solutions/iiot.

[50] EMQX: The #1 MQTT Platform for IoT, IIoT and Connected Cars, Emq Technologies Inc.
[Online]. Available: https://www.emqx.com/en.

[51] Get HiveMQ On-Premise or Cloud-Based MQTT Broker, HiveMQ. [Online]. Available: https:
//www.hivemq.com/company/get-hivemq.

[52] Joey, MQTT Sparkplug in Action: A Step-by-Step Tutorial, Feb. 11, 2024. [Online]. Available:
https://www.emqx.com/en/blog/mqtt- sparkplug- in- action- a- step- by- step-
tutorial.

[53] MQTT Sparkplug: Building Powerful Industrial IoT Systems, HiveMQ. [Online]. Available:
https://www.hivemq.com/solutions/technology/mqtt-sparkplug.

[54] 1. Download and Install Ignition | Ignition User Manual, Inductive Automation. [Online].
Available: https://docs.inductiveautomation.com/docs/8.1/getting-started/quick-
start-guide/download-and-install (Accessed Feb. 13, 2024).

[55] MQTT Engine - MQTT Modules for Ignition, Cirrus Link Solutions. [Online]. Available:
https://docs.chariot.io/display/CLD80/MQTT+Engine (Accessed Feb. 13, 2024).

[56] MQTT Distributor - MQTT Modules for Ignition, Cirrus Link Solutions. [Online]. Available:
https://docs.chariot.io/display/CLD80/MQTT+Distributor (Accessed Feb. 13, 2024).

[57] MQTT Engine Module, Inductive Automation, 2019-12-06. [Online]. Available: https://
inductiveautomation.com/resources/video/mqtt- engine- module (Accessed Feb. 13,
2024).

[58] MQTT Distributor Module, Inductive Automation, Dec. 9, 2019. [Online]. Available: https:
//inductiveautomation.com/resources/video/mqtt- distributor- module (Accessed
Feb. 13, 2024).

[59] 5. Open the Designer, Inductive Automation. [Online]. Available: https://docs.inductiveautomation.
com/docs/8.1/getting-started/quick-start-guide/open-the-designer (Accessed
Feb. 13, 2024).

42

https://flows.nodered.org/node/@anl-ioc/node-red-contrib-ocpp2
https://nodered.org/docs/getting-started/windows
https://nodered.org/docs/getting-started/windows
http://flows.nodered.org/node/node-red-contrib-opcua
http://flows.nodered.org/node/node-red-contrib-opcua
https://flows.nodered.org/node/@flowfuse/node-red-dashboard
https://flows.nodered.org/node/@flowfuse/node-red-dashboard
https://nodered.org/docs/user-guide/nodes
https://nodered.org/docs/user-guide/nodes
https://dashboard.flowfuse.com/nodes/widgets.html
https://dashboard.flowfuse.com/nodes/widgets.html
https://integrationobjects.com/sioth-opc/sioth-opc-unified-architecture/opc-ua-server-simulator
https://integrationobjects.com/sioth-opc/sioth-opc-unified-architecture/opc-ua-server-simulator
https://prosysopc.com/products/opc-ua-simulation-server/
https://prosysopc.com/products/opc-ua-simulation-server/
https://sparkplug.eclipse.org/compatibility/compatible-software/
https://sparkplug.eclipse.org/compatibility/compatible-software/
https://inductiveautomation.com/solutions/iiot
https://inductiveautomation.com/solutions/iiot
https://www.emqx.com/en
https://www.hivemq.com/company/get-hivemq
https://www.hivemq.com/company/get-hivemq
https://www.emqx.com/en/blog/mqtt-sparkplug-in-action-a-step-by-step-tutorial
https://www.emqx.com/en/blog/mqtt-sparkplug-in-action-a-step-by-step-tutorial
https://www.hivemq.com/solutions/technology/mqtt-sparkplug
https://docs.inductiveautomation.com/docs/8.1/getting-started/quick-start-guide/download-and-install
https://docs.inductiveautomation.com/docs/8.1/getting-started/quick-start-guide/download-and-install
https://docs.chariot.io/display/CLD80/MQTT+Engine
https://docs.chariot.io/display/CLD80/MQTT+Distributor
https://inductiveautomation.com/resources/video/mqtt-engine-module
https://inductiveautomation.com/resources/video/mqtt-engine-module
https://inductiveautomation.com/resources/video/mqtt-distributor-module
https://inductiveautomation.com/resources/video/mqtt-distributor-module
https://docs.inductiveautomation.com/docs/8.1/getting-started/quick-start-guide/open-the-designer
https://docs.inductiveautomation.com/docs/8.1/getting-started/quick-start-guide/open-the-designer

[60] OpenAI, ChatGPT, version GPT-4, 2024. [Online]. Available: %7Bhttps://www.openai.com%
7D.

[61] Argonne National Laboratory, node-red-contrib-ocpp2, 2024. [Online]. Available: https://
github.com/Argonne-National-Laboratory/node-red-contrib-ocpp2 (Accessed Jun. 5,
2024).

43

%7Bhttps://www.openai.com%7D
%7Bhttps://www.openai.com%7D
https://github.com/Argonne-National-Laboratory/node-red-contrib-ocpp2
https://github.com/Argonne-National-Laboratory/node-red-contrib-ocpp2

Appendix A

GitHub Repository Link

Master’s Thesis 2024 - GitHub

44

https://github.com/VicLund/Masters_thesis_2024

Appendix B

System Architecture Diagram

Figure B.1: System architecture diagram

45

Appendix C

Complete OCPP Test Visual

Figure C.1: The complete image of the OPC UA to/from OCPP test flow

46

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Objectives
	State of the Art
	Structure of Thesis

	Background
	Mobile Charging Stations for Emission-Free Construction Sites
	OPC UA: Open Platform Communications Unified Architecture
	MQTT and Sparkplug B
	Sparkplug B

	OCPP 2.0.1: Open Charge Point Protocol 2.0.1
	Node-RED: A Programming Tool for Flow-Based Development

	Methodology
	System Overview
	Software Tools
	Node-RED for Flow-Based Programming
	OPC UA Server - Prosys OPC
	MQTT Broker - Ignition

	Testing and Validation Procedures
	OPC UA to MQTT Sparkplug B and back
	OPC UA to OCPP and back

	System Design
	System Architecture
	OPC UA to MQTT Sparkplug B flow
	Creating MQTT Sparkplug Definitions from OPC UA Data - Set Topics
	Publishing the OPC UA data to the MQTT Sparkplug B Broker - Publish to Topics
	Write to OPC UA from MQTT Sparkplug B

	OPC UA to OCPP Flow - Proof of Concept
	Subscribing to OPC UA server and Storing Data
	OCPP Charging Station

	Results
	Discussion
	Conclusion
	Bibliography
	GitHub Repository Link
	System Architecture Diagram
	Complete OCPP Test Visual

