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Abstract

Human activity recognition (HAR) systems play an important role in understand-
ing and interpreting human movements across various domains, with applications
ranging from automobiles to smart homes and health. This dissertation focuses on
HAR within the realm of radio frequency (RF) sensing, with a primary focus on
modeling the intricate influence of human motion on wireless channel characteris-
tics, particularly in the context of frequency-modulated continuous wave (FMCW)
radar systems. It presents a paradigm shift from experimental- to simulation-based
approaches tailored for RF sensor-based HAR systems. The core innovation lies
in a sophisticated channel model capable of transforming three-dimensional (3D)
trajectories into high-fidelity simulated RF signals, offering substantial control over
signal parameters for simulating diverse environmental conditions.

This research addresses two main challenges in HAR: accommodating multiple
directions of human motion and tackling the scarcity of radar data for diverse scenar-
ios. To overcome motion direction challenges, a distributed multiple-input multiple-
output (MIMO) radar configuration is introduced, capturing multi-perspective radar
signatures of multi-directional human activities. The configuration, complemented
by the dynamic time warping (DTW) distance metric, facilitates the development of
a direction-independent step counting system for multi-directional walking activities.
To mitigate the problem of cross-channel interference, a novel range gating method
is implemented, leveraging distinct RF delay lines within the distributed MIMO
radar setup. This distributed MIMO radar configuration, providing complemen-
tary RF sensing, is well-suited for realizing direction-independent human activity
recognition (DIHAR) systems. An experimental-based DIHAR system is developed,
utilizing the multi-perspective MIMO radar configuration, to classify various multi-
directional human activities. The system involves training a machine learning model
with a large dataset of radar signatures, necessitating a comprehensive measurement
campaign.

The dissertation highlights the limitations of experimental data-driven approaches,
emphasizing the challenges of acquiring diverse and representative datasets for radar-
based classifiers. It advocates simulation-based solutions, offering control over radar
parameters, reducing training efforts, addressing user privacy concerns, and enabling
the generation of varied training datasets tailored to specific conditions. An end-to-
end simulation framework is introduced, incorporating an innovative channel model
that transforms motion data into RF signals, alleviating the significant data scarcity
challenge in radar systems. The simulation-centric approach eliminates the need for
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resource-intensive measurement campaigns, showcasing a deep convolutional neural
network (DCNN)-based HAR classifier with close to 100% accuracy. The simulation-
centric HAR system’s efficacy is validated using previously unseen experimental data
from a physical FMCW radar system. The framework is further expanded to develop
a DIHAR system, exclusively trained on simulated MIMO radar signatures, demon-
strating its capability to simulate diverse radar datasets tailored to user-defined
MIMO radar configurations.

The results presented in this dissertation showcase the successful mitigation of
cross-channel interference, the development of robust experimental-based DIHAR
systems, and the creation of a simulation framework with far-reaching implications
for radar data generation. The simulation-based approach holds promise for ad-
vancements in various radar applications, marking a paradigm shift in radar-based
classification and contributing to the elimination of resource-intensive, laborious and
monotonous measurement campaigns.



Sammendrag

Systemer for gjenkjenning av menneskelig aktivitet (human activity recognition,
HAR) spiller en viktig rolle når det gjelder å forstå og tolke menneskelig beveg-
else i ulike domener, med bruksområder som spenner fra biler til smarte hjem og
helse. Denne avhandlingen fokuserer på HAR innenfor sansing av radiofrekvens (ra-
dio frequency, RF), med hovedvekt på å modellere den intrikate påvirkningen av
menneskelige bevegelser på trådløse kanalegenskaper, spesielt i forbindelse med av
frekvensmodulerte kontinuerlige bølgeradar (frequency-modulated continuous wave,
FMCW) systemer. Den representerer et paradigmeskifte fra eksperimentelle til
simuleringsbaserte tilnærminger som er skreddersydd for RF-sensorbaserte HAR-
systemer. Den viktigste innovasjonen ligger i en sofistikert kanalmodell som kan
transformere tredimensjonale baner til simulerte RF-signaler med høy oppløsning,
noe som gir betydelig kontroll over signalparametere for å simulere ulike miljøforhold.

Denne forskningen tar for seg to hovedutfordringer i HAR: hensynet til flere
retninger for menneskelig bevegelse og mangelen på radardata for ulike scenar-
ier. For å løse utfordringer knyttet til bevegelsesretningen introduseres radarkon-
figurasjon med flere innganger og flere utganger (multiple-input multiple-output,
MIMO) for å fange opp radarsignaturer med flere perspektiver fra aktiviteter i flere
retninger. For å redusere problemet med interferens på tvers av kanaler imple-
menteres en ny metode for avstandskontroll som utnytter ulike RF-forsinkelseslinjer i
den distribuerte MIMO-radarkonfigurasjonen. Denne distribuerte MIMO radarkon-
figurasjonen, som muliggjør komplementær RF-deteksjon, egner seg godt til å realis-
ere retningsuavhengige systemer for gjenkjenning av menneskelig aktivitet (direction-
independent human activity recognition, DIHAR). Vi har utviklet et eksperimentelt
DIHAR-system som utnytter den multiperspektiviske MIMO-radarkonfigurasjonen
til å klassifisere ulike multidireksjonelle aktiviteter. Systemet innebærer opplæring
av en maskinlæringsmodell med et stort datasett av radarsignaturer, noe som krever
en omfattende målekampanje.

Avhandlingen belyser begrensningene ved eksperimentelle databaserte tilnær-
minger, og understreker utfordringene med å skaffe ulike og representative datasett
for radarklassifisering. Det argumenteres for simuleringsbaserte løsninger som gir
kontroll over radarparametere, reduserer treningsinnsatsen, adresserer brukerens
personvernhensyn, og gjør det mulig å generere ulike treningsdatasett som er skred-
dersydd til spesifikke forhold. Det introduseres et helhetlig rammeverk for simu-
lering som inkluderer en innovativ kanalmodell som transformerer bevegelsesdata
til RF-signaler og løser problemet med datamangel i radarsystemer. Den simu-

viii



ix

leringssentrerte tilnærmingen eliminerer behovet for ressurskrevende målekampan-
jer, og demonstrerer en HAR-klassifisering basert på et dypt konvolusjonalt nevralt
nettverk med nesten 100% nøyaktighet. Effektiviteten til det simuleringssentrerte
HAR-systemet valideres ved hjelp av tidligere usette eksperimentelle data fra et fy-
sisk FMCW radarsystem. Rammeverket har blitt utvidet ytterligere for å utvikle
et DIHAR-system som utelukkende er trent på simulerte MIMO radarsignaturer, og
demonstrerer evnen til å simulere ulike radardatasett skreddersydd til brukerdefin-
erte MIMO radarkonfigurasjoner.

Resultatene i denne avhandlingen viser hvordan vi har lykkes med å redusere
krysskanalinterferens, utvikling av robuste eksperimentelt baserte DIHAR-systemer,
og skape et simuleringsrammeverk med vidtrekkende konsekvenser for radardata-
generering. Den simuleringsbaserte tilnærmingen er lovende for utvikling av ulike
radarapplikasjoner, og markerer et paradigmeskifte innen radarbasert klassifisering
og bidrar til å eliminere ressurskrevende, arbeidskrevende og monotone målekam-
panjer.
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′, t) with cross-

channel interferences from other subchannels (reproduced from Pa-
per A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Comparison of the measured and analytical mean Doppler shifts B(1)
ij (t)

in the absence of cross-channel interference mitigation scheme, reveal-
ing a notable mismatch (adapted from Paper A). . . . . . . . . . . . 15

2.4 Comparison of the measured and analytical mean Doppler shifts B(1)
ij (t)

following the implementation of the proposed cross-channel interfer-
ence mitigation scheme, demonstrating a strong alignment (adapted
from Paper A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 For Radar1, the time-variant (TV) radial velocity distribution p11(v, t)

and mean radial velocity v̄11(t) of a human walking activity carried
out at an angle of (a) 0◦, (b) 90◦, and (c) 45◦ with respect to the
boresight axis of Radar1 (reproduced from Paper B). . . . . . . . . . 17

2.6 The proposed multi-perspective illumination strategy, where the radar
subsystems (Radar1 and Radar2) of the 2 × 2 MIMO radar system
capture multi-directional activities (adapted from Paper B). . . . . . 18

2.7 The detected number of steps based on the mean radial velocity v̄11(t)

of a human walking activity at different angles relative to the bore-
sight axis of Radar1: (a) 0◦, (b) 90◦, and (c) 45◦. Note that the
number of steps is not accurately detected by Radar1 for the activity
at a 90◦ angle (reproduced from Paper B). . . . . . . . . . . . . . . . 19

xvii



LIST OF FIGURES xviii

2.8 For Radar2, the TV radial velocity distribution p22(v, t) and mean
radial velocity v̄22(t) of a human walking activity carried out at an
angle of (a) 0◦, (b) 90◦, and (c) 45◦ with respect to the boresight axis
of Radar1 (reproduced from Paper B). . . . . . . . . . . . . . . . . . 19

2.9 The detected number of steps based on the mean radial velocity v̄22(t)

of a human walking activity at different angles relative to the bore-
sight axis of Radar1: (a) 0◦, (b) 90◦, and (c) 45◦. Note that the
number of steps is not accurately detected by Radar2 for the activity
at a 0◦ angle or in Scenario 1 (reproduced from Paper B). . . . . . . 20

3.1 Our multi-perspective illumination strategy, where two radar sub-
systems (Radar1 and Radar2) of the multi-view MIMO radar system
complement each other, thereby allowing for the multi-directional hu-
man activity classification (adapted from Paper C). . . . . . . . . . . 24

3.2 The heatmap of the TV radial velocity distributions pii(v, t) (TV
micro-Doppler signatures) in three distinct movement scenarios for
the falling activity. The x- and y-axis of each distribution is the
radial velocity v and time t, respectively. In Scenarios 1, 2, and 3,
the motion is respectively parallel, perpendicular, and diagonal to the
boresight of Radar1 (reproduced from Paper C). . . . . . . . . . . . 27

3.3 The heatmap of the TV radial velocity distributions pii(v, t) (TV
micro-Doppler signatures) in three distinct movement scenarios for
multiple activities. In Scenarios 1, 2, and 3, the motion is respec-
tively parallel, perpendicular, and diagonal to the boresight of Radar1
(reproduced from Paper C). . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 The architecture of the feature extraction network FEN(2D), employ-
ing four convolutional layers, designed for both SISO(2D) and MIMO(2D)

DIHAR classifiers (reproduced from Paper C). . . . . . . . . . . . . 29
3.5 Confusion matrix quantitatively representing the summary of the re-

sults achieved by the SISO(2D) DIHAR classifier. The overall obtained
accuracy is 88.98% for the five multi-directional activities (reproduced
from Paper C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 The DCNN architecture of the proposed MIMO(2D) DIHAR classifier.
It merges two sets of distinct features that are computed by the two
FEN(2D) modules (reproduced from Paper C). . . . . . . . . . . . . . 30

3.7 Confusion matrix quantitatively representing the summary of the re-
sults achieved by our MIMO(2D) DIHAR classifier. The overall ob-
tained accuracy is 98.52% for the five multi-directional activities (re-
produced from Paper C). . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Design phase: The development of our HAR classifier relying exclu-
sively on simulated radar signatures. . . . . . . . . . . . . . . . . . . 35

4.2 Testing phase: The trained HAR classifier evaluated with real radar
signatures obtained from real human subjects. . . . . . . . . . . . . 35



LIST OF FIGURES xix

4.3 Four distinct approaches for capturing and synthesizing the human
motion to generate 3D trajectories. . . . . . . . . . . . . . . . . . . . 37

4.4 A traditional wireless channel model depicting the transformation of
a transmitted signal into a composite signal. This composite signal
encompasses multipath components originating from stationary/non-
stationary dominant/non-dominant scatterers. . . . . . . . . . . . . 40

4.5 Our channel model translating the TV spatial trajectories Cl(t) of
virtual markers into a realistic RF signal while taking into account
the carrier frequency f0, chirp’s slope γ, ith transmitter antenna po-
sition CTx

i and kth receiver antenna position CRx
k . . . . . . . . . . . . 40

4.6 The simulated TV propagation delays τ (l)(t) computed for the L = 21

virtual markers and the five activities (adapted from Paper E). . . . 41
4.7 Simulated radar signatures for the five emulated activities (repro-

duced from Paper D). . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Real radar signatures recorded from real human subjects (reproduced

from Paper D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.9 (a) Mean classification accuracies and (b) mean accuracy heatmap

of Model 6 for different combinations of kernel dimensions kd and
learning rates lr (reproduced from Paper D). . . . . . . . . . . . . . 45

4.10 Confusion matrix of simulation-centric HAR system, realized using
Model 6, demonstrating 98.4% accuracy (reproduced from Paper D). 45

5.1 The data augmentation possibilities across various stages within our
simulation-centric framework. Our channel model facilitating effec-
tive data augmentation at the signal- and physical-layer syntheses,
enabling the conversion of motion capture (MoCap) data from any
source into realistic MIMO radar data (adapted from Paper E). . . . 48

5.2 Rotating the transmitter and receiver antennas of the 2 × 2 MIMO
radar system to simulate an activity in all directions (reproduced from
Paper E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Confusion matrix quantitatively representing the summary of the re-
sults achieved by our simulation-based DIHAR classifier. The overall
obtained accuracy is 97.83% for the five multi-directional activities
(reproduced from Paper E). . . . . . . . . . . . . . . . . . . . . . . . 53

A.1 Two radar subsystems forming a 2 × 2 MIMO radar system in the
presence of a single moving scatterer SM . . . . . . . . . . . . . . . . . 75
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Chapter 1

Introduction

In the context of ambient assisted living (AAL), human activity recognition (HAR)
systems allow real-time monitoring of human activities. These systems are instru-
mental in providing valuable insights into behavioral patterns, health and well-being
of individuals. By accurately recognizing the type of human activities, HAR sys-
tems help the development of context-aware AAL systems [1, 2, 3, 4, 5]. Such AAL
systems offer timely assistance, address anomalies, and ensure optimal day-to-day
support. To date, various algorithms as well as sensing modalities have been inves-
tigated to develop HAR systems, including vision sensors, acoustic sensors, inertial
sensors, and radio frequency (RF) sensors, as detailed in Figure 1.1. Vision-based
sensors rely on visual data to perceive the environment, which may include ordinary
red, green and blue (RGB) cameras, infrared cameras, thermal cameras, or depth
sensors such as Kinect. Acoustic sensors, on the other hand, rely on sound signals
coming from a microphone or a microphone array. Wearable inertial sensors like ac-
celerometers, gyroscopes, and smartwatches are also widely accepted for capturing
motion patterns. Moreover, for HAR systems, multi-modal sensor integration cou-
pled with feature- and decision-fusion strategies, context-awareness, and ensemble
learning approaches, plays a vital role in enhancing the accuracy and robustness of
the overall system.

1.1 Radar-Based Classifiers

RF sensors, particularly those employing Wi-Fi and radar signals, have emerged as
an effective modality for many applications including HAR. Other RF sensors such
as Bluetooth, universal software radio peripherals and channel sounders are also
relevant for HAR. An RF-based HAR system exploits the changes in signal propa-
gation resulting from human movements to detect and recognize human activities.
In other words, RF sensors leverage the variations in measured channel character-
istics, which are amplitudes, phases, or frequencies of the received RF signals. For
HAR systems, by virtue of these channel characteristics, RF sensors capture the
signatures of moving body segments. Theoretically, body segments consist of an
infinite number of point scatterers; however, we will see in this dissertation that
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HAR systems

Ambient RF sensing

SISO and MIMO radar systems [6, 7, 8, 9]

Wi-Fi systems [10, 11, 12]

Universal software radio peripherals [13]

Pattern recognition techniques [14]

Machine/deep learning models [15, 16, 17]

Vision sensing

Cameras, infrared cameras, thermal cameras [18]

Depth sensors (e.g., Kinect) [19, 13]

Wearable cameras (e.g., smart glasses) [20]

Image processing techniques [21]

Object detection and tracking [22]

Pose estimation [23, 24]

Acoustic sensing

Microphones [25]

Microphone arrays [26] (e.g., circular)

Audio signal processing [27]

Acoustic event detection [28, 27]

Inertial sensing

Accelerometers [29, 30, 31, 32, 33]

Gyroscopes [34]

Magnetometers [32]

Wearable devices (e.g., smartwatches) [35]

Feature extraction algorithms [36]

Multi-modal sensing

Multi-modal sensor integration [37, 26]

Feature fusion techniques [38, 39]

Context-aware approaches [40, 41, 42]

Ensemble learning methods [43, 44]

Decision fusion strategies [45]

HAR system Sensing type Techniques and sensors

Figure 1.1: HAR systems realized using different sensing modalities and techniques.
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modeling each body segment with a limited number of point scatterers is adequate.
Within the realm of RF sensing, radar sensors are preferred because, unlike

Wi-Fi sensors, radar sensors do not encounter carrier frequency offsets that lead to
noisy phases in the channel frequency response. It is due to this factor and the
recent advancements in the miniaturization and commercialization of single-input
single-output (SISO) and multiple-input multiple-output (MIMO) radar systems
that radar-based classifiers have garnered such a considerable interest among re-
searchers. Generally, radar-based classifiers offer robust performance in classifying
multiple classes, even in challenging situations and scenarios, e.g., classifying com-
plex motion patterns based on their micro-Doppler signatures. Other advantages
include detection and classification capabilities in non-line-of-sight environments and
robustness against variable lighting conditions. Moreover, unlike vision-based ap-
proaches, users’ privacy is not a disconcerting factor in radar-based classification
systems, making them a compelling choice for various applications, including HAR
in AAL. Radar-based systems offer privacy advantages over vision-based methods
by capturing movement patterns and micro-Doppler signatures instead of visual im-
ages, thus reducing the risk of visual privacy intrusions. However, it is important
to acknowledge that while radar-based systems offer enhanced privacy compared to
cameras, they are not entirely free from privacy implications. With recent advance-
ments, radar data can potentially reveal sensitive information about individuals’
activities and routines, which could be misused if not properly safeguarded. Thus,
ensuring data security, implementing access controls, and complying with privacy
regulations remain essential.

1.2 Human Activity Recognition Systems

HAR systems play an important role in understanding and interpreting human move-
ments in various contexts. These systems aim to automatically identify and catego-
rize human activities based on data measured by different sensors (see Figure 1.1).
Research in the field of HAR has demonstrated significant advancements in recent
years [16, 46, 47, 48]. The constant interest in HAR classifiers stems from its wide-
ranging applicability. Over time, HAR classifiers have demonstrated their utility in
diverse areas, including automobiles [49], robotic systems for social interaction [50],
smart homes [51], and health [52]. As outlined in Table 1.1, researchers have inves-
tigated various sensing modalities and features to realize HAR systems, including
vision sensors, acoustic sensors, wearable motion capture (MoCap) sensors, and
RF sensors. The table also indicates that a significant portion of the research in
HAR systems relies on sensor data obtained through experiments. In this disserta-
tion, we emphasize the constraints associated with experimental-data-driven HAR
approaches and stress the significance of simulation-based methods in addressing
these limitations (see Section 1.4).

Various approaches in the literature contribute to the field of HAR using radar
and other sensing modalities (see Table 1.1). The authors of [53] integrated a re-
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Table 1.1: Approaches towards HAR systems.

Sensors Features Experiments Simulations Papers
Wearable Time-series ✓ – [53, 64, 65]
Acoustic Mel-spectrogram ✓ – [26, 66]
Optical Skeleton joints ✓ – [67, 51]
Radar and
Wi-Fi

Temporal features,
micro-Doppler
signatures, and/or
range-Doppler maps

✓ – [54, 55, 56,
57, 10, 11,
12, 58, 59]

Radar and
Wi-Fi

Micro-Doppler
signatures

– ✓ [60, 24, 61]

Radar and
MoCap

Radial velocity
distributions

– ✓ [62, 63]

current neural network (RNN) with attention mechanisms to extract time-series
features for daily life activities. Recently, researchers have incorporated acoustic
sensors for HAR utilizing Mel-spectrogram features [26]. In [51], Kim et al. pre-
sented a HAR method utilizing features extracted from joints of a skeleton model.
Erol et al. [54] proposed a multilinear subspace HAR scheme leveraging slow-time
features, fast-time features, and Doppler frequency. The authors of [55] conducted
time-frequency analysis, both linear and bilinear, playing a crucial role in human
motion classification. For HAR, Fioranelli et al. [56] analyzed and extracted valu-
able informaion from human micro-Doppler signatures, and Jokanovic et al. [57]
integrated information from both time-frequency and range domains. Muaaz et al.
[10, 11, 12] computed activity fingerprints from Wi-Fi channel state information
(CSI). In [58, 59], we recently reported the use of complementary RF sensing for
classifying multi-directional human activities, introducing a direction-independent
human activity recognition (DIHAR) system. Chen et al. [60], Ahuja et al. [24], and
Vishwakarma et al. [61] are among the few to focus on simulation-based solutions.
In [62] and [63], Waqar et al. devised simulation-based HAR and DIHAR systems,
respectively. Such diverse studies contribute significantly to the advancement of
HAR methodologies, incorporating various sensing modalities and approaches.

Let us focus our attention to radar-based HAR systems, a topic central to this
dissertation. In this context, two key research dimensions are considered: accom-
modating multiple directions of human motion and tackling the unavailability of
radar data for diverse scenarios. To address the challenge posed by the direction of
motion, we turn to the utilization of distributed MIMO radars, as mentioned in the
subsequent section. This is the primary focus of our research in Paper B and C.
In addressing the data scarcity challenge within radar systems, we present a novel
simulation-based solution. The specifics of this solution are elaborated in Paper D
and E, focusing on SISO and distributed MIMO radar systems, respectively.
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1.3 Experimental-Based HAR systems

Contemporary HAR systems developed with monostatic radars exhibit good perfor-
mance for unidirectional human motion, particularly when the motion is aligned with
the radar boresight axis. However, a critical problem arises when a human moves
at a right angle to the radar’s boresight axis, impacting the performance of SISO
or monostatic MIMO radar-based HAR systems. To address this limitation and
consider diverse directions of motion, distributed MIMO radar systems are favored
for their multi-perspective illumination within indoor environments. Figure 1.2 il-
lustrate an example of such a distributed MIMO radar system, comprising two
monostatic radar subsystems, designed for recognizing multi-directional activities of
a human subject [58, 59, 68]. Such experimental setups provide complementary RF
sensing, making them well-suited for realizing DIHAR systems.

An actual
human

participant

Radar1
data

Radar2
data

Falling

Radar2
antennas

Radar1
antennas Software-defined

mm-wave radar system

Figure 1.2: A measurement setup of a distributed 2 × 2 MIMO radar system to
develop direction-independent HAR systems.

In the realization of a HAR system, a machine learning model is initially trained
with a large dataset of radar signatures (human activity fingerprints). Figure 1.3 il-
lustrates the design of an experimental-based DIHAR system utilizing multi-perspective
radar signatures. From the activity fingerprints of Radar1 and Radar2, encompass-
ing time-variant (TV) radial velocity distributions and/or TV mean radial velocities,
features are extracted and fused to classify multi-directional human activities. This
process is illustrated in Figure 1.3, showcasing the integration of information from
both radar subsystems to realize a DIHAR system capable of recognizing diverse
human motions. Note that relying solely on real radar signatures poses challenges,
as acquiring them in large quantities demands significant resources and efforts. The
time-consuming and resource-intensive nature of collecting radar signatures from
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Figure 1.3: Design of an experimental-based direction-independent HAR system by
using multi-perspective 2× 2 MIMO radar signatures.

real individuals often results in datasets with limited scope, applicable only to spe-
cific scenarios and system parameters. In contrast to other sensing modalities, e.g.,
cameras, radar data is not readily available in various configurations and conditions,
necessitating the development of fully customizable and flexible simulation-based
data generation methods.

1.4 Simulation-Based HAR Systems

There is a need for a comprehensive simulation-based methodology to address the
challenge of limited radar data. Several challenges may arise during the design and
development phase of radar-based classifiers. One major challenge is the acquisition
of diverse, high-fidelity, and representative datasets for radar-based classifiers. Most
radar-based HAR systems found in the literature are realized using experimental
data. In this context, simulation-centric approaches present numerous benefits over
experimental methods. These benefits include addressing user privacy concerns, the
capability to enhance training data, the flexibility to replicate radar datasets with
user-defined target motion characteristics, and resource minimization. Simulation-
centric approaches provide control over radar parameters for diverse operational and
environmental conditions, allowing the generation of varied training datasets tailored
to specific conditions. This significantly reduces the training effort for radar-based
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classifiers. Thus, to facilitate the creation of diverse training datasets for radar-based
classifiers, we suggest a simulation-centric HAR system relying solely on simulated
radar data for training. We will see in Chapters 4 and 5 that the key benefit of
the simulation approach lies in its ability to convert MoCap data into radar data,
rendering it applicable to a broad range of real-world situations. Therefore, the
availability of online MoCap data repositories, like Mixamo [69], further boosts
the utility of such simulation-centric approaches across various domains such as
healthcare, smart homes, sports, and more.

Our simulation-based design of HAR systems encompasses the conversion of
human MoCap data into radar signatures using our channel model, as visually rep-
resented in Figure 1.4. Notably, the MoCap data can be incorporated from various
sources, including the Mixamo online repository, optical/wearable MoCap systems
and biomechanical modeling. To tailor the MoCap data to specific requirements, it
can be retargeted and augmented using animation tools. Figure 1.4 illustrates the
activity simulation module, which generates three-dimensional (3D) trajectories cor-
responding to the simulated motion. These spatial trajectories serve as input to the
channel model that is responsible for simulating radar raw in-phase and quadrature
(IQ) data. Among other things, the channel model takes into consideration antenna
positions, radar type and its configuration, and radar operational parameters. This
integrated approach ensures a realistic simulation of radar data, addressing the radar
data scarcity challenge in a controlled and configurable manner. In order to prove
the real-world efficacy of the simulation-centric HAR system, previously unseen ex-
perimental data from a physical frequency-modulated continuous wave (FMCW)
radar system is used for the testing phase.

In Table 1.2, we compare the simulation-based HAR framework [62], originally
proposed in Paper D, with state-of-the-art HAR methods, including joint domain
and semantic transfer learning (JDS-TL) [70], hybrid convolutional neural network
(CNN)-RNN [6], multi-view CNN-long short-term memory (LSTM) [71], few-shot
adversarial domain adaptation (FS-ADA) [72], multibranch generative adversarial
network (MBGAN) [73], Wasserstein refined generative adversarial network with
gradient penalty (WRGAN-GP) [74], and Vid2Doppler [24]. The table provides a
concise overview of their system description, the type of training dataset used (ex-
perimental, simulated, or both), the method of dataset simulation adopted (e.g.,
generative adversarial network (GAN) or other), and their corresponding classifica-
tion accuracies. Clearly, the simulation-based HAR framework [62] surpasses other
methods, obtaining an average (maximum) classification accuracy of 94% (98.4%).
For more details on the state-of-the-art methods mentioned above, refer to Sec-
tion D.8.

1.5 Research Questions

The list of research questions (RQs), addressed in the subsequent chapters, is pro-
vided as follows:
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RQ 1: How to resolve the cross-channel interference of a distributed MIMO radar
system?

RQ 2: How to devise a distributed MIMO radar framework that overcomes the
limitations posed by a monostatic SISO or a monostatic MIMO radar system
in the context of the direction of motion?

RQ 3: How to realize a measurement-based DIHAR system? How to extract features
from the activity fingerprints of a radar system and perform the feature
fusion?

RQ 4: How to simulate realistic human activities, and generate 3D trajectories for
different body segments?

RQ 5: How can a physical layer channel model be devised for millimeter wave (mm-
wave) FMCW radar systems?

RQ 6: How can realistic radar signatures, including a TV range profile, TV radial
velocity distribution (micro-Doppler signature), and TV mean radial velocity,
be simulated for human activities?

RQ 7: How to devise a simulation-centric HAR system underlying a SISO radar
model?
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Figure 1.4: A simulation-based design to generate realistic radar signatures for de-
veloping real-world HAR systems.

9



Introduction

RQ 8: How to devise a simulation-centric DIHAR system underlying a distributed
MIMO radar model?

1.6 Dissertation Organization

The dissertation consists of six chapters and includes five papers. The six chapters
provide a comprehensive summary of the contributions, while the five technical pa-
pers delve into the specific details of these contributions and present their respective
results. The organization of the dissertation is as follows:

• Chapter 2 succinctly addresses RQs 1 and 2 by summarizing Papers A and B,
respectively. A range gating method is introduced to mitigate the cross-
channel interference in a distributed MIMO radar system, thereby addressing
RQ 1. After mitigation, the measured TV radial velocity of a swinging pen-
dulum are cross-validated using an extended analytical model. Furthermore,
Chapter 2 addresses RQ 2 by investigating the impact of multi-directional
human motion on measured channel characteristics. To overcome limitations
inherent in monostatic radar systems, a multi-perspective distributed MIMO
radar configuration is introduced. For quantitative assessment, its perfor-
mance is compared with a conventional monostatic SISO radar system using
the dynamic time warping (DTW) method.

• Chapter 3 answers RQ 3 by presenting the research findings from Paper C
and addressing a physical layer challenge in contemporary radar-based HAR
systems. To extend the application of HAR in RF sensing, we explore the
intricacies of classifying multi-directional activities using a dataset obtained
from a multi-view MIMO radar system. The development and analysis of three
HAR systems—SISO(1D), SISO(2D), and MIMO(2D)—are pivotal in tackling the
identified physical layer challenge. SISO(1D) represents a conventional SISO
radar-based HAR system. SISO(2D) is a conventional SISO radar-based DI-
HAR system, revealing a notable decline in classification performance. Lastly,
MIMO(2D) is introduced, capable of classifying multi-directional human motion
while significantly enhancing overall classification performance, approaching
100%.

• Chapter 4 provides a summary of the contributions in Paper D and addresses
RQs 4–7. It introduces a comprehensive simulation framework, converting Mo-
Cap data into RF signals, to overcome the data scarcity issue in radar systems.
The simulation framework includes synthesizing spatial trajectories, emulat-
ing a realistic mm-wave FMCW radar system through an innovative channel
model, simulating radar signatures, and developing a simulation-centric HAR
system. RQ 4 is answered by efficiently simulating diverse human activities
and generating 3D trajectories for multiple markers on the avatar’s body seg-
ments. A novel channel model is presented to address RQ 5, which takes
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spatial trajectories as input and outputs simulated RF signals. RQ 6 is an-
swered by simulating realistic radar signatures from the generated RF data.
Finally, RQ 7 is addressed by training a HAR classifier exclusively with simu-
lated radar signatures.

• Chapter 5 encapsulates the contributions of Paper E while addressing RQ 8.
The chapter focuses on developing a DIHAR classifier exclusively trained
with simulated MIMO radar signatures. It elucidates the data augmenta-
tion methods—motion-layer synthesis, physical-layer synthesis, and signal-
layer synthesis—within the simulation-centric approach, enabling the simula-
tion of diverse radar datasets for user-defined MIMO radar configurations in a
resource-efficient manner. The motion-layer synthesis is explored, introducing
random variations to avatar features for the synthesis of a broad spectrum of
human motions. Additionally, the chapter details the physical-layer synthesis,
facilitating the conversion of uni-directional movement into multi-directional
movement and the emulation of user-defined antenna configurations (mono-
static, multistatic) for SISO, single-input multiple-output (SIMO), multiple-
input single-output (MISO), and MIMO radar systems. Lastly, the signal-layer
synthesis stage is discussed, which allow the simulation of diverse radar signa-
tures for individual MoCap examples.

• Chapter 6 outlines the key findings of this dissertation and offers insights into
potential directions for future research.
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Chapter 2

A Distributed MIMO Radar System

2.1 Introduction

Distributed multiple-input multiple-output (MIMO) radar systems have gained sig-
nificant attention in recent years due to their ability to provide multi-perspective
illumination of three-dimensional (3D) indoor wireless propagation environments.
The multi-perspective illumination enables the capture of micro-Doppler character-
istics irrespective of a target’s direction of motion, thereby enhancing target detec-
tion and tracking capabilities. Nevertheless, in the operation of distributed MIMO
radar systems, where multiple transmitters share temporal and spectral resources,
the occurrence of cross-channel interference remains a pertinent concern. This inter-
ference can arise from various sources, including radio frequency (RF) leakage within
the receivers’ circuitry, mutual coupling between antennas, and crosstalk between
transmitters and receivers. These interference factors collectively contribute to the
degradation of system performance, as discussed in Paper A.

A critical problem with modern single-input single-output (SISO) or monostatic
MIMO radar-based human activity recognition (HAR) systems is their inability to
perform well when a human moves at a right angle to the radar’s boresight axis. This
rarely discussed crucial problem is addressed in Paper B. In Paper B, an investigation
is carried out to assess the viability of capturing multi-directional human activities.
This is achieved through the utilization of a multi-view distributed MIMO radar
system, and its performance is compared to that of a conventional SISO radar. The
central focus of Paper B is the computation of multi-view time-variant (TV) radial
velocity distributions and mean radial velocities for multi-directional falling and
walking activities. The results presented in Paper B underscore the efficacy of the
proposed radar configuration, shedding light on the benefits of employing MIMO
radar over its SISO counterpart in capturing complex human movement signatures.

Furthermore, Paper B delves into the practical applications of the multi-view
distributed MIMO radar setup by showcasing its capability to function as a RF-
based step counter for multi-directional human activities. We not only highlight the
limitations of conventional SISO radar systems but also demonstrate the utility and
versatility of the proposed MIMO radar configuration in addressing real-world chal-
lenges associated with human activity monitoring. In the following sections of this
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chapter, we will look into the methodologies, experiments, and findings presented
in Paper A and Paper B, providing a comprehensive understanding of the valuable
contributions made in these studies.

2.2 Cross-Channel Interference

Cross-channel interference, which is commonly observed in multi-channel systems
like MIMO radar systems, can arise from various factors such as electromagnetic
coupling and RF energy leakage. It results in the contamination of signals among
subchannels, potentially introducing spurious signals and significantly impairing sys-
tem reliability and performance. We introduced a robust solution meticulously de-
signed to alleviate cross-channel interference challenges originating from RF leakage
within the context of a commercial-grade and cost-effective distributed MIMO radar
system such as Ancortek SDR-KIT 2400T2R4. The ramifications of cross-channel
interference extend beyond mere signal degradation. These ramifications may in-
clude the introduction of spurious or false targets, a reduction in the accuracy of
target localization, and the system’s compromised ability to detect weaker signals.

2.2.1 Problem Description

In the context of our research, we are confronted with the challenge of capturing
the motion of scatterers from multiple directions, a task that necessitates the use of
multiple pair of transmitter-receiver antennas. To address this, we configured the
Ancortek SDR-KIT 2400T2R4 in a 2×2 MIMO radar setup, with a focus on a single
moving scatterer, denoted as SM , as depicted in Figure 2.1.

Within this setup, two transmitter antennas operate in different time slots, fol-
lowing a time division multiple access (TDMA) scheme. This scheduling strategy is
employed to prevent interference between the subchannels or time-variant channel
impulse responses (TV-CIRs) h11(τ

′, t), h12(τ
′, t), h21(τ

′, t), and h22(τ
′, t), as illus-

trated in Figure 2.1. However, even with the implementation of the TDMA scheme,
the subchannels continue to encounter cross-channel interference due to the sub-
optimal RF isolation characteristic of the cost-effective commercial-grade MIMO

Ancortek's
MIMO Radar System

Figure 2.1: A 2 × 2 MIMO radar setup capturing the 3D movement of a non-
stationary scatterer SM (adapted from Paper A).

14



Human Motion and MIMO Radar Data Syntheses

radar system. For comprehensive expressions and further details regarding these
TV-CIRs, please consult Section A.2.

To elucidate the issue of cross-channel interference in the Ancortek radar, we
conducted a pendulum experiment. In this experiment, a pendulum swung at a
right angle to the boresight direction of the ATx

2 –ARx
2 wireless link (see Figure 2.1).

Figure 2.2 depicts the measured radial velocity profile associated with the wireless
link between ATx

2 and ARx
2 , corresponding to h22(τ

′, t). Notably, this figure vividly
demonstrates the presence of cross-channel interference from other subchannels. The
consequences of this cross-channel interference become evident when we observe a
discrepancy between the measured and analytical mean Doppler shifts, denoted as
B

(1)
ij (t). For an in-depth understanding of the mean Doppler shift B

(1)
ij (t), please

refer to the equation A.27. The mismatch between the measured and analytical
mean Doppler shifts is visually illustrated in Figure 2.3.

Traditional interference mitigation techniques, such as TDMA, may exhibit lim-
ited effectiveness when confronted with the intricate challenges presented by dis-
tributed MIMO radar systems, as thoroughly discussed in Paper A. While frequency
division multiple access (FDMA) can be an alternative, it imposes constraints on

Figure 2.2: Measured radial velocity ḋij(t) of subchannel h22(τ
′, t) with cross-channel

interferences from other subchannels (reproduced from Paper A).

Figure 2.3: Comparison of the measured and analytical mean Doppler shifts B(1)
ij (t)

in the absence of cross-channel interference mitigation scheme, revealing a notable
mismatch (adapted from Paper A).
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the instantaneous bandwidth of a frequency-modulated continuous wave (FMCW)
radar, ultimately limiting range resolution. These inadequacies necessitate the de-
velopment of novel solutions that are tailored to the specific interference scenarios
encountered in these systems.

2.2.2 Proposed Interference Mitigation Approach

This subsection outlines our strategy to tackle the cross-channel interference, thereby
offering a clear path to improved radar performance and signal fidelity. In our pursuit
of mitigating the cross-channel interference issue, we introduce a straightforward yet
effective solution. Within the context of the 2 × 2 MIMO radar system illustrated
in Figure 2.1, we propose the utilization of either an RF delay line component or
longer RF cables for one of the two transmitter-receiver antenna pairs, as illustrated
in Figure A.4.

By employing this approach, the subchannel associated with the longer RF cables
encounters a propagation delay commensurate to the cable length. In this manner,
we achieve a thorough separation of all subchannels within the delay (range) domain.
For additional details and to visually see the separation of subchannels within the
delay (range) domain, please refer to Figure A.5(a) and A.5(b). Subsequently, we
apply range gating to distinguish distinct signals from these individual TV-CIRs
h11(τ

′, t), h12(τ
′, t), h21(τ

′, t), and h22(τ
′, t). The effectiveness of our approach be-

comes readily apparent when comparing the measured trajectories of the pendulum
with their analytical counterparts. For comprehensive experimental results, please
consult Section A.6. Figure 2.4 provides a visual representation of the close align-
ment between the measured and analytical mean Doppler shifts B

(1)
ij (t).

measured
measured
measured
analytical

Figure 2.4: Comparison of the measured and analytical mean Doppler shifts B(1)
ij (t)

following the implementation of the proposed cross-channel interference mitigation
scheme, demonstrating a strong alignment (adapted from Paper A).
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2.3 Multi-Directional Human Activities

In this section, we delve into the research findings from Paper B, which focus on
addressing constraints observed in both SISO and monostatic MIMO radar sys-
tems. Our primary objective in Paper B was to introduce an innovative distributed
MIMO radar configuration designed to tackle the complexities associated with multi-
directional human motion. Furthermore, harnessing this distributed MIMO setup,
we devised a versatile RF-based direction-independent step counting system capable
of accurately tallying steps for multi-directional walking activities. First, let’s ex-
amine the limitations intrinsic to SISO and monostatic MIMO radar systems, which
hinder their ability to capture multi-directional human activities, such as falling and
walking.

2.3.1 Limitations of SISO Radars

A rarely addressed yet critical issue with modern SISO or monostatic MIMO radar-
based HAR systems is their inability to perform effectively when a human moves at
a right angle to the radar’s boresight axis. Various studies have reported classifica-
tion accuracy well above 90% for radar-based HAR systems [75, 11, 10]. However,
these studies typically assume human movement to be restricted to a single direc-
tion. In these studies, human subjects either move toward or away from the radar,
resulting in significant changes in the radial information received by the radar. To
illustrate this, consider the TV radial velocity distribution of a SISO radar shown
in Figure 2.5(a). Such unidirectional movements, roughly parallel to a radar’s bore-
sight (angled at 0◦), are easily detected and captured by the radar (see Scenario 1
in Figure 2.6).

Notably, in the context of the SISO radar, only Radar1 is available in Figure 2.6;
there is no Radar2. The dashed lines in Figure 2.5(a), 2.5(b), and 2.5(c) represent
the mean radial velocities of Radar1 (calculated using equation B.15), derived from
the TV radial velocity distributions corresponding to the three distinct walking
scenarios depicted in Figure 2.6.

(a) (b) (c)

Figure 2.5: For Radar1, the TV radial velocity distribution p11(v, t) and mean radial
velocity v̄11(t) of a human walking activity carried out at an angle of (a) 0◦, (b) 90◦,
and (c) 45◦ with respect to the boresight axis of Radar1 (reproduced from Paper B).
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this is a random text for computer
I dont know what
to write, this is just a random
words to display on the computer screen

This is okay

to write, this is just a random
to write, this is just a random to write, this i
s just a random

this is a random text for computer
I dont know what
to write, this is just a random
words to display on the computer screen

This is okay

to write, this is just a random
to write, this is just a random to write, this is just a
random

Figure 2.6: The proposed multi-perspective illumination strategy, where the radar
subsystems (Radar1 and Radar2) of the 2 × 2 MIMO radar system capture multi-
directional activities (adapted from Paper B).

A crucial limitation arises when the radial information captured by the radar
does not change considerably. This occurs when a human moves roughly at a right
angle or at a 90◦ angle to the radar’s boresight axis, as exemplified in Scenario 2
in Figure 2.6. Such motion often leads to a low, insufficient, or undetectable micro-
Doppler signature at the radar’s signal preprocessor output, resulting in the subopti-
mal TV radial velocity distribution depicted in Figure 2.5(b). Additionally, consider
the TV radial velocity distribution of Radar1 in a scenario where a human moves
diagonally (45◦) to the boresight axis of Radar1 (Scenario 3 in Figure 2.6). In this
case, the SISO radar (Radar1) captures an adequate walking pattern, as shown in
Figure 2.5(c).

As a consequence of the aforementioned limitations of SISO radar systems, a step
counter implemented using SISO radar (Radar1) exhibits suboptimal performance
when a walking activity is carried out approximately at a right angle or at a 90◦

angle to the SISO radar’s boresight axis, as demonstrated in Figure 2.7(b). It’s
worth noting that the walking activities considered here consisted of four steps.
For the other two scenarios where the walking activity is not perpendicular to the
SISO radar’s boresight, the step counter accurately tallies the number of steps,
as illustrated in Figure 2.7(a) and 2.7(c). In the following subsection, we present
an overview of our efforts to address the limitations associated with monostatic
radar systems and introduce an adaptable solution that holds promise for effectively
recognizing multi-directional human activities.

2.3.2 Proposed Solution

To overcome the challenges posed by perpendicular motion, we proposed a solution
in Paper B that utilizes two collocated transmitter-receiver antenna pairs corre-
sponding to Radar1 and Radar2, strategically positioned in an indoor environment.
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  Step 1
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(a)

  Step 1  Step 2

  Step 3

(b)
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  Step 2

  Step 3
  Step 4

(c)

Figure 2.7: The detected number of steps based on the mean radial velocity v̄11(t) of
a human walking activity at different angles relative to the boresight axis of Radar1:
(a) 0◦, (b) 90◦, and (c) 45◦. Note that the number of steps is not accurately detected
by Radar1 for the activity at a 90◦ angle (reproduced from Paper B).

The primary objective of this setup is to achieve multi-perspective illumination, as
visually depicted in Figure 2.6. This approach effectively surmounts the limitations
of monostatic radar systems, enabling comprehensive capture of multi-directional
human activity signatures.

For Radar2, Figure 2.8 displays the TV radial velocity distribution p22(v, t) and
mean radial velocity v̄22(t) of a human walking activity carried out at various angles
with respect to the boresight axis of Radar1: (a) 0◦, (b) 90◦, and (c) 45◦. Sub-
sequently, in Figure 2.9, we detect the number of steps by using the mean radial
velocity v̄22(t) of a human walking activity in three scenarios. Clearly, Radar1 and
Radar2 complement each other in capturing multi-directional motion. In Scenario 1
and Scenario 2, Radar1 and Radar2 adequately capture the movement signatures,
respectively.

Expanding upon this solution, we conducted further research to develop an RF-
based step counting application that accurately tallies steps regardless of motion
direction. Our proposed MIMO radar-based step counter leverages the dynamic time

(a) (b) (c)

Figure 2.8: For Radar2, the TV radial velocity distribution p22(v, t) and mean radial
velocity v̄22(t) of a human walking activity carried out at an angle of (a) 0◦, (b) 90◦,
and (c) 45◦ with respect to the boresight axis of Radar1 (reproduced from Paper B).
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  Step 4
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Figure 2.9: The detected number of steps based on the mean radial velocity v̄22(t) of
a human walking activity at different angles relative to the boresight axis of Radar1:
(a) 0◦, (b) 90◦, and (c) 45◦. Note that the number of steps is not accurately detected
by Radar2 for the activity at a 0◦ angle or in Scenario 1 (reproduced from Paper B).

warping (DTW) distance metric to assess the similarity between a reference walking
activity signature and those captured by the two subsystems of our distributed
MIMO radar system, Radar1 and Radar2. Table 2.1 presents the DTW distances
for three scenarios: (a) walking at 0◦ to Radar1 boresight (Scenario 1), (b) walking
at 90◦ to Radar1 boresight or 0◦ to Radar2 boresight (Scenario 2), and (c) walking
at 45◦ to Radar1 boresight (Scenario 3). For each radar, it is noteworthy that the
walking activities with lower angles (Scenario 1 for Radar1 and Scenario 2 for Radar2)
exhibited lower DTW distances (see Table 2.1), indicating better signature capture.
Therefore, by selecting the radar subsystem with the lowest DTW distance, either
Radar1 or Radar2, we ensure accurate step counting, regardless of motion direction.

Table 2.1: The DTW distances computed for three scenarios. The SISO radar
system is assumed to be Radar1. The MIMO radar system adopts the minimum
DTW distance from Radar1 and Radar2 (adapted from Paper B).

Scenario Dist. of Dist. of Dist. of Dist. of 2× 2

# Radar1 Radar2 SISO Radar MIMO Radar

1 19.6 81.2 19.6 19.6

2 73.8 12.0 73.8 12.0

3 7.3 9.1 7.3 7.3

2.4 Conclusion

In this chapter, along with the insights from Paper A and Paper B, we have addressed
the inherent limitations in SISO and monostatic MIMO radar systems, particularly
in the context of motion direction. Our solution revolves around a distributed MIMO
radar configuration designed to comprehensively capture the micro-Doppler signa-
tures of multi-directional human activities such as falling and walking. Building
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upon this multistatic MIMO radar setup and leveraging the DTW distance metric,
we have successfully developed a practical direction-independent step counting sys-
tem capable of accurately tallying the number of steps in multi-directional walking
activities.

Furthermore, the versatility of the proposed multistatic MIMO radar configura-
tion opens the door to various radar-based applications. In our research, we have
harnessed this configuration to realize a fully functional direction-independent HAR
system, as discussed in more detail in the upcoming chapter of this dissertation.
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Chapter 3

Measurement-Based HAR Systems
Using MIMO Radars

3.1 Introduction

In the recent years, we have witnessed significant advancements in the realm of
human activity recognition (HAR) [16, 46, 47, 48]. The constant interest in HAR
is attributable to its applicability in diverse domains, including human–computer
interaction [76] and health [52]. Numerous sensors have been employed for HAR,
including radio frequency (RF) sensors. In contrast to alternative sensing modalities
like vision and wearables, RF sensors present distinctive benefits, notably insensi-
tivity to ambient lighting conditions and non-intrusiveness. Within RF sensing
technologies, millimeter wave (mm-wave) radar sensors have lately emerged to be
the preferred choice among many researchers.

For unidirectional human motion, particularly when the motion is aligned with
the radar boresight axis, contemporary HAR systems developed with monostatic
radars exhibit good performance [70]. Unfortunately, this is not true for the classi-
fication of multi-directional human activities. In this chapter, we elucidate the re-
search findings of Paper C and primarily address the research question 3 that focuses
on the realization of a measurement-based direction-independent human activity
recognition (DIHAR) system. The measurement-based DIHAR system, employing
a mm-wave distributed multiple-input multiple-output (MIMO) radar system (An-
cortek SDR-KIT 2400T2R4), delves into the classification of five distinct kinds of
multi-directional human activities.

Figure 3.1 depicts the overview of our proposed measurement-based multi-view
2 × 2 DIHAR system that incorporates two radar subsystems capturing multi-
directional motion from different aspects. The radar signal processing module in
Figure 3.1 computes the radar signatures for the multi-perspective radar data. Sub-
sequently, the multi-view or multi-perspective radar signatures are used by two fea-
ture extraction networks (FENs), which compute the relevant features automatically.
After combining or merging the computed features, our DIHAR system effectively
classify a human activity regardless of its direction.
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Figure 3.1: Our multi-perspective illumination strategy, where two radar subsystems
(Radar1 and Radar2) of the multi-view MIMO radar system complement each other,
thereby allowing for the multi-directional human activity classification (adapted
from Paper C).

3.2 Direction-Independent Human Activity Recog-
nition

In light of the constraints imposed by contemporary monostatic radar system, as
detailed in the preceding chapter, current radar-based HAR systems encounter diffi-
culties when confronted with the classification of multi-directional human activities.
Traditional monostatic radar-based HAR systems are inherently insensitive to the
direction of human movement, thus proving inadequate in categorizing activities
that involve diverse motion patterns. This inherent limitation becomes evident
when a human subject moves approximately perpendicularly, at a 90-degree angle,
to the radar’s boresight axis, leading to negligible changes in the radial information
recorded by the radar.

In [77] Erol et al. presented findings related to the classification accuracy of
human falling activities from multiple viewpoints. For instances where falls were
aligned with the radar’s primary boresight axis (0-degree aspect angle), they re-
ported a 96% classification accuracy. However, at a 60-degree aspect angle, this
accuracy declined to 85%, and when the falls occurred at a 90-degree aspect an-
gle, the accuracy decreased drastically to 45%, thereby making the HAR system
pointless. Furthermore, in a study by Ding et al. [78], involving multiple human
activities, a decline in accuracy was observed, decreasing from around 96% to 87%
as the viewing angle of the radar shifted from 15 degrees to 30 degrees. Additional
research by Liu et al. [79, 80] demonstrated the detection of multi-directional hu-
man falls by deploying a radar on the ceiling, albeit with limited applicability in
classifying more complex human activities.

To address DIHAR, there is an inclination towards the utilization of monostatic
beamforming MIMO radar systems capable of angle measurement [81, 82]. However,
as a consequence of hardware constraints, real radar systems tend to exhibit lim-
ited angular resolution. Therefore, for applications like gesture recognition, where
angular accuracy is less critical at shorter ranges, researchers such as Molchanov et
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al. [83] have rightly used the bearing information offered by a single-input multiple-
output (SIMO) monopulse radar system. It’s unfortunate that due to the limited
angular accuracy, it is difficult to extend this method for developing DIHAR sys-
tems. Recent advances in HAR involve the use of three-dimensional (3D) point
cloud data [84, 75] provided by monostatic frequency-modulated continuous wave
(FMCW) MIMO radar systems, but such data also exhibit inadequate angular ac-
curacy and cross-range resolution. A viable alternative is to develop a HAR system
based on a radar in bistatic configuration [56]. Nevertheless, multi-view MIMO
radar systems are the superior option for DIHAR. These systems provide the most
comprehensive multi-perspective signatures of human activities, thereby improving
classification performance for DIHAR, as elucidated in this chapter.

To circumvent the constraints imposed by the physical layer of monostatic radars,
we present a DIHAR framework that employs a distributed mm-wave MIMO radar
system (see Figure 3.1), providing a practical solution for multi-directional human
activity classification. The physical layer design of our DIHAR system incorporates
two independent FMCW radar subsystems, namely Radar1 and Radar2, each of
which transmits the RF signal in distinct time slots and records multi-directional
human movements from distinct vantage points. This approach yields two separate
time-variant (TV) radial velocity distributions, effectively resolving the physical
layer limitations associated with contemporary HAR systems that employ monos-
tatic antenna configurations. Our solution takes the form of the multi-view 2 × 2

MIMO radar system (see Figure 3.1), facilitating the realization of DIHAR. In Sec-
tion 3.3, we provide insights into our data collection campaign and elucidate the
procedures employed to process the data acquired from the 2 × 2 MIMO radar
system.

3.3 Data Collection and Processing

By using the multi-view 2 × 2 MIMO radar system, we recorded multiple types
of multi-directional human activities from six individuals, which are: falling on a
mattress, picking up an object from the floor, walking, sitting down on a chair, and
standing up. The utilized 2× 2 MIMO radar configuration in Figure 3.1 resembles
the setup discussed in the previous chapter (see Figure 2.6). To see comprehensive
details regarding the recording of the aforementioned activities from various angles,
please refer to Section C.4, which explains three distinct movement scenarios that
closely mirror what was presented in the preceding chapter. In Scenario 1 and 2,
human motion aligns parallel to the boresight of Radar1 and Radar2, respectively.
Scenario 3, on the other hand, involves human motion diagonal to the boresight of
Radar1 and Radar2.

The dataset acquired by our multi-view MIMO radar system is referred to as
HAR(2D), with the superscript “(2D)” signifying motion within the two-dimensional
(2D) horizontal plane (see Figure C.1). Following a similar convention, specifically
for the DIHAR task, we define FEN(2D) as a feature extraction network, SISO(2D) as

25



Measurement-Based HAR Systems Using MIMO Radars

a single-input single-output (SISO) radar-based DIHAR classifier, and MIMO(2D) as
a MIMO radar-based DIHAR classifier. Note that we employ the HAR(2D) dataset
to develop our SISO and MIMO radar-based DIHAR systems, namely, SISO(2D)

and MIMO(2D). In Table C.2, we specify that the HAR(2D) dataset contains 1364

human activities from five individuals. We computed two TV radial velocity distri-
butions denoted as p11(v, t) and p22(v, t) for all the recorded activities. These two
distributions correspond to the respective radar subsystems Radar1 and Radar2.

We employed the active segment detection (ASD) technique to compute the
variance of the in-phase component of a radar signal to determine the starting and
ending of an activity. Note that the ASD technique was proposed by the authors
of [85] in their work on smartphone-based gait recognition. We used this technique
to obtain active segments from the radar’s raw in-phase and quadrature (IQ) data of
the human activities. An active segment corresponds to the actual duration of the
activity in question, in which a human actively perform an activity. For the active
segment of the raw data, the beat frequency function Sb,ik(fb, t) is obtained using
the relation (C.5). Subsequently, we compute the square of the short-time Fourier
transform (STFT) of the beat frequency function Sb,ik(fb, t) to obtain the TV micro-
Doppler signature Sik(f, t) using (C.6). Let v, t, f0, and c0 represent the velocity,
time, carrier frequency, and speed of light, respectively. We can then derive the TV
radial velocity distribution, denoted as pik(v, t), corresponding to the wireless link
between the transmit antenna ATx

i and the receive antenna ARx
k using [68]

pik(v, t) =
Sik

(
2f0
c0
v, t

)
∫∞
−∞ Sik

(
2f0
c0
v, t

)
dv

(3.1)

where i, k ∈ {1, 2}.
Figures 3.2 and 3.3 illustrate the radar signatures (TV radial velocity distribu-

tion pik(v, t)) corresponding to five distinct types of multi-directional human activi-
ties. These figures show the radar signatures associated with three distinct directions
of human motion, labeled as Scenarios 1, 2, and 3, as defined in Figure C.1. Upon
a closer examination of these figures, it becomes evident that employing a single
monostatic radar system, which illuminates a subject from a single aspect angle,
exhibits limitations. Using only a single monostatic radar, the acquired radar signa-
tures are suboptimal, particularly when the direction of motion is perpendicular to
the radar’s boresight, as demonstrated in Figures 3.2 and 3.3. These limitations of
monostatic radars were comprehensively addressed in the previous chapter. In the
following section, we will primarily look into the classification performance of both
monostatic SISO and distributed MIMO radar systems in the context of DIHAR.

3.4 Design Approaches for the DIHAR Systems

To show the applicability and efficacy of our proposed multi-view MIMO radar-based
methodology, we have devised three distinct HAR systems, with two of them being
DIHAR systems. In Paper C, we initially devise a SISO(1D) HAR system based
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Figure 3.2: The heatmap of the TV radial velocity distributions pii(v, t) (TV micro-
Doppler signatures) in three distinct movement scenarios for the falling activity. The
x- and y-axis of each distribution is the radial velocity v and time t, respectively. In
Scenarios 1, 2, and 3, the motion is respectively parallel, perpendicular, and diagonal
to the boresight of Radar1 (reproduced from Paper C).

Figure 3.3: The heatmap of the TV radial velocity distributions pii(v, t) (TV micro-
Doppler signatures) in three distinct movement scenarios for multiple activities. In
Scenarios 1, 2, and 3, the motion is respectively parallel, perpendicular, and diagonal
to the boresight of Radar1 (reproduced from Paper C).

on a monostatic SISO radar configuration. SISO(1D) HAR system is a conventional
HAR system that only considers simple unidirectional human activities. These uni-
directional activities are assumed to occur along the boresight axis of the SISO radar
system. As a result, SISO(1D) focused on unidirectional human activities during both
training and testing phases. This unidirectional HAR system demonstrated com-
mendable performance, achieving a classification accuracy of approximately 97%.
However, it’s worth noting that this system exclusively dealt with unidirectional
human activities, which have relatively uncomplicated radar signatures, leading to
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a relatively straightforward classification task. For the sake of brevity, we omit the
results of the SISO(1D) unidirectional HAR system in this chapter; please consult
Paper C for a comprehensive presentation of those results.

As a second step, we aimed to underline the detrimental impact of introducing
diverse movement directions on the classification performance of a HAR system. For
this purpose, we designed a SISO radar-based DIHAR system known as SISO(2D).
In contrast to SISO(1D), the SISO(2D) DIHAR system is tailored to classify multi-
directional human activities. For multi-directional activities, it utilizes the HAR(2D)

dataset for its training and testing. Note that in this chapter, we present exclusively
the outcomes pertaining to the SISO(2D) DIHAR classifier, which was trained and
tested using data from Radar1. SISO(2D) DIHAR classifier realized using the data
from Radar2 are not discussed for the sake of brevity.

In our final design, we sought a substantial improvement in the classification per-
formance of the SISO(2D) HAR system. To achieve this, we introduced MIMO(2D)

system, which is a DIHAR system that employs the proposed 2×2 distributed MIMO
radar antenna configuration (see Figure 3.1). The proposed MIMO(2D) DIHAR sys-
tem, like the SISO(2D) DIHAR system, is designed to classify multi-directional hu-
man activities. Therefore, the MIMO(2D) DIHAR system also utilizes the HAR(2D)

dataset during its training and testing phases. For both SISO(2D) and MIMO(2D)

DIHAR classifiers, the recorded radar signatures or the TV radial velocity distri-
butions were transformed into the images, as exemplified in Figures 3.2 and 3.3.
These images were subsequently employed as input feature maps to the FEN(2D)

(see Figure 3.4).
In the training and validation phases of the deep convolutional neural network

(DCNN)-based SISO(2D) and MIMO(2D) DIHAR classifiers, we used data from two
participants extracted from the HAR(2D) dataset. A significant portion, approxi-
mately eighty percent of this data, was dedicated to training the DIHAR classifiers,
with the remaining twenty percent allocated for validation purposes. The data asso-
ciated with the other four participants within the HAR(2D) dataset was exclusively
reserved for testing the DCNN-based SISO(2D) and MIMO(2D) DIHAR classifiers.
Now let’s discuss the design and results of the SISO(2D) and MIMO(2D) DIHAR
classifiers, individually.

The FEN(2D) consists of four convolutional layers, with each layer housing an
array of filters. Each filter within these layers is characterized by a 5 × 5 kernel
dimension, denoted as kd. During the training of the SISO(2D) DIHAR classifier,
the adaptive moment estimation (Adam) optimizer [86] is employed to minimize the
empirical risk RJ(Cf ) (see (C.8)). To mitigate the risk of overfitting, the SISO(2D)

DIHAR classifier incorporates L2 regularization and utilizes dropout layers. It’s
noteworthy to mention that the training phase of the SISO(2D) classifier, depicted
in Fig. C.10, shows no indications of overfitting.

The trained SISO(2D) DIHAR classifier underwent evaluation by using previously
unseen data from the HAR(2D) dataset to determine its classification accuracy. The
system’s performance is depicted in the confusion matrix in Figure 3.5. It is evident
that the SISO(2D) DIHAR system, with an overall accuracy of only 88.98%, falls
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short as a suboptimal DIHAR system that misclassified numerous multi-directional
human activities. Notably, multi-directional falling activities exhibited perfect pre-
cision and recall, whereas other activities with intricate radial velocity distributions
(see Figures 3.2 and 3.3) encountered challenges, particularly the “Pick” activity
that was misclassified 21 times. The decline in SISO(2D) DIHAR classifier’s perfor-
mance is attributed to the physical-layer constraints of monostatic radars. In the
following discussion, we will see that these physical-layer constraints are addressed
by employing the proposed multi-view MIMO(2D) DIHAR system.

Figure 3.4: The architecture of the feature extraction network FEN(2D), employ-
ing four convolutional layers, designed for both SISO(2D) and MIMO(2D) DIHAR
classifiers (reproduced from Paper C).
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Figure 3.5: Confusion matrix quantitatively representing the summary of the results
achieved by the SISO(2D) DIHAR classifier. The overall obtained accuracy is 88.98%
for the five multi-directional activities (reproduced from Paper C).
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While the neural network architectures of MIMO(2D) and SISO(2D) HAR sys-
tems differ (see Figures 3.6 and C.5), their basic components, hyperparameters, and
training methods closely resemble each other. Both DIHAR classifiers share sim-
ilar specifications and employ similar training methodologies, e.g., dropout layers,
activation function, kernel dimension kd, and Adam optimizer. For more details,
see Section C.5.3. Furthermore, both DIHAR classifiers employ the same FEN(2D).
Notably, MIMO(2D) DIHAR classifier employs two FEN(2D) modules, independently
extracting features from the radar signatures pik(v, t) (see Figure 3.6). In other
words, in our multi-view MIMO(2D) DIHAR system, the TV radial velocity dis-
tributions p11(v, t) and p22(v, t) are obtained simultaneously, serving as inputs to
FEN(2D). Subsequently, these features are merged before the multilayer perceptron
(MLP) and softmax layers for the activity classification (see Figure 3.6).

The trained MIMO(2D) DIHAR classifier went through evaluation using unseen
data from the HAR(2D) dataset to determine its classification accuracy. The sys-
tem’s performance is depicted in the confusion matrix in Figure 3.7. Evidently,
the MIMO(2D) DIHAR classifier demonstrates remarkable classification accuracy of
98.52%, especially compared to the SISO(2D) DIHAR system. Our MIMO(2D) DI-
HAR classifier encountered merely seven misclassifications, as depicted by the con-
fusion matrix in Figure 3.7. The enhanced classification accuracy of our MIMO(2D)

DIHAR classifier stems from its multi-perspective illumination strategy.

3.5 Conclusion

In this chapter, we addressed a significant physical layer issue in contemporary
radar-based HAR systems, specifically within the context of monostatic SISO and
monostatic MIMO radar configurations. The development and analysis of three
HAR systems, namely SISO(1D), SISO(2D), and MIMO(2D), were crucial in addressing
these challenges. To expand the scope of HAR in RF sensing, we delved into the

Figure 3.6: The DCNN architecture of the proposed MIMO(2D) DIHAR classifier. It
merges two sets of distinct features that are computed by the two FEN(2D) modules
(reproduced from Paper C).
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Figure 3.7: Confusion matrix quantitatively representing the summary of the re-
sults achieved by our MIMO(2D) DIHAR classifier. The overall obtained accuracy is
98.52% for the five multi-directional activities (reproduced from Paper C).

complexity of classifying multi-directional activities utilizing the HAR(2D) dataset
captured by a multi-view MIMO radar system.

While the SISO(1D) HAR classifier achieved a commendable 97.28% classification
accuracy, its limitation in handling multi-directional activities prompted a deeper
exploration. The examination of SISO(2D) DIHAR classifier, considering activities
in the 2D xy-plane, revealed a significant accuracy drop, emphasizing the inherent
constraints of monostatic radars. These limitations were mitigated by our proposed
MIMO(2D) DIHAR classifier that employed a multi-view MIMO radar system, which
illuminates the environment from multiple perspectives and combines the features
computed by the convolutional layers of the DCNN. The MIMO(2D) DIHAR classifier
demonstrated substantial superiority over the monostatic SISO(2D) by improving the
classification accuracy from 88.98% to 98.52%.

In undertaking this investigation and implementing the radar-based DIHAR sys-
tem, a comprehensive measurement campaign was undertaken, necessitating sub-
stantial allocation of human resources, time, and effort. Consider the potential
ramifications of altering a single radar parameter—an adjustment that could poten-
tially undermine the entire data acquisition endeavor. Such challenges are inherent
in measurement-based methodologies. Consequently, a compelling need emerges for
a refined simulation-based alternative capable of supplanting measurement-based ap-
proaches while assuring the preservation of radar signature fidelity. In the following
chapters, we introduce advanced motion capture (MoCap)-data-driven simulation-
based HAR systems in the context of RF sensing.
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Chapter 4

A Simulation-Based Framework for
SISO Radar-Based HAR Systems

4.1 Introduction

Due to the recent advent of artificial intelligence and machine learning techniques,
the idea of generating synthetic data has never been more pertinent. The major
obstacle to the development of systems based on modern artificial intelligence and
machine learning methods is the acquisition of large, clean, and labeled datasets [87].
Usually, the amount of time, effort, and resources required to obtain a comprehen-
sive dataset impede the development of such systems. Often, privacy and legal
issues, especially in the areas of healthcare [88], finance [89], and social sciences [90],
hinder the collection of real data. This results in an impasse that can only be over-
come by methods for generating field-specific synthetic data. Therefore, the use of
synthetic data is increasingly preferred in various research areas, such as medical
imaging [91]. Here, our main focus is on Radio frequency (RF) sensors, chosen for
their privacy protection, resilience to lighting conditions, and non-intrusiveness. In
this chapter, we introduce an end-to-end simulation-centric framework for human
activity recognition (HAR) using millimeter wave (mm-wave) radar systems. While
the framework is generally applicable, our main focus is on a radar-based classifier
for HAR. This research aims to devise a HAR system within this simulation-based
framework and discusses the contributions of Paper D, primarily addressing research
questions 4–7.

Collecting radar signatures from real individuals is a time-consuming and resource-
intensive task, often resulting in datasets with limited scope. Typically, measurement-
based radar datasets are applicable only to specific scenarios and specific system
parameters. To overcome this limitation and facilitate the creation of diverse train-
ing datasets for radar-based classifiers, we present a simulation-centric HAR system
relying solely on simulated radar data for both training and validation phases. In
order to prove the real-world efficacy of our simulation-centric HAR system, we use
previously unseen experimental data from a physical frequency-modulated continu-
ous wave (FMCW) radar system for the testing phase.
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The human motion synthesis tool, developed in Unity software [92], is integral to
our framework, emulating various activities and simulating three-dimensional (3D)
trajectories for virtual markers on an avatar. These virtual markers capture detailed
human movements, eventually processed by a geometric model (see Sect. D.5) in rela-
tion to a software-defined antenna configuration. Additionally, scatterer-level mod-
eling of radar signals is presented to enhance the realism of simulated micro-Doppler
signatures. Our simulation encompasses the synthesis of in-phase and quadrature
(IQ) signals and the generation of radar micro-Doppler signatures for various em-
ulated activities, considering both the stationary and non-stationary aspects of the
wireless channel. Note that the randomization feature of human motion, facilitated
by our proposed simulation-based approach, ensures unbiased datasets for training
radar-based classifiers.

The simulation-centric approach presents numerous benefits compared to exper-
imental approaches. These benefits include the flexibility to replicate radar datasets
with user-defined target motion characteristics, the capability to enhance training
data, resource minimization, and addressing user privacy concerns. For diverse oper-
ational and environmental conditions, our approach offers control over radar param-
eters such as bandwidth, carrier frequency, pulse repetition frequency (PRF), and
more. This capability enables the generation of diverse training datasets tailored to
specific conditions, thereby significantly reducing the training effort for radar-based
classifiers.

It’s essential to note that the proposed end-to-end simulation-centric approach,
initially devised for HAR, finds its utility in many domains. The efficacy of our
proof-of-concept is demonstrated in Paper D by means of actual experimental data
encompassing five human activities. Nevertheless, the main advantage of this proof-
of-concept is its ability to convert motion capture (MoCap) data into radar data
(see Section 4.4 and 4.5), which renders it applicable to a broad range of real-world
situations. The accessibility of online MoCap data repositories, such as Mixamo [69],
further boosts the utility of our approach across various domains such as sports,
smart homes, healthcare, and more.

4.2 Overview of the Proposed Simulation-Based Ap-
proach

Traditionally acquired training datasets suffer from limited reusability due to their
dependency on fixed operating parameters and fixed antenna configurations. Pro-
posed in Paper D, our pragmatic solution involves a fully simulation-based approach
for developing a practical HAR system. Our simulation-based approach, as detailed
in Figure D.1(b), commences with six basic animations, which are then synthesized
into five distinct human activities. Utilizing Unity software [92], the activity emu-
lation block simulates the motion of virtual markers on human body segments and
generate corresponding time-variant (TV) spatial trajectories (see Section D.4.3).
Virtual markers in our simulation framework are simulated point scatterers that
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represent actual scatterers on human body segments. These scatterers scatter the
transmitted signal back to the radar system’s receive antenna. Then, our channel
model (see Section 4.4) transforms these trajectories into TV delays while taking into
account the positions of radar antennas. The radar data synthesizer then simulates
raw IQ data, considering scatterers’ weights and positions (see Section 4.5).

The development of our simulation-centric HAR classifier is depicted in Fig-
ure 4.1 and its testing is shown in Figure 4.2. It is essential to clarify that the
simulated RF signal in Figure 4.1 is generated by our channel model (refer to Sec-
tion 4.4). On the other hand, the real RF signal in Figure 4.2 is the output of
an actual radar. Notably, the structural similarity between the raw IQ data from
the real and simulated radar allows us to employ the same radar signal process-
ing block in Figures 4.1 and 4.2. From the simulated IQ data (RF signal), the
radar signal processing block simulates the radar signatures for synthesized human
activities. It is worth mentioning that the suggested simulation-based framework
incorporates scatterer-level signal modeling, ensuring accuracy in radar modeling
and comprehensive simulation of radar signatures, including TV radial range dis-
tribution, TV radial velocity distribution (micro-Doppler signature), and so forth.
This simulation-centric framework allows for the simulation of realistic and varied
radar signatures, offering the necessary training data for radar-based classifiers.

Our simulation-centric approach facilitates the generation of extensive training
data without the need for real human subjects and radar systems, ensuring feasibil-
ity and practicality. The simulated radar signatures corresponding to synthesized
human activities are stored in a dedicated radar dataset. Our simulation-based HAR
system is trained exclusively on this dataset as shown in Figure 4.1. The recorded
radar signatures contribute to a real radar dataset, as depicted in Figure 4.2. To
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based HAR

system

Simulated dataset

Radar
signal

processing

Time, (s)

Simulated
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Figure 4.1: Design phase: The development of our HAR classifier relying exclusively
on simulated radar signatures.
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Figure 4.2: Testing phase: The trained HAR classifier evaluated with real radar
signatures obtained from real human subjects.
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validate the practical significance and applicability of our simulation-based HAR
classifier, we assess its performance on real human activities recorded by a mm-wave
FMCW radar system (see Figure 4.2). In the following sections, we will examine
various approaches for generating MoCap data, elaborate on our simulation-based
channel model, discuss the synthesis of RF data, and delve into the implementation
of our simulation-centric HAR classifier.

4.3 Approaches for Generating 3D Trajectories

In this section, we delve into various approaches to capture and synthesize human
motion, such as biomechanical modeling, wearable sensors, optical MoCap methods,
and 3D animation tools, as illustrated in Figure 4.3. In the following, we first look
into the biomechanical modeling.

4.3.1 Biomechanical Modeling

Biomechanical modeling [93] aids the synthesis of diverse human motions by using
computational frameworks that integrate principles from biomechanics, employing
mathematical models rooted in rigid body dynamics to capture nuanced interactions
between body segments, joints, and muscles for varied activities. This approach
enables the computation of spatial trajectories corresponding to the synthesized
human motion, providing a comprehensive representation of movement patterns.

However, biomechanical modeling is inherently complex due to the intricate na-
ture of human biomechanics. This complexity arises from the need to account for
factors such as joint angles, segmental accelerations, and muscle forces, demand-
ing a sophisticated integration of multidisciplinary principles. Several limitations
exist in comparison to MoCap systems, notably in terms of precision and universal-
ity. Biomechanical models may lack the universal applicability of MoCap systems,
facing challenges in accurately representing individual variations in anatomy and
movement patterns. Additionally, the computational complexity of biomechanical
modeling poses practical challenges in real-time applications.

4.3.2 Collecting 3D Trajectories Using Wearable Sensors

Wearable sensors demonstrate versatility in capturing human motion, providing a
dynamic means to record and analyze movement patterns across diverse contexts.
The integration of sensors into garments, exemplified by the Rokoko Smartsuit
Pro [94], serves as a excellent choice for wearable modalities. Such sophisticated
systems seamlessly combine comfort and functionality by encapsulating a compre-
hensive array of sensors within the fabric of the garment, as depicted in Figure 4.3.
The integration of these sensors enables precise and real-time tracking of human
motion, rendering it an effective solution for motion analysis across various applica-
tions.
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Figure 4.3: Four distinct approaches for capturing and synthesizing the human
motion to generate 3D trajectories.

These wearable sensors find application across diverse domains, providing a
portable and adaptable means for motion capture. Despite their advantages, wear-
able sensors exhibit limitations compared to optical MoCap systems, notably in
terms of precision and spatial resolution. Additionally, susceptibility to magnetic
interference poses a challenge, requiring careful consideration in environments where
magnetic fields may impact data accuracy.

4.3.3 Collecting 3D Trajectories Using Optical Motion Cap-
ture Systems

In this study, our primary source of MoCap data was Mixamo [69], an online repos-
itory that includes optical MoCap data acquired from professional actors [95]. Mix-
amo serves as a valuable resource for MoCap data. However, the following chapter
of this dissertation predominantly utilized MoCap data captured through the opti-
cal MoCap system, Qualisys [96]. In the Qualisys MoCap system, we employed a
configuration of six cameras arranged in a daisy chain, tracking passive optical re-
flectors (markers) affixed to the human body. The Qualisys track manager (QTM)
software facilitates marker identification and labeling through an automated proce-
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dure. Camera calibration, as dictated by the QTM software, ensures the accurate
tracking of marker positions and orientations. The skeleton solver functionality of
Qualisys system further refines the skeleton calibration based on the positions of
optical reflectors.

Human activities are captured using the Qualisys MoCap system, and the re-
sulting spatial trajectories are subsequently imported into software platforms such
as Unity and MotionBuilder for further data augmentation. For falling activities,
exclusive use of Mixamo MoCap data is preferred due to the challenges and imprac-
ticality associated with executing falls while equipped with optical reflectors and
costly MoCap apparatus attached to the body.

4.3.4 Simulation Tools for Generating 3D Trajectories

In the process of synthesizing diverse human movements, software tools like Unity
and MotionBuilder play a crucial role. Motion data acquired from any MoCap sys-
tem, including optical or wearable MoCap systems, can be imported into simulation
software such as Unity and MotionBuilder. These software applications facilitate
the dynamic generation of new motion data based on the fundamental MoCap data
acquired from MoCap systems. This seamless integration efficiently augments the
rudimentary MoCap data at the motion synthesis layer, thereby facilitating the
creation of diverse and dynamic human motion datasets.

To simulate human activities, we utilize an avatar and six rudimentary anima-
tions. These animations, namely idle, walking, falling, standing, sitting, and picking,
were sourced from the Mixamo repository. The MoCap data of the idle animation
involves the avatar maintaining an innate standing pose with minimal in-place mo-
tion. The walking animation comprises two forward steps, and the falling animation
mimics a sudden collapse as if experiencing a heart attack. In the standing anima-
tion, the avatar stands up from a sitting position, while in the sitting animation,
it sits down. In the picking animation, it picks up an object. The MoCap data of
these six rudimentary animations were imported into the Unity and MotionBuilder
software.

Sometimes, it is necessary to switch between various types of animations. How-
ever, creating transitional animation data for all such cases can be quite daunting,
particularly when working with a large number of animations. Moreover, for en-
hanced diversity, the existing animation data need to be augmented with slightly
varied humanoid movements. To address these issues, a Unity’s animation tool
called blend tree can be utilized, which enables the dynamic generation of complex,
varied, and entirely new sequences of human movements, and it also facilitates seam-
less transitions between multiple humanoid animations. The blend tree animation
tool is quite pertinent to our virtual reality simulations as it significantly improves
the expressiveness and realism of the avatar motion.

After synthesizing and augmenting human motion at the motion-layer synthesis,
spatial (3D) trajectories for these motions can be simulated. To achieve this, 21 vir-
tual markers (simulated point scatterers) are positioned on distinct body segments
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of the avatar, as depicted in Figure D.3. These virtual markers mimic actual scat-
terers on human body segments. Assigned to specific body segments, these markers
facilitate spatial tracking and recording of corresponding TV 3D trajectories for
synthesized human activities. In the following sections, we will explore how these
spatial trajectories are utilized to simulate volumes of radar signatures by using our
channel model.

4.4 Channel Modeling and Simulation

In this section, we primarily discuss our channel model designed to simulate RF or
raw IQ data utilizing the spatial trajectory information of virtual markers. Within
this framework, we analyze and simulate the TV propagation delays associated
with multipath components originating from these markers. This approach allows
for the generation of innumerable radar signatures, including TV radial velocity
distributions, offering substantial design control and flexibility. Before delving into
further details, let us first briefly compare traditional wireless channels with our
proposed channel model.

The input of a traditional wireless channel block is the transmitted RF signal,
with the output being the received RF signal, as depicted in Figure 4.4. Traditional
wireless channels [97, 98, 99, 100] take into account factors such as multipath fad-
ing, signal attenuation, noise, and interference during the RF signal’s propagation
through the wireless medium. The received RF signal is comprised of multipath
components originating from various environmental objects. In Figure 4.4, it is ev-
ident that multipath components from both stationary and non-stationary objects
contribute to the received RF signal. Contrary to the traditional wireless chan-
nel model, our proposed channel model introduces a paradigm shift in the wireless
channel modeling. Unlike traditional wireless channels, it incorporates a more com-
prehensive set of inputs, as illustrated in Figure 4.5. These inputs include TV spatial
trajectories from both stationary and non-stationary scatterers, offering a dynamic
representation of spatial motion. Additionally, the model includes constant channel
parameters, such as carrier frequency f0, chirp’s slope γ, ith transmitter antenna
position CTx

i , and kth receiver antenna position CRx
k , where i and k range from 1

to the total number of antennas. The resulting output of our channel model is
the simulated RF signal of the receiver, thereby essentially transforming the spatial
trajectories of scatterers into realistic RF data.

The distinct advantages of our channel model, in comparison to the conventional
wireless channel model, are manifold. Notably, our model offers the flexibility to
simulate a myriad of scenarios. For instance, at the motion-synthesis layer, various
scenarios of scatterers’ motion can be simulated with precision. Moreover, the model
enables the generation of diverse RF datasets by manipulating different environmen-
tal and operational parameters inherent to the wireless channel. This includes varia-
tions in the characteristics and motion of environmental objects, antenna locations,
and the path gain of both stationary and non-stationary scatterers. This paradigm
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shift in wireless channel modeling signifies a departure from experimental-based ap-
proaches towards simulation-based methodologies. Leveraging our simulation-based
channel model, an array of user-defined scenarios can be simulated, allowing for the
generation of unlimited RF data. This capability proves invaluable for constructing
RF-based classifiers utilizing simulated data. Let us delve deeper into the proposed
channel modeling approach and consider its utility in realizing a simulation-based
HAR system.

Multipath propagation of RF signals is common in indoor wireless channels.
Within our simulation-centric approach, we exclusively take into account the multi-
path components emanating from the L = 21 non-stationary scatterers. The fixed
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scatterers, also known as clutter, are filtered out through signal preprocessing [101].
Thus, the multipath components from the fixed scatterers like walls, chairs, and
tables are not included in analysis. Figure D.3 depicts the propagation of the RF
signal from the transmitter to the receiver antennas of the radar. The signal tra-
verses multiple virtual (actual) point scatterers on the humanoid (human) body
segments, experiencing multipath propagation. In our simulation-centric approach,
the L = 21 virtual markers on the humanoid character represent actual or real
bodily scatterers that scatter the electromagnetic energy back to the radar system’s
receiver antennas. The receiver antennas capture multiple replicas of the transmit-
ted RF signal, with each replica characterized by a unique TV propagation delay
denoted as τ (l)(t) for the lth scatterer, where l = 1, 2, . . . ,L. Let dl(t) represent
the TV radial distance or range, and c0 denote the speed of light. We can then
derive the lth TV propagation delay τ (l)(t) as τ (l)(t) = 2dl(t)/c0. So, in the context
of radar sensing, the simulated TV propagation delays τ (l)(t) fully characterize the
synthesized motion.

Figure 4.6 depicts the TV propagation delays τ (l)(t) simulated by our framework
for the five synthesized human activities. The lth TV propagation delay, τ (l)(t), is
directly influenced by the 3D position of the lth marker. This is evident in Figure 4.6,
where the rapid change in spatial trajectories during a person’s fall is reflected in
the TV propagation delays τ (l)(t). The figure also illustrates the periodic nature
of the walking activity, where four steps can be seen. On the other hand, the less
mobile activities such as standing up, sitting down, and picking result in the TV
propagation delays τ (l)(t) with smaller fluctuations, indicating the reduced mobility
of virtual markers during these activities. Having simulated the TV propagation
delays τ (l)(t) for various human activities, the subsequent step involves synthesizing
radar data within our channel model, as elaborated below.

4.5 Radar Data Synthesis

The radar data synthesis module within our channel model emulates an FMCW
radar system, simulating high-fidelity raw IQ data. This synthesis relies on the
TV propagation delays τ (l)(t) and TV path gains a(l)(t) of L virtual markers (see
Section D.6.1). Note that, in the context of radar’s coherent processing interval
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(CPI), t′ and t denote the fast and slow time, respectively. The TV propagation
delays τ (l)(t) dictates both the beat frequency f

(l)
b (t) and phase ϕ(l)(t) of the beat

signal s
(l)
b (t′, t). For comprehensive details regarding the simulation of beat fre-

quency f
(l)
b (t), phase ϕ(l)(t), and eventually the beat signal s(l)b (t′, t), refer to Sec-

tion D.6. Let the function δ(·) denote the Dirac delta function, and let Tn symbolize
the discrete slow time, which is linked to the chirp duration Tsw as Tn = nTsw for
n = 0, 1, . . . Then, the beat signal s(l)b (t′, t) can be simulated using the expression
given as [62]

s
(l)
b (t′, t) =

∞∑
n=0

a(l)(t) exp
[
j
(
2πf

(l)
b (t)t′ + ϕ(l)(t)

)]
× δ(t− τ (l)(t)− Tn). (4.1)

The TV path gain a(l)(t) represents the electromagnetic energy received by the
radar system from the lth scatterer, thereby simulating the strength of the lth
virtual marker in synthesizing the corresponding beat signal s(l)b (t′, t). In this proof-
of-concept study, we have employed L = 21 constant path gains, denoted as a(l),
and for the five simulated human activities, five distinct sets of path gains were
employed. The path gains can be meticulously designed using the body surface
area [102] and real TV radial velocity distributions (refer to Section D.7). Notably,
different sets of path gains can be designed to simulate various TV radial velocity
distributions for a single synthesized activity.

We present the simulated and real radar signatures (TV radial velocity distri-
butions p(v, t)) corresponding to the simulated and real activities in Figures 4.7
and 4.8, respectively. Visual similarities are evident between the simulated and real
radar signatures. It is essential to highlight that these images will be utilized to
realize our simulation-based HAR system as detailed in the following section.

4.6 Simulation-Based HAR Systems

In this section, we elaborate the implementation of our HAR system, which utilizes
a deep convolutional neural network (DCNN). Simulated radar data is employed for
the realization of this system. Different architectures and parameters of the DCNN
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from Paper D).

classifier are investigated to select a suitable model. Finally, we test the effectiveness
of our HAR classifier (best-performing DCNN model) on real radar data.

The initial step involves simulating a HAR dataset, which is essential for the
training phase. This dataset is created by synthesizing human motion within the
Unity software. For each of the five activity types, ten distinct activity samples
are generated in Unity by varying parameters such as location, speed, acceleration,
and more. The 3D trajectories of these fifty activity samples are then exported
to MATLAB. In MATLAB, for the sake of data augmentation, eight marginally
different radar locations {CTx , CRx} and three signal strengths are simulated for
each activity sample. Consequently, a simulation-based HAR dataset is obtained,
comprising a total of 1200 simulated TV radial velocity distributions p(v, t). This
dataset encompasses five activities, ten emulations per activity, eight radar locations,
and three signal strengths. The resulting simulated dataset is utilized for training
the DCNN-based HAR classifier.

The simulated radar signatures (TV radial velocity distributions p(v, t)) are
transformed into images, serving as input feature maps for the DCNN-based HAR
classifier, illustrated in Figure D.9. For training and validation, an 80 : 20 split ratio
is applied to the simulation dataset. The adaptive moment estimation (Adam) opti-
mizer [86] is employed to optimize the parameters of the DCNN classifier using the
training examples from the simulated dataset. Real human activities were recorded
by an off-the-shelf FMCW radar system to evaluate the performance of our trained
HAR classifier. Both the real and simulated radar systems share same operating
parameters, such as the chirp interval, and utilize a monostatic configuration for
antennas.

Several DCNN network configurations were carefully investigated to implement
the HAR classifier. These network configurations differ in the structure of their hid-
den layers, each with a unique depth and complexity, as detailed in Table 4.1. The
classification performance of these networks (HAR classifiers) was evaluated utiliz-
ing the recorded TV radial velocity distributions p(v, t). Models 4–6 exhibited mean
accuracies exceeding 86.2% and a standard deviation (SD) of less than 4.8%, thereby
showing superior average classification performance compared to models with fewer
and more trainable parameters. Consequently, Models 4–6 were further investigated
and the optimal values were determined for their hyperparameters. For our HAR
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system, Model 6 came out to be the best-performing classifier with optimized hy-
perparameters like kernel dimension kd and learning rate lr. Figure 4.9 illustrates
the average accuracies of Model 6 over several values of these hyperparameters. The
mean performance of Model 6 is shown in Figures 4.9(a) and 4.9(b) through a graph
and a heatmap, respectively, for various hyperparameter combinations.

By utilizing the optimal hyperparameters and the best-performing model identi-
fied through the aforementioned mean performance analysis, we were able to achieve
the classification accuracy of 98.4%, as illustrated in Figure 4.10. It is important to
highlight that the classification performance of our simulation-driven HAR classifier
is comparable to real-data-driven HAR systems [7, 103, 58, 59]. Nevertheless, the
uniqueness of our simulation-driven framework lies in its ability to easily produce
large amounts of realistic simulation data for training purposes.

4.7 Conclusion

The evolution of RF-based HAR systems encounters challenges attributed to re-
stricted and incomplete datasets. These challenges primarily arise from difficulties
in procuring radar data for human subjects. In this chapter, we have addressed data
scarcity issues by introducing a comprehensive simulation framework. This frame-
work includes the synthesis of human motion and the simulation of realistic mm-wave
FMCW radar signatures, thereby significantly facilitating the generation of training
data for radar-centric HAR classifiers. Furthermore, the versatility of the simula-
tion framework is notable, providing precise control over various radar and target
parameters. This capability enables the generation of diverse radar datasets corre-
sponding to various scenarios, thereby enhancing the applicability of the proposed

Table 4.1: Details and the mean performance of the DCNN architectures used to
realize the simulation-based HAR system (reproduced from Paper D).

Model Convolutional neural
network (CNN)
layers

multilayer
perceptron
(MLP) layers

Trainable
parameters

Mean accuracy
± SD (%)

0 [16, 32] [32, 16] 3, 232, 117 80.5± 7.5

1 [16, 32, 48] [48, 16] 1, 882, 805 81.9± 5.7

2 [16, 16, 32, 32, 48, 48] [48, 32, 16] 658, 485 77.4± 16.5

3 [32, 48, 64, 80] [128, 64, 32] 2, 371, 557 85.3± 4.7

4 [32, 64, 72, 80] [256, 128, 32] 4, 502, 205 87± 3.3

5 [32, 64, 96, 128] [256, 128, 32] 7, 201, 029 86.2± 4.7

6 [32, 64, 128, 256] [256, 128, 32] 14, 434, 725 86.7± 4.8

7 [48, 128, 256, 512] [256, 128, 32] 31, 853, 109 47.3± 31.1

8 [48, 128, 512, 512] [256, 128] 37, 747, 957 66.4± 30.8

9 [48, 128, 256, 256,

512, 512]

[256, 128, 64] 43, 654, 645 19.7± 5.5
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Figure 4.9: (a) Mean classification accuracies and (b) mean accuracy heatmap of
Model 6 for different combinations of kernel dimensions kd and learning rates lr
(reproduced from Paper D).
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proof-of-concept. The proposed simulated-data-driven HAR system showcased an
impressive classification accuracy of 98.4% on previously unseen real radar data,
underscoring its effectiveness and potential for future radar-driven HAR classifiers.

In this proof-of-concept, we presented scatterer-level signal modeling for radar
signals, improving simulated micro-Doppler signatures and opening new possibilities
for radar-centric classifiers. For example, one can explore optimization techniques
to improve the realism of simulated radar signals and signatures. Another potential
extension involves considering various human activities beyond those studied in this
research. The proposed approach holds promise for future applications, such as a
sign language detector realized using FMCW radar systems. In the next chapter, we
will extend this framework to multiple-input multiple-output (MIMO) radar systems
focusing on direction-independent human activity recognition (DIHAR).
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Chapter 5

A Simulation-Based Framework for
MIMO Radar-Based DIHAR
Systems

5.1 Introduction

In this chapter, we present a simulation-centric framework tailored for direction-
independent human activity recognition (DIHAR) applications, with a particular
emphasis on utilizing millimeter wave (mm-wave) multiple-input multiple-output
(MIMO) radar systems. Building on the groundwork laid in earlier chapters, where
we highlighted the significance of motion direction in human activity recognition
(HAR) (Chapter 2 and Chapter 3) and addressed data scarcity issues in single-input
single-output (SISO) radar systems (Chapter 4), our focus now shifts to explor-
ing the potential of MIMO radar systems for developing simulation-centric DIHAR
classifiers. This investigation basically extends the simulation-based framework in-
troduced in Paper D, with a specific focus on incorporating MIMO radar systems
and multi-directional human activities. The chapter outlines contributions from
Paper E, specifically addressing research question 8. In this chapter, we mainly
concentrate on aspects of the DIHAR problem and innovative multi-stage data aug-
mentation techniques enabled by our simulation-based framework that haven’t been
extensively covered in the preceding chapter.

We propose a simulation-based approach that fundamentally differs from existing
machine learning-based simulation methods for HAR, such as few-shot learning [15]
and domain translation methods [8]. While these state-of-the-art HAR methods
address the challenge of limited radar training data in specific scenarios, they still
require some radar training data from those scenarios, relying on basic experimen-
tal data. In contrast, our fully simulation-based approach does not require any
experimental data from an actual radar system for training. Our approach stands
out by simulating radar datasets entirely from scratch, utilizing simulated three-
dimensional (3D) trajectories of motion capture (MoCap) and incorporating radar
and wireless channel modeling. This eliminates the need for new recordings and
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enables the simulation of radar signatures for various scenarios, a unique aspect not
found even in recent generative adversarial network (GAN)-based HAR approaches.
The novelty of our simulation model lies in motion synthesis, physical-layer radar
modeling, and radar signal synthesis. By incorporating these three stages, we aug-
ment the radar dataset at the motion-layer, physical-layer, and signal-layer syntheses
(see Figure 5.1). This level of control in generating realistic MIMO radar data is
unprecedented, setting our approach apart from other simulation techniques.

5.2 Our DIHAR Approach

In Paper E, we introduce an approach that addresses the challenges associated with
the scarcity of MIMO radar data, enables the simulation of extensive datasets, and
provides substantial control and adaptability in designing MIMO radar-based clas-
sifiers. Our approach involves simulating a 2 × 2 MIMO radar system within our
framework to implement a simulation-centric DIHAR system. Analogous to our ap-
proach in the preceding chapter, we initially emulate diverse human activities in a
virtual setting using the 3D animation features of Unity [92] and MotionBuilder [104]
software. To animate and retarget recorded MoCap data through these software
platforms (refer to Section E.3), we employ a suitable avatar with virtual markers

Physical-layer synthesis

• Simulate radar sensor nodes
   - SISO or MIMO
   - Monostatic, bistatic, or
     multistatic
• Convert uni-directional to
   multi-directional motion
   data

Radar1

propagation
delays

Radar2

propagation
delays...

MoCap data
sources

• Online repositories
• Vision sensors
• Wearable sensors
• Biomechanical models

Spatial
trajectories

MoCap data files = 34

Motion-layer synthesis

• Retarget MoCap data using Unity,
  MotionBuilder, etc.
• Vary avatar parameters, such as size
  location, speed, and acceleration 
• Simulate user-defined number of 
  bodily scatterers
Simulated human activity files = 84

Radar1

Simulated
IQ signal

...

Signal-layer synthesis

• User-defined scatterer
   weights (TV path gains)
• Vary backscattered energy
• Vary radar operating
   parameters
   - PRI, carrier frequency, etc.

Simulated RF files = 5652

Radar2

Simulated
IQ signal

Spatial
trajectories

Channel modeling and simulation

Figure 5.1: The data augmentation possibilities across various stages within our
simulation-centric framework. Our channel model facilitating effective data aug-
mentation at the signal- and physical-layer syntheses, enabling the conversion of
MoCap data from any source into realistic MIMO radar data (adapted from Pa-
per E).
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on its body segments. For characterizing the motion of the avatar, we generate 3D
trajectories of virtual markers.

While taking into account user-defined antenna locations, our channel model
processes the 3D trajectories from all virtual markers, thereby simulating the com-
posite baseband radio frequency (RF) signal or the raw in-phase and quadrature
(IQ) signal of a mm-wave radar system. When generating the simulated raw IQ
signal, the channel model considers multipath propagation components primarily
emanating from the avatar’s virtual markers. These markers have distinct time-
variant (TV) propagation delays, as detailed in Section E.4. Moreover, to train our
DIHAR system, we generated multi-directional activities by changing the positions
of the transmitter and receiver antennas at the physical-layer synthesis stage (refer
to Section 5.3.2).

In contrast to measurement-based DIHAR classifiers, our simulation-centric meth-
odology exhibits exceptional adaptability and confers numerous benefits, including
the capability to simulate varied training datasets tailored to diverse radar applica-
tions and operational needs. For both monostatic and multistatic configurations,
encompassing SISO, single-input multiple-output (SIMO), multiple-input single-
output (MISO) and MIMO radar systems, our simulation-centric methodology opens
avenues for advanced research in refining radar signatures. These signatures may
include simulated TV micro-Doppler signatures, simulated TV range distributions,
and more (refer to Section E.4 and Section E.6 for more details). Furthermore,
we incorporate multi-stage data augmentation methods, as detailed in Section 5.3,
enabling the generation of varied radar datasets for both SISO and MIMO con-
figurations in a resource-efficient way. Notably, our approach significantly reduces
resources required for classifier training. Given its versatility, our approach can re-
alize various other classifiers stemming from either SISO, SIMO, MISO or MIMO
radar systems, such as gesture recognition [105].

Within our proposed simulation-centric framework, we introduce a series of di-
verse data augmentation strategies encompassing motion-layer synthesis, physical-
layer synthesis, and signal-layer synthesis, as outlined in Figure 5.1. In the motion-
layer synthesis, we vary the target motion data, and in the physical-layer synthesis,
we expand our simulation-based dataset by introducing variations in physical layer
parameters, such as the radar’s aspect angle or the angle from which the radar il-
luminates the environment. Finally, at the signal-layer synthesis stage, we employ
different sets of simulated TV path gains to simulate different power levels. The
adoption of these multi-layered, simulation-centric data augmentation strategies en-
ables the manipulation of target features and antenna positions, the simulation of
several sensor nodes, and the conversion of uni-directional movement into multi-
directional movement. In the subsequent section, we present the details on the
multi-stage data augmentation techniques in the context of our simulation-based
DIHAR system.
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5.3 Proposed Multi-Stage Data Augmentation Tech-
niques

Now we delve into the data augmentation methods presented by our simulation-
centric methodology, as illustrated in Figure 5.1. These techniques empower us to
generate extensive, diverse and realistic radar signatures such as TV radial velocity
distributions. Initially, we explore the motion-layer synthesis, wherein a range of
avatar features, such as the acceleration, deceleration and height of the avatar,
undergo random variations. This process allows for the synthesis of a broad spectrum
of human motions. Following that, we detail the the physical-layer synthesis. It
enables the conversion of uni-directional movement into multi-directional movement
as well as the emulation of user-defined antenna configurations, such as monostatic
and multistatic, for SISO, SIMO, MISO and MIMO radar systems. Finally, we
explore the signal-layer synthesis stage.

5.3.1 Motion-Layer Synthesis

In the preceding chapter, our primary source of MoCap data was Mixamo [69], an
online repository that includes optical MoCap data acquired from professional ac-
tors [95]. In this chapter, we leverage both the Mixamo repository and the optical
MoCap system Qualisys [96] to acquire a limited and fundamental MoCap dataset
(refer to Chapter 4). This dataset encompasses five distinct human activities: falling
on the ground, walking in an indoor environment, standing up from and sitting down
on a seat, and picking up an item. These activities were performed multiple times,
and the initial MoCap dataset consisted of just 34 files. Employing the motion-layer
synthesis within our approach, we aim to generate an extensive dataset portraying
realistic human movement. Note that, the Unity software platform offers a com-
prehensive suite of features, particularly in animation. One prominent tool within
Unity is the blend tree, which is highly pertinent at the motion-layer synthesis. This
is due to the fact that blend trees enable the creation of new animation data, con-
tributing to the enhancement of motion data at the motion-synthesis layer. In Unity
and MotionBuilder software platforms, we visualized the MoCap data in a virtual
3D environment for the five activities. Subsequently, by modifying the features of
the avatar in these software, specifically altering the avatar’s height to 5ft and 6ft,
we augmented the rudimentary MoCap data, resulting in a total of 84 simulated
human activities, as depicted in Figure 5.1.

5.3.2 Physical-Layer Synthesis

Our simulation-centric framework provides the flexibility to fine-tune physical layer
configurations according to specific requirements, including adjusting parameters
such as pulse repetition frequency (PRF), chirp rate, bandwidth, and antenna po-
sitions {CTx

i , CRx
i }, where i = 1, 2. This flexibility serves to expand radar datasets

and model new conditions or scenarios. In the physical-layer synthesis, we selected
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appropriate antenna configurations {CTx
i , CRx

i } to emulate two radar subsystems,
Radari, in monostatic configuration, as depicted in Figure 5.2. In order to be con-
sistent with the real Ancortek 2 × 2 mm-wave radar system (see Figure E.1(a)),
we maintained the same simulation parameters for the two monostatic radar sub-
systems, Radar1 and Radar2, including PRF, chirp rate, bandwidth, and antenna
positions {CTx

i , CRx
i }.

We emulated different positions of Radari using a rotation matrix Ry(θRi), where
the angle θRi is the clockwise rotation with respect to the y-axis, with i = 1, 2. For
detailed information on the rotation matrix Ry(θRi), refer to (E.4). As depicted
in Figure 5.2, Radar1 is located at θR1 = 0◦, and Radar2 is positioned at θR2 =

−90◦. Within our framework, Radar2 can be simulated by rotating Radar1 by
90 degrees. Thus, the physical-layer simulation enables the emulation of a 2 × 2

MIMO radar system and its signatures, akin to the actual radar system illustrated in
Figure E.1(a). Importantly, the physical-layer synthesis facilitated by our framework
allows us to simulate various radar antenna configurations, including monostatic,
bistatic, and multistatic setups for SISO, SIMO, MISO, and MIMO radar systems.

The captured MoCap data originally represented activities in a single direction.
To simulate multi-directional human activities for DIHAR, our framework utilizes
the physical-layer synthesis. In our simulated MIMO radar system with two subsys-
tems (depicted in Figure 5.2), instead of performing activities in all directions, we
rotate both radar subsystems simultaneously, creating 18 different aspect angles. For
instance, in Direction 1, Radar1 (Radar2) is at 0◦ (−90◦), and by subsequently ro-
tating the simulated MIMO radar system by 20◦ clockwise, we simulate Direction 2.
This process converts basic uni-directional MoCap data into multi-directional data
with respect to the simulated MIMO radar system.
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Figure 5.2: Rotating the transmitter and receiver antennas of the 2×2 MIMO radar
system to simulate an activity in all directions (reproduced from Paper E).
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5.3.3 Signal-Layer Synthesis

Within our framework, the signal-layer synthesis enables the simulation of diverse
radar signatures for individual MoCap sample. For the simulated baseband sig-
nal sb,i(t′, t) (refer to (E.2)), we generate multipath signals corresponding to the TV
propagation delays of virtual markers. In this study, we do not simulate the signals
reflected from stationary objects as they are filtered out. Nevertheless, the signal-
layer synthesis is useful in emulating various wireless conditions, including those
with or without radar clutter. Additionally, it empowers us to control all aspects
of the simulated baseband signal sb,i(t′, t), including the TV path gains a(l)i (t), beat
frequencies f

(l)
b,i (t), and phases ϕ

(l)
i (t). For instance, for the simulated activities, we

fine-tuned the time-invariant path gains a(l)i using actual radar signatures and body
surface area [102]. To further augment the radar data, we varied power levels by
employing distinct sets of time-invariant path gains a

(l)
i .

We explored data augmentation methods embedded at various stages of our
simulation-centric framework for DIHAR: motion-, physical-, and signal-layer syn-
theses. For each radar subsystem in our simulated MIMO radar system, we gen-
erated 2826 radar signatures by employing these methods. In total, 5652 radar
signatures were generated for our two radar subsystems, demonstrating the utility
and practicality of our simulation-centric framework. By converting the rudimen-
tary MoCap data, initially comprising only 34 samples, into 5652 multi-perspective
radar signatures, the data augmentation techniques within our framework played a
crucial role in producing comprehensive and realistic radar data.

5.4 Simulation-Based DIHAR Systems

In this section, we detail the implementation and evaluation of our simulation-driven
DIHAR system and assess its real-world applicability using a real 2×2 MIMO radar
dataset. To train our deep convolutional neural network (DCNN)-based DIHAR
system, we simulated a radar dataset with 5652 simulated TV radial velocity distri-
butions. The DIHAR system consists of two identical feature extraction networks
(FENs) and a multilayer perceptron (MLP), as illustrated in Figure E.9. During
training and testing, the FENs process radar signatures corresponding to each radar
subsystem, and the feature fusion block (see Figure E.9) merges features from the
two monostatic radar subsystems, Radar1 and Radar2. The MLP network then
learns to classify multi-directional human activities, making the radar-based HAR
classifier direction-independent.

The scarcity of publicly available datasets containing both raw IQ data and clean
radar signatures led us to utilize our own recorded dataset, which included the five
types of human activities. While simulating new complex activities presents minimal
challenges, acquiring real data remains a significant obstacle. Our simulation-centric
approach can adeptly generate radar signatures for numerous activities, thereby
providing an efficient and streamlined process. However, assessing the performance
of the simulation-based HAR system is constrained by the lack of real radar data for
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a wider range of activities. To determine the classification accuracy of our trained
DCNN-based DIHAR classifier, we utilized our real dataset acquired with a mm-
wave MIMO radar system (see Figure E.2).

The real dataset comprised 875 multi-directional human activities from six sub-
jects, resulting in a dataset with 1750 TV radial velocity distributions. Our simulation-
centric DIHAR classifier demonstrated excellent real-world performance, yielding an
accuracy of 97.83% as indicated by the confusion matrix in Figure 5.3. Note that our
well-balanced test dataset led to a macro average F1-score [106] of approximately
97.6%, aligning closely with the overall accuracy. The simulation-driven DIHAR sys-
tem achieves accuracy similar to contemporary radar-based HAR systems [103, 7].
However, it uniquely considers diverse human movement directions, it enables the
generation of unbounded MIMO radar signatures, and it can be extended to realize
various radar-based classifiers like gesture recognition systems.

5.5 Conclusion

The advancement of classifiers, whether utilizing SISO or MIMO radar systems,
is primarily impeded by a shortage of labeled datasets. This study introduces
a simulation-centric framework to mitigate data scarcity for mm-wave frequency-
modulated continuous wave (FMCW) MIMO radar systems. While the emphasis of
this study is on a DIHAR system utilizing a MIMO radar system, its application
goes beyond DIHAR classifiers.

Our simulation framework generates software-defined multi-directional human
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Figure 5.3: Confusion matrix quantitatively representing the summary of the results
achieved by our simulation-based DIHAR classifier. The overall obtained accuracy
is 97.83% for the five multi-directional activities (reproduced from Paper E).
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motions from basic MoCap data. It converts simulated spatial trajectories into raw
IQ data, while taking into account software-defined physical-layer and signal-layer
parameters. For instance, these parameters include the placement of transmitters
and receivers, characteristics of multipath components, and more. The simulated
raw IQ data undergoes radar signal processing to simulate multiperspective TV
radial velocity distributions, used for DIHAR system training.

To diversify radar-based HAR training data, our simulation framework employs
multi-stage data augmentation at motion, physical, and signal levels. This enables
precise control over avatar properties, motion characteristics, PRF, antenna setup,
and more. By augmenting rudimentary MoCap data (34 examples) to 5652 radar
signatures, our multi-stage data augmentation techniques remarkably reduces train-
ing efforts and proves effective for developing radar-based classifiers. Our trained
DIHAR system achieves 97.83% accuracy on real test samples. By eliminating the
necessity for human participation and a real radar system, our simulation-based
approach holds promise for training future radar-data-driven classifiers.
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Chapter 6

Summary and Outlook

This dissertation addresses the challenge of human activity recognition (HAR) within
the domain of radio frequency (RF) sensing, primarily focusing on modeling the
impact of human motion on wireless channel characteristics, with a specific empha-
sis on millimeter wave (mm-wave) frequency-modulated continuous wave (FMCW)
radar systems. The subsequent sections concisely outline the key findings of this
dissertation and offer insights into potential directions for future research.

6.1 Major Contributions

This research signifies a paradigm shift from experimental-based approaches to
simulation-based approaches, specifically tailored for HAR systems employing RF
sensors. The pivotal innovation lies in the introduction of a sophisticated channel
model that inputs three-dimensional (3D) trajectories and outputs high-fidelity sim-
ulated RF signals. Notably versatile, this proposed channel model grants substan-
tial control over signal parameters, enabling the simulation of diverse environmental
conditions. The key contributions of this dissertation are succinctly delineated as
follows:

• In a distributed mm-wave FMCW multiple-input multiple-output (MIMO)
radar system, the challenge of cross-channel interference is mitigated through
the introduction of a range gating method. This method involves the physical
implementation of different RF delay lines, effectively separating distinct RF
links.

• This research investigates the limitations of single-input single-output (SISO)
and monostatic MIMO radar systems, particularly in relation to motion di-
rection. It introduces a distributed MIMO radar configuration designed to
capture multi-perspective time-variant (TV) radial velocity distributions of
multi-directional human activities. Leveraging this multistatic MIMO radar
setup and the dynamic time warping (DTW) distance metric, a direction-
independent step counting system is developed for accurately tallying the
number of steps for multi-directional walking activities.
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• An experimental-based direction-independent human activity recognition (DI-
HAR) system is devised using a multi-perspective MIMO radar configuration
to address physical layer challenges in current monostatic radar-based HAR
systems and classify various multi-directional human activities. A compre-
hensive measurement campaign is conducted to acquire a dataset for training
and testing the experimental-based DIHAR system. Three HAR systems are
developed and analyzed: a monostatic radar-based HAR system, a monostatic
radar-based DIHAR system, and a distributed MIMO radar-based DIHAR
system. Performance comparisons are made to underscore the physical layer
challenges present in contemporary monostatic radar-based HAR systems.

• A comprehensive end-to-end simulation framework is introduced that addresses
a significant data scarcity challenge in radar systems by transforming motion
data into RF signals. It efficiently simulates diverse human activities, gen-
erating 3D trajectories for multiple markers on the avatar’s body segments
through adjustments to avatar’s parameters like position, velocity, and size.
An innovative channel model is introduced that utilizes spatial trajectories to
produce simulated raw in-phase and quadrature (IQ) data or baseband RF
signals while considering the long- and short-time stationarity properties of
the indoor wireless channel. High-fidelity radar signatures are generated from
the raw IQ data. A close match between simulated and real radar signatures is
shown by computing normalized DTW distances, thereby demonstrating the
framework’s effectiveness in capturing the kinematic features of diverse human
activities. This approach enables the simulation of numerous realistic radar
signatures for diverse operational and environmental conditions, eliminating
the need for resource-intensive measurement campaigns. Simulated radar sig-
natures exclusively train a deep convolutional neural network (DCNN)-based
HAR classifier, achieving close to 100% classification accuracy when tested
with real radar signatures.

• A simulation framework, driven by motion capture (MoCap) data, is intro-
duced, focusing on the development of a DIHAR system that incorporates a
MIMO channel model for classifying multi-directional activities. The DIHAR
classifier within this simulation-centric framework is exclusively trained using
simulated MIMO radar signatures. Data augmentation methods, including
motion-layer synthesis, physical-layer synthesis, and signal-layer synthesis, are
presented within the simulation-centric approach, enabling the simulation of
diverse radar datasets tailored to user-defined MIMO radar configurations.
Motion-layer synthesis introduces random variations to avatar features to syn-
thesize a broad spectrum of human motions. Physical-layer synthesis details
the conversion of uni-directional movement into multi-directional movement
and the emulation of user-defined antenna configurations. Signal-layer syn-
thesis allow the simulation of diverse radar signatures for individual MoCap
samples.
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6.2 Future Work

While this study focuses on simulation-centric HAR systems, the applications of the
presented proof-of-concept extend beyond HAR classifiers. The dissertation intro-
duces a paradigm shift in radar sensing, transitioning from experimental-based ap-
proaches to simulation-centric methodologies. The future directions are envisioned
as follows:

• The scatterer-level signal modeling, presented in the simulation approach, al-
lows for the optimization of scatterers’ weights. Optimization techniques can
be employed to improve the realism of simulated radar data, incorporating
intricate environmental factors and propagation effects.

• A thorough investigation can be conducted into adjusting simulation parame-
ters to ensure the generated data is representative across a broader spectrum
of scenarios and conditions, thereby creating a more comprehensive training
dataset.

• Investigate the customization of the simulation framework for emerging radar
applications, such as autonomous vehicles, smart cities, and other innovative
use cases. Tailor the framework to meet the specific requirements of these
applications, expanding its capabilities to generate realistic radar data for
a diverse range of entities, including animals, vehicles, aircraft, drones, and
more. Furthermore, explore the integration of dynamic operational conditions
within the simulation, enabling the radar system to adapt to scenarios in-
volving changes in interference and other environmental factors like moving
clutter. Additionally, consider extending simulated radar signatures to en-
compass a broader spectrum of human activities beyond those explored in this
research, facilitating the development of radar-based classifiers trained using
simulated data, such as sign language detectors.

• Develop methodologies for the validation and benchmarking of simulated radar
data, comparing its performance against real-world datasets and identifying
areas for improvement.

• The feasibility of real-time simulation capabilities within the framework can
be explored to enable on-the-fly generation of radar data. This functionality
caters to applications requiring continuous adaptation and learning.

• Investigate the potential for collaborative simulation environments, facilitating
interactions among multiple radar systems within a simulated space. This
offers a platform for studying complex scenarios involving multiple sensors.
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Abstract— In this paper, we analyze and mitigate the cross-channel in-
terference, which is found in multiple-input multiple-output (MIMO) ra-
dio frequency (RF) sensing systems. For a millimeter wave (mm-Wave)
MIMO system, we present a geometrical three-dimensional (3D) chan-
nel model to simulate the time-variant (TV) trajectories of a moving
scatterer. We collected RF data using a state-of-the-art radar known as
Ancortek SDR-KIT 2400T2R4, which is a frequency-modulated continu-
ous wave (FMCW) MIMO radar system operating in the K-band. The
Ancortek radar is currently the only K-band MIMO commercial radar
system that offers customized antenna configurations. It is shown that
this radar system encounters the problem of interference between the
various subchannels. We propose an optimal approach to mitigate the
problem of cross-channel interference by inducing a propagation delay
in one of the channels and apply range gating. The measurement re-
sults prove the effectiveness of the proposed approach by demonstrating
a complete elimination of the interference problem. The application of
the proposed solution on Ancortek’s SDR-KIT 2400T2R4 allows resolv-
ing all subchannel links in a distributed MIMO configuration. This allows
using MIMO RF sensing techniques to track a moving scatterer (target)
regardless of its direction of motion.

Keywords— Interchannel interference; distributed MIMO; 3D channel
model; sensor network; millimeter wave (mm-Wave); FMCW; micro-
Doppler signatures; RF sensing.
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A.1 Introduction

The birth of radar in the first half of the last century led to numerous research
studies and advances in the field. Although radar systems were originally developed
for military surveillance tasks, modern radars have found many applications in our
daily lives due to their continuous development over the decades. Conventionally,
radar systems were limited to official or governmental entities, but now their smaller
form factor, lower cost, higher precision, and easier handling have led to more general
utilization. Conventional applications of radars have been aerial [1] and terrestrial [2]
traffic control, missile and aerial defense [3], altimetry [4], naval surveillance [5],
weather surveillance [6], and astronomy [7], whereas the contemporary radar systems
have also been employed in modern medicine [8], autonomous vehicles [9, 10, 11],
geology [12], building security, human activity recognition systems [13, 14, 15, 16],
and even in consumer electronics such as mobile phones [17] (serving as a gesture
recognition system). It is now safe to assert that the idea of radar sensors being
ubiquitous is not far-fetched anymore due to their miniaturization, affordability,
and utility. For a non-trivial problem such as autonomous driving in automotive
engineering, several types of radar systems (short-range, medium-range, and long-
range) [18] are typically integrated to achieve the desired performance, especially
under adverse lighting conditions, where other sensing modalities do not perform
as required.

A radar system transmits electromagnetic waves and processes the received
backscattered waves to estimate one or more parameters of an object present in the
environment. Depending on the type of radar, it may measure the range, Doppler
(or micro-Doppler) signature, and angular information of a target within certain
limitations. Depending on the problem, a radar may be designed and deployed as a
continuous wave (CW) radar [19], frequency-modulated continuous wave (FMCW)
radar [20], pulsed radar [21], bistatic radar, monopulse radar [22, 23], synthetic
aperture radar (SAR) [24], digital beamforming (DBF) multiple-input multiple-
output (MIMO) radar in a monostatic configuration [25, 26], or distributed MIMO
radar [27, 28, 29]. Recently, short- to medium-range FMCW radars have been
gaining increasing attention for commercial indoor and outdoor applications. For
instance, the authors of [30, 31] have used a K-band FMCW radar system in indoor
settings to monitor human vital functions. More recently, FMCW radar systems op-
erating in the W-band have been adopted for more sophisticated applications, such
as sign language recognition [32], multimodal traffic monitoring [33], and skeletal
posture estimation [34].

Generally, radar systems suppress the static clutter by filtering out the zero-
Doppler frequency components from the received signal, which prevents detection
and tracking of the scatterer’s motion perpendicular to its boresight. Thus, to ac-
quire the scatterer’s motion information from multiple aspect angles, the deployment
of a single-input single-output (SISO) radar or a monostatic MIMO radar is not a
suitable choice. Instead, with the idea of macrodiversity, a distributed MIMO radar
system or a multistatic radar network is preferred to circumvent the shortcomings
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of the aforementioned radar configurations. It is in this context that we will focus
our attention on the deployment of a distributed MIMO radar system in indoor
environments. For different application areas, researchers are investigating differ-
ent target–antenna configurations while leaning towards multistatic radar networks.
For example, the authors of [35] deployed a network known as NetRAD for the
detection of armed/unarmed personnel, and the authors of [36] report the use of a
commercial DWM1000 ultra wideband wireless transceiver module in a multistatic
configuration to track a moving person in a cluttered indoor or outdoor environment.

The probability of mutual interference between radar systems is increasing grad-
ually as commercial radars become more widely used. In distributed MIMO radar
systems, cross-channel interference exists between the different nodes of a multi-
static radar network. For this research, we chose a radar system that uses the time
division multiple access (TDMA) scheme to avoid cross-channel interference. In the
TDMA mode, the transmitters of a MIMO radar system operate in different time
slots. As part of the physical channel characteristics, it is also imperative for the sys-
tem performance to consider the interchannel radio frequency (RF) isolation inside
the RF circuitry. In case of RF leakage in MIMO radar subchannels, the received
signals are of the same order of magnitude for all receiver channels. For a consumer
grade hardware that undergoes such RF leakage, the signal from one receiver leaks
into the other receiver, and vice versa, making it impossible to separate the sub-
channels from each other. The problem is then to distinguish the received signal
once impaired by RF-leakage from the co-channel signals. The interference prob-
lems arising due to the RF leakage between the RF chains cannot be resolved by the
TDMA scheme, because the TDMA scheme is only effective against cross-channel
interference if good RF-isolation is ensured beforehand. Thus, for such consumer
grade MIMO radar systems, we propose a robust approach in this paper to solve
the interference problem.

To estimate the trajectories of a non-stationary scatterer from different aspect
angles in a cluttered indoor environment, we adopt Ancortek’s commercial MIMO
radar system SDR-KIT 2400T2R4, which operates in the 24–26 GHz frequency band.
It has in aggregate six independent physical RF chains: two transmitter chains and
four receiver chains. For this research, we utilize Ancortek’s 2 × 4 MIMO radar
system in a 2× 2 configuration for simplicity. Ancortek’s radar system is currently
the only commercially available MIMO radar system that offers the flexibility to
distribute its antennas and to process all eight MIMO subchannel links individually.
We distribute two pairs of collocated transmitter–receiver antennas in an indoor
setting to illuminate a non-stationary scatterer from different aspect angles. The
problem of cross-channel interference arises in Ancortek’s MIMO radar system even
with the utilization of the TDMA scheme. Furthermore, we will point out that An-
cortek’s SDR-KIT 2400T2R4 has a very poor interchannel RF isolation, which leads
to incorrect measurements of the mean Doppler shift. Thus, without any hardware
or firmware alteration, there is no known optimal solution to effectively isolate the
different RF MIMO channel links. The problem of interference in the Ancortek
radar has also been reported by the authors of [37], where they have subtracted the
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spectrograms to alleviate the interference problem. The solution proposed in [37]
is suboptimal and non-robust; it works when the interference component is smaller
than the subchannel’s main component and fails when the interference component is
of the order of the magnitude of the main component of the subchannel. Therefore,
in this paper, we propose an optimal and robust solution that completely eradi-
cates the problem of cross-channel interference. The proposed solution performs
effectively even when the interference component is stronger than the subchannel’s
main component. Although our focus is on Ancortek’s radar, similar interference
problems may also persist for future commercially available MIMO radar sensors.
Thus, for such MIMO radar systems, the proposed solution can be adopted without
entailing any hardware or firmware modifications. Additionally, the proposed solu-
tion also helps alleviate the maximum measurable velocity or the pulse repetition
frequency (PRF) of the radar by completely avoiding the TDMA scheme, and still
being able to segregate the MIMO channel links.

The principal contributions of this paper are as follows:

1. For a MIMO radar system whose antennas are distributed in an indoor clut-
tered environment, we present a system-theoretical approach to simulate the
time-variant (TV) trajectories of a scatterer with arbitrary antenna place-
ments.

2. We illuminate a non-stationary scatterer from different aspect angles (by de-
ploying two pairs of collocated transmitter-receiver antennas) to analyze the
TV micro-Doppler spectrogram, TV radial velocity profile, and TV mean
Doppler shift.

3. For Ancortek’s SDR-KIT 2400T2R4 distributed MIMO radar system, we high-
light the problem of cross-channel interference. We propose an optimal and
robust solution to completely eradicate the interference components without
modifying the hardware or firmware of the MIMO radar system.

4. We conduct experiments to verify the effectiveness of the proposed solution by
successfully segregating the measured MIMO subchannels’ data.

5. We cross-validate the analytical model and the proposed solution of the inter-
ference problem by comparing the simulation results with the measurement
results.

The organization of the paper is as follows. Section A.2 formulates the inter-
ference problems that persist in Ancortek’s SDR-KIT 2400T2R4 distributed MIMO
radar system. The geometrical 3D indoor channel model and the radar system
model are presented in Sections A.3 and A.4, respectively. Section A.5 elucidates
the proposed solution to the interference problem. The simulation results and the
measurement results are discussed in Section A.6. Finally, Section A.7 summarizes
our results and draws the conclusions.
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A.2 Problem Description

Capturing and tracking nonlinear trajectories of moving scatterers indoors by means
of RF-sensing modalities presents a number of challenges. One major challenge is
to detect the scatterer trajectories regardless of the radar’s aspect angle, which
requires multiple RF sensors. Therefore, for our experiments, a software-defined
radar (SDR) known as Ancortek SDR-KIT 2400T2R4 has been configured in a 2×2

MIMO radar setup in the presence of a single moving scatterer SM as illustrated in
Figure A.1. The 2 × 2 MIMO radar system is composed of two radar subsystems,
denoted as Radar1 and Radar2. The first subsystem (Radar1) is equipped with
the transmitter antenna ATx

1 and the receiver antenna ARx
1 , whereas the second

subsystem (Radar2) is composed of the transmitter antenna ATx
2 and the receiver

antenna ARx
2 . Although the two radar subsystems are part of the same Ancortek

system, they have identical but completely separate signal processing units.
The wireless channel link from the transmitter antenna ATx

i to the receiver
antenna ARx

j via the scatterer SM is denoted by ATx
i –ARx

j , where i, j ∈ {1, 2}.
The time-variant channel impulse response (TV-CIR) hij(τ

′, t) corresponds to the
link ATx

i –ARx
j as illustrated in Figure A.1. Moreover, the two subradars operate

in the same frequency range but in different time slots. Each subradar is assigned
a different time slot according to the TDMA scheme to avoid cross-channel inter-
ference between the two subradars. In TDMA mode, the TV-CIRs h21(τ

′, t) and
h12(τ

′, t) do not interfere with h11(τ
′, t) and h22(τ

′, t), respectively, but this is not
true for the Ancortek SDR-KIT 2400T2R4 MIMO radar. The commercially avail-
able Ancortek MIMO radar system poses the problem of cross-channel interference
even in TDMA mode due to its poor interchannel RF isolation. It is vital for system
designers to ensure a good RF-isolation in the MIMO radar RF-circuitry, but such
insurance is hard to realize for miniaturized and cost-effective RF circuits. Here, this
phenomenon of RF leakage between the physical RF channels has been first investi-
gated for the Ancortek radar because it is currently the only commercially available
K-band radar that allows to distribute its antennas. However, the same problem
may persist in future commercial MIMO radar systems. Note that this analysis
provides guidelines for radar system designers to avoid cross-channel interference

Ancortek's
MIMO Radar System

Figure A.1: Two radar subsystems forming a 2 × 2 MIMO radar system in the
presence of a single moving scatterer SM .
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in their future designs. In addition, the analysis provides a performance criterion
for the test and evaluation of the future FMCW MIMO radar systems. Note that
the frequency division multiple access (FDMA) scheme is generally not preferred in
commercial FMCW MIMO radar systems because of the associated complexity and
cost. The FDMA approach limits the instantaneous bandwidth of an FMCW radar,
which in turn limits the range resolution of the radar (see Section A.4).

The TV-CIRs h11(τ
′, t) and h22(τ

′, t) are related to Radar1 and Radar2, respec-
tively. Under ideal circumstances, Radar1 would only receive the signal correspond-
ing to the wireless channel link ATx

1 –ARx
1 , and Radar2 would only receive the signal

corresponding to the link ATx
2 –ARx

2 . However, due to the poor interchannel RF
isolation of the Ancortek radar system, the receivers of the two radars strongly in-
terfere with each other. This problem is independent of the channel impulse response
length. The system is paused between switching from Radar1 to Radar2, but the
two subsystems, i.e., Radar1 and Radar2, are part of one and the same MIMO radar
system having a single RF printed circuit board (PCB). This RF circuit has poor RF
isolation, due to which we encounter the problems of RF-leakage and cross-channel
interference. The actual measured TV-CIRs h̃11(τ

′, t) and h̃22(τ
′, t) incorporating

the problem of cross-channel interference are

h̃11(τ
′, t) = h11(τ

′, t) + α11
22h22(τ

′, t) + α11
12h12(τ

′, t) + α11
21h21(τ

′, t) (A.1)

and

h̃22(τ
′, t) = h22(τ

′, t) + α22
11h11(τ

′, t) + α22
12h12(τ

′, t) + α22
21h21(τ

′, t) (A.2)

respectively, where αkk
ij is the weight corresponding to the TV-CIR of the interfering

link for i, j, k ∈ {1, 2}. The system model described by (A.1) takes into account
that the measured TV-CIR h̃11(τ

′, t) comprises the desired component h11(τ
′, t) and

the three undesired cross-channel interference components α11
22h22(τ

′, t), α11
12h12(τ

′, t),
and α11

21h21(τ
′, t). Equation (A.2) presents an analogous system model for the cross-

channel inference impairing the actual measured TV-CIR h̃22(τ
′, t). The weights αkk

ij

depend on the RF isolation between the subchannels of the MIMO radar system.
An ideal MIMO radar system fulfills the condition αkk

ij = 0, implying that h̃ii(τ
′, t) =

hii(τ
′, t), but in practice, we have αkk

ij ̸= 0 ∀ i, j, k ∈ {1, 2}.
To demonstrate the practical relevance of the described problem, we study the

cross-channel interference of the Ancortek MIMO radar. Therefore, we measure the
nonlinear trajectories of a swinging pendulum in a 2 × 2 MIMO radar setup. Let
us consider a swinging pendulum as a physical model for a moving scatterer SM

as shown in Figure A.1. The choice of a pendulum as a moving scatterer SM is
appropriate as the trajectory of SM can be described by a mathematical reference
model as shown in Section A.6, which is important for the cross-validation of the
experimental results. The two subradars are positioned on the two-dimensional
orthogonal axes (x, y). This arrangement of subradars enables the overall system
to capture the scatterer’s motion in the horizontal plane, which is not possible with
a SISO radar system. For instance, if the scatterer moves in the direction of the
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boresight of Radar1, then Radar1 will detect the motion, while Radar2 may not.
Conversely, Radar2 will obtain a relatively much stronger movement signature if the
scatterer moves in the direction of the boresight of Radar2.

The pendulum is set to swing in a direction parallel to the boresight of Radar1.
The pendulum’s trajectories are recorded simultaneously by two subradars. Then,
the recorded raw data are processed and the spectrogram is computed individually
for each radar unit. Section A.4 provides the details on the computation of the
spectrogram from the radar’s raw data. Subsequently, the radial velocity profile is
computed from the spectrogram (see Section A.4). The radial velocity profile of the
measured TV-CIR h̃22(τ

′, t) in the presence of the swinging pendulum is shown in
Figure A.2a. Figure A.2b shows the motion of the pendulum in terms of the radial
velocity ḋij(t) and range dij(t). Although both subradars experience interferences,
for brevity, only the measurements from Radar2 are shown here in Figure A.2.

Evidently, the radial velocity profile in Figure A.2a not only contains the pen-
dulum’s trajectories from the desired wireless link ATx

2 –ARx
2 , but also the undesired

trajectories from the interfering links ATx
1 –ARx

1 , ATx
1 –ARx

2 , and ATx
2 –ARx

1 . Similarly,
Figure A.2b also aids unmasking the problem of interference by depicting the three
separate curves corresponding to the links ATx

i –ARx
j . As expected, the radial ve-

(a)

(b)

Figure A.2: Radial velocity ḋij(t) of the pendulum vs. (a) time t and (b) range dij(t)
for the measured subchannel h̃22(τ

′, t).
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locities of the pendulum in Figure A.2a,b are identical for the links ATx
1 –ARx

2 and
ATx

2 –ARx
1 . In Figure A.2a,b, the three different components of the swinging pendu-

lum are labeled with the corresponding TV-CIRs hij(τ
′, t). Furthermore, we have

confirmed and validated this observed phenomenon of cross-channel interference by
simulating the different wireless links ATx

i –ARx
j . The geometrical 3D indoor chan-

nel model and the extended pendulum model have been presented in Sections A.3
and A.6, respectively, enabling the simulation of the wireless links ATx

i –ARx
j .

The aforementioned interferences encountered by the MIMO radar system hinder
us to track the scatterer’s motion. To efficiently compute the radial range and radial
velocity of the scatterer at each radar, we must first eradicate the interferences shown
in Figure A.2. This impels us to propound a solution to the problem of cross-channel
interferences, which is presented in Section A.5. For a better understanding of the
proposed solution, we first describe the underlying geometrical 3D indoor model and
the radar system model in Sections A.3 and A.4, respectively.

A.3 Geometrical 3D Indoor Channel Model

In this section, we consider a 2 × 2 MIMO system deployed in an indoor 3D prop-
agation scenario as depicted in Figure A.3. The transmitter antenna ATx

i is placed
at a fixed position (xTx

i , yTx
i , zTx

i ) for i = 1, 2. Similarly, the receiver antenna ARx
j is

fixed at the position (xRx
j , yRx

j , zRx
j ) for j = 1, 2. The RF cable of length LTx

i (LRx
j )

connects the ith transmitter (jth receiver) antenna to the SDR as illustrated in
Figure A.3. The 3D propagation scenario consists of a single moving object, which
is modeled as a scatterer SM with the TV coordinates (x(t), y(t), z(t)) as shown in
Figure A.3. In addition, the propagation environment consists of K fixed objects
SF
k (k = 1, 2, . . . , K), such as walls, furniture, and decoration items. As the fixed

scatterers SF
k are of no interest, they are eliminated from the spectrogram by radar

signal preprocessing techniques.
The TV trajectory C(t) of the moving scatterer SM , the position CTx

i of the
transmitter antenna ATx

i , and the position CRx
j of the receiver antenna ARx

j are
defined as

C(t) =
[
x(t) y(t) z(t)

]T
(A.3)

CTx
i =

[
xTx
i yTx

i zTx
i

]T
(A.4)

and
CRx
j =

[
xRx
j yRx

j zRx
j

]T
(A.5)

respectively. The Euclidean distance between the ith transmitter (jth receiver)
antenna and the non-stationary scatterer SM is denoted by dTx

i (t) and dRx
j (t), which

can be expressed as
dTx
i (t) =

∥∥C(t)− CTx
i

∥∥ (A.6)

and
dRx
j (t) =

∥∥C(t)− CRx
j

∥∥ (A.7)
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SDR

Figure A.3: Geometrical 3D model for a 2× 2 MIMO system with a single moving
scatterer SM and K fixed scatterers SF

k (k = 1, 2, . . . , K).

respectively, where
∥∥x∥∥ denotes the Euclidean norm of x. The TV radial velocity

components ḋTx
i (t) and ḋRx

j (t) can be represented as

ḋTx
i (t) =

1

dTx
i (t)

[
Ċ(t)

]T [
C(t)− CTx

i

]
(A.8)

and
ḋRx
j (t) =

1

dRx
j (t)

[
Ċ(t)

]T [
C(t)− CRx

j

]
(A.9)

respectively. The radar’s radial range dij(t) of the moving scatterer SM is given by
1/2 of the total propagation distance, i.e,

dij(t) =
1

2

[
dTx
i (t) + dRx

j (t) + LTx
i + LRx

j

]
. (A.10)

Finally, the composite radial velocity ḋij(t) can be expressed as

ḋij(t) =
1

2

[
ḋTx
i (t) + ḋRx

j (t)
]
. (A.11)

A.4 Radar System Model

For a 2 × 2 MIMO TDMA FMCW radar system, the transmitter signal si(t′) is
defined as

si(t
′) = exp

[
jϕi + j2π

(cr
2
t′2 + f0t

′
)]

(A.12)

for i = 1, 2, where ϕi is the initial phase, cr is the chirp rate, and f0 is the start
frequency. The chirp rate cr is defined as cr = (f1 − f0) /Tsw, where f1 is the
stop frequency, and Tsw is the sweep time of the periodic up-chirp signal being
transmitted. In the TDMA mode, both transmitters operate in different time slots
but use the same waveform as in (A.12). The time slots for the ith transmitter are
defined as (2n+ i− 1)Tsw ≤ t′ < (2n+ i)Tsw for n = 0, 1, . . . .
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The transmitted signal si(t′) is reflected to the radar receiver antennas due to
stationary and non-stationary scatterers present in the indoor environment. There-
fore, each multipath component associated with the link ATx

i –ARx
j experiences a

propagation delay τ
′(l)
ij for l = 1, 2, . . . ,L, where L denotes the total number of scat-

terers, which is given by L = K + 1. The received signal, which is modeled as a
weighted sum of L back-scattered multipath components, is then passed through
the quadrature mixer stage of the radar. At the output of the mixer, we obtain
the so-called beat (also known as deramped, dechirped or intermediate frequency)
signal. The beat signal s(l)b,ij(t

′) corresponding to the channel link ATx
i –ARx

j in the
presence of a particular scatterer S(l) is given as [38]

s
(l)
b,ij(t

′) = a
(l)
ij exp

(
j2πf

(l)
b,ijt

′ + jϕ
(l)
ij

)
(A.13)

where

f
(l)
b,ij =

2d
(l)
ij cr

c0
(A.14)

is the beat frequency, and

ϕ
(l)
ij =

4πd
(l)
ij

λ
(A.15)

is the phase corresponding to the range d
(l)
ij = c0τ

′(l)
ij /2, where c0 is the speed of

light, and λ is the radar’s wavelength. The symbol a
(l)
ij in (A.13) represents the

net amplitude attenuation, which is related to the radar cross section of the lth
scatterer, antenna gains, and transmission losses. In the presence of L scatterers in
the radar’s field of view (FOV), the composite beat signal sb,ij(t′) is simply the sum
of all beat signals, i.e.,

sb,ij(t
′) =

L∑
l=1

s
(l)
b,ij(t

′). (A.16)

Furthermore, note that according to the authors of [39], the complex conjugate of
the composite beat signal s∗b,ij(t′) is equal to the Fourier transform of the TV-CIR
hij(τ

′, t), i.e.,

s∗b,ij(t
′) = F

{
hij(τ

′, t)
}

(A.17)

where F represents the Fourier transform. The time delay τ ′ in (A.17) is related to
the dual value of t′ denoted by fb as τ ′ = fb/cr. Due to relation (A.17) and F{.}
being a linear operator, the interference components in (A.1) and (A.2) also affect
the measured composite beat signal sb,ij(t′).

The composite beat signal sb,ij(t′) is sampled by an analog to digital converter
(ADC) module with sampling frequency Fs = 1/Ts, where Ts is the sampling
interval. Let Ns denote the number of samples taken from sb,ij(t

′) with the sampling
interval Tsw, and let Nc denote the number of chirps within a frame of the FMCW
radar. Then, for a single frame duration of Tf = Nc × Ns × Ts, the sampled beat

80



Human Motion and MIMO Radar Data Syntheses

signal sb,ij(nTs) can be arranged in a raw data matrix Dij as

Dij =


sb,ij(0) sb,ij(Ts) . . . sb,ij(Tsw − Ts)

sb,ij(Tsw) sb,ij(Tsw + Ts) . . . sb,ij(2Tsw − Ts)
...

...
...

...
sb,ij((Nc − 1)Tsw) sb,ij((Nc − 1)Tsw + Ts) . . . sb,ij(NcTsw − Ts)


(A.18)

where Tsw = NsTs. Note that the dimension of the raw data matrix is Nc × Ns.
Each row of Dij contains the fast-time data that has been sampled with the sampling
interval Ts, and each column of Dij contains the slow-time data sampled with the
sampling interval Tsw.

The fast Fourier transform (FFT) of the fast-time data is known as the range
FFT. The range FFT is applied to the rows of the raw data matrix Dij to acquire the
beat frequencies f (l)

b,ij of the composite beat signal sb,ij(t′) (see (A.13)). Subsequently,
the range maps or the range d(l)ij for each scatterer can be computed using the relation
in (A.14). As the observation interval of the range FFT is Tsw, the frequency
resolution fres of the range FFT is limited to fres = 1/Tsw. Therefore, it can be
shown [40] that the spectral components caused by two different moving scatterers
at different ranges can be resolved in the spectrum of (A.16) provided that the
scatterers are at least

dres =
c0
2B

(A.19)

apart in range, where dres is the range resolution, and B is the bandwidth of the
radar. Furthermore, from the Nyquist criterion, it can be shown [41] that the radar’s
maximum unambiguous range is dmax = Fsc0/2cr.

Let us define ∆d
(l)
ij , ∆τ

′(l)
ij , ∆ϕ

(l)
ij , and ∆f

(l)
b,ij as the net change in d

(l)
ij , τ ′(l)ij , ϕ(l)

ij ,
and f

(l)
b,ij, respectively, over the period of one sweep interval Tsw. Note that a moving

scatterer is fixed over an observation window Tsw, because ∆d
(l)
ij ≪ dres. Therefore,

a small change in the displacement ∆d
(l)
ij results in a small change in the frequency of

the beat signal, denoted by ∆f
(l)
b,ij. This frequency change ∆f

(l)
b,ij is not discernible in

the spectrum of (A.16) because ∆f
(l)
b,ij < fres. In order to capture ∆d

(l)
ij , we need to

observe the phase of the beat signal ϕ(l)
ij over multiple sweep intervals Tsw. The phase

of the beat signal is very sensitive and changes significantly from sweep to sweep
even for slight displacements of the scatterer. In analogy to (A.15), the relation of
the phase change ∆ϕ

(l)
ij and the displacement ∆dij is given as

∆ϕ
(l)
ij =

4π∆d
(l)
ij

λ
. (A.20)

Therefore, the phase change ∆ϕ
(l)
ij of the beat signal can be observed over two sweeps

to determine the radial velocity by means of

v
(l)
ij =

λ∆ϕ
(l)
ij

4πTsw

. (A.21)
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However, two or more equidistant scatterers with different radial velocities cannot
be resolved using the phase difference observed only over two chirps. To capture all
the different phase changes ∆ϕ

(l)
ij corresponding to the equidistant non-stationary

scatterers, the Doppler FFT is applied to the columns of the radar range maps to
obtain the micro-Doppler frequencies f

(l)
d,ij(t). From the micro-Doppler frequencies

f
(l)
d,ij(t), the radial velocities v

(l)
ij (t) can be computed as

v
(l)
ij (t) =

f
(l)
d,ij(t)c0

2f0
. (A.22)

Furthermore, the radar velocity resolution is given as vres = λ/2Tf . The maximum
unambiguous radial velocity can be derived as vmax = λ/4Tsw.

The components of the radar signal processing of the raw data matrix Dij are
delineated here. First, the Hanning window function

wH(t
′) =

1
2

[
1− cos

(
2πt′

Tsw

)]
, 0 ≤ t′ ≤ Tsw

0, otherwise
(A.23)

is applied to the fast-time data of the frame, where the window length is equal to
the chirp duration Tsw. Then, the range maps are computed by applying the range
FFT to the windowed data. To acquire the range evolution of the scatterers over
time, the slow-time data can be agglomerated to obtain the processing gain.

After the application of the range FFT, the slow-time data are split into many
overlapping or consecutive disjoint segments. Then, for each segment and each
range-bin, the short-time Doppler FFT is computed to obtain the local micro-
Doppler information of the scatterers. A further processing gain can be achieved
by agglomerating the range maps. In other words, for a particular range, the slow-
time non-stationary data are composed of the TV micro-Doppler frequencies of the
scatterers, which can be obtained by the spectrogram defined as [42]

Sij(f, t) =
∣∣∣∫ ∞

−∞
xij(t

′′, t)e−j2πft′′dt′′
∣∣∣2 (A.24)

where
xij(t

′′, t) = sb,ij(t
′′)wR(t

′′ − t) (A.25)

in which t is the local time, and t′′ represents the running time. In (A.25), wR(t
′′)

denotes a window function, which is in our case a rectangular function defined as

wR(t
′′) =

{
1, 0 ≤ t′′ < NcTsw

0, otherwise.
(A.26)

Finally, from the spectrogram Sij(f, t), we can compute the TV mean Doppler
shift as

B
(1)
ij (t) =

∫∞
−∞ fSij(f, t)df∫∞
−∞ Sij(f, t)df

. (A.27)

The measured mean Doppler shift B(1)
ij (t) will be compared with the mean Doppler

shift of the analytical model in Section A.6 for the cross-validation of the experi-
mental results and the analytical results.
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A.5 Proposed Solution

In this section, we propose a solution to mitigate the problem of the cross-channel
interferences described in Section A.2. The proposed approach is to induce a con-
trolled propagation delay in one of the subchannels, so that the desired channel links
ATx

1 –ARx
1 and ATx

2 –ARx
2 can be separated in the range domain of the MIMO radar.

To this end, we can use an RF delay line component as a tool for increasing the
propagation delay in one of the subradars of the 2 × 2 MIMO radar system shown
in Figure A.4a. More conveniently, a pair of RF cables with different lengths can
be used instead of the RF delay line component to induce a fixed propagation delay
in the channel of interest as shown in Figure A.4b. As illustrated in Figure A.3,
a cable of length LTx

i connects the SDR to the ith transmitter antenna ATx
i , and a

cable of length LRx
j connects the SDR to the jth receiver antenna ARx

j .
For each subradar, the cables of the same length are used for the transmitter

and the receiver antennas, i.e., LTx
i = LRx

j for i = j. To obtain a virtual propagation
delay in the link ATx

2 –ARx
2 , we choose the cable lengths LTx

2 and LRx
2 depending on

the dimensions of the indoor environment or the desired coverage area of the MIMO
radar system. We deploy connector cables with lengths LTx

2 and LRx
2 according to
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Figure A.4: Setup to induce a fixed propagation delay by either using (a) an RF
delay line component or (b) different cable lengths, i.e., (LTx

1 , LRx
1 ) ̸= (LTx

2 , LRx
2 ).
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the relations
LTx
2 ≥ 2La + LTx

1 (A.28)

and
LRx
2 ≥ 2La + LRx

1 (A.29)

respectively, where La represents the length of the area of interest, which is essen-
tially the square area covered by the MIMO radar system. Using (A.28) and (A.29),
the channel links ATx

i –ARx
j are guaranteed to be separable for the scatterers in the

square area Asq = La · La. Therefore, the radar range dij(t) in (A.10) is controlled
using a longer pair of cables for the link ATx

2 –ARx
2 . Then, the radial ranges of the

channel links ATx
i –ARx

j follow the inequality d11(t) < d12(t) < d22(t). Furthermore,
the links ATx

1 –ARx
2 and ATx

2 –ARx
1 have identical radial distances, i.e., d12(t) = d21(t).

Finally, an additional range gating module is implemented after the range FFT
module in the radar signal processing chain described in Section A.4. The range
profile of the MIMO radar system (obtained by the range FFT module) is partitioned
by the range gating module to acquire d11(t), d22(t), and d12(t). In other words,
the range gating module segregates the independent trajectories of the scatterers
for each channel link ATx

i –ARx
j . Subsequently, each channel link can now be further

processed without the problem of cross-channel interferences. The results of the
proposed approach are presented in the subsequent section.

Note that the proposed approach can also be adopted to completely avoid the
use of the TDMA scheme. The TDMA scheme limits the PRF of the MIMO radar
system, which in turn limits the system’s maximum measurable unambiguous radial
velocity vmax. The PRF and the maximum radial velocity vmax decrease by the same
factor as the number of subradars of the MIMO system increases. On the other hand,
the proposed approach allows multiple RF delay lines to be used for different channel
links ATx

i –ARx
j so that all the subradars can operate simultaneously without effecting

the PRF and vmax of the MIMO radar system. For instance, for an N ×N MIMO
radar system, the cable difference for different channel links ATx

i –ARx
j must follow

the inequality min[L
Tx/Rx

i − L
Tx/Rx

j ] ≥ 2La for i ̸= j, where i, j ∈ {1, 2, . . . , N}.

A.6 Experimental Results

In this section, we elaborate our measurement campaign carried out using an FMCW-
based MIMO radar system (Ancortek SDR-KIT 2400T2R4) operating in the K-
band. The detailed analytical model for a swinging pendulum is laid out in this
section for the validation of the experimental results. The efficacy of the proposed
solution against the interferences of Ancortek’s MIMO radar system is also high-
lighted by the measurement results.

The measurements were carried out in a semi-controlled environment, a labora-
tory with the dimensions of 11.5 m× 6 m. The laboratory was equipped with many
stationary objects such as chairs, tables, boards, and computers. The pendulum
bob weighing 3 kg was suspended from the ceiling of the laboratory by means of
a rope of length L. The pendulum bob acted as a single non-stationary scatterer
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(L = K + 1) initially resting at the coordinates (0, 0, 1.07) m. The Ancortek radar
was placed inside the laboratory and configured as a 2 × 2 MIMO radar system in
FMCW mode. The transmitter antennas ATx

1 and ATx
2 , and the receiver antennas

ARx
1 and ARx

2 were positioned in a monostatic configuration according to Table A.1.
The length of the RF cables, LTx

i and LRx
j , the maximum displacement xmax and the

length L of the pendulum, and the MIMO radar operating parameters fc, BW, Tsw,
and PRF were fixed according to the values listed in Table A.1. The two subradars
of the MIMO system were configured to share the time according to the TDMA
scheme, but even so, the Ancortek system experienced cross-channel interference
as stated in Section A.2. Needless to say, due to the TDMA mode of operation,
the PRF of the subradars was reduced to half, i.e., PRF = 1/2Tsw, as listed in
Table A.1.

We now present the analytical model for the pendulum swinging in xz -plane,
so that we are able to cross-validate the experimental results with the analytical
results. The pendulum is displaced by xmax to set it in a swinging motion. The TV
nonlinear trajectories of the pendulum can be obtained as [43]

x(t) = L sin

{
arcsin

(xmax

L

)
cos

(√
g

L
t

)}
(A.30)

y(t) = 0 (A.31)

z(t) = L

[
1− cos

{
arcsin

(
x(t)

L

)}]
(A.32)

where g represents the gravitational field strength. The above model for the pendu-
lum’s trajectories is valid for an ideal pendulum, which swings only in the xz -plane.
The model can readily be used for a pendulum swinging in the yz -plane by inter-
changing the right-hand side of the expressions in (A.30) and (A.31). To analyti-
cally determine the radial range of the scatterer, the pendulum model expressed by
(A.30)–(A.32) can be used with (A.10) of the geometrical 3D indoor channel model

Table A.1: MIMO experimental setup.

Description Parameters Values

ATx
1 position (xTx

1 , yTx
1 , zTx

1 ) (1.56, 0.01, 1.195) m
ARx

1 position (xRx
1 , yRx

1 , zRx
1 ) (1.56,−0.01, 1.185) m

ATx
2 position (xTx

2 , yTx
2 , zTx

2 ) (−0.01, 1.56, 1.195) m
ARx

2 position (xRx
2 , yRx

2 , zRx
2 ) (1.0, 1.56, 1.185) m

RF cable lengths (LTx
1 , LRx

1 , LTx
2 , LRx

2 ) (0.3, 0.3, 3.5, 3.5) m
Length of pendulum L 1.48 m
Max. displacement xmax 0.4 m
Carrier frequency fc 25 GHz

Radar’s bandwidth BW 2 GHz
Sweep time Tsw 1 ms

Pulse repetition freq. PRF 500 Hz
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introduced in Section A.3. On the other hand, to obtain the radial velocity using
(A.11), we must first derive the expressions for ẋ(t), ẏ(t), and ż(t), which results in

ẋ(t) = −
√

Lg cos (ϕ′) arcsin
(xmax

L

)
sin

(√
g

L
t

)
(A.33)

ẏ(t) = 0 (A.34)

and
ż(t) =

x(t)ẋ(t)√
L2 − x2(t)

,
∣∣x(t)∣∣ ≤ L (A.35)

respectively, where ϕ′ = arcsin (xmax/L) cos (
√

g/L · t). By making use of the ex-
tended pendulum model (A.30)–(A.35) combined with the geometrical 3D indoor
channel model, we can compute analytically the TV radial range components dij(t)
and the radial velocity components ḋij(t) for all wireless channel links ATx

i –ARx
j

shown in Figure A.1.
For the experimental setup from Table A.1, the measured radial range profile

is shown in Figure A.5a and the measured radial velocity profile is plotted against
the measured range in Figure A.5b. The two subradars capture and process the

(a)

(b)

Figure A.5: Different cable lengths, i.e., (LTx
1 , LRx

1 ) ̸= (LTx
2 , LRx

2 ), result in the seg-
regation of (a) measured range profiles and (b) measured range–velocity profiles.
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nonlinear trajectories of the pendulum by means of the radar signal preprocessing
described in Section A.4. We obtain the processing gain in the radial range profile
by agglomerating the slow-time data, whereas the radial velocity profile is acquired
by integrating over the range maps. The radial range profile is obtained from the
measured beat frequency profile by using (A.14). On the other hand, the radial
velocity profile is mapped from the measured micro-Doppler frequency profile by
utilizing the relation in (A.22). The two subradars adopt the proposed solution (see
Section A.5) for the mitigation of the cross-channel interferences encountered by
the Ancortek MIMO radar system. Figure A.5a,b illustrates the effect of different
cable lengths on the measured range profile for a pendulum swinging in the xz -plane.
Due to the deployment of different cables, three distinct curves can be observed in
Figure A.5a,b that can be segregated by means of the range gating module (see
Section A.5). While the pendulum swings in the xz -plane, the radial range d11(t)

in Figure A.5a changes to a much greater extent than the radial ranges d22(t) and
d12(t) or d21(t). A similar inference can be drawn regarding the radial velocities
ḋij(t) in Figure A.5b.

After the application of the proposed interference mitigation approach, we ob-
tain the distinct radial velocity components ḋ11(t), ḋ12(t) or ḋ21(t), and ḋ22(t) as
illustrated in Figure A.6a–c, respectively, where ḋ12(t) = ḋ21(t). The MIMO radar
system captures the pendulum trajectories in the x -axis and y-axis, which signi-
fies the importance of the deployment of multiple RF sensors in an indoor envi-
ronment. Figure A.6a,c depicts the radial velocities corresponding to Radar1 and
Radar2, respectively, whereas Figure A.6b shows the radial velocities corresponding
to the channel link ATx

1 –ARx
2 or ATx

2 –ARx
1 . The pendulum is swinging in the xz -plane

(parallel to the boresight of Radar1), consequently, one can observe that the ra-
dial velocity is much higher in Figure A.6a compared to Figure A.6c. Furthermore,
as anticipated, the number of crests and troughs in the radial velocity profile of
Radar2 is twice as high. Note that the radial velocities ḋ11(t) and ḋ22(t) captured
by Radar1 and Radar2, respectively, are independent and unique, which cannot be
achieved with a SISO system. Moreover, the measured radial velocities are vali-
dated by the analytical model that comprises the geometrical 3D indoor model for
the distributed MIMO system (see Section A.3) and the extended pendulum model
described by (A.30)–(A.35). A good match between the measurements and the ana-
lytical model is shown in Figure A.6, which confirms the validity of the geometrical
3D indoor model and the extended pendulum model. The efficacy of the proposed
approach against the interferences can be apprehended by comparing Figure A.6
with Figure A.2a. Evidently, the proposed approach eliminates the cross-channel
interferences altogether by separating the measured trajectories for each radar of the
MIMO system. Therefore, although the radial velocity components in Figure A.6
are identical to the radial velocity components of Figure A.2a, they are without any
interferences.

Figures A.7–A.9 show the reference curves for the nonlinear trajectories of the
pendulum, which are used to cross-validate the measurement results obtained for all
subchannel links ATx

i –ARx
j of the 2 × 2 MIMO system. Figures A.7–A.9 illustrate
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(a)

(b)

(c)

Figure A.6: Application of the proposed interference mitigation scheme results
in segregated measured radial velocity components ḋij(t) for the channel links:
(a) ATx

1 –ARx
1 (Radar1), (b) ATx

1 –ARx
2 (or ATx

2 –ARx
1 ), and (c) ATx

2 –ARx
2 (Radar2).

the trajectories of the pendulum swinging in the xz -plane (parallel to the boresight
of Radar1) within the FOV of the two subradars. Figure A.7 illustrates the an-
alytical radial velocity components ḋij(t) that do not depend on the deployment
of longer cables. Figure A.8a,b shows the scenario when the two subradars of the
MIMO system use the same cable lengths, i.e., (LTx

1 , LRx
1 ) = (LTx

2 , LRx
2 ), whereas

Figures A.9a,b shows the case when the two subradars use different cable lengths,
i.e., (LTx

1 , LRx
1 ) ̸= (LTx

2 , LRx
2 ). Figure A.9, analogous to Figure A.5, shows the effect
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Figure A.7: Analytical radial velocity components ḋij(t) for the channel links
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Figure A.8: (a) The analytical radial range components dij(t) and (b) the analytical
radial velocity components ḋij(t) for (LTx

1 , LRx
1 ) = (LTx

2 , LRx
2 ).

of longer cable lengths LTx
2 and LRx

2 on the radial ranges dij(t).
The relation in (A.27) is utilized to obtain the measured mean Doppler shift

B
(1)
ij (t) for all channel links ATx

i –ARx
j in a 2 × 2 MIMO system. Analogous to the

computation of the mean Doppler shift, the mean radial range is obtained from
the range profile. The analytical and measured mean Doppler shifts B

(1)
ij (t) are il-

lustrated in Figure A.10a. Figure A.10b shows the analytical and measured mean
Doppler shifts plotted against the range of the moving scatterer SM . Clearly, a con-
siderable mismatch exists between the analytical and measured mean Doppler shifts
due to the interferences.

On the other hand, using the proposed approach, we obtain the segregated non-
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Figure A.9: (a) The analytical radial range components dij(t) and (b) the analytical
radial velocity components ḋij(t) for (LTx

1 , LRx
1 ) ̸= (LTx

2 , LRx
2 ).

linear trajectories of the pendulum as shown in Figure A.11. Figure A.11a illustrates
the mean Doppler shift of the pendulum swinging in the xz -plane over a period of
10 seconds. A good match between the measured and the analytical mean Doppler
shifts is observed for all channel links ATx

i –ARx
j . Figure A.11b shows the mean

Doppler shift plotted against the mean radial range. Due to the fine Doppler resolu-
tion of the FMCW radar, the measured Doppler information matches very well with
the analytical results in Figure A.11, whereas an adequate match exists between the
analytical and measured range due to an adequate range resolution of the system.

A.7 Conclusions

In this paper, we proposed a unique approach to the problem of cross-channel in-
terferences encountered by the Ancortek SDR-KIT 2400T2R4 MIMO radar system
due to its poor interchannel RF isolation. For all subchannels of the MIMO radar
system, we observed a significant mismatch between the measured and analytical
TV mean Doppler shift due to the problem of cross-channel interference. However,
after the application of the proposed interference mitigation method, we found an
excellent fit between the measured and analytical TV mean Doppler shift. The pro-
posed approach is optimal and robust in a way that it completely eliminates the
cross-channel interferences. The proposed solution works for the Ancortek MIMO
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Figure A.10: (a) The measured mean Doppler shift B
(1)
ij (t) vs. time and (b) the

measured mean Doppler shift B
(1)
ij (t) vs. range dij(t), where the MIMO radar un-

dergoes cross-channel interferences.

radar system without the need to alter its firmware or hardware. We also presented
a channel model to investigate the target’s motion in a MIMO system under different
target–antenna configurations. A good agreement was found between the geomet-
rical 3D indoor channel model and the measured data. In the proposed solution,
the segregation and utilization of the cross-channel component generally lead to an
added diversity and improved system capability. Although the proposed approach
may find its utility in numerous application areas, we plan to extend this work to
orientation-independent human activity recognition. For human activity recogni-
tion, we plan to fuse the data from different subchannels of the MIMO radar system
to increase the overall classification performance of the system.
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Figure A.11: (a) The measured mean Doppler shift B
(1)
ij (t) vs. time and (b) the

measured mean Doppler shift B(1)
ij (t) vs. range dij(t), where the MIMO radar adopts

the proposed interference mitigation scheme.
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Abstract— In this paper, we highlight and resolve the shortcomings of
single-input single-output (SISO) millimeter wave (mm-Wave) radar sys-
tems for human activity recognition (HAR). A 2×2 distributed multiple-
input multiple-output (MIMO) radar framework is presented to capture
human activity signatures under realistic conditions in indoor environ-
ments. We propose to distribute the two pairs of collocated transmitter–
receiver antennas in order to illuminate the indoor environment from
different perspectives. For the proposed MIMO system, we measure
the time-variant (TV) radial velocity distribution and TV mean radial
velocity to observe the signatures of human activities. We deploy the
Ancortek SDR-KIT 2400T2R4 mm-Wave radar in a SISO as well as a
2 × 2 distributed MIMO configuration. We corroborate the limitations
of SISO configurations by recording real human activities in different
directions. It is shown that, unlike the SISO radar configuration, the
proposed MIMO configuration has the ability to obtain superior human
activity signatures for all directions. To signify the importance of the
proposed 2 × 2 MIMO radar system, we compared the performance of a
SISO radar-based passive step counter with a distributed MIMO radar-
based passive step counter. As the proposed 2 × 2 MIMO radar system
is able to detect human activity in all directions, it fills a research gap of
radio frequency (RF)-based HAR systems.

Keywords— direction-independent human activity recognition; fall detec-
tion; distributed MIMO; FMCW radar; micro-Doppler signatures; aspect
angle; multistatic radar systems; passive step counter; DTW; velocity es-
timation.
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B.1 Introduction

B.1.1 General Background

In recent years, the number of application areas of human activity recognition (HAR)
has greatly increased, such as remote health assessment [1], smart home [2], smart
surveillance [3], human–computer interaction [4], sports [5], autopilots [6], and so-
cial robotics [7]. Radio frequency (RF)-based in-home sensing is still considered
a developing technology facing some key challenges regarding HAR. However, the
attractive features of RF-based HAR systems have brought them to the forefront of
indoor HAR systems. Alternatively, vision-based and wearable sensor-based HAR
systems have already produced numerous and adequate results. However, unlike RF
sensors, visual sensors such as cameras or light detection and ranging (LiDAR) may
suffer from issues such as privacy invasion, sensitivity to lighting, and obstructive
illumination. On the other hand, wearable sensors such as accelerometers, magne-
tometers, gyroscopes, and emergency push buttons are radically intrusive, fragile,
must be carried by the user, and are prone to user negligence.

RF sensors such as Wi-Fi and radar systems must have robustness to environmen-
tal variations, lighting conditions, user’s privacy, and nonobstructive illumination.
Over the years, two established technologies, Wi-Fi and radar, have been explored
in RF sensing for HAR [8, 9, 10, 11]. Unfortunately, commercial Wi-Fi devices
suffer from carrier frequency offsets due to hardware limitations and environmen-
tal variations [12]. As a consequence of carrier frequency offsets, the phases of the
channel frequency response are particularly noisy in commercial Wi-Fi devices and
thus hard to utilize [8, 10, 11, 13]. In contrast, with the application of radar sig-
nal processing [11, 14, 15, 16], data fusion techniques [17, 18], machine learning,
and deep learning algorithms, it will be possible in the coming years to track and
classify multiple human activities by means of radar systems in unprecedented com-
plex settings. The work presented in this paper is a step forward in that direction,
where we have addressed the problem of the direction-independent recognition of
human activities and proposed an effective solution in the context of RF sensing.
It should be mentioned that radars have traditionally been deployed by official or
governmental entities in application areas such as weather [19], naval [20] and aerial
surveillance [21], air defense [22], ground traffic control [23], altimeters [24], geol-
ogy [25], and astronomical research [26]. However, due to their miniaturization and
cost effectiveness, the current radar systems have found utilization in self-driving
cars [27, 28, 29], emerging medical solutions [30], and HAR systems [31, 32, 33, 34].

B.1.2 Related Work

One crucial challenge for radar-based HAR systems is the direction of motion of
certain activity in relation to the illuminating radar. For instance, a person may fall
in a direction either parallel or perpendicular to the radar’s boresight. Conceivably,
a monostatic single-input single-output (SISO) radar will not be able to detect
the fall if the fall direction is perpendicular to the boresight of the radar. This
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is due to the fact that the radar systems are merely sensitive to the changes in
the scatterer’s radial distance with respect to the radar itself. A scatterer moving
perpendicular to the radar’s boresight has zero Doppler frequency and thus appears
as a stationary object to the radar and can therefore not be distinguished from other
stationary objects in an indoor environment by the radar system. Generally, a strong
degradation of the classification performance is expected for activities with a greater
angle of motion to the radar’s boresight. The prior state-of-the-art approaches to
alleviate this problem are delineated here along with their limitations.

The authors in [35, 36] suggest that a SISO radar positioned on the ceiling can de-
tect fall activities. However, this is not a general solution for direction-independent
HAR. For direction-independent HAR, it is understandably compelling to use mono-
static beamforming multiple-input multiple-output (MIMO) radars that are capable
of measuring the angular information [37]. However, these systems are often limited
by their angular resolution, which in turn limits their cross-range resolution signifi-
cantly. Such monostatic MIMO radars do not perform adequately, especially not for
persons relatively far away from the radar, which degrades the overall classification
accuracy. The authors in [38] use the phase information of frequency-modulated
continuous wave (FMCW) monopulse radars to measure the angle of arrival, but
the study is limited to hand gesture sensing. The authors in [39] combine the
FMCW mode of radars with interferometry to track vital signs and detect position
and life activities, but they do not generally address the challenges caused by the
direction of human activities. To improve the angular resolution, direction of arrival
algorithms such as the “estimation of signal parameters via rotational invariance
techniques” (ESPRIT) method and “multiple signal classification” (MUSIC) method
can also be used [40], but these direction of arrival algorithms usually require a high
signal to noise ratio [41]. Although the authors of [18] discuss a multistatic Doppler
radar, the study is limited to the detection of armed persons. A bi-static radar con-
figuration is used in [42] to improve the activity classification performance. However,
the quality of data can be improved by using a MIMO radar system instead. The
performance of another radar configuration is explored in [43] using a MIMO radar
system in bi-static configuration, but the study is limited to personnel localization
only.

B.1.3 Contributions

The problems faced by the aforementioned SISO and MIMO radar systems motivate
us to develop a solution for a direction-independent HAR system. To illuminate the
indoor environment from different perspectives, we propose to distribute multiple
pairs of collocated transmitter–receiver radar antennas in an indoor environment
for a direction-independent human activity detection system (see Section B.4). This
multi-perspective view of a distributed MIMO radar system will allow us to render
direction-independence for HAR. The micro-Doppler signatures or radial velocity
distribution (see Section B.2) obtained using the proposed approach can help us to
design HAR systems capable of classifying complex activities. Thus, the proposed
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framework is a step forward towards a more pragmatic and sophisticated radar-based
HAR system.

The principal contributions of this work are listed as follows:

1. A basic multi-perspective 2 × 2 MIMO radar system is presented which can
be easily scaled to a higher number of transmitter and receiver antennas for
better performance.

2. We analyze the time-variant (TV) radial velocity distribution and TV mean
radial velocity for the proposed distributed antenna configuration.

3. For the 2 × 2 MIMO radar configuration, we investigate the impact of a hu-
man falling incident and a walking activity on the measured radial velocity
distribution and measured mean radial velocity.

4. We analyze the impact of two different activities performed in three different
directions on the measured channel characteristics for a SISO and a 2 × 2

MIMO radar system. We corroborate the limitations of the SISO radar system
by analyzing the real radar data.

5. We demonstrate the robustness of the proposed 2 × 2 MIMO radar system
against different directions of the actual human walking and falling activity.
We show that the proposed solution is able to detect the human gross motor
activity in the horizontal xy-plane.

6. We analyze the performance of a radar-based passive step counter by integrat-
ing it with a SISO radar system. It is shown that the radar-based passive step
counter, when used with a SISO radar system, may miss some human walking
steps or detect false steps depending on the walking direction.

7. It is shown that by deploying the radar-based passive step counter with the
proposed 2 × 2 MIMO radar framework, the step counter would accurately
detect the number of steps for all considered human walking directions.

8. Finally, we quantify, compare, and numerically assess the performance of the
SISO and 2 × 2 MIMO radar systems by using the dynamic time warping
(DTW) [44] distance metric.

B.1.4 Paper Organization

The paper is organized as follows. The system model and preprocessing techniques
are delineated in Section B.2. Section B.3 describes the problems encountered with
SISO radar systems for detecting human activities performed in different directions.
Section B.4 shows how the proposed 2×2 MIMO radar system overcomes the short-
comings of the SISO radar system. The experimental results for actual human
activities are detailed in Sections B.3 and B.4 for the SISO and 2× 2 MIMO radar
systems, respectively. Finally, Section B.6 draws the conclusions.
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B.2 Radar Signal Preprocessing

In this paper, we have adopted an FMCW 2× 2 MIMO radar to capture the micro-
Doppler signatures of a moving person from different perspectives. The fundamental
waveform transmitted by the ith transmitter antenna ATx

i (i = 1, 2) of the FMCW
radar is the chirp waveform [45]

ci(t
′) = exp

[
j2π

(
f0t

′ +
γ

2
t′2
)
+ jϕi

]
, 0 ≤ t′ < Tsw (B.1)

where t′ denotes the fast time, f0 is the initial RF frequency, γ is the slope of the
linear chirp in the time-frequency domain, ϕi is the initial phase, and Tsw is the chirp
interval. The two transmitters of the 2× 2 MIMO radar operate in a time division
multiple access (TDMA) mode. For n = 0, 1, . . . , the time windows occupied by
the ith transmitter are (2n + i − 1)Tsw ≤ t′ < (2n + i)Tsw. The chirp waveform
is transmitted periodically by each transmitter in their respective time slot. The
overall transmit signal si(t, t′) can be represented as a sum of shifted versions of the
fundamental waveform ci(t

′) according to

si(t, t
′) =

∞∑
n=0

ci(t
′)δ(t− tn,i) (B.2)

for i = 1, 2, where δ(·) is a Dirac delta function, t is the slow time, and tn,i is the
discrete slow time. For TDMA mode, the discrete slow time tn,i is related to chirp
interval Tsw by tn,i = (2n + i − 1)Tsw. The expression (B.2) allows us to represent
the transmit signal si(t, t′) as function of two separate time variables.

The wireless channel link between the ith transmitter antenna ATx
i and jth re-

ceiver antenna ARx
j is denoted by ATx

i –ARx
j , where i, j ∈ {1, 2}. When modeling the

human body as a cluster of L scatterers [46], the beat signal s(l)b,ij(t, t
′) corresponding

to the lth scatterer and the channel link ATx
i –ARx

j can be represented by

s
(l)
b,ij(t, t

′) =
∞∑
n=0

a
(l)
ij exp

[
j
(
2πf

(l)
b,ijt

′ + ϕ
(l)
ij

)]
δ(t− tn,i) (B.3)

for l = 1, 2, . . . ,L. The symbol a(l)ij stands for the path gain, which is primarily
determined by the path loss and the radar cross section. For simplicity, we assume
that the path gain a

(l)
ij is constant within the observation interval. For the lth

scatterer, the beat frequency f
(l)
b,ij and phase ϕ

(l)
ij in (B.3) are given as [47]

f
(l)
b,ij =

2d
(l)
ij γ

c0
(B.4)

and

ϕ
(l)
ij =

4πd
(l)
ij

λ
(B.5)

respectively, where d
(l)
ij is the total propagation distance, which is given by

d
(l)
ij =

1

2

[
dTx
l,i + dRx

l,j + LTx
i + LRx

j

]
. (B.6)
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The symbol c0 represents the speed of light in vacuum and λ is the wavelength. The
quantity dTx

l,i in (B.6) is the distance between the transmitter antenna ATx
i and the

lth scatterer. Similarly, the distance between the receiver antenna ARx
j and the lth

scatterer is represented by dRx
l,j . The lengths of the RF cables are denoted as LTx

i and
LRx
j in (B.6) for the transmitter antenna ATx

i and receiver antenna ARx
j , respectively.

In this paper, the transmitter antenna ATx
i and receiver antenna ARx

j are collocated
for i = j. As a consequence, the distances from the transmitter antenna ATx

i and
receiver antenna ARx

j to the lth scatterer become identical for i = j; i.e., dTx
l,i = dRx

l,j

(i = 1, 2). Moreover, the RF cable lengths of the transmitter antenna ATx
i and

receiver antenna ARx
j are the same for i = j, i.e., LTx

i = LRx
i (i = 1, 2). For

the lth scatterer and the aforementioned antenna placement constraints, the total
propagation distance d

(l)
ij in (B.6) reduces to the sum of the radar radial range r

(l)
ij

and the RF cable length Li; i.e.,

d
(l)
ij = r

(l)
ij + Li (B.7)

where the radar radial range r
(l)
ij is the Euclidean distance between the lth scatterer

and the transmitter antenna ATx
i or the receiver antenna ARx

j , and Li = LTx
i = LRx

j

for i = j. Note that we distribute multiple pairs of collocated transmitter–receiver
antennas; therefore, the transmitter antenna ATx

i and receiver antenna ARx
j are not

collocated for i ̸= j. Consequently, to compute the total propagation distance d
(l)
ij ,

the expression in (B.6) must be used instead of (B.7) for i ̸= j. With reference
to [48], the composite beat signal sb,ij(t, t′) is the sum of all beat signals s

(l)
b,ij(t, t

′)

associated with the cluster of L scatterers, which can be expressed as

sb,ij(t, t
′) =

L∑
l=1

s
(l)
b,ij(t, t

′). (B.8)

In an FMCW radar, the composite beat signal sb,ij(t, t
′) is produced by the

quadrature mixer component of the radar. The analog to digital converter (ADC)
digitizes the composite beat signal sb,ij(t, t

′) with a sampling rate of Fs with re-
spect to fast time t′. For each chirp interval Tsw, the digitized data are stacked in
a raw data matrix Dij. The rows and columns of the raw data matrix Dij contain
samples of the composite beat signal sb,ij(t, t′) in the fast-time and slow-time do-
main, respectively. The slow-time sampling interval is actually equal to the chirp
interval Tsw.

The fast Fourier transform (FFT) performed on the raw data matrix Dij with
respect to fast time t′ and slow time t is known as the range FFT and Doppler FFT,
respectively. For the channel link ATx

i –ARx
j , the expression for the range FFT, also

known as the beat frequency profile Sb,ij(fb, t), is given as

Sb,ij(fb, t) =

Tsw∫
0

sb,ij(t, t
′)e−j2πfbt

′
dt′ (B.9)

where fb represents the beat frequency. The short-time Fourier transform (STFT)
is related to the slow-time domain t and applies on the function resulting from
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the range FFT in (B.9). In other words, the data from the beat frequency pro-
file Sb,ij(fb, t) are multiplied by a rectangular window function Wr(·) sliding in slow
time t to provide overlapping segments for the FFT operation; i.e.,

Xij(fb, f, t) =

∞∫
−∞

Sb,ij(fb, t
′′)Wr(t

′′ − t)e−j2πft′′dt′′ (B.10)

where f is the Doppler frequency and t′′ denotes the running time.
Finally, the TV micro-Doppler signature Sij(f, t) is obtained by integrating

Xij(fb, f, t) over the beat frequencies fb from zero to the maximum beat frequency fb,max

and computing the absolute value to the power of 2; i.e., [49]

Sij(f, t) =
∣∣∣ fb,max∫

0

Xij(fb, f, t)dfb

∣∣∣2. (B.11)

Note that, according to the Nyquist sampling theorem, the maximum beat frequency
fb,max is equal to 1/2 of the ADC sampling rate Fs; i.e., fb,max = Fs/2.

The TV mean Doppler shift B
(1)
ij (t) can be obtained from the micro-Doppler

signature Sij(f, t) according to the relation [50]

B
(1)
ij (t) =

∫∞
−∞ fSij(f, t)df∫∞
−∞ Sij(f, t)df

. (B.12)

As the Doppler frequency f can be mapped on the radial velocity v according to
v = c0f/(2f0), we can obtain the TV radial velocity profile Vij(v, t) from the TV
micro-Doppler signature Sij(f, t) as

Vij(v, t) = Sij

(2f0
c0

v, t
)
. (B.13)

The TV micro-Doppler signature Sij(f, t) in (B.11) is computed from the compos-
ite beat signal sb,ij(t, t′), and thus it contains the micro-Doppler information of all
L scatterers with their respective strengths. Analogously, the radial velocity pro-
file Vij(v, t) in (B.13) contains the radial velocity information of each scatterer with
respect to the slow time t. The strength or power of the lth scatterer in the radial
velocity profile Vij(v, t) depends on the path gain a

(l)
ij .

From the TV radial velocity profile Vij(v, t), we can compute the TV radial
velocity distribution pij(v, t) by

pij(v, t) =
Vij(v, t)∫∞

−∞ Vij(v, t)dv
(B.14)

from which we can obtain the mean radial velocity v̄ij(t) using the relation

v̄ij(t) =

∞∫
−∞

vpij(v, t)dv. (B.15)
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As good descriptive statistics that quantitatively summarize all the main features
of the TV micro-Doppler signature Sij(f, t) or radial velocity distribution pij(v, t),
we can utilize the mean Doppler shift B

(1)
ij (t) or the mean radial velocity v̄ij(t),

respectively. The TV mean Doppler shift B
(1)
ij (t) in (B.12) is basically a weighted

arithmetic mean of the TV micro-Doppler signature Sij(f, t). Similarly, the mean
radial velocity v̄ij(t) in (B.15) is the weighted average of the velocity components of
all L human body segments computed for each time instance t. The TV radial ve-
locity distribution pij(v, t) and TV mean radial velocity v̄ij(t) will play an important
role in analyzing real-world measurement data in Sections B.3 and B.4.

B.3 Human Activity Signatures Measured by Using
a SISO FMCW Radar System

An FMCW radar modulates its transmit signal frequency to detect the radial range
of a target. The electromagnetic signal transmitted by the FMCW radar interacts
with stationary and non-stationary objects present in the radar’s range, thus alter-
ing the amplitude, phase, and frequency of the transmitted signal. After applying
suitable radar signal preprocessing techniques, the phase and frequency variations
of the backscattered signal provide the range and micro-Doppler information of the
target (see Section B.2). As part of the preprocessing, the multipath components
originating from objects relatively stationary to the radar system are filtered out,
thereby making the radar system merely sensitive to the radial component of the
object’s motion. Therefore, detecting and processing a scatterer’s motion perpen-
dicular to the radar’s boresight becomes a major challenge. For a human body under
observation, the radar signals are reflected off the human body segments. Generally,
human body segments can be modeled as a cluster of point scatterers [46]. The TV
radial range and micro-Doppler signature caused by such moving body segments can
be measured from the backscattered radar signals.

In this section, we primarily focus on the impact of the direction of human
activity on the TV radial velocity distribution pij(v, t) of a SISO radar system,
where i, j = 1. To highlight the limitations of the SISO radar system deployed in an
indoor environment, we first describe the measurement setup. Secondly, we illustrate
three different experimental scenarios in which the human activities are performed
and analyzed. Thirdly, we show the radial velocity distribution p11(v, t) and mean
radial velocity v̄11(t) derived from measurements of a SISO radar system. Finally,
the implications of different directions of human activities on the performance of
an RF-based step counting algorithm are discussed for the considered SISO radar
system.

B.3.1 Measurement Setup

In this paper, we used a commercially available MIMO radar system called Ancortek
SDR-KIT 2400T2R4, which is an FMCW millimeter wave (mm-wave) radar operat-
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ing at 24 GHz. We configured the radar in SISO mode of operation and used a single
transmitter antenna ATx

1 and a single receiver antenna ARx
1 . We used a monostatic

configuration of the antennas to capture the micro-Doppler information of a human
body moving in the xy-plane. In a monostatic configuration, the transmitter and
receiver antennas of the SISO radar system are collocated. The SISO FMCW radar
system was configured according to the parameters listed in Table B.1. The pulse
repetition frequency (PRF) of the SISO FMCW radar system is equal to the inverse
of the chirp interval Tsw, i.e., PRF = 1/Tsw. This is due to the fact that we do not
require the TDMA mode of operation for the SISO radar system. In other words, the
transmitter antenna ATx

1 transmits the chirp waveform ci(t
′) in (B.1) continuously

in time.

B.3.2 Scenarios of Human Activities

The indoor environment is a laboratory cluttered with fixed items such as wooden
furniture, computers, routers, and other miscellaneous laboratory tools and elec-
tronics. The direction of activities of a person relative to the SISO radar system
are depicted in Figure B.1. To elucidate the direction of human motion in an ex-
periment, we refer throughout this section to a 3× 3 grid illustrated in Figure B.1,
in which three different scenarios of human movement are represented by different
markings. The human activities have been carried out in three different directions
in order to demonstrate the limitations of the SISO radar system in the context
of HAR. Scenario 1 is a trivial scenario, where a person moves towards the SISO
radar system. In this case, the human motion is parallel to the radar boresight,
implying that the SISO radar system does not encounter any problem capturing
the micro-Doppler signatures with high accuracy. Most of the research on HAR is
limited to merely Scenario 1 with the SISO radar systems in a monostatic configu-
ration. However, the shortcomings of SISO radar configuration come to the surface
if we consider a human activity that is perpendicular to the boresight of the SISO
radar system. Thus, in Scenario 2, when a person moves perpendicular to the radar
boresight or moves from the position (x2, y3) to (x2, y1), then the SISO radar system
captures a completely different micro-Doppler signature that is suboptimal for HAR.
In Scenario 3, the person moves diagonally in the 3 × 3 grid of Figure B.1, either
from (x3, y3) to (x1, y1) or from (x1, y1) to (x3, y3). We expect to acquire adequate
human activity signatures in Scenario 3, but not as good as the human activity

Table B.1: System parameters of the SISO experimental setup.

Description Symbols Values

RF cable lengths (LTx
1 , LRx

1 ) (0.3, 0.3) m
Carrier frequency fc 24.125 GHz

Radar’s bandwidth BW 250 MHz
Sweep time Tsw 500 µs

Pulse repetition freq. PRF 2 kHz
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Figure B.1: A SISO radar system in the presence of a moving person in a cluttered
indoor environment.

signatures of Scenario 1. For each of Scenarios 1, 2, and 3, we consider a walking
and falling activity. The results of the recognized human activities by employing
the monostatic SISO radar system are shown in the next subsection for Scenarios 1,
2, and 3.

B.3.3 Results for the Monostatic SISO Configuration

To show the limitations of the aforementioned monostatic SISO radar system, we
recorded the human motion in three different directions, which are depicted in
Figure B.1. We process the recorded raw radar data by means of radar signal pre-
processing, as described in Section B.2. The radial velocity distribution p11(v, t)

has been computed by using (B.14), and the mean radial velocity v̄11(t) has been
obtained from (B.15) for the human walking and falling activities. Figures B.2
and B.3 show the measured radial velocity distribution p11(v, t) over time t corre-
sponding to a falling and walking activity, respectively. The black dashed lines in
Figures B.2 and B.3 represent the measured mean radial velocity v̄11(t). We can see
from Figures B.2 and B.3 that the measured mean radial velocity v̄11(t) provides a
descriptive statistic, which quantitatively summarizes all the main features of the
TV radial velocity distribution p11(v, t).

Recall from Figure B.1 that in Scenario 1, a person moves parallel to the SISO
radar boresight—i.e., from position (x3, y2) to (x1, y2)—whereas in Scenario 2, the
person moves perpendicular to the SISO radar boresight—i.e., from position (x2, y3)

to (x2, y1). Figure B.2a,b shows a person falling parallel (Scenario 1) and perpen-
dicular (Scenario 2) to the radar boresight direction, respectively. Note that in
Scenario 1, the person suddenly moves closer to the SISO radar system upon falling.
Thus, the falling activity produces high and abrupt positive changes of the radial
velocity distribution p11(v, t), which leads us to suppose that the fall of a person
parallel to the radar boresight will be captured perfectly by the SISO radar system,
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(a) (b)

(c)

Figure B.2: For a SISO radar system, the measured radial velocity distribu-
tion p11(v, t) and mean radial velocity v̄11(t) of a human falling activity for (a) Sce-
nario 1, (b) Scenario 2, and (c) Scenario 3.

as illustrated in Figure B.2a. On the other hand, a fall perpendicular to the radar
boresight does not cause a high and abrupt change in the radial velocity distribu-
tion p11(v, t), as shown in Figure B.2b.

The same observations can be made for a person walking in the direction parallel
and perpendicular to the radar boresight presented in Figure B.3a,b, respectively.
Thus, the activity fingerprints captured by the SISO radar system as shown in
Figures B.2 and B.3 are not sufficient to effectively classify different human activ-
ities, especially when the direction of the activity is perpendicular to the radar’s
boresight. Furthermore, in Scenario 3, the person moves diagonally in the 3×3 grid
of Figure B.1; i.e., from (x3, y3) to (x1, y1). The SISO radar system is able to gener-
ate adequate human activity signatures in Scenario 3 as shown in Figures B.2c and
B.3c for the falling and walking activities, respectively. It should be mentioned that
unlike the falling activity related to Scenario 3, the initial and final positions of the
walking activity are (x1, y1) and (x3, y3), respectively. As the person is walking away
from the SISO radar system in Scenario 3, the radial velocity components of the TV
radial velocity distribution p11(v, t) are negative, as can be seen in Figure B.3c.
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(a) (b)

(c)

Figure B.3: For a SISO radar system, the measured radial velocity distribu-
tion p11(v, t) and mean radial velocity v̄11(t) of a human walking activity for (a) Sce-
nario 1, (b) Scenario 2, and (c) Scenario 3.

B.3.4 Implications on the Performance of an RF-Based Step
Counter

In this subsection, we investigate how the SISO radar system affects the performance
of an RF-based step counter under three different experimental scenarios. The
radar-based passive step counter [49] was developed in order to count the number
of steps in an unobtrusive manner for an SISO FMCW radar system. The authors
of [49] compared the performance of their radar-based passive step counter with the
wearable Garmin Forerunner 935 step counter. The reported accuracy of the radar-
based passive step counter was more than 98%, which was similar to the accuracy
of the Garmin Forerunner 935 step counter system. However, the walking activity
of a person was restricted to merely Scenario 1, where a person would walk either
towards or away from the SISO radar system. This restriction was naturally enforced
by the limitations of the SISO radar system in the context of activity direction. In
this section, the performance of the radar-based passive step counter is shown for
Scenarios 1, 2, and 3.

To detect the number of steps in a particular walk activity, the SISO radar’s

110



Human Motion and MIMO Radar Data Syntheses

raw data are processed according to the block diagram shown in Figure B.4. The
Ancortek radar in a SISO configuration produces raw in-phase and quadrature (IQ)
data for the wireless channel link ATx

i –ARx
j . The raw IQ data are processed by

the radar signal preprocessing block (see Section B.2) to generate the radial velocity
distribution p11(v, t) and mean radial velocity v̄11(t). The Savitzky–Golay smoothing
filter [51] has been adopted to smooth the mean radial velocity v̄11(t) using the
MATLAB command “smooth(y,span,'sgolay',degree)”, where “y” is the input
vector or mean radial velocity vector v̄11(t), “span” is the number of data points used
for smoothing, “sgolay” is the Savitzky–Golay smoothing filter, and “degree” is the
polynomial degree of the Savitzky–Golay filter. In our experiments, the “span” and
“degree” are chosen to be 60 and 4, respectively.

The solid black curves in Figure B.5a–c show the smoothed mean radial ve-
locity v̄11(t) for Scenarios 1, 2, and 3, respectively. The smoothed mean radial
velocity v̄11(t) is processed by the RF step detector to detect the number of steps
and their corresponding timestamps. The detected steps of the RF step detector
are distinctly marked and labeled in Figure B.5. In Scenario 1, the human subject
started walking from the position (x3, y2) and took four steps towards the position
(x1, y2). We can see from Figure B.5a that the RF step detection algorithm has suc-
cessfully detected the four steps. However, in Scenario 2, when the human subject
walked with four steps from the position (x2, y3) towards the position (x2, y1), the
SISO radar system is unable to produce an intelligible walking activity signature.
Consequently, the RF step detection algorithm is unable to detect all the steps that
were taken by the human subject. Apparently, the RF step detector missed one
of the four steps in Scenario 2 as shown in Figure B.5b. Moreover, in Scenario 3,
where a person walked from the position (x1, y1) towards the position (x3, y3) taking
only four steps, the SISO radar system is able to produce a fair walking activity
signature. Thus, the RF step detector is able to detect the four steps successfully
as depicted in Figure B.5c. Thus, we can conclude that the monostatic SISO radar
system is not sufficient to capture the human micro-Doppler signatures with high
precision in all directions.

It is now evident that the aforementioned limitations of the SISO radar sys-
tem restrict the detection of the scatterer’s motion in the horizontal xy-plane. We
must observe the environment from different perspectives to effectively detect the
scatterer’s motion. Thus, we need a distributed RF sensing system to effectively
determine the TV trajectories of the object under observation. For this reason, we
propose to distribute at least two collocated transmitter–receiver antenna pairs in

raw 
IQ dataSISO Radar

System
Radar Signal

Preprocessing

Step
Detection 
Module

detected 
stepsSavitzky-Golay

Smoothing Filter
timestamps

Figure B.4: The block diagram of the RF-based step counter for a SISO radar
system.
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an indoor environment and preprocess the data for each wireless channel link (see
Sections B.2 and B.4). It should be mentioned that for SISO radar-based HAR
systems, the classification accuracy will drop as the direction of the human motion
relative to the radar’s boresight changes from parallel to perpendicular. Further-
more, as we increase the overall system complexity in the context of human activity
classification, the performance of a machine learning or deep learning classifier is
expected to further degrade for a SISO radar system. For instance, the system com-
plexity is increased by classifying more than two kinds of activities such as falling,
walking, sitting on a chair, and standing from a chair. We can now safely assert that
a monostatic SISO radar system is not an apposite choice for direction-independent
human activity detection.

  Step 1
  Step 2

  Step 3

  Step 4

(a)

  Step 1  Step 2

  Step 3

(b)

  Step 1

  Step 2

  Step 3
  Step 4

(c)

Figure B.5: For a SISO radar, the number of steps detected from the smoothed
mean radial velocity v̄11(t) of a human walking activity according to (a) Scenario 1,
(b) Scenario 2, and (c) Scenario 3.
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B.4 Human Activity Signatures by Using a Dis-
tributed MIMO FMCW Radar System

The lack of the multi-perspective illumination of SISO radar systems is their ma-
jor limitation, preventing the realization of a direction-independent HAR system
(as described in Section B.3). To overcome this limitation, we propose to utilize a
MIMO radar system and distribute its antennas in an indoor environment to realize
a direction-independent HAR system. We have distributed two pairs of collocated
transmitter–receiver antennas to illuminate the indoor environment from different
perspectives. For the sake of simplicity, we have limited the number of antennas
to four, but the proposed approach can be straightforwardly scaled for a larger
number of antennas. A separate radar signal preprocessing chain (as described in
Section B.2) has been adopted for each pair of collocated transmitter–receiver an-
tennas. Thus, we have deployed a 2× 2 MIMO radar system, which consists of two
radar subsystems denoted as Radar1 and Radar2. Radar1 comprises a transmitter
antenna ATx

1 and a receiver antenna ARx
1 . Analogously, Radar2 consists of a trans-

mitter antenna ATx
2 and a receiver antenna ARx

2 . We propose to position the two
radar subsystems such that their boresight axes are orthogonal to each other, which
enables the 2× 2 MIMO radar system to effectively capture the scatterer motion in
the horizontal xy-plane.

In this section, we mainly emphasize the impact of the direction of human activ-
ities on the TV radial velocity distribution pii(v, t) of the link from ATx

i to ARx
i for

i ∈ {1, 2}. First, we discuss the measurement setup for the proposed 2 × 2 MIMO
radar system. Second, three different experimental scenarios are illustrated in which
the human activities are performed and analyzed. Third, we discuss the radial veloc-
ity distribution pii(v, t) and mean radial velocity v̄ii(t) derived from measurements
of the 2× 2 MIMO radar system. Finally, the implications of different directions of
human activities on the performance of an RF-based step counter are discussed.

B.4.1 Measurement Setup

To realize the proposed distributed 2× 2 MIMO radar configuration, we have used
an FMCW mm-wave radar operating at 24 GHz to capture the micro-Doppler infor-
mation of a human body moving in the xy-plane. The MIMO FMCW radar system
operating in the TDMA mode was configured according to the parameters listed in
Table B.2. For the Ancortek SDR-KIT 2400T2R4 radar system, we deployed RF
cables with different lengths to avoid interchannel interference [47]. Owing to the
TDMA mode of operation, the PRF of the 2 × 2 MIMO FMCW radar system is
equal to 1/2 of the inverse of the chirp interval Tsw; i.e., PRF = 1/(2Tsw). In TDMA
mode, the transmitter antennas ATx

1 and ATx
2 of the radar subsystems Radar1 and

Radar2, respectively, transmit the chirp waveform ci(t
′) alternately and periodically

in their respective time slot according to (B.2).
For the proposed distributed 2×2 MIMO configuration, the indoor environment

remains exactly the same as described in Section B.3. The activities of a person
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Table B.2: System parameters of the 2× 2 MIMO experimental setup.

Description Symbols Values

RF cable lengths (LTx
1 , LRx

1 , LTx
2 , LRx

2 ) (0.3, 0.3, 7, 7) m
Carrier frequency fc 24.125 GHz

Radar’s bandwidth BW 250 MHz
Sweep time Tsw 500 µs

Pulse repetition freq. PRF 1 kHz

are observed in a laboratory cluttered with fixed objects such as electronics, chairs,
tables, and other miscellaneous items, as shown in Figure B.6. This Figure B.6 also
illustrates the actual experimental setup, where the placement of antennas shows
a close resemblance to the proposed 2 × 2 distributed MIMO radar configuration
depicted in Figure B.7. The boresights of the two radar subsystems are orthogonal to
each other, which enables the 2×2 MIMO radar system to capture the radial velocity
distribution pii(v, t) using (B.14) regardless the direction of activity. For practical
reasons, we have marked the 2× 2 MIMO radar’s operation region according to the
field of view (FOV) of the two radar subsystems (Radar1 and Radar2) as shown in
Figure B.6.

B.4.2 Scenarios of Human Activities

To overcome the limitations of the SISO radar system in terms of activity direc-
tions, we illuminate the environment from different perspectives via the proposed
distributed 2 × 2 MIMO radar framework as shown in Figure B.7. Recall that
Radari comprises a transmitter antenna ATx

i and a receiver antenna ARx
i (i = 1, 2)

as illustrated in Figure B.7. The two radar subsystems have a common illumina-
tion region as depicted by a 3 × 3 grid in Figure B.7, which depends on the FOV
and the maximum unambiguous range of the radar. This common area essentially
limits the region of operation, within which all activities have to be performed. A
moving human body under observation is illuminated from two different angles, as
shown in Figure B.7. This multi-perspective view helps us to overcome the limita-
tions of the SISO radar system. For instance, if the subject moves in the direction
parallel to the boresight of Radar2, then the Doppler frequencies measured with
Radar2 change considerably more over a larger range than the Doppler frequencies
measured with Radar1. In this case, Radar2 will detect the motion of the subject
more effectively than Radar1. However, if the subject moves parallel to the Radar1
boresight, then Radar1 will obtain a much better micro-Doppler signature. The two
radar subsystems in Figure B.7 complement each other in the way that when the
direction of motion changes from the x -axis to y-axis, the movement signature of the
subject gradually disappears from the Radar1 radial velocity distribution p11(v, t)

and appears in the Radar2 radial velocity distribution p22(v, t).
To show the effectiveness of the proposed 2× 2 MIMO scheme, we recorded the

human motion in three different directions. In order to illustrate the direction of
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Figure B.6: The distributed 2 × 2 MIMO radar setup in the presence of a moving
person walking in an indoor environment.

human motion in a particular experiment, we refer throughout this section to the
3×3 grid shown in Figure B.7, in which three different scenarios of human movement
are represented by different markings. The radial velocity distributions p11(v, t)

and p22(v, t) of the two radar subsystems have been computed, and the results are
delineated in the next subsection for a walking and falling activity of a person.

B.4.3 Results for the Proposed 2×2 MIMO Configuration

We have connected the Ancortek MIMO radar system with a signal processor, which
processes the MIMO radar’s raw IQ data according to the method discussed in Sec-
tion B.2. For this research, we have recorded the radar’s raw IQ data for a 2 × 2

distributed MIMO radar system, and then we have processed the data offline using
MATLAB. Identical but independent radar signal preprocessing chains are imple-
mented for the two subchannels. For each human activity, we have computed the
radial velocity distribution pii(v, t) using (B.14) and mean radial velocity v̄ii(t) us-
ing (B.15) for i ∈ {1, 2}. Figures B.8 and B.9 correspond to Radar2, which show
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Figure B.7: Two radar subsystems forming a 2× 2 distributed MIMO radar system
in the presence of a moving person in a cluttered indoor environment.

the TV radial velocity distribution p22(v, t) for the falling and walking activities,
respectively. Note that, for the monostatic SISO configuration and 2 × 2 MIMO
configuration in Sections B.3 and B.4, respectively, the positions of the transmit-
ter antenna ATx

1 and receiver antenna ARx
1 are identical. Therefore, Radar1 of the

2 × 2 MIMO radar system is identical to the monostatic SISO radar system. As a
consequence, the TV radial velocity distributions p11(v, t) corresponding to Radar1
and the SISO radar system are the same. Recall that the TV radial velocity distri-
butions p11(v, t) corresponding to Radar1 are shown in Figures B.2 and B.3 for the
falling and walking activities, respectively. For all observed activities, we have also
computed the mean radial velocity v̄ii(t), which is represented by the black dashed
line in Figures B.2, B.3, B.8 and B.9. The falling and walking activities were per-
formed in three different scenarios to see the effect of the human activity direction
on the measured TV radial velocity distribution pii(v, t).

In Figure B.7, we can see that the direction of movement is parallel to the
boresight of Radar1 and orthogonal to the boresight of Radar2 for Scenario 1. To
perform the walking activity in Scenario 1, the person walks from the position (x3, y2)

towards the position (x1, y2) in a straight line. Similarly, to perform a falling activity,
the person first stands still on the position (x3, y2) and then falls onto a mattress
facing towards the antennas of Radar1. Figures B.2a and B.8a show the impact
of the falling activity on the measured TV radial velocity distributions p11(v, t)

and p22(v, t), respectively. For the walking activity, Figures B.3a and B.9a show
the measured TV radial velocity distributions p11(v, t) and p22(v, t), respectively.
Evidently from Figures B.2a, B.8a, B.3a and B.9a, the 2 × 2 MIMO radar system
is able to acquire good multi-perspective human activity signatures for Scenario 1.
As the direction of the activity is towards Radar1 in Scenario 1, it is obvious that
Figures B.2a and B.3a give better activity signatures than Figures B.8a and B.9a,
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(a) (b)

(c)

Figure B.8: For Radar2, the measured radial velocity distribution p22(v, t) and mean
radial velocity v̄22(t) of a human falling activity in (a) Scenario 1, (b) Scenario 2,
and (c) Scenario 3.

respectively.
The walking and falling activities are repeated for Scenario 2, where the ini-

tial and final positions are at (x2, y3) and (x2, y1), respectively, as shown in Fig-
ure B.7. Thus, the direction of motion in Scenario 2 is orthogonal to the boresight
of Radar1 and parallel to the boresight of Radar2. In Figures B.2b and B.8b, the
TV radial velocity distribution pii(v, t) of the falling activity is shown for Radar1
and Radar2, respectively. Analogously, Figures B.3b and B.9b show the TV radial
velocity distribution pii(v, t) of the walking activity corresponding to Radar1 and
Radar2, respectively. From the measurement results, we can see that the distributed
MIMO radar system captures good human activity signatures for Scenario 2 as well.
For Scenario 2, as the direction of the activity is towards Radar2, we observe that
Figures B.8b and B.9b give better activity signatures than Figures B.2b and B.3b,
respectively. In other words, Radar2 produces better human activity signatures than
Radar1 for Scenario 2.

In Scenario 3, the direction of movement is roughly diagonal to the boresights
of Radar1 and Radar2, as shown in Figure B.7. For the human falling activity, the
initial and final positions are (x3, y3) and (x1, y1), respectively. This is in contrast
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(a) (b)

(c)

Figure B.9: For Radar2, the measured radial velocity distribution p22(v, t) and mean
radial velocity v̄22(t) of a human walking activity in (a) Scenario 1, (b) Scenario 2,
and (c) Scenario 3.

to the walking activity, where the initial and final positions are (x1, y1) and (x3, y3),
respectively. Figures B.2c and B.8c show the TV radial velocity distribution pii(v, t)

of the falling activity with respect to Radar1 and Radar2. Analogously, Figures B.3c
and B.9c show the TV radial velocity distribution pii(v, t) of the walking activity
corresponding to Radar1 and Radar2, respectively. Note that both Radar1 and
Radar2 capture adequate human activity signatures for Scenario 3. It is evident
from the measurement results that unlike the SISO radar system, the distributed
MIMO radar system has the innate capability to provide better multi-perspective
human activity signatures for all three scenarios.

B.4.4 Implications on the Performance of an RF-Based Step
Counter

To illustrate the utility of the proposed distributed 2×2 MIMO radar system, we now
investigate the performance of a radar-based passive step counter [49] for the MIMO
configuration. As mentioned in Section B.3, the radar-based passive step counter was
designed only for human walking activities in accordance with Scenario 1. We have
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already shown the performance limitations of the SISO radar system with the radar-
based passive step counter module in Section B.3. In this section, we show how the
integration of the radar-based passive step counter module with the proposed 2× 2

MIMO radar system will mitigate the shortcomings that we encountered with the
SISO radar system. Recall that illuminating the indoor environment from different
perspectives, as shown in Figure B.7, will enable the distributed 2× 2 MIMO radar
to capture the walking activity signature regardless of its direction.

A basic block diagram of the 2×2 MIMO radar-based RF step counter is shown in
Figure B.10, where it can be seen that the step counter module has been implemented
separately for Radar1 and Radar2. To detect the number of steps in a particular
walking activity, the 2 × 2 MIMO radar’s raw IQ data are processed by the radar
signal preprocessor module (see Section B.2). The radar signal preprocessor module
generates the TV mean radial velocities v̄11(t) and v̄22(t) for Radar1 and Radar2,
respectively. The TV mean radial velocity v̄ii(t) is smoothed by a Savitzky–Golay
filter to be further processed by the RF step detection module.

In Figures B.5 and B.11, the solid black curves show the smoothed TV mean
radial velocities v̄11(t) and v̄22(t) for Radar1 and Radar2, respectively. By processing
the smoothed mean radial velocity v̄ii(t), the RF step detection module detects the
number of steps and their corresponding timestamps for the walking activity. The
detected steps of the MIMO radar-based RF step detector are distinctly marked and
labeled in Figures B.5 and B.11 for Radar1 and Radar2, respectively. For Scenario 1,
the human subject started walking from the position (x3, y2) and took four steps
towards the position (x1, y2). We can see from Figure B.5a that the RF step detection
algorithm has successfully detected the four steps for the radar subsystem Radar1.
However, the RF step detection algorithm has detected five steps in Figure B.11a
due to the poor quality of the data from Radar2. Thus, we can easily discard the
data from Radar2 and select the number of steps counted by the RF step counter
associated with Radar1.

On the other hand, for Scenario 2, when the human subject walked with four
steps from the position (x2, y3) towards the position (x2, y1), Radar2 is able to pro-
duce an intelligible walking activity signature. For Scenario 2, we can choose the

raw IQ data

raw IQ data

Radar Signal
Preprocessing

Step
Detection 
Module

detected 
stepsSavitzky-Golay

Smoothing Filter
timestamps

Radar Signal
Preprocessing

Step
Detection 
Module

detected 
stepsSavitzky-Golay

Smoothing Filter

 
MIMO Radar

System

timestamps

Figure B.10: The block diagram of the RF-based step counter for a 2 × 2 MIMO
radar system.
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results from the Radar2-based RF step counter, which accurately counts the num-
ber of steps, as shown in Figure B.11b. Therefore, unlike the SISO-based RF step
counter, the 2× 2 MIMO-based RF step counter is able to detect all the steps that
were taken by the human subject in Scenario 1 and 2. Moreover, for Scenario 3,
when a person walked from the position (x1, y1) towards the position (x3, y3) taking
only four steps, both radar systems Radar1 and Radar2 are able to produce good
walking activity signatures. Thus, the RF step counter detects the four steps suc-
cessfully as depicted in Figures B.5c and B.11c for Scenario 3. It is now clear that
by observing the environment from different perspectives, the proposed 2×2 MIMO
radar system is able to detect the scatterer’s motion in the horizontal xy-plane. We
can conclude that a distributed 2 × 2 MIMO radar system is sufficient to capture
the human activity signatures in all directions.

  Step 2
  Step 1   Step 3

  Step 4

     Step 5

(a)

  Step 1

  Step 2
  Step 3

  Step 4

(b)

  Step 1  Step 2

  Step 3

  Step 4

(c)

Figure B.11: For Radar2, the number of steps detected from the smoothed mean
radial velocity v̄22(t) of a human walking activity according to (a) Scenario 1, (b) Sce-
nario 2, and (c) Scenario 3.
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B.5 Discussion

From the experimental results of Sections B.3 and B.4, we can see that the proposed
fundamental 2×2 MIMO radar system ameliorates the limitations posed by the SISO
radar configuration. In Figures B.2, B.3, B.8, and B.9, adequate falling and walking
activity signatures were observed irrespective of the activity direction. Furthermore,
to quantify and numerically assess the performance of the SISO and 2 × 2 MIMO
radar systems for each scenario, we have computed the DTW [44] distance for the
walking activity. A numerical analysis of the falling activity signatures yields similar
results. Therefore, to be concise, we have only shown the performance of the SISO
and 2× 2 MIMO radar systems for the walking activity.

The DTW algorithm performs a time series analysis by evaluating the similarity
between two temporal sequences. In this algorithm, the two temporal sequences
are expanded or stretched such that the overall Euclidean distance between the two
sequences is minimized, which makes the algorithm robust to any speed variations,
accelerations, or decelerations in the data. This algorithm has been widely used in
speech [52], gesture [53], and gait [54, 55] recognition. To quantify whether a radar
system has captured an adequate human activity signature or not, we first need a
reference human activity signature for comparison. The reference activity signature
is obtained in favorable conditions, where a person walks in the direction parallel to
the boresight of the SISO radar. For each radar subsystem, the DTW distance is
computed between the reference human activity signature and the captured human
activity signature of a particular scenario. For the SISO radar system, equivalent
to Radar1, we obtain a single DTW distance metric for each walking scenario as
shown in the second and fourth columns of Table B.3. However, for the proposed
2 × 2 MIMO radar system, we obtain two distinct DTW distance metrics, one for
each radar subsystem (Radar1 and Radar2). For the 2 × 2 MIMO radar system,
the measured DTW distance metrics of Radar1 and Radar2 are compared, and the
activity signature with the minimum DTW distance metric is chosen as shown in
the last column of Table B.3. Note that the radar subsystem with the minimum
DTW distance is chosen because its signature would resemble the higher similarity
to the reference activity signature.

A performance summary of the SISO and 2 × 2 MIMO radar system is based
on the results shown in Table B.3. It is clear that the SISO radar system is unable
to obtain an adequate activity signature in Scenario 2 as its DTW distance is very

Table B.3: The DTW distance metric for the SISO and 2× 2 MIMO radar systems.

Scenario Dist. of Dist. of Dist. of Dist. of 2× 2

# Radar1 Radar2 SISO Radar MIMO Radar

1 19.6 81.2 19.6 19.6

2 73.8 12.0 73.8 12.0

3 7.3 9.1 7.3 7.3
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large (see the underlined DTW distance metric in Table B.3). Unlike the SISO radar
system, the 2× 2 MIMO radar system is able to perform well in all three scenarios,
as evident from the measured DTW distances and the results from Sections B.3 and
B.4.

Although we have presented the basic 2× 2 distributed MIMO radar system to
successfully capture the human activity signature in all directions, this study does
not include a machine learning or deep learning-based classification network to rec-
ognize the type of human activity. However, an RF-based direction-independent
HAR system using the proposed MIMO radar configuration would be considered as
an extension of this research. To develop such a direction-independent HAR system,
the data observed by Radar1 and Radar2 need to be merged or fused together. As
previous studies have shown the performance improvements due to the fusion of the
data obtained from either homogeneous sensors [17, 56] or heterogeneous sensors [9],
we can expect to achieve similar performance gains by fusing the data of Radar1
and Radar2. In all likelihood, the TV radial velocity distribution pii(v, t) generated
by the proposed 2× 2 MIMO radar system would ameliorate the classification per-
formance upon appropriate data fusion. Therefore, a learning network based on the
proposed 2 × 2 MIMO radar data would be able to recognize different activities in
different directions.

For a computationally efficient machine learning algorithm, we can extract mul-
tiple features from the TV radial velocity distributions p11(v, t) and p22(v, t). For in-
stance, we have computed a key parameter known as TV mean radial velocity v̄ii(t),
which is shown by the black dashed line in Figures B.2, B.3, B.8, and B.9. Higher-
order parameters and features can be readily computed for the data obtained from
the proposed 2 × 2 MIMO radar system. Alternatively, a separate convolutional
neural network (CNN) [57] may be adopted to extract features from the data of
Radar1 and Radar2. Then, the obtained features corresponding to Radar1 and
Radar2 can be merged using a deep neural network for the classification of human
activity. Conceivably, the proposed 2× 2 MIMO solution combined with a machine
learning or deep learning-based classifier would mitigate the concerns regarding a
direction-independent HAR system.

B.6 Conclusions

We have proposed a fundamental 2×2 MIMO approach to analyze the radial velocity
distribution and mean radial velocity for falling and walking activities. We confirmed
the limitations of SISO RF sensing and emphasized the importance of a distributed
MIMO RF system in the context of different directions of human activities. Unlike
the state-of-the-art monostatic SISO or MIMO radar systems, our proposed 2 × 2

distributed MIMO radar system enables the realization of a direction-independent
HAR system using TV channel characteristics of human activities obtained from
different aspect angles. A comparison with the performance of a radar-based passive
step counter has been demonstrated for a SISO and a proposed 2× 2 MIMO radar
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system. It is shown that the 2 × 2 MIMO radar-based step counter is able to
accurately detect the number of walking steps in all scenarios, while the SISO radar-
based step counter fails to perform. Moreover, the DTW distance metric is used to
numerically assess the performance of the SISO and 2× 2 MIMO radar systems.

Although the fundamental approach presented in this paper may be adopted
for various applications, we plan to extend this work to a direction-independent
HAR system, where we intend to increase the overall performance of the RF-based
HAR system by increasing the number of antennas. The proposed 2×2 MIMO radar
system can straightforwardly be scaled to an N×N MIMO radar system. Moreover,
from the obtained multi-perspective channel characteristics, multiple features can be
extracted for a classical machine learning-based HAR system. For a more complex
HAR problem, a deep CNN can be adopted based on the data from the proposed
distributed MIMO radar framework.
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Abstract— Modern monostatic radar-based human activity recognition
(HAR) systems perform very well as long as the direction of human activi-
ties is either towards or away from the radar. The monostatic single-input
single-output (SISO) and monostatic multiple-input multiple-output (MIMO)
radar systems cannot detect motion of an object that moves perpendicu-
larly to the radar’s boresight axis. Due to this physical layer limitation,
today’s radar-based HAR systems fail to classify multi-directional hu-
man activities. In this article, we resolve this typical but critical physical
layer problem of contemporary HAR systems. We propose a HAR sys-
tem underlying a distributed MIMO radar configuration, where multiple
antennas of a millimeter wave MIMO radar system (Ancortek SDR-KIT
2400T2R4) are distributed in an indoor environment. In our proposed
HAR system, we have two independent and identical monostatic radar
subsystems that irradiate and capture the multi-directional human move-
ment from two perspectives, which allows to compute two distinct time-
variant radial velocity distributions. A feature extraction network ex-
tracts numerous features from the measured time-variant radial velocity
distributions, which are then fused by a multiclass classifier to detect
five types of human activities. The proposed multi-perspective MIMO-
radar-based HAR system achieves a classification accuracy of 98.52%,
which surpasses the accuracy of SISO radar-based HAR system by more
than 9%. Our approach resolves the physical layer limitations of modern
HAR systems that are based on either monostatic SISO or monostatic
MIMO radar systems.

Index Terms— Deep learning, direction-independent human activity recog-
nition (HAR), fall detection, feature fusion, multistatic radar, multiview
radar sensing, orientation-independent HAR.
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C.1 Introduction

C.1.1 General Background

Studies have shown a considerable amount of progress in the area of human activity
recognition (HAR) over the past few years [1, 2, 3, 4]. The steady interest in HAR
is due to its extensive range of applications. Over the years, HAR systems have
proven their usefulness in application areas such as social robotics [5], autonomous
driving [6], sports [7, 8], home automation [9], healthcare [10], automated video
analysis [11], and human–computer interaction [12].

To date, numerous diverse sensing modalities have been adopted to effectuate
the HAR task. However, each modality may exhibit its distinct advantages and
disadvantages [13]. For instance, due to the ongoing advancements in computer
vision techniques, HAR systems based on vision sensors have produced remarkable
results [14, 15]. However, vision sensors are often criticized because they are very
susceptible to lighting conditions, occlusion, and can violate user privacy. Wear-
able sensors [16, 17, 18, 19] on the other hand, despite being very effective HAR
sensors, are generally criticized for being fragile, obtrusive, and vulnerable to user
negligence. Also, the need to be worn indefinitely renders the wearable sensors im-
practical and inconvenient, especially for elderlies or infirmed persons. By taking
into consideration the aforementioned shortcomings, recently HAR systems based on
radio frequency (RF) sensing techniques have been preferred more and more despite
new challenges and hurdles.

Lately, many researchers have studied and eventually leaned towards Wi-Fi and
radar systems for the HAR purpose [20, 21, 22, 23]. Unlike radar systems, commer-
cial grade Wi-Fi routers have the channel frequency response with notably noisy
phases [24, 25, 26, 27]. In contrast, commercial coherent radar systems conserve the
phase information within their coherent processing interval (CPI) [28]. Thus, small
phase variations corresponding to non-stationary scatterers in an environment can
be easily processed by coherent signal processing techniques [29, 30]. This is one
of the reasons why coherent radar systems have been preferred over Wi-Fi devices
to capture the propagation phenomena caused by complex human activities. In the
context of RF sensing, the recognition of human activity often relies on exploiting
the micro-Doppler phenomenon [31, 32, 33, 34] to discern the specific type of activity
being performed. Thanks to recent advancements in the areas of radar techniques
and machine/deep learning, the classification and tracking of a wide range of human
activities in complex environments will be within reach in a few years.

C.1.2 Problem Description

A major problem of radar-based HAR systems is their inability to generate an ade-
quate micro-Doppler signature in a situation where a person moves perpendicularly
to the radar boresight axis. Our article is a step in this direction, in which we pro-
pose a pragmatic solution to the problem of direction-independent HAR. Thus, we
will look into the classification of five different types of human activities performed
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in different directions. Single monostatic radar-based HAR systems do not consider
the direction of human motion and thus tend to fail in classifying human activities
performed in different directions.

Erol and Amin [35] reported the average classification performance at different
aspect angles for a human falling activity. For a human fall parallel to the radar
boresight axis or at 00 aspect angle, the classification accuracy was 96%; at 600 aspect
angle, the classification accuracy dropped to 85%; and at 900 aspect angle (falling
perpendicularly to the radar boresight axis), the classification accuracy plummeted
to 45% rendering the HAR system futile. Similarly, for six human activities, Ding
et al. [36] reported a decrease in classification performance from 95.8% to 86.7% by
changing the radar’s viewing angle from 150 to 300.

C.1.3 Related Work

Some of the approaches to mitigate the problem of the direction of human motion
are discussed here along with their shortcomings. In [37, 38] it was shown that
by positioning a radar on the ceiling, a human falling in different directions can
be detected, but the solution cannot be generalized to classify more complex hu-
man activities. To realize a direction-independent HAR, it is tempting to employ
a monostatic beamforming multiple-input multiple-output (MIMO) radar system
with the capability of measuring the target’s angle [39, 40]. But in practice, com-
mercial beamforming radar systems have poor angular and cross-range resolutions
due to their limited hardware resources. Thus, for applications such as short-range
hand gesture sensing, where the cross-range resolution is not a concern, Molchanov
et al. [41] rightly utilized the angular information of a single-input multiple-output
(SIMO) frequency-modulated continuous wave (FMCW) monopulse radar. Unfor-
tunately, the approach cannot be extended to direction-independent HAR systems
because of the radar’s poor cross-range resolution. Recently, HAR systems are re-
alized by using three-dimensional (3D) point cloud data generated by millimeter
wave (mm-wave) monostatic MIMO radar systems [42, 43]. But 3D point cloud
data also suffer from the problem of poor cross-range resolution. For better angle
estimation or, equivalently, cross-range resolution, more advanced signal process-
ing techniques such as the “estimation of signal parameters via rotational invari-
ance techniques (ESPRIT)” [44] and “multiple signal classification (MUSIC)” algo-
rithms [45, 46] are usually employed, but these estimation techniques demand a high
signal-to-noise ratio [47]. Alternatively, a single-input single-output (SISO) bistatic
radar system [48] is a good choice for HAR. However, an even better choice for the
direction-independent HAR are multi-perspective multistatic MIMO radar systems.
They can provide the best multi-view signatures of human activities, as we will see
in this article.
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C.1.4 Proposed Approach for HAR

To overcome the aforementioned issues and drawbacks of monostatic SISO, SIMO,
and beamforming MIMO radar-based HAR systems, we develop a multi-perspective
2× 2 distributed MIMO radar system to realize a direction-independent HAR sys-
tem. In our approach, two radar subsystems, each consisting of one transmit and
one receive antenna and their own independent signal preprocessing units, are spa-
tially distributed to irradiate the environment from different perspectives (see Sec-
tion C.3). This multistatic MIMO radar framework enables us to detect and classify
different types of human activities independent of their respective directions.

Human body segments can be modelled by N moving scatterers, which reflect
back the radar signals to the radar receiver. The scatterers’ distinct time-variant
(TV) radial velocity components can be described by the so-called TV radial ve-
locity distribution (see Section C.2). The TV radial velocity distributions at the
output of the radar’s signal preprocessor are in fact the input feature maps to our
classifier, which is based on a deep convolutional neural network (DCNN). We use
deep learning methods to automatically extract the features from the TV radial ve-
locity distributions of the MIMO radar system to finally classify the type of human
activity regardless of its direction of motion.

Conventionally, it was not uncommon to manually extract features in single-
variable and joint-variable domains to classify human activities using machine learn-
ing techniques, such as support vector machine (SVM), with a well-documented
classification accuracy of 90% [49]. Widely adopted conventional machine learn-
ing algorithms in conjunction with domain-based feature engineering usually have
theoretical foundations and are computationally less expensive when compared to
deep learning algorithms. However, manual feature engineering is quite cumber-
some and requires specific expertise. Determining the relevance and significance of
features for identifying specific motion artifacts is also a complicated task. Large
differences in manually measured features were found in different individuals mon-
itored for health status, body height, and habits [50]. Therefore, to account for
the intricate attributes of human motion, and to overcome the aforementioned chal-
lenges associated with the manual feature engineering, deep learning algorithms are
preferred [51].

To train and test our SISO and MIMO radar-based direction-independent HAR
classifiers (see Section C.5), we recorded a novel HAR dataset, where the human
activities were performed in several directions in the two-dimensional (2D) horizontal
xy-plane. In this regard, we denote the recorded HAR dataset with the superscript
“(2D)” as HAR(2D) (see Section C.4). For a conventional monostatic SISO radar-
based HAR classifier that contains the human movement merely along the one-
dimensional (1D) x-axis or the monostatic radar’s boresight, we denote the recorded
HAR dataset accordingly by HAR(1D).
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C.1.5 Contributions

The MIMO radar-based HAR system presented in this article is a stride forward
towards actualizing more advanced RF-based HAR systems. The main contributions
of the research are as follows:

1. For our direction-independent HAR system, we have addressed a critical phys-
ical layer problem of monostatic radar systems related to the target’s aspect
angle.

2. For a monostatic SISO and the multistatic MIMO radar configurations, we
have analyzed the variations in measured channel characteristics for five types
of human activities (falling, walking, standing, sitting, picking). We also stud-
ied the effects of different directions of human activities by analyzing the TV
radial velocity distributions of the MIMO radar system (see Section C.3).

3. We composed a completely novel HAR dataset, denoted as HAR(2D), by using
the multi-perspective 2× 2 MIMO radar configuration (see Section C.4). We
recorded real human activities by using a commercial mm-wave radar system
known as Ancortek SDR-KIT 2400T2R4. The HAR(2D) dataset consists of
five types of human activities performed by six different persons in several
directions.

4. By using the HAR(2D) dataset and its derivative or subset dataset denoted as
HAR(1D), we have developed and analyzed three different HAR systems (see
Section C.5): (a) a SISO radar-based conventional HAR system, (b) a SISO
radar-based direction-independent HAR system, and (c) a MIMO radar-based
direction-independent HAR system. The proposed 2 × 2 MIMO radar-based
HAR system is capable of recognizing human gross motor activities regardless
of the aspect angle or direction of motion, and it is straightforwardly scalable to
a higher number of antennas for a more complex human activity classification
task.

5. For the three HAR systems, we accordingly designed three different DCNN-
based multiclass classifiers. The DCNN classifier extract features automat-
ically from the radar’s TV radial velocity distribution before classifying an
activity. For the distributed MIMO radar-based classifier, feature level fusion
has been adopted, which virtually combines the target’s information from dif-
ferent aspect angles, and thereby eradicates the limitations that emerge due
to the direction of motion.

6. The classification performances of the three HAR systems have been assessed
and compared quantitatively. It is shown that the proposed HAR system,
based on the multi-perspective 2 × 2 MIMO radar framework, improves the
classification accuracy of the monostatic SISO radar-based HAR system from
88.98% to 98.52%.
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C.1.6 Article Organization

The article organization is as follows. Section C.2 describes the MIMO radar system
model and the deep learning methods that are utilized in this research. A critical
problem of modern SISO and monostatic MIMO radar-based HAR systems and its
solution is discussed in Section C.3. The data acquisition campaign is described
in Section C.4. In Section C.5, a conventional and a direction-independent SISO
radar-based HAR system, as well as a direction-independent MIMO radar-based
HAR system are presented. Lastly, Section C.6 draws the conclusions.

C.2 System Overview

C.2.1 MIMO Radar Signal Preprocessing

An FMCW 2×2 MIMO radar system periodically transmits a chirp waveform ci(t
′),

which can be expressed as [52]

ci(t
′) = exp

[
j
(
ϕi + 2πf0t

′ + γπt′2
)]

, 0 ≤ t′ < Tsw (C.1)

where i = 1, 2. The symbol ϕi is the initial phase term, f0 is the initial frequency,
and γ is the slope of the chirp waveform. The symbols t′ and Tsw in (C.1) are
the fast time and duration of the chirp, respectively. We adopted a time division
multiple access (TDMA) scheme, where the transmitter antenna ATx

i periodically
transmits the chirp waveform ci(t

′) in separate time windows, which are defined as
(2n + i − 1)Tsw ≤ t′ < (2n + i)Tsw for n = 0, 1, . . . and i = 1, 2. With the help of
the Dirac delta function δ(·), we can express the transmit signal si(t′, t) in terms of
fast time t′ and slow time t as [53]

si(t
′, t) =

∞∑
n=0

ci(t
′)δ(t− Tn,i). (C.2)

The symbol Tn,i in (C.2) is the discrete slow time that depends on the chirp duration
Tsw according to Tn,i = (2n+ i− 1)Tsw.

For a 2 × 2 MIMO radar, the notation ATx
i –ARx

k describes the wireless link be-
tween the transmitter antenna ATx

i and the receiver antenna ARx
k . The transmit

signal si(t′, t) interacts with L stationary and non-stationary scatterers present in
the wireless link ATx

i –ARx
k , where i, k ∈ {1, 2}. Let the symbols d(l)ik , c0, and λ denote

the propagation distance of the lth scatterer, speed of light, and radar’s wavelength,
respectively. Then, the beat frequency f

(l)
b,ik and the phase ϕ(l)

ik of the lth scatterer are
given by f

(l)
b,ik = 2d

(l)
ik γ/c0 and ϕ

(l)
ik = 4πd

(l)
ik /λ, respectively, where l = 1, 2, . . . ,L. For

the wireless link ATx
i –ARx

k and the lth scatterer, the received beat signal s(l)b,ik(t
′, t)

can be expressed as [53]

s
(l)
b,ik(t

′, t) =
∞∑
n=0

a
(l)
ik exp

[
j
(
2πf

(l)
b,ikt

′ + ϕ
(l)
ik

)]
δ(t− Tn,i − τ

(l)
ik ) (C.3)
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where a
(l)
ik is the gain, which is assumed to be constant within the radar’s CPI. The

propagation delay τ
(l)
ik in (C.3) is related to the beat frequency f

(l)
b,ik by τ

(l)
ik = f

(l)
b,ik/γ.

At the radar receiver, the composite beat signal sb,ik(t′, t) is simply the sum of all L
beat signals, i.e,

sb,ik(t
′, t) =

L∑
l=1

s
(l)
b,ik(t

′, t) (C.4)

We obtain the beat frequency function Sb,ik(fb, t) by computing the Fourier trans-
form of the beat signal sb,ik(t′, t) over the fast time t′, i.e., [54]

Sb,ik(fb, t) =

Tsw∫
0

sb,ik(t
′, t)e−j2πfbt

′
dt′ (C.5)

where fb is the beat frequency. The beat frequency function Sb,ik(fb, t) in (C.5) fur-
ther undergoes a short-time Fourier transform (STFT) over the slow time t. Subse-
quently, the square of the STFT results in the TV micro-Doppler signature Sik(f, t),
which is given as

Sik(f, t) =
∣∣∣ fb,max∫

0

∞∫
−∞

Sb,ik(fb, t
′′)Wr(t

′′ − t)e−j2πft′′dt′′dfb

∣∣∣2 (C.6)

where f represents the Doppler frequency, fb,max is the maximum beat frequency,
t′′ is the running time, and Wr(·) is a window function, which is in our case a
rectangular function with a width of 64Tsw.

Finally, the TV radial velocity distribution pik(v, t) is obtained from the TV
micro-Doppler signature Sik(f, t) according to [53]

pik(v, t) =
Sik

(
2f0
c0
v, t

)
∫∞
−∞ Sik

(
2f0
c0
v, t

)
dv

(C.7)

where v represents the radial velocity. Note that the human body is composed of
body segments and each body segment contains several scatterers that reflect back
the RF signals to the radar. Each scatterer on a human body segment has a unique
TV radial velocity component due to its spatially distinct motion. The TV radial
velocity distribution pik(v, t) contains the radial velocity components from all the
scatterers on the human body. We use the expression in (C.7) to obtain the TV
radial velocity distribution pik(v, t) of the recorded human activities. The TV radial
velocity distribution pik(v, t) is converted into an image in the time-velocity domain,
which is basically an input feature map to the DCNN, as described in Section C.2.2.

C.2.2 Deep Learning

In this section, a supervised learning-based multiclass classification method is de-
lineated. Assume a d-dimensional mth feature vector xm that belongs to a feature
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space X . This feature space X is a proper subset of the real coordinate space Rd,
meaning that xm ∈ X ⊂ Rd. For the entire number of classes C, the mth label ym is
an element of a label space Y = {1, 2, . . . , C}, i.e., ym ∈ Y . A dataset D is defined
as {(xm, ym)}M−1

m=0 , where M is the total number of labeled training samples.
We aim to design a DCNN-based classifier function Cf that maps the input

feature space X into the label space Y , i.e., Cf : X 7→ Y . An empirical risk RJ(Cf )
corresponding to the categorical cross-entropy loss function JCCE and the classifier
function Cf is given as [55, 56]

RJ(Cf ) = ED {JCCE (Cf (x;θ), yx)}

= − 1

M

M−1∑
m=0

C−1∑
c=0

ycm log Cc
f (xm;θ)

(C.8)

where ED{·} denotes the expectation operator that is performed over the empir-
ical distribution, which can either be the dataset D or a mini-batch from the
dataset D. In (C.8), the symbol θ is a vector of trainable parameters defined
as θ = (θ1, θ2, . . . , θL), where L depends on the complexity of the classifier. The
symbol ycm in (C.8) is the cth entity of the mth one-hot encoded label vector ym,
which means ycm ∈ {0, 1} such that (1)⊤ym = 1 ∀ m, where 1 is a C-dimensional
vector of ones, and (·)⊤ is the transpose operator. The symbol Cc

f represents the
cth element of the classifier function Cf . We have used the softmax layer as an
output layer of the deep neural network (DNN), thus

∑C−1
c=0 Cc

f (xm;θ) = 1, and
Cc
f (xm;θ) ≥ 0, ∀ m, c,θ. The trainable parameters of the vector θ corresponding to

the classifier function Cf can be obtained by minimizing the empirical risk RJ(Cf ).
The learning process of the DCNN and DNN is the same, but in case of DCNN,

the number of trainable parameters is drastically reduced. In a DCNN, convolutional
layers are employed to generate the feature maps from their inputs by means of
multiple learnable filters. Assume a total number of Q filters in a convolutional
layer, then the mth input feature map xm is convolved with the qth filter. The qth
filter is characterized by its trainable weight vector wq and bias bq. Then, the qth
output yq of the convolutional layer is given by

yq =
M∑

m=1

σ(xm ∗ wq + bq1), q = 1, 2, . . . , Q (C.9)

where the symbol ∗ denotes the convolutional operator. The function σ(·) in (C.9)
is a rectified linear unit (ReLU) activation function [57] formulated as σ(x) =

max(0, x), which mitigates the problems of slow convergence and gradient vanish-
ing [58].

Pooling layers are generally utilized as an abstraction and downsampling tool
to progressively reduce the spatial size and redundancies of the extracted feature
maps to increase the network’s computational efficiency. Moreover, dropout layers
are added to the network to improve the network generalizability and to avoid
the overfitting problem [59]. After several convolutional layers, the feature maps
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are flattened before feeding them to the fully connected dense layers or multilayer
perceptron (MLP) layers.

In this research, we use a stochastic optimization technique known as adaptive
moment estimation (Adam) [60] to optimize or train the parameters of the vector θ.
The Adam algorithm applies adaptive learning rates that are based on the esti-
mates of the first-order moment mκ and second-order moment vκ of the gradient gκ

according to
mκ = β1mκ−1 + (1− β1)gκ (C.10)

and
vκ = β2vκ−1 + (1− β2)g

2
κ (C.11)

where the symbol κ denotes the iteration number, and the decay factors are de-
noted by β1 and β2. The gradient gκ in (C.10) and (C.11) is the gradient of the
stochastic objective function f(θκ) = minθκ RJ(Cf ). Note that in the Adam al-
gorithm, element-wise operations are adopted for all the vectors mκ, vκ, gκ, and
θκ. Additionally, to counteract the initialization bias of the moments or to avoid the
moments’ biasedness towards zero, Kingma and Ba [60] suggested that the first- and
second-order moments can be rectified as m̂κ = mκ/(1−βκ

1 ) and v̂κ = vκ/(1−βκ
2 ),

respectively. Then, for ακ being the learning rate and ϵ a small constant, the ℓth
parameter of the vector θκ at the κth iteration can be updated as [60]

θℓ,κ = θℓ,κ−1 −
ακ√
v̂ℓ,κ + ϵ

m̂ℓ,κ (C.12)

where ℓ = 1, 2, . . . , L.
By using the Adam optimizer delineated in this section, we perform the parame-

ter optimization of our DCNN-based classifiers (see Section C.5), where our objective
function is the minimization of the empirical risk RJ(Cf ) as defined in (C.8).

C.3 Experimental Setup and the Proposed Solution

In the following, we develop a more pragmatic and complex HAR system suitable
for detecting human activities with motion in multiple directions. To this end, we
utilize the multi-perspective 2 × 2 distributed MIMO radar configuration [53] (see
Fig. C.1) to eventually realize a direction-independent HAR system. The human
activities were monitored by using the 2 × 2 MIMO radar configuration shown in
Fig. C.1. This configuration is also used for comparison with conventional SISO
radar-based HAR systems, and to find out whether the multi-perspective MIMO
radar configuration can mitigate their limitations. We deployed a software-defined
radar system known as Ancortek SDR-KIT 2400T2R4, which is an FMCW mm-wave
MIMO radar system, and used its transmitter-receiver antennas in a 2 × 2 config-
uration. The operating parameters of the Ancortek radar system are delineated in
Table C.1.

For the proposed 2 × 2 MIMO radar-based HAR system, we arrange two radar
subsystems, denoted by Radar1 and Radar2, where each radar subsystem has a col-
located transmitter and a receiver antenna in a monostatic configuration. Radar1
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Figure C.1: Measurement setup of the proposed 2 × 2 MIMO radar-based HAR
system consisting of Radar1 and Radar2, where Scenario 1–3 characterize human
activities in different directions.

Table C.1: 2× 2 MIMO radar system parameters.

Description Symbols Values
Carrier frequency fc 24.125 GHz
Radar bandwidth BW 250 MHz
Chirp duration Tsw 500 µs
Pulse repetition frequency PRF 1 kHz
RF cable lengths (LTx

1 , LRx
1 , LTx

2 , LRx
2 ) (0.3, 0.3, 7, 7) m

and Radar2 are distributed in an indoor setting such that the 2 × 2 MIMO radar
system renders a multi-perspective illumination of a target as shown in Fig. C.1,
thereby having the potential to overcome the limitations that are posed by the
monostatic SISO or monostatic MIMO radar systems in the context of HAR. We
operate Radar1 and Radar2 in different time slots according to the TDMA scheme,
where both radar subsystems have identical but independent radar signal prepro-
cessing chains (see Section C.2). The radar signal preprocessing chains process the
raw in-phase and quadrature (IQ) data recorded by the Ancortek MIMO radar sys-
tem. For a human activity, the radar signal preprocessing block of Radari generates
the TV radial velocity distribution pii(v, t) by using (C.7) for i ∈ {1, 2}.

We consider five different types of human activities, which are as follows: falling
on a mattress on the floor, walking, standing up from a chair, sitting down on a
chair, and picking up an object from the floor. For these activities, the measured TV
radial velocity distributions p11(v, t) and p22(v, t) are shown in Figs. C.2 and C.3,
where the Scenarios 1, 2, and 3 denote the directions of human activities according
to Fig. C.1. In Scenario 1 (Scenario 2), the human motion is parallel to the boresight
of Radar1 (Radar2), whereas in Scenario 3, the human movement is roughly at 450

to the boresights of both radar subsystems, as depicted in Fig. C.1.
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Figure C.2: Images containing the heatmap of the measured radial velocity distri-
butions pii(v, t) of the “Fall” activity in three different scenarios, where each image
has the radial velocity v on the y-axis ranging [−1.5, 1.5] m/s and time t on the
x-axis spanning over 2− 4 s.

Radar1 and Radar2 complement each other such that when the activity direction
changes from the x-axis to the y-axis of Fig. C.1, the activity signature slowly van-
ishes from the radial velocity distribution p11(v, t) of Radar1 and starts appearing in
the radial velocity distribution p22(v, t) of Radar2. For “Fall” activities performed in
different directions, the measured radial velocity distributions p11(v, t) and p22(v, t)

in the three scenarios vary significantly, as shown in Fig. C.2. We can see from
Figs. C.2 and C.3 that Radar1 and Radar2 are unable to acquire optimal human ac-
tivity signatures in Scenarios 2 and 1, respectively. The suboptimal human activity
signatures contribute towards the poor classification performance of a SISO radar-
based direction-independent HAR system (see Section C.5.2). Therefore, analogous
to a monostatic SISO or monostatic MIMO radar case, a single radial velocity dis-
tribution either from Radar1 or Radar2 cannot completely portray a human activity
and would not be sufficient for the realization of a direction-independent HAR sys-
tem. Additionally, Fig. C.3 shows how the TV radial velocity distribution pii(v, t)

changes with the type of human activity. This figure demonstrates that the human
activity signature or TV radial velocity distribution pii(v, t) depends on the type as
well as the direction of the human activity. To see the radar signatures correspond-
ing to different multi-directional human activities, please refer to Figs. C.12–C.15
in Appendix C.7.

As our 2× 2 distributed MIMO radar-based HAR system generates two distinct
activity signatures from two different aspect angles for a human activity, we must
fuse or merge the information from the two activity signatures in order to accurately
classify the human activity regardless of the direction of motion. In this research,
we have implemented a fusion technique at the feature level. For this purpose, for
each radar subsystem, Radar1 and Radar2, the features are extracted independently
and automatically by several convolutional layers from the radial velocity distri-
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Figure C.3: Images containing the heatmap of the measured radial velocity distribu-
tions pii(v, t) of different human activities, where each image has the radial velocity v

on the y-axis ranging [−1.5, 1.5] m/s and time t on the x-axis spanning over 3− 5 s.

butions p11(v, t) and p22(v, t), respectively. The extracted features from the radar
subsystems are then merged by the concatenation layer (see Section C.5.3).

In Section C.5, we show how the classification performance of the monostatic
radar-based HAR system deteriorates if the human activities take place in the 2D
xy-plane, which is depicted by the 3×3 grid in Fig. C.1. We also explain the design
of the proposed 2× 2 distributed MIMO radar-based HAR system and show how it
overcomes the above constraints on the direction of human activity motion. Com-
pared to the SISO radar-based direction-independent HAR system, we see that the
proposed 2 × 2 distributed MIMO radar-based direction-independent HAR system
significantly ameliorates the classification accuracy.

C.4 Data Collection

A comprehensive measurement campaign was carried out in an indoor environment
consisting of fixed objects, such as chairs, tables, cabinets, computers, and other
electronic items. The five types of activities were performed by six different persons,
one of them was a female candidate. The human activities were carried out in
several directions, with different speeds, and in different locations. For instance,
the falling activities were performed in six different directions as depicted by the
scenario markers in Fig. C.1. Specifically, the falling activities were executed in the
following directions: from (x3, y2) to (x1, y2), from (x1, y2) to (x3, y2), from (x2, y3)

to (x2, y1), from (x2, y1) to (x2, y3), from (x3, y3) to (x1, y1), and from (x1, y1) to
(x3, y3). The walking activities were performed and recorded in a similar fashion.
The other human activities—standing up, sitting down, and picking up an object—
were performed accordingly.

In this article, the term HAR(2D) is coined to represent the dataset recorded by
the 2 × 2 MIMO radar system, where the superscript “(2D)” refers to the human
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movement in the 2D horizontal xy-plane in Fig. C.1. Therefore, for the direction-
independent HAR task, we define FEN(2D), SISO(2D), and MIMO(2D) as a feature
extraction network, a SISO radar-based HAR classifier, and a MIMO radar-based
HAR classifier, respectively. On the other hand, to denote the human movement
along the 1D x-axis of the 3 × 3 grid in Fig. C.1, we use the superscript “(1D)”.
Thus, for the conventional 1D HAR task, where the human movement is restricted
to Scenario 1 in Fig. C.1, we define HAR(1D), FEN(1D), and SISO(1D) as a dataset
recorded by Radar1, a feature extraction network, and a conventional SISO radar-
based HAR classifier, respectively.

We need the HAR(2D) dataset to realize the SISO(2D) and MIMO(2D) HAR sys-
tems, whereas the HAR(1D) dataset is required for the SISO(1D) HAR system. The
details of the HAR(2D) dataset related to the measurement campaign based on the
proposed 2 × 2 MIMO radar framework are shown in Table C.2. As entered in
Table C.2, we recorded a total of 1364 activities. For each activity, we gener-
ated the TV radial velocity distributions p11(v, t) and p22(v, t) corresponding to the
radar subsystems Radar1 and Radar2, respectively. On the other hand, Table C.3
shows the HAR(1D) dataset, which is a proper subset of the HAR(2D) dataset, i.e.,
HAR(1D) ⊂ HAR(2D). Note that the HAR(1D) dataset only contains those activities of
the HAR(2D) dataset that were performed parallel to the boresight of Radar1. To im-
plement a conventional monostatic radar-based HAR system (see Section C.5.1), we
use only the TV radial velocity distributions p11(v, t) corresponding to the recorded
human activities of the HAR(1D) dataset.

Each human activity trial was recorded for 10 seconds. The persons were told
to maintain the initial and the final poses before and after performing the activity.
Though each activity trial was recorded for 10 seconds, the actual duration of the
activity was only 2–5 seconds, depending on the type of the activity and the speed
at which the activity was carried out. We applied the active segment detection
(ASD) [61] approach to the high-pass filtered in-phase component of the raw activity
data to automatically extract an active segment, i.e., the section of the raw activity
data corresponding to the actual duration of the activity. The ASD marks the start
and end points of the activity by monitoring the variance of the filtered in-phase
component of the raw activity data. The identified markers are used to extract
active segments from the raw IQ activity data of Radar1 and Radar2. Thereafter,

Table C.2: HAR(2D) dataset recorded by a 2× 2 MIMO radar system.

Type of human Person # Total
activity 1 2 3 4 5 6 trials
Falling 60 59 18 18 − − 155

Walking 80 80 39 39 23 24 285

Standing up 102 100 27 27 27 27 310

Sitting down 105 102 27 23 22 25 304

Picking an object 101 103 25 27 27 27 310

Total trials 448 444 136 134 99 103 1364
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Table C.3: HAR(1D) data subset recorded by Radar1, where the direction of motion
of the human activities is restricted to merely Scenario 1.

Type of human Person # Total
activity 1 2 3 4 5 6 trials
Falling 20 19 6 6 − − 51

Walking 20 20 10 9 6 6 71

Standing up 35 32 9 9 9 9 103

Sitting down 35 32 9 7 8 8 99

Picking an object 34 33 9 9 9 9 103

Total trials 144 136 43 40 32 32 427

we applied radar signal processing techniques (see Section C.5.3) to compute the
TV radial velocity distributions p11(v, t) and p22(v, t) as given in (C.7).

To demonstrate the utility and effectiveness of our proposed multi-perspective
distributed MIMO radar approach, we develop three different types of classifiers
or HAR systems. First, we develop a SISO(1D) HAR system underlying a mono-
static SISO radar configuration (see Section C.5.1). As conventional monostatic
radar-based HAR systems only consider human activities performed along the radar
boresight, SISO(1D) uses the HAR(1D) dataset for training and testing purposes. Sec-
ond, to highlight how the classification performance of a HAR system deteriorates by
the introduction of different movement directions, we developed a SISO radar-based
direction-independent HAR system denoted as SISO(2D) (see Section C.5.2). Unlike
SISO(1D), the SISO(2D) HAR system makes use of the HAR(2D) dataset for train-
ing and testing purposes because SISO(2D) is designed to classify human activities
in multiple directions of motion. Lastly, to significantly improve the classification
performance of the SISO(2D) HAR system, we also developed a 2 × 2 distributed
MIMO radar-based direction-independent HAR system denoted as MIMO(2D) (see
Section C.5.3). Analogous to the SISO(2D) HAR system, the proposed MIMO(2D)

HAR system uses the HAR(2D) dataset for training and testing purposes, because
MIMO(2D) also considers the classification of human activities in multiple directions.

In this work, the recorded data from Person 1 and 2 were divided into train-
ing and validation datasets and used for the training phase of the DCNN-based
SISO(1D), SISO(2D), and MIMO(2D) classifiers. Of this data, 80% was used to train
the classifiers, and 20% was used for validation. The recorded data from the rest of
the participants—Person 3, 4, 5, and 6—were reserved to test the trained classifiers
or HAR systems. In Section C.5.1, C.5.2, and C.5.3, we elucidate the design and
development of the SISO(1D), SISO(2D), and MIMO(2D) HAR systems, respectively,
along with their results and discussions.
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C.5 SISO and Distributed MIMO Radar-Based HAR
Systems

C.5.1 Conventional SISO Radar-Based HAR System

In this section, we describe the design of the SISO(1D) HAR system, which is anal-
ogous to a conventional SISO radar-based HAR system. We show the classification
performance of the SISO(1D) HAR system while restricting the human motion paral-
lel to the boresight of Radar1. Thus, we consider the HAR(1D) dataset in Table C.3
for the SISO(1D) HAR system. Recall that the HAR(1D) dataset contains only the
human activities that were carried out in front of Radar1 in Scenario 1. For all
recorded human activities listed in Table C.3, we generated the TV radial veloc-
ity distributions p11(v, t) using the data of Radar1 and converted the pre-processed
data to images of size 224 × 224 × 3. Each image representing a human activity
is a color image (see Figs. C.2 and C.3) with 224 pixels in the horizontal and ver-
tical dimensions, and the number 3 refers to the red, green and blue (RGB) color
channels.

The images of the radial velocity distributions p11(v, t) are used as input feature
maps for the feature extraction network FEN(1D) as depicted in Fig. C.4. We can
see from Fig. C.4, that the first, second, and third convolutional layers of FEN(1D)

contain 32, 48, and 64 filter channels, respectively. The dimension of each 2D
learnable filter or kernel, also commonly known as kernel dimension kd, is 6 × 6

pixels. For each convolutional layer of the SISO(1D) network, we set the stride
parameter to 1 so that the kernels are moved or strode by one pixel at a time.
To avoid the problem of overfitting, we used L2 regularization [62] to penalize and
eventually eliminate the spike-like weight vectors. The problems of slow convergence
and vanishing gradients were mitigated by using the ReLU activation function on
the convolutional layers [58]. Furthermore, each convolutional layer in Fig. C.4 is
followed by a max-pool layer and a dropout layer. The max-pool layer is of the
order 2× 2, which downsamples the output of the convolutional layer by a factor of

Figure C.4: Feature extraction network FEN(1D) designed for the SISO(1D) HAR
system.
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2. Each max-pool layer is followed by a dropout layer with a dropout rate of 15%.
Finally, all the features that are generated by FEN(1D) are flattened before feeding
them to the fully connected layers.

A DCNN-based SISO(1D) classifier is depicted in Fig. C.5, where FEN(1D) gen-
erates features from the input feature maps or, equivalently, the TV radial velocity
distribution p11(v, t). Then, the extracted features undergo two fully connected lay-
ers of the order 256 × 1 and 128 × 1. As we are classifying five different types of
human activities, the second-to-last fully connected layer is followed by an output
layer of order 5 × 1 with the softmax activation function that converts the logits
computed by the network into probabilities. To train the SISO(1D) classifier, the
HAR(1D) dataset (see Table C.3) is divided into training, validation and testing
data sets. The training and validation data account for 65.6% of the total data and
belong to Persons 1 and 2, while the test data account for 34.4% of the HAR(1D)

dataset belonging to Persons 3, 4, 5, and 6.

In the training phase of the SISO(1D) HAR system, we used the Adam optimizer
to minimize the empirical risk RJ(Cf ) in (C.8) corresponding to the categorical
cross-entropy loss function JCCE. Thus, the weights and biases of the DCNN-based
SISO(1D) classifier were optimized by using the Adam optimizer and the examples
from the HAR(1D) dataset. The default values of the decay factors or forgetting
factors in (C.10) and (C.11) are equal to β1 = 0.9 and β2 = 0.999, respectively. In
order to prevent division by 0 in (C.12), the value of ϵ was set to be 10−8. A batch
size of 32 was adopted in the training phase of the SISO(1D) classifier. Note that the
parameter optimization or training of the three classifiers—SISO(1D), SISO(2D), and
MIMO(2D)—was performed in the same way with the same values for the network
hyperparameters. For all three classifiers, the training history is summarized by the
training loss, training accuracy, validation loss, and validation accuracy curves in
Fig. C.10. During the training phase, which spans 100 epochs, there is no evidence
of overfitting of the SISO(1D) classifier (see Fig. C.10).

Figure C.5: Architecture of the DCNN classifier for the monostatic SISO radar-
based HAR systems, where (a) SISO(1D) uses FEN(1D) that outputs a feature vector
of dimension 50176×1, and (b) SISO(2D) uses FEN(2D) that outputs a feature vector
of dimension 19600×1.
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We use a confusion matrix shown in Fig. C.6 to summarize and quantitatively
assess the overall performance of the trained DCNN-based SISO(1D) classifier. The
human activity classification performance of SISO(1D) was evaluated using test-
examples from the HAR(1D) dataset. On the y-axis of the confusion matrix, we
have the true class of an activity, and the x-axis shows the predicted class of an ac-
tivity. Thus, for the first five rows and columns of the confusion matrix in Fig. C.6,
the diagonal entries show the number of correctly classified human activities, while
the non-diagonal entries show the number of misclassified human activities. For
example, the first column of the third row shows that a “Stand” activity has been
incorrectly predicted or misclassified as a “Fall” activity. Moreover, the first five
entries of the last row and last column of the confusion matrix show the precision
and recall [63], respectively. Thus, we can see from Fig. C.6 that the walking ac-
tivity has a 100% recall, and a precision of 96.88%. Most importantly, the overall
accuracy of the SISO(1D) classifier is 97.28%, which is indicated by the white color
of the sixth entry in the last row and last column of the confusion matrix. It should
be noted that using a complex network architecture (FEN(2D)) for a smaller dataset
(HAR(1D)) can lead to overfitting and reduced generalizability. When we conducted
experiments by changing the structure of FEN(1D) to FEN(2D) for the SISO(1D) HAR
system, as expected, we observed a small decline in the accuracy of the SISO(1D)

classifier, which dropped to 96.60% from 97.28%.
In this section, we looked into a conventional SISO radar-based HAR system de-

noted as SISO(1D) that demonstrated a good classification performance (see Fig. C.6).
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Figure C.6: Confusion matrix of the results obtained by the SISO(1D) HAR system.
The first five entries of the last row and last column show the precision and re-
call, respectively, whereas the last entry highlighted in dark grey shows the overall
accuracy.
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The classification performance of the SISO(1D) classifier is comparable to state-of-
the-art HAR systems. Analogous to the SISO(1D) classifier or HAR system, most
modern HAR systems that are based on either radar or Wi-Fi data are able to
classify basic human activities with classification accuracies above 90% [43, 24, 64].
However, in these conventional monostatic radar-based HAR systems, the human
subjects’ movements are limited to Scenario 1. In Section C.5.2, we extend the
human activity recognition problem by considering human motion in the horizon-
tal xy-plane, and investigate how this affects the classification performance of a
conventional SISO radar-based direction-independent HAR system.

C.5.2 Direction-Independent SISO Radar-Based HAR Sys-
tem

To provide a comprehensive analysis and ensure a fair comparison, we include the
SISO(2D) approach in this section, which is a direction-independent monostatic SISO
radar-based HAR system. This inclusion allows us to highlight the limitations of the
SISO(2D) HAR system and emphasize the effectiveness of the proposed MIMO(2D)

HAR system in addressing diverse directions of human activities. By comparing their
performance using the HAR(2D) dataset, we aim to demonstrate the significance of
the proposed direction-independent HAR framework. Hence, we use the HAR(2D)

dataset as shown in Table C.2 to realize the SISO(2D) HAR system. For all the
recorded human activities listed in Table C.2, we generated the TV radial velocity
distributions pii(v, t) by using Radari data, where i may be chosen as either 1 or 2.
For brevity, we report only the results of the SISO(2D) HAR system trained and tested
with the data of Radar1. The TV radial velocity distributions p11(v, t) representing
human activity fingerprints were converted into images of the order 224×224×3 (see
Figs. C.2 and C.3), which were used as input feature maps to the feature extraction
network FEN(2D) as depicted in Fig. C.7.

The neural network architecture of the SISO(2D) classifier is similar to the SISO(1D)

classifier except for a few modifications. For instance, the DCNN-based SISO(2D)

classifier uses FEN(2D) instead of FEN(1D) to extract features from the input feature
maps or the TV radial velocity distribution pii(v, t) as shown in Fig. C.5. Compared
with FEN(1D) in Fig. C.4, we see that FEN(2D) in Fig. C.7 has an additional convo-
lutional layer, and each convolutional layer has a larger number of filters, i.e., 40, 60,
80, and 100. Consequently, the SISO(2D) HAR system has a greater network com-
plexity and capacity compared to the SISO(1D) HAR system. Note that we needed
a more complex DCNN classifier with higher network capacity because (a) SISO(2D)

uses a larger HAR(2D) dataset containing 1364 human activity fingerprints instead
of 427, and (b) because SISO(2D) aims to classify human activities in different direc-
tions, taking into account more diverse, complex, and sometimes suboptimal human
activity signatures.

Moreover, the kernel dimension kd of each 2D learnable filter in FEN(2D) is 5× 5

as shown in Fig. C.7. The rest of the specifications of the SISO(2D) and SISO(1D)

classifiers are similar in terms of the max-pool layers, dropout layers, stride, batch
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Figure C.7: Feature extraction network FEN(2D) designed for SISO(2D) and
MIMO(2D) HAR systems.

size, and activation function. Analogous to SISO(1D), SISO(2D) uses L2 regular-
ization to penalize and eliminate the peaky weight vectors to avoid the overfitting
problem. Like SISO(1D), SISO(2D) uses the Adam optimizer to minimize the empir-
ical risk RJ(Cf ) in (C.8) corresponding to the categorical cross-entropy loss func-
tion JCCE. In order to train the SISO(2D) classifier, the HAR(2D) dataset is split
into training, validation, and testing data sets. The training and validation data is
65.4% of the total data and belongs to Person 1 and 2, whereas the testing data is
34.6% of the HAR(2D) dataset belonging to Person 3, 4, 5, and 6. As mentioned in
Section C.5.1, the training history is summarized by the training loss, training accu-
racy, validation loss, and validation accuracy curves shown in Fig. C.10 for all three
classifiers. Note that for the SISO(2D) classifier, there is no evidence of overfitting
during the training phase that spans over 100 epochs, as shown in Fig. C.10.

The classification performance of the SISO(2D) direction-independent HAR sys-
tem was evaluated using the test-examples from the HAR(2D) dataset. Recall that
the SISO(2D) HAR system is realized by using the data of Radar1. To summarize and
quantitatively assess the classification performance of the SISO(2D) HAR system, we
present a confusion matrix in Fig. C.8. The predicted and actual class of a human
activity is shown on the x-axis and y-axis of the confusion matrix, respectively. The
confusion matrix in Fig. C.8 shows that the overall classification performance of the
SISO(2D) HAR system has dropped significantly to only 88.98%. On a partially un-
related note and without going into too much details, we would also like to mention
that Radar2 provides relatively poor data quality due to the cross-channel inter-
ference problem [65]. Solving the cross-channel interference problem requires the
deployment of longer RF cables (see Table C.1), which cause a higher attenuation of
the received signal. For this reason, a SISO(2D) direction-independent HAR system
realized by using only the data of Radar2 provided an overall classification accuracy
of just 83.05%.

Looking at the non-diagonal entries of the confusion matrix in Fig. C.8, we see
numerous misclassified human activities, e.g., the “Pick” activity was misclassified
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Figure C.8: Confusion matrix of the results obtained by the SISO(2D) HAR system,
where SISO(2D) was trained and tested by using Radar1 data. The first five entries
of the last row and last column show the precision and recall, respectively, whereas
the last entry shows the overall accuracy.

15 times as the “Stand” activity by the SISO(2D) HAR system. Therefore, the worst
precision of the system is 76.34% corresponding to the “Stand” activity, and the worst
recall is observed as 80.19% for the “Pick” activity. Interestingly, the precision and
recall are 100% for the “Fall” activity, which implies that the SISO(2D) HAR system
learned to classify the human falling activity in all directions. Unfortunately, this is
not true for the other four types of human activity, which have diverse and relatively
complex radial velocity distributions that vary in different directions (see Figs. C.2
and C.3).

In this section, a direction-independent SISO radar-based HAR system (SISO(2D))
was investigated, which showed significant degradation in its classification perfor-
mance for human motion in different directions. For the simpler case of human
motion, or when the human motion was restricted to Scenario 1 in Fig. C.1, the
overall classification accuracy of the SISO(1D) HAR system was 97.28%. However,
when we complicated the human motion by considering the different directions of
motion, the classification accuracy dropped to 88.98% for the SISO(2D) HAR sys-
tem. The deterioration of the classification performance manifested by the SISO(2D)

HAR system comes from the physical limitations of monostatic SISO radar sys-
tems. These physical limitations of monostatic radar systems can be overcome by
the 2 × 2 distributed MIMO radar configuration of Fig. C.1 to eventually realize a
direction-independent MIMO(2D) HAR system. In Section C.5.3, we will see how the
MIMO(2D) HAR system ameliorates the shortcomings of the SISO(1D) and SISO(2D)

HAR systems altogether.
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C.5.3 2×2 MIMO Radar-Based Direction-Independent HAR
System

We now elucidate the design of our proposed 2 × 2 distributed MIMO radar-based
direction-independent HAR system denoted as MIMO(2D). Considering the differ-
ent directions of human activities in the horizontal xy-plane in Fig.C.1, we use the
HAR(2D) dataset (see Table C.2) to eventually realize the MIMO(2D) HAR system.
In this section, we demonstrate that unlike the SISO(2D) HAR system, our proposed
MIMO(2D) HAR system is able to recognize the human activities with a very good
classification performance for the HAR(2D) dataset. For all the recorded human ac-
tivities listed in Table C.2, we computed the TV radial velocity distributions p11(v, t)
and p22(v, t) by using Radar1 and Radar2 data, respectively. The TV radial veloc-
ity distributions p11(v, t) and p22(v, t) were converted separately into images of the
order 224× 224× 3 (see Figs. C.2 and C.3), which served as input feature maps to
the feature extraction network FEN(2D) as depicted in Fig. C.7.

Although the neural network architecture of the MIMO(2D) and SISO(2D) HAR
systems are quite different in Fig. C.9 and Fig. C.5, respectively, the building blocks,
hyperparameter values, and training processes of the two networks are very similar.
For instance, the MIMO(2D) and SISO(2D) HAR systems use the same specifications
related to kernel dimension kd, max-pool layers, dropout layers, stride, batch size, ac-
tivation function, regularizer, and Adam optimizer (refer to Section C.5.2 for more
details). Moreover, the same feature extraction network FEN(2D) in Fig. C.7 has
been adopted for the MIMO(2D) and SISO(2D) HAR systems. However, unlike the
SISO(2D) HAR system, the MIMO(2D) HAR system uses two identical feature extrac-
tion blocks as depicted in Fig. C.9 for the TV radial velocity distributions p11(v, t)

and p22(v, t). The two FEN(2D) blocks of MIMO(2D) HAR system extract unique
features automatically and independently from the two radial velocity distribu-
tions p11(v, t) and p22(v, t). In Fig. C.9, we can see that these features are then
merged using a concatenation layer, which is followed by MLP and softmax layers

Figure C.9: Architecture of the proposed MIMO(2D) HAR system with two indepen-
dent FEN(2D) blocks to generate feature vectors that are fused by the concatenation
layer for subsequent classification.
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to eventually classify the human activities.
Analogous to the SISO(2D) HAR system, the MIMO(2D) HAR system also uses the

HAR(2D) dataset for the training and testing purposes. However, for the MIMO(2D)

HAR system, the main difference is that the activity fingerprints from both radar
subsystems shown in Fig. C.1 are simultaneously utilized to classify the human ac-
tivities. In other words, for the classification of a human activity, two distinct multi-
perspective radial velocity distributions p11(v, t) and p22(v, t) produced by Radar1
and Radar2, respectively, are processed at once by the MIMO(2D) HAR system.
Therefore, in the MIMO(2D) HAR system, we utilized 2728 images or equivalently
1364 pairs of images corresponding to 1364 human activities of the HAR(2D) dataset.
The HAR(2D) dataset was split into training, validation and testing data sets, where
the training and validation data was 65.4% of the total data belonging to Person 1
and 2, and the testing data was 34.6% of the total data belonging to Person 3, 4, 5,
and 6. Recall that the training history is summarized by the training loss, training
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Figure C.10: Training history for the SISO(1D), SISO(2D), and MIMO(2D) HAR sys-
tems: (a) training losses, and (b) training accuracies over 100 epochs.
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accuracy, validation loss, and validation accuracy curves as depicted in Fig. C.10 for
all three classifiers or HAR systems. Note that this figure does not reveal any signs
of overfitting during the training phase of the MIMO(2D) HAR system.

In Fig. C.11, we present a confusion matrix to quantitatively assess the over-
all classification performance of the MIMO(2D) direction-independent HAR system.
The human activity classification performance of the MIMO(2D) HAR system was
evaluated over the test examples from the HAR(2D) dataset. In the test examples,
the number of falling activities is comparatively low because it is difficult to carry
out a real-life “Fall” activity. Nevertheless, the train–test split ratio is roughly 77: 23

for the “Fall” activity. In the confusion matrix in Fig. C.11, the overall classifica-
tion performance of the MIMO(2D) direction-independent HAR system comes out
to be 98.52%, which is a significant improvement over the classification accuracy of
88.98% achieved by the SISO(2D) direction-independent HAR system. Looking at
the non-diagonal entries of the confusion matrix in Fig. C.11, we see only seven mis-
classified human activities. We can observe that the worst precision of the MIMO(2D)

HAR system is 95.54% corresponding to the “Stand” activity, and the worst recall
is observed as 94.34% for the “Pick” activity. Note that the increase in the clas-
sification performance is basically due to the multi-perspective illumination of the
environment by the proposed 2× 2 distributed MIMO radar-based HAR system.

We addressed a human activity recognition task in a complex situation, where we
considered the human motion in the horizontal xy-plane in Fig. C.1. To mitigate the
shortcomings of the SISO(2D) HAR system in relation to the human activity direc-
tion, we illuminated the subject from different aspect angles by using the proposed
2×2 MIMO radar-based direction-independent HAR system denoted as MIMO(2D),
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Figure C.11: Confusion matrix of the results obtained by the proposed MIMO(2D)

HAR system with an overall accuracy of 98.52%.
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which demonstrated a remarkably good classification performance as summarized
by the confusion matrix in Fig. C.11. As evident from the classification performance
of the MIMO(2D) HAR system, the physical limitations of the monostatic radar sys-
tems were successfully mitigated by the multi-perspective 2× 2 distributed MIMO
radar configuration. Therefore, by addressing and rectifying the fundamental radar
problem at the physical layer, we were able to design a radar-based HAR system
that was capable of recognizing human activities independent of their directions
with a classification accuracy close to 100%.

C.6 Conclusion

In this article, we analyzed and resolved a crucial physical layer problem of state-
of-the-art monostatic SISO, SIMO and MIMO radar-based HAR systems, which
primarily arises due to the target’s aspect angle. Thus, a more pragmatic and more
complex HAR problem has been elucidated in this research in the context of RF
sensing, where we improve the activity recognition task by considering multiple di-
rections of human activities. A novel HAR dataset (HAR(2D)) was recorded by using
the proposed multi-perspective 2×2 MIMO radar framework. We developed and an-
alyzed three different HAR systems, denoted as SISO(1D), SISO(2D), and MIMO(2D),
by using our HAR(2D) dataset and its sub-dataset HAR(1D).

Analogous to most modern radar-based HAR systems, the SISO(1D) HAR system
was able to classify human activities with a classification accuracy of 97.28%. How-
ever, in this conventional monostatic radar-based HAR approach, the movement of
the human subjects were restricted along the radar’s boresight axis. By developing
and analyzing the monostatic SISO(2D) HAR system and considering the human ac-
tivities taking place in the 2D xy-plane, we substantiated a significant deterioration
in the classification performance from 97.28% to 88.98%. The deterioration of the
classification performance manifested by the SISO(2D) HAR system came from the
inherent physical layer limitations of the monostatic SISO radar systems. To over-
come these physical layer issues and drawbacks experienced by today’s radar-based
HAR systems, we utilized a multi-perspective 2 × 2 distributed MIMO radar sys-
tem to realize a direction-independent HAR system that was capable of recognizing
human gross motor activities regardless of the aspect angle or direction of motion.
To eradicate the limitations that emerge due to the direction of motion, feature
level fusion was adopted in the DCNN-based MIMO(2D) classifier, which virtually
combines the target’s information from different aspect angles.

For the HAR(2D) dataset, it was shown that the proposed multi-perspective
MIMO(2D) HAR system significantly outperforms the monostatic SISO(2D) HAR
system. Compared with the SISO(2D) HAR system, the proposed MIMO(2D) HAR
system significantly improved the classification accuracy from 88.98% to 98.52%.
Therefore, the physical layer limitations of the monostatic SISO radar-based HAR
systems were successfully mitigated by the proposed MIMO(2D) HAR system.

The MIMO(2D) HAR system presented in this article paves a way forward towards
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actualizing a more realistic and more advanced radar-based HAR system. To further
enhance the classification performance, we plan to use the bistatic components of
the 2×2 MIMO radar system, which are the TV radial velocity distributions p12(v, t)
and p21(v, t). For more aspect angle coverage and a more complex HAR problem,
we plan to extend the fundamental distributed 2×2 MIMO radar system to a larger
MIMO antenna configuration.

C.7 Appendix

Multi-Directional Human Activity Signatures

In this appendix, we provide the measured radial velocity distributions pii(v, t) of
the four types of human activities: walking, standing up from a chair, sitting down
on a chair, and picking up an object from the floor.

Figure C.12: Images containing the heatmap of the measured radial velocity distri-
butions pii(v, t) of the “Walk” activity in three different scenarios, where each image
has the radial velocity v on the y-axis ranging [−1.5, 1.5] m/s and time t on the
x-axis spanning over 3− 5 s.
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Figure C.13: Images containing the heatmap of the measured radial velocity dis-
tributions pii(v, t) of the “Stand” activity in three different scenarios, where each
image has the radial velocity v on the y-axis ranging [−1.5, 1.5] m/s and time t on
the x-axis spanning over 2− 3 s.

Figure C.14: Images containing the heatmap of the measured radial velocity distri-
butions pii(v, t) of the “Sit” activity in three different scenarios, where each image
has the radial velocity v on the y-axis ranging [−1.5, 1.5] m/s and time t on the
x-axis spanning over 2− 3 s.
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Figure C.15: Images containing the heatmap of the measured radial velocity distri-
butions pii(v, t) of the “Pick” activity in three different scenarios, where each image
has the radial velocity v on the y-axis ranging [−1.5, 1.5] m/s and time t on the
x-axis spanning over 2− 4 s.
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Abstract— Modern human activity recognition (HAR) systems are de-
signed using large amounts of experimental data. So far, real-data-driven
or experimental-based HAR systems using Wi-Fi or radar systems have
shown considerable results. However, the acquisition of large, clean, and
labeled training datasets remains a crucial impediment to the progress of
experimental-based HAR systems. Therefore, in this paper, a paradigm
shift from the experimental to a fully simulation-based design of HAR
systems is proposed in the context of radar sensing. An end-to-end sim-
ulation framework is proposed as a proof-of-concept that can simulate
realistic millimeter-wave radar signatures for synthesized human motion.
We designed a human motion synthesis tool that emulates different types
of human activities and generates the spatial trajectories accordingly.
These trajectories are processed by a geometric model with respect to
user-defined antenna configurations. Considering the long- and short-
time stationarity of wireless channels, we synthesize the raw in-phase
and quadrature data and process the data to simulate the radar signa-
tures for emulated human activities. Finally, a simulated and a real HAR
dataset were used to train and test a simulation-based HAR system, re-
spectively, which gave an average (maximum) classification accuracy of
94% (98.4%). The main advantage of the proposed simulation frame-
work is that the training effort for radar-based classifiers, e.g., gesture
recognition systems, can be minimized drastically.

Index Terms— Data augmentation, data generation, deep learning,
human activity recognition (HAR), micro-Doppler analysis, Mixamo an-
imation, motion synthesis, multiclass classification, radar simulation.
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D.1 Introduction

D.1.1 Background

Within the domain of radio frequency (RF) sensing, an important and continuously
evolving research area is human activity recognition (HAR), where the classification
performance greatly depends on the quality, impartiality, and comprehensiveness of
experimental data. Such merits of empirical data are hard to come by, especially
when dealing with real humans as subjects. Over the years, researchers have endeav-
oured to classify different types of human activities using several sensing modalities,
such as vision [1, 2], wearable [3, 4, 5], and RF sensors [6, 7, 8, 9, 10].

Various sensor types have been employed in HAR systems, each with distinct
advantages and limitations [11]. Vision sensors, driven by advanced computer vision
methods, have shown significant success in HAR [1]. However, they are vulnerable
to lighting conditions and privacy concerns, unlike RF sensors. Wearable sensors [4],
though effective, face criticism due to their fragility, intrusiveness, and reliance on
user care. The need for continuous wear renders them impractical, particularly for
elderly and ill individuals. Hence, RF sensors, particularly millimeter wave (mm-
wave) radars, have garnered growing interest despite the challenges and complexities
they entail [12].

In this research, we primarily focus on developing a human activity classification
system using mm-wave radar technology. The collection of radar micro-Doppler
signatures corresponding to real human subjects is a time-consuming, expensive,
and laborious task. The recorded radar dataset usually has a narrow scope because
of its validity for a particular scenario and fixed radar parameters. To create di-
verse training datasets for radar-based HAR systems, a simulation-based approach
becomes a compelling and viable alternative.

We design a fully simulation-based HAR system that exclusively relies on simu-
lated radar data for training and validation. Unlike conventional methods, we avoid
the use of real radar micro-Doppler signatures during these stages. Instead, exper-
imental measurements from a real mm-wave radar system are solely employed for
testing, showcasing our simulation-based HAR system’s real-world performance. To
ensure accurate radar system modeling and realistic radar micro-Doppler signature
simulation, we adopt scatterer-level signal modeling (see Sect. D.6). This proof-of-
concept approach facilitates the generation of diverse simulated radar micro-Doppler
signatures, thereby providing essential training data for simulation-based HAR sys-
tems.

D.1.2 Our Approach

In this paper, we present an end-to-end simulation framework for HAR using frequency-
modulated continuous wave (FMCW) radar systems. First, we design a human
motion synthesis tool using the Unity software [13] from Unity Software Inc. that
emulates different types of human activities and accordingly generates the three-
dimensional (3D) trajectories for the virtual markers placed on a humanoid charac-

170



Human Motion and MIMO Radar Data Syntheses

ter. The 3D marker trajectories are processed by a geometric model (see Sect. D.5)
with respect to a user-defined antenna configuration. Taking into account the long-
and short-time stationarity properties of wireless channels and using our radar signal
synthesizer, we simulate the raw in-phase and quadrature (IQ) components. Finally,
the radar micro-Doppler signatures or, equivalently, the time-variant (TV) radial ve-
locity distributions are generated for several types of emulated human activities.

Our proposed simulation-based framework offers several advantages over experimental-
based designs, such as flexibility to simulate radar datasets with specific distributions
or target motion characteristics, ability to augment training data, cost-effectiveness,
and mitigation of legal and privacy issues. With the proposed simulation framework,
we can augment human motion data at a motion-synthesis layer, e.g., by varying
an avatar’s size and speed. The proposed simulation framework gives control over
several radar parameters as well, thus it enables us to generate different types of
training datasets corresponding to different radar-operating conditions and different
applications. Above all, the proposed simulation framework drastically minimize
the overall training effort of radar-based HAR systems.

Note that our simulation-based framework, basically designed for HAR, has
versatile applications across various domains, including gesture recognition [14],
sports [15], autonomous vehicles [16], social robotics [17], and smart homes [18]. In
this research, our validation process involves real experiments covering five human
activities, highlighting the effectiveness of our proof-of-concept. The core strength of
this simulation-based framework, however, lies in its innovative capability to trans-
late motion capture (MoCap) data into radar data (see Sect. D.4 and Sect. D.6),
making it adaptable to a wide array of real-world scenarios. The availability of ex-
tensive online MoCap data repositories like Mixamo [19], covering domains such as
sports, multimedia, healthcare, and more, further enhances the framework’s appli-
cability. With our proposed framework, these repositories can be used to simulate
radar signatures for a multitude of real-world scenarios. For instance, in healthcare,
we demonstrate the framework’s capability for fall detection, providing a tangible
example of its real-world utility. In sports, our solution can be extended to simulate
radar signatures for activities such as running, swimming, and various exercises,
thereby enhancing its practicality.

Changes in radar configurations in practical applications, driven by shifts in
operational requirements, technological advancements, and emerging applications,
necessitate the generation of new datasets. For emerging radar-based classifiers, the
need to simulate new datasets is inevitable as it aligns with the dynamic nature of
radar sensors. This constraint is common to all radar-based classifiers, whether real-
ized using simulation or experimental data. Our simulation-based framework stands
out for its efficient and rapid generation of diverse datasets for new or modified radar
configurations, presenting a more resource-efficient alternative compared to the clas-
sifiers based on experimental data. The ability to swiftly and easily adapt to varied
radar configurations stands as a distinctive strength of our proposed framework.
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D.1.3 Contributions

The multiple contributions of this research can be summarized as follows:

1. We propose a novel end-to-end simulation framework to avoid the need of real
radar data for training. By using the proposed simulation framework, large
quantities of realistic synthetic radar data are generated for human gross motor
activities. It is worth noting that the proposed simulation framework is also
useful for many other radar-based classifiers, for instance, gesture recognition
systems.

2. We leverage a geometrical 3D indoor channel model (see Sect. D.5) to simulate
TV radial distances from the spatial trajectories of an avatar with 21 non-
stationary virtual markers. By employing the proposed approach, we emulate
and diversify various human activities by varying parameters such as location,
speed, acceleration, deceleration, and avatar’s height. Our unique simulation
framework offers the flexibility to augment data at the motion-synthesis layer,
enabling the generation of diverse and customizable datasets for training HAR
systems.

3. We simulate high-fidelity radar signatures, namely TV range distribution, TV
radial velocity distribution, and TV mean velocity for the emulated human
activities. By computing the dynamic time warping (DTW) distance metric
[20], it is shown that the simulated radar signatures closely resemble the radar
signatures measured in reality. This shows the effectiveness of our simula-
tion framework, which can simulate realistic radar signatures for adults and
children alike, and can even be extended to simulate realistic radar data for
animals, vehicles and airplanes.

4. For the radar-signal synthesis, we expound the long- and short-time station-
arity properties of the indoor wireless channel (see Sect. D.6). The short-time
stationarity assumption is quite advantageous because it significantly simpli-
fies the synthesis of the radar signal.

5. Through our proposed approach, we establish a novel simulated HAR dataset
to train our simulation-based HAR system, which was developed by using a
deep convolutional neural network (DCNN). This dataset comprises simulated
radar signatures computed from emulated human activities. To demonstrate
the practical relevance of our simulation-based HAR system, we tested its per-
formance on unseen data acquired with a real mm-wave FMCW radar system
involving real persons. The mean (maximum) classification accuracy of the
fully simulation-based HAR system was 94% (98.4%). The classification per-
formance of the proposed simulation-based HAR system over the experimental
dataset demonstrates the utility and efficacy of our proposed end-to-end sim-
ulation framework.
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D.1.4 Paper Organization

The paper is structured as follows. Section D.2 presents the related work, and Sec-
tion D.3 gives an overview of conventional and the simulation-based HAR systems.
Our human motion synthesis module is elucidated in Section D.4. Section D.5 de-
tails the 3D geometrical model. The synthesis of realistic radar data is explained
in Section D.6. Section D.7 describes the processing of the radar data. The design,
training, and testing of the simulation-based HAR system is detailed in Section D.8.
Finally, Section D.9 draws the conclusions.

D.2 Related Work

Recently, the availability of commercial mm-wave sensors has led to the develop-
ment of numerous human-centric research areas. For instance, many studies have
been conducted on radar-based HAR systems [21, 22, 23], sign language [24] and
gesture [25, 26] recognition systems. So far, most of the studies have focused on
HAR systems that are realized by utilizing the scarcely available recorded radar
data [27]. In [27], for instance, the HAR classifier was based on a long short-term
memory (LSTM) neural network and was trained on manually labeled 3D point
cloud data. The authors of [28] addressed the problem of HAR in multi-angle sce-
narios by exploiting measured characteristics of a mm-wave radar, such as received
power, range, Doppler frequencies, azimuth, and elevation. Another problem with
experimental data collected with radar systems is the reusability of the data. Gener-
ally, the recorded data of the radar system is not reusable due to its fixed operating
parameters and antenna configurations. When the operating conditions of the radar
system are fixed, the few-shot learning scheme [29] is useful to enhance the capability
of the already trained HAR system.

To address the lack of real radar data, some studies have suggested to use data
augmentation techniques. For instance, the authors of [30] proposed a data aug-
mentation technique based on a generative adversarial network (GAN) to create
diverse micro-Doppler signatures for human activities. Apart from GANs, a self-
supervised HAR approach has been recently proposed to tackle the issue of limited
labeled data [31]. The authors of [32] presented a technique called supervised few-
shot adversarial domain adaptation for HAR. This approach addresses the challenge
of having a limited amount of radar training data available for a particular scenario.
Moreover, the authors of [33] proposed a rotational shift method to augment radar
point cloud data. Recently, a two-stage domain adaptation scheme was presented
in [34] to address the lack of training data for radar-based HAR systems. For data
augmentation, they used a GAN-based domain-translation network to translate the
simulated spectrograms into measurement-like spectrograms with the help of small
measurement datasets. Even with this data augmentation technique, it is not pos-
sible to completely get rid of the tedious data collection process that requires real
radar datasets and real human subjects.

The lack of publicly available real radar datasets, the limited reusability of radar
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data, and the resource-intensive data collection are the main factors driving us to
pursue fully simulation-based HAR system development. So far, only a handful of
studies have been carried out in this direction. To model the intricate details of
human motion, high-fidelity MoCap systems are preferred to eventually reanimate
more realistic and complex human motion [35]. In [36], the authors formulated
Doppler modulations and established equations for micro-Doppler effects caused by
various micro motions such as vibration, rotation, tumbling, and coning. They val-
idated these formulations through simulation studies. A simulation tool has been
developed recently called SimHumalator, which simulates the target echoes for pas-
sive Wi-Fi radar (PWR) scenarios [37]. The authors of [38] developed a simulation
tool that characterizes the near-field radar cross-section of a walking person in the
K-band, but the approach is not suitable to model the finer details of human motion.

D.3 System Overview

In the following, let us first describe the basic building blocks of a conventional HAR
system, which is employed solely to evaluate the proposed simulation-based HAR
system.

D.3.1 A Conventional HAR System

The building blocks of a conventional (experimental-based) HAR system are de-
picted in Fig. D.1(a). For each human activity, the mm-wave radar system produces
real raw IQ data. The IQ data is subsequently processed by the radar signal process-
ing module to generate the real micro-Doppler signature or, equivalently, the TV
radial velocity distribution capturing the characteristics of a human activity (see
Sect. D.7). The TV radial velocity distributions of the recorded human activities
are stored in files and represent the real radar dataset, as shown in Fig. D.1(a).
Generally, the real radar data samples are used to train the experimental-based
HAR classifier. Subsequently, a portion of the real radar data is used to test the
performance of experimental-based HAR classifier, as shown in Fig. D.2. In this
research, we are mainly interested in devising a simulation-based HAR system that
matches the performance of state-of-the-art HAR systems. Thus, we will only use
the entire recorded dataset from our conventional HAR system to test our proposed
simulation-based HAR system, as shown in Fig. D.2. An overview of the proposed
simulation-based HAR system is presented in the following subsection.

D.3.2 Proposed Simulation-Based HAR System

Conventionally recorded training datasets may not be reusable as they are only valid
for specific radar parameters and a specific antenna configurations. A revision or
redesign of even a single radar parameter may render the training dataset useless,
e.g., the redesign of the radar system using a different pulse repetition interval
(PRI). Therefore, a pragmatic alternative is proposed in this paper to overcome the

174



Human Motion and MIMO Radar Data Syntheses

aforementioned issues associated with the acquisition of large training datasets. We
propose a fully simulation-based approach, as shown in Fig. D.1(b), to develop a real-
world HAR system. For training the HAR classifier, our simulation-based approach
enables easy generation of a large amount of training data without involving real
human subjects and a real radar system, which makes the simulation-based approach
very feasible and pragmatic.

The overall view of the proposed simulation-based approach is shown in Fig. D.1(b).
We start with six types of basic animations: standing still, falling, walking in two
steps, standing up, sitting down, and picking up an object. Based on these six basic
animations, we synthesize five different types of human activities: Falling on the
floor, walking forward with more than two steps, standing up from a chair, sitting
down on a chair, and picking up an object from the ground. The first 3D simu-
lations block in Fig. D.1(b), implemented in the Unity software [13], synthesizes
the human motion in the 3D space and generates the corresponding TV 3D tra-
jectories of moving body segments, such as head, arms, legs, hands, and chest (see
Sect. D.4.3). Subsequently, the geometrical 3D indoor channel model converts the
TV 3D trajectories into the TV radial distances with respect to the positions of the
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Figure D.1: (a) Design of conventional HAR systems that require real human sub-
jects and a real radar system for training. (b) Design of the proposed simulation-
based HAR system that only needs the simulated radar dataset for training.
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transmitter and receiver antennas of the radar system (see Sect. D.5). For the TV
radial distances and a set of scatterers’ weights (see Sect. D.6), our radar data syn-
thesizer in Fig. D.1(b) simulates the raw IQ data in the slow- and fast-time domains.
Note that the virtual markers in our simulation framework are analogous to the real
scatterers on the human body segments, which scatter the electromagnetic energy
to the receive antenna of the radar system (see Sect. D.4.3). Finally, the radar signal
processing block of our simulation framework generates the simulated range distri-
bution, the simulated radial velocity distribution, and the simulated mean velocity
for a synthesized human activity.

In this study, we refrain from using simulated range distributions for HAR due
to their limited intelligibility resulting from the radar systems’ restricted range res-
olution. Additionally, we solely use the mean velocity for comparison, not for HAR,
as it contains less information about scatterers’ velocity compared to the radial ve-
locity distribution. This is detailed in Sect. D.7 and evident from Figs. D.6–D.8 as
well. The simulated radial velocity distributions corresponding to the synthesized
human activities are stored in a simulated radar dataset. We have developed our
simulation-based HAR system by training it using only the examples from our sim-
ulated radar dataset as depicted in Fig. D.1(b). The simulation-based HAR system
was designed by using a DCNN approach. In order to demonstrate the practical
significance of our simulation-based HAR system, we need to test its performance
on unseen data collected by a real radar system and real human subjects. Therefore,
we recorded real human activities (falling, walking, picking, standing and sitting)
in front of a mm-wave radar system to create a real radar dataset, which is used to
test our simulation-based HAR system, as shown in Fig. D.2. It is noteworthy that
the raw IQ data of the real and simulated radar are similar in structure. Therefore,
we used the same radar signal processing block to process the real and simulated
raw IQ data.

The proposed simulation framework emulates five distinct human activities and
generates corresponding simulated radial velocity distributions for moving body seg-
ments. The simulated radar signatures (radial velocity distributions) are used to
train the DCNN-based HAR classifier (see Fig. D.1(b)). Real mm-wave radar signa-
tures are used to test the simulation-based HAR system as shown in Fig. D.2. The
details of the individual components of the proposed simulation-based HAR system
are explained in the following sections.

D.4 Human Motion Synthesis

In this section, we elucidate the first component of our simulation framework, which
is the synthesis of the human activities for our simulation-based HAR system.

D.4.1 Basic Humanoid Animations

To synthesize realistic human activities, we use a pre-rigged 3D humanoid character
and six types of basic humanoid animations from a well-known source called Mix-
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amo [19]. It is a royalty-free library from Adobe Inc. offering countless realistic
humanoid animations, which have been created with the help of professional actors
and real-world MoCap systems [39]. We used the following animations from the
Mixamo online library: idle, walking, falling, standing, picking, and sitting. In the
idle animation, the avatar stands still in a natural upright posture, which causes
a negligible in-place motion of all body segments. The walking animation consists
of two steps in a forward direction on a flat floor. The falling animation portrays
the avatar imitating a heart attack and collapsing abruptly to the ground. In the
standing animation, the avatar gradually rises from a sitting position, while in the
picking animation, it retrieves an object from the ground. In the sitting animation,
the avatar is first in the idle upright position and then sits down on a chair.

We imported the six basic animations into the Unity software using the Film-
box (FBX) file format with a frame rate of 60 frames per second (fps). While
importing an animation from the Mixamo’s online library, a keyframe reduction
parameter must be configured to optimize the animation data. We have refrained
from applying keyframe reduction to the animation data, as this could in some cases
alter or degrade the animation itself. In fact, we used linear interpolation in the
Unity software to upscale the frame rate of the animations from 60 fps to 2000 fps
to emulate and match the radar’s pulse repetition frequency (PRF).

D.4.2 Unity Animation System

Among other things, the Unity animation system estimates the spatial positions of
the avatar’s body segments between frames by performing an interpolation opera-
tion. While shape-preserving interpolation methods, such as spline interpolation,
can offer more accurate representations of the motion data, they often come with
higher computational costs. In the context of our framework, where we aim to syn-
thesize motion data at a high frame rate of 2000 fps, computational efficiency is an
important consideration. Linear interpolation provides a computationally efficient
solution while still preserving the general shape and trajectory of the motion. More-
over, it is important to keep the animation frame rate fr equal to the real radar’s
PRF, because the PRF samples the motion of an object and thereby dictates the
maximum measurable radial velocity vmax according to vmax = PRF ·λ/4, where λ is
the wavelength of the radar transmit signal. Analogously, in our simulation frame-
work, the frame rate fr dictates the maximum synthesizable radial velocity v′max

according to v′max = frλ/4. Any motion of the avatar with a radial velocity com-
ponent greater than the maximum synthesizable radial velocity v′max reverts to a
lower velocity, just as in a real radar system. The Unity animation system is, by
and large, quite versatile in supporting a wide range of animation techniques, e.g.,
procedural, MoCap and keyframe animations.

We use the Unity’s animation state controller to enable the transition of the
avatar between the six basic animation states. To synthesize a realistic human
walking activity, we first need to switch between the basic idle and walking anima-
tions to merely start and end the overall walking activity. In addition, we need to
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gradually increase and decrease the walking speed during the transition periods of
the emulated activity. These natural and smooth transitions with gradual accelera-
tion and deceleration are provided by a special type of state in the Unity’s animation
state machine called the blend tree.

Note that we do not have any animation data for the transition periods. This gap
is filled by blend trees. When emulating a human walking activity and transitioning
between idle and walking animation, the blend tree state dynamically creates new
animation data in the 3D space in real time by aptly varying the avatar limbs to dif-
ferent degrees. With the help of blend trees, we can thus seamlessly transition from
(to) idling animation to (from) walking animation with varying speeds while blend-
ing the two animations during the transition period. The human falling, standing,
sitting, and picking activities are synthesized straightforwardly by combining the
idle animation with the respective falling, standing, sitting, and picking animations.

D.4.3 3D Trajectories and Data Augmentation

We have synthesized five realistic human activities in the Unity software. In this
subsection, we will explain how to capture the 3D trajectories of the synthesized
motion for the five types of human activities. First, we need to place several virtual
markers on different body segments of the avatar, as shown in Fig. D.3. These
virtual markers are simulated point scatterers that resemble real scatterers on a
human body.

In order to thoroughly capture the movements of the avatar, we placed a total of
21 virtual markers on different segments of the avatar body, which are represented by
numbered stars in Fig. D.3. The body segments associated with the virtual markers
in Fig. D.3 are listed in the ascending order: upper head, lower head, neck, right
shoulder, left shoulder, right arm, left arm, upper spine, spine, lower spine, right
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Figure D.3: Emulated propagation scenario composed of a radar system and a
moving avatar with 21 non-stationary virtual markers.
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forearm, left forearm, hips, right upper leg, left upper leg, right hand, left hand,
right leg, left leg, right foot, and left foot. We need to spatially track the virtual
markers and record the corresponding TV 3D trajectories of the virtual markers for
the synthesized human activities. For instance, for a walking activity consisting of
three steps in a forward direction, we can visualize the progression of the TV 3D
trajectories associated with the 21 virtual markers, as represented by the colored
curves in Fig. D.3. With the ability to synthesize the human activities and the
corresponding 3D trajectories, we have created a dataset of diverse human activities
that is used to train the simulation-based HAR classifier.

The synthesized human activities can be augmented and diversified in the Unity
software by varying the emulation parameters such as the avatar’s location, speed,
acceleration, and deceleration. Thus, for each type of human activity, ten additional
activity samples were generated by varying the above emulation parameters. For
example, for the synthesized walking activities, random accelerations (decelerations)
were assumed during the transition from the idling (walking) state to the walking
(idling) state. For the five types of human activities, a total of fifty activity samples
were generated in the Unity software. The TV 3D trajectories were recorded for
the synthesized human activity samples. Subsequently, the TV 3D trajectories were
exported to MATLAB for further data augmentation and processing. Using the
geometrical 3D indoor channel model, which is detailed in the following section, we
simulated eight slightly different radar antenna positions by moving virtually the
transmitter and receiver antennas laterally for data augmentation. We also scaled
the weights of the scatterers (see Fig. D.1(b) and Sect. D.6.1) to vary the power
levels of the simulated radar signatures for further data augmentation.

D.5 Geometrical 3D Indoor Channel Model

In this section, we formulate a geometrical 3D indoor channel model correspond-
ing to an indoor propagation scenario equipped with a radar system. Analogous to
the real 3D indoor propagation scenario, the emulated indoor environment is shown
in Fig. D.3. The emulated (real) propagation scenario is composed of a moving
avatar (human) with L non-stationary virtual markers (scatterers), where the lth
virtual marker (scatterer) is denoted by S(l) and l = 1, 2, . . . ,L. In our simulation
framework, the total number of virtual markers is L = 21. The geometrical channel
model is used to compute the TV radial distances between the L virtual markers
(scatterers) and the radar transmit and receive antennas. In the simulation frame-
work, the radar antennas can be placed freely as per the designer’s requirements.
Note that the antenna configuration greatly affects the simulated radar signatures.
So, we can easily optimize the transmit and receive antenna positions with the help
of the proposed simulation framework. For this research, the transmit and receive
antennas of the radar system are placed in a monostatic configuration.

The radar transmit antenna ATx and receive antenna ARx are respectively placed
at fixed positions CTx = [xTx , yTx , zTx ]⊤ and CRx = [xRx , yRx , zRx ]⊤, where [·]⊤ repre-
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sents the vector transpose operation. In Fig. D.3, Cl(t) = [xl(t), yl(t), zl(t)]
⊤ is the

TV 3D trajectory of the lth scatterer, dTx
l (t) denotes the TV distance between the

lth scatterer and the transmitter antenna ATx , and dRx
l (t) denotes the TV distance

between the lth scatterer and the receiver antenna ARx . Let
∥∥·∥∥ represents the

Euclidean norm, then the TV distances dTx
l (t) and dRx

l (t) can be expressed as [40]

dTx
l (t) =

∥∥Cl(t)− CTx
∥∥ (D.1)

and
dRx
l (t) =

∥∥Cl(t)− CRx
∥∥ (D.2)

respectively. For the lth non-stationary virtual marker (scatterer), the TV radial
distance dl(t) can be obtained as

dl(t) =
1

2

[
dTx
l (t) + dRx

l (t)
]
. (D.3)

It is evident from (D.1)–(D.3) that the geometrical channel model maps the 3D
trajectory Cl(t) to the TV radial distance dl(t) for a particular antenna configura-
tion {CTx , CRx}. For the monostatic configuration, we have CTx = CRx , and thus
dl(t) = dTx

l (t) = dRx
l (t). In the context of radar sensing, the TV radial distance dl(t)

characterizes the synthesized motion of the lth virtual marker (scatterer), which
is used to simulate the radar raw IQ data in the fast- and slow-time domain as
explained in the next section.

For all L virtual markers of the synthesized falling, walking, picking, standing
and sitting activities, we used the geometrical channel model to simulate the TV
radial distances dl(t), as shown in Fig. D.4. As the L virtual markers are spatially
distributed on the avatar’s body segments, they have distinct TV radial distances,
which are represented by the colored curves in Fig. D.4. In the simulated falling ac-
tivity of Fig. D.4, some virtual markers exhibit more variations than others because
the virtual markers on the lower body segments are less mobile than the virtual
markers on the upper body segments. The simulated walking activity in Fig. D.4
exhibits its periodic nature and it consists of three walking steps. Compared to the
falling and walking activities, the radial distances of the virtual markers do not vary
as much in the simulated standing, sitting, and picking activities.
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Figure D.4: Simulated TV radial distances dl(t) of 21 virtual markers for the five
activities.
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D.6 Radar Data Synthesis

One of the main modules of our simulation framework is the radar data synthesis
module, which simulates realistic raw IQ data by emulating an FMCW radar system.
The simulated raw IQ data depends entirely on the TV radial distances dl(t) of all
L virtual markers (scatterers) and their respective weights which are modeled in
Sect. D.6.1. In the following subsections, we elucidate the synthesis of the radar
baseband signal called beat signal and explore the relevant stationary and non-
stationary aspects of the indoor wireless channel.

D.6.1 Beat Signal Synthesis

The FMCW radar system periodically emits RF pulses, where the intra-pulse modu-
lation is a linear chirp [41] waveform c(t′), where t′ denotes the fast-time domain [42].
These RF pulses, also called the transmitted chirp signals c(t′), are reflected to the
radar receiver by several scatterers in the environment. In this paper, we only con-
sider and model the non-stationary scatterers because the stationary scatterers do
not cause any Doppler shift and can therefore easily be filtered out in the radar
signal preprocessing unit [43]. Furthermore, we assume that the L scatterers are
stationary in the fast time t′ and non-stationary in the slow time t as explained
in the following subsection. From the lth non-stationary scatterer, a copy of the
transmitted chirp waveform c(t′) is received with the TV propagation delay τ (l)(t),
which is proportional to the TV range (radial distance) of the lth scatterer dl(t)

according to τ (l)(t) = 2dl(t)/c0, where c0 denotes the speed of light.
In FMCW radar systems, the quadrature mixture module downconverts the

received passband signal and produces the complex baseband signal, also known as
the composite beat signal sb(t′, t) [42]. The raw IQ data from the FMCW radar
system is the digitized version of the composite beat signal sb(t

′, t). In FMCW
radar systems, the analog to digital converter (ADC) samples the composite beat
signal sb(t′, t) in fast time t′ with the sampling interval Ts. For the radar’s coherent
processing interval (CPI), in which the phase of the scatterers is preserved [44], the
discrete fast-time samples are arranged in the fast- and slow-time domain to form
the raw IQ data matrix D, i.e.,

D =


sb(0, 0) sb(Ts, 0) . . .

sb(0, Tsw) sb(Ts, Tsw) . . .
...

...
...

sb(0, (Nc − 1)Tsw) sb(Ts, (Nc − 1)Tsw) . . .

sb(Tsw − Ts, 0)

sb(Tsw − Ts, Tsw)
...

sb(Tsw − Ts, (Nc − 1)Tsw)


(D.4)
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where Tsw is the chirp duration and Nc is the number of chirps in the CPI of the
radar system.

Now we want to model the composite beat signal sb(t′, t), so that we can syn-
thesize the raw IQ data of the FMCW radar system. Let s

(l)
b (t′, t) be the beat

signal corresponding to the lth virtual marker, then the received composite beat
signal sb(t′, t) can be expressed as [42]

sb(t
′, t) =

L∑
l=1

s
(l)
b (t′, t). (D.5)

Note that in (D.5), the composite beat signal sb(t′, t) is composed of L distinct beat
signals s(l)b (t′, t) corresponding to L virtual markers. In particular, for the lth virtual
marker, the beat signal s(l)b (t′, t) is fully characterized by its TV path gain a(l)(t),
beat frequency f

(l)
b (t), phase ϕ(l)(t), and propagation delay τ (l)(t) according to

s
(l)
b (t′, t) =

∞∑
n=0

a(l)(t) exp
[
j
(
2πf

(l)
b (t)t′ + ϕ(l)(t)

)]
×

δ(t− τ (l)(t)− Tn)

(D.6)

where Tn is the discrete slow time that relates to the chirp duration Tsw by Tn = nTsw

for n = 0, 1, . . . . The function δ(·) in (D.6) represents the Dirac delta function.
For the lth virtual marker, the syntheses of the TV beat frequency f

(l)
b (t),

phase ϕ(l)(t), and propagation delay τ (l)(t) in (D.6) are solely determined by the
TV radial distance dl(t). Also, the lth TV path gain a(l)(t) is inversely proportional
to the lth TV radial distance dl(t). The beat frequency f

(l)
b (t) associated with the

lth virtual marker can be modeled according to

f
(l)
b (t) =

2dl(t)γ

c0
(D.7)

where γ is the slope of the chirp waveform c(t′). The phase ϕ(l)(t) of the lth virtual
marker is related to the radial distance dl(t) according to

ϕ(l)(t) =
4πdl(t)

λ
. (D.8)

Recall that the lth propagation delay component τ (l)(t) in (D.6) can be obtained
as τ (l)(t) = 2dl(t)/c0. Thus, the synthesis of the lth beat signal s(l)b (t′, t) in (D.6) is
mainly determined by the lth TV radial distance dl(t).

We use the TV path gain a(l)(t) in (D.6) to model and simulate the amount of
energy reflected back to the radar receiver from the lth scatterer (virtual marker).
Thus, in the synthesis of the lth beat signal s

(l)
b (t′, t), the TV path gain a(l)(t)

simulates the power or strength of the lth virtual marker. In this research, for the
sake of simplicity, we have used L = 21 time-invariant path gains, i.e., a(l)(t) = a(l).
For the five types of simulated human activities, we have accordingly used five sets
of path gains to synthesize the composite beat signal sb(t′, t) in (D.5). The body
surface area [45] and the real TV radar signatures (see Sect. D.7) helped us adjust
the path gains of the L virtual markers corresponding to the five types of simulated
human activities. Note that multiple sets of path gains can be used to simulate
multiple radar signatures for a single simulated human activity.
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D.6.2 Long- and Short-Time Stationarity of the Channel

In this subsection, we explain the long- and short-time stationarity of the indoor
wireless channel. Since the transmitter and receiver antennas are spatially fixed,
the non-stationarity of the wireless channel is due to the motion of a human sub-
ject. For fixed antennas, the wireless channel is non-stationary due to the motion of
the scatterers. We assume that the channel is long-time non-stationary or, equiva-
lently, non-stationary over the slow time t. But in the fast time t′, we assume that
the channel is stationary over the limited duration of a chirp waveform Tsw. This
assumption simplifies the synthesis of the radar beat signal. In the following, we
will see that the short-time stationarity of the channel basically comes down to the
radar’s range resolution denoted as dres, which is related to the radar’s bandwidth B

according to dres = c0/2B.

In the radar signal processing module (see Sect. D.7), we first apply the fast
Fourier transform (FFT) to each row of the raw data matrix D, called the range
FFT. The frequency resolution fres of the range FFT is equal to the inverse of the
observation interval Tsw, i.e., fres = 1/Tsw [46]. For a row of the raw data matrix D
and a slow-time instant t0, the range FFT computes the spectrum containing the
beat frequencies f

(l)
b (t0) corresponding to dl(t0) for l = 1, 2, . . . ,L. To resolve the

spectral components corresponding to the L scatterers (virtual markers), the scat-
terers (virtual markers) must be at least fres apart in the spectrum or, equivalently,
dres apart in the range (see (D.7)).

Let ∆dl and ∆f
(l)
b denote the overall change in the lth radial distance dl(t) and

beat frequency f
(l)
b (t), respectively, over one chirp duration Tsw. Then, a small

change in the lth radial distance ∆dl results in a small change in the lth beat
frequency ∆f

(l)
b according to (D.7). In practice, these changes are insignificant

over the chirp duration Tsw and are not discernible in the spectrum of (D.5), such
that ∆dl ≪ dres and ∆f

(l)
b ≪ fres, especially for indoor channels. Thus, the lth

beat frequency f
(l)
b (t0) is assumed to be constant at the slow-time instant t0 and

over the fast-time duration t0 < t′ < t0 + Tsw. Therefore, the wireless channel is
assumed to be short-time stationary, which makes the synthesis of the discrete beat
signals s(l)b (t′, t0+Tn) fairly simple for n = 0, 1, . . . and l = 1, 2, . . . ,L. For instance,
for the lth radial distance dl(t0), the real and imaginary components of the lth beat
signal s(l)b (t′, t0) in (D.6) can be digitally synthesized as simple tone signals with
fixed frequency f

(l)
b (t0) and phase ϕ(l)(t0).

D.7 Radar Signal Processing

This section describes the radar signal processing module of Fig. D.1, which can
be used to process either the simulated or the real raw IQ data. First, the FFT
operation is performed on the rows of the raw data matrix D (see (D.4)) to obtain
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the beat frequency function Sb(fb, t), which can be expressed as [47]

Sb(fb, t) =

Tsw∫
0

sb(t
′, t)e−j2πfbt

′
dt′ (D.9)

where fb denotes the beat frequency. Subsequently, the short-time Fourier transform
(STFT) of the beat frequency function Sb(fb, t) is carried out over the slow-time
domain t to acquire the beat- and Doppler-frequency function X(fb, f, t) [42], which
is given as

X(fb, f, t) =

∞∫
−∞

Sb(fb, t
′′)Wr(t

′′ − t)e−j2πft′′dt′′ (D.10)

where f and t′′ represent the Doppler frequency and running time, respectively. The
function Wr(·) in (D.10) represents a rectangular window function spanning over the
slow-time duration of 64Tsw.

Note that in (D.10), the beat- and Doppler-frequency function X(fb, f, t) can be
integrated with respect to the Doppler frequency f (beat frequency fb) to acquire
the TV beat-frequency (micro-Doppler) signature. Thus, the expressions for the TV
beat-frequency signature S ′(fb, t) and the TV micro-Doppler signature S(f, t) are
given as

S ′(fb, t) =
∣∣∣ PRF∫
0

X(fb, f, t)df
∣∣∣2 (D.11)

and

S(f, t) =
∣∣∣ fb,max∫

0

X(fb, f, t)dfb

∣∣∣2 (D.12)

respectively, where fb,max is the maximum beat frequency. By using the TV beat-
frequency signature S ′(fb, t) in (D.11), we can express the TV range distribution p′(r, t)

as

p′(r, t) =
S ′
(

2γ
c0
r, t

)
∫∞
−∞ S ′

(
2γ
c0
r, t

)
dr

. (D.13)

The symbol r in (D.13) denotes the radar range, which is related to the beat fre-
quency fb by r = c0fb/(2γ).

Similarly, the TV radial velocity distribution p(v, t) can be expressed as [42]

p(v, t) =
S
(

2f0
c0
v, t

)
∫∞
−∞ S

(
2f0
c0
v, t

)
dv

(D.14)

where v is the radial velocity and f0 is the carrier frequency, which are related to
the Doppler frequency f according to v = c0f/(2f0). Finally, the TV mean radial
velocity v̄(t) can be obtained as

v̄(t) =

∞∫
−∞

vp(v, t)dv. (D.15)
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The TV mean radial velocity v̄(t) in (D.15) encapsulates the dominant characteris-
tics of the TV radial velocity distribution p(v, t) [42]. It provides a measure of the
average radial velocity of all body segments at time t. Recall that the scatterers
found on the human body segments reflect the electromagnetic energy back to the
radar system. When a human body (avatar) moves, each scatterer (virtual marker)
follows a spatially distinct trajectory and thus has a distinct TV radial velocity
component with respect to the radar system. The TV radial velocity components
corresponding to the scatterers (virtual markers) appear in the TV radial velocity
distribution p(v, t). Similarly, the TV range components of all the scatterers (virtual
markers) appear in the TV range distribution p′(r, t).

For the real radar data, the TV range distribution p′(r, t) is not very intelligible
due to the limited range resolution dres of the radar system. Therefore, the real TV
range distribution p′(r, t) is usually not used for HAR. However, as an example, we
show in Fig. D.5 the simulated TV range distribution p′(r, t) with a range resolu-
tion dres of 75 mm for the simulated fall, walk, stand, sit and pick activities. We
also show the simulated (real) TV radial velocity distributions p(v, t) for these five
types of simulated (real) activities in Fig. D.6 (Fig. D.7). We can clearly see the
striking similarities between the simulated and the real TV radial velocity distri-
butions p(v, t) in Fig. D.6 and Fig. D.7, respectively. It is worth noting that we
will use the images of the simulated (real) TV radial velocity distributions p(v, t)

to train (test) the proposed simulation-based HAR system (see Sect. D.8). Finally,
for the five types of simulated and real activities, the TV mean radial velocities v̄(t)
are shown in Fig. D.8(a) and D.8(b), respectively.

The similarities between the simulated and real radar results in Figs. D.6, D.7,
D.8(a), and D.8(b) demonstrate the quality of the data generated by the proposed
simulation framework. Furthermore, to quantify the similarity between the simu-
lated and real radar signatures, we employ the DTW algorithm [20]. This DTW
distance metric measures the resemblance between TV mean radial velocities v̄(t) of
simulated and real human activities (see Fig. D.8). The normalized DTW distances,
presented in Table D.1, indicate the efficacy of our simulation-based approach in cap-
turing the kinematic characteristics of various human activities. Notably, for all the
activities, the DTW distance metric is minimized when comparing a given simulated
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Figure D.8: TV mean radial velocities v̄(t) for (a) the emulated and (b) real human
activities.

activity to its corresponding real counterpart. For instance, for the walking activity,
the DTW distance of 0.07 between the simulated and real TV mean radial veloci-
ties v̄(t) highlights the precise simulation of the walking pattern. This trend persists
across all simulated activities, affirming the fidelity of our simulation framework in
accurately simulating real-world radar signatures. Note that the DTW distance be-
tween certain activities, such as sitting and picking, is smaller. This is due to their
closely aligned patterns, thereby making them relatively challenging to classify.
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Table D.1: The DTW distances between the simulated and real TV mean radial
velocities v̄(t).

Activity type
Real

fall walk stand sit pick

Si
m

ul
at

ed

fall 0.03 0.36 0.18 0.26 0.20

walk 0.49 0.07 0.55 0.36 0.34

stand 0.07 0.26 0.01 0.10 0.05

sit 0.13 0.08 0.16 0.05 0.07

pick 0.08 0.19 0.04 0.03 0.01

D.8 Simulation-Based HAR System: Realization and
Testing

In this section, we first explain how we realized the proposed HAR system using a
DCNN-based multiclass classifier and how we trained it using only the simulated
HAR dataset. A range of variations of the DCNN classifier is systematically analyzed
through model ablations, facilitating the process of model analysis and selection.
Subsequently, we demonstrate the performance of our trained simulation-based HAR
classifier on the unseen real radar data using the best DCNN model.

D.8.1 Supervised Learning Using Simulated HAR Dataset

First and foremost, we need a simulated HAR dataset for training purposes. To
create the simulated HAR dataset, we first synthesized the human motion using the
Unity software as described in Section D.4. The position, speed, acceleration, and
deceleration parameters were randomly varied in the Unity software to synthesize
ten unique activity samples for each of the five activity types: falling, walking,
standing, sitting, and picking. Subsequently, the spatial trajectories of these fifty
activity samples were imported into MATLAB for further data augmentation. For
each activity sample, eight slightly different radar positions {CTx , CRx} and three
different power levels were simulated in MATLAB. Low, medium, and high power
levels were simulated by scaling the L weights a(l)(t) of the scatterers. In conclusion,
the simulated HAR dataset consists of five types of human activities, ten different
emulations of each activity type, eight radar positions, and three power levels. Thus,
the total number of simulated TV radial velocity distributions p(v, t) was 1200 in our
simulated HAR dataset, which was used to train the DCNN-based HAR classifier.

The simulated TV radial velocity distributions p(v, t) (see Fig. D.6) were trans-
formed into images of dimension 224 × 224 × 3. Thus, for each image, the number
of pixels in the horizontal and vertical dimensions are 224 and the number of color
channels are 3 (red, green and blue). These 1200 images serve as input feature maps
to the DCNN-based HAR classifier as shown in Fig. D.9. The four convolutional
layers of the DCNN classifier in Fig. D.9 contain 32, 64, 128, and 256 filter channels,
respectively, which extract features from the simulated TV radial velocity distribu-
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Figure D.9: Design of our DCNN-based HAR classifier that uses the simulated (real)
HAR dataset for its training (testing).

tion p(v, t). Each filter in a convolutional layer is a two-dimensional (2D) trainable
kernel with the dimension kd equal to 6 × 6 pixels. Note that, for the DCNN clas-
sifier shown in Fig. D.9, the network complexity (depth of hidden layers), kernel
dimension kd, max-pool layers, learning rate lr, and other hyperparameters were de-
termined through systematic analysis of a range of model variations. Further details
are provided in the subsequent subsections.

To train the weights of the kernels, the L2 regularization technique was adopted
to overcome the potential issue of overfitting [48]. The stride parameter was set to
1 in the DCNN, so that the feature-extraction filters stepped by one pixel. We em-
ployed the rectified linear unit (ReLU) function to alleviate the problem of vanishing
gradients [49]. In Fig. D.9, the convolutional layers are followed by the max-pool
layers of the order 2 × 2. The purpose of the max-pool layers is to reduce the
redundancies by downsampling the output of the convolutional layers by a factor
of 2. The features extracted by the multiple layers of the convolutional filters are
flattened prior to the multilayer perceptron (MLP) layers (see Fig. D.9).

In the DCNN, the feature vector of dimension 50176 × 1 is obtained from the
input TV radial velocity distribution p(v, t). Then, the feature vector undergoes
three MLP layers of dimensions 256, 128 and 32 with a dropout rate of 30%, as
shown in Fig. D.9. The dropout layers mitigate the problems related to overfitting
and generalizability of the network [50]. Finally, the softmax layer of order 5×1 was
employed to compute the probabilities corresponding to the five types of human
activities. For the training and validation of our simulation-based HAR classifier,
we used our simulation dataset with a training–validation split ratio of 80 : 20. To
optimize the weights and biases of our simulation-based HAR system in Fig. D.9,
we adopted the adaptive moment estimation (Adam) optimizer [51] and the human
activity samples from our simulated dataset. The decay factors β1, β2, and the
parameter ϵ of the Adam optimizer were set to 0.9, 0.999, and 10−8, respectively,
and the batch size was set to 32.

188



Human Motion and MIMO Radar Data Syntheses

D.8.2 Real Data Collection and Model Variations

To test our proposed simulation-based HAR system, we used real human activi-
ties recorded by Ancortek’s mm-wave FMCW radar system. During the measure-
ment campaign, the operating parameters such as the carrier frequency fc, band-
width BW, chirp duration Tsw, and PRF of the mm-wave radar system were set to
24.125 GHz, 250 MHz, 500 µs, and 2 kHz, respectively. Note that the same values
were chosen in the radar simulation model. The antennas of the real and simulated
radar systems were chosen to be placed in a monostatic configuration.

We conducted in-depth experiments with Ancortek’s mm-wave radar system in
an indoor propagation scenario to compose the real radar-based HAR dataset con-
sisting of five types of human activities, namely falling, walking, picking, sitting,
and picking. Five male adults and one female adult repeatedly performed the hu-
man activities in the presence of various indoor objects. The mm-wave radar’s IQ
data corresponding to the real human activities were processed by the radar signal
processing module to generate the TV radial velocity distributions p(v, t). Note that
the human activities were recorded for more than 5 seconds, but the actual duration
of the activities was mostly 3 seconds (see Fig. D.7). The total number of radar
signatures in the real radar dataset is 306.

For our simulation-based HAR system, we systematically explored various DCNN
network configurations, detailed in Table D.2. Utilizing simulated and real radar
signatures, we respectively trained and tested the DCNN classifiers with varying
depths and complexities of the convolutional neural network (CNN) and MLP lay-
ers. Models 4, 5, and 6 demonstrated mean accuracies exceeding 86% with standard
deviations (SDs) of less than 5% (see Table D.2). It’s important to highlight that
other DCNN models with lower and higher complexities displayed suboptimal per-
formance, as indicated by the mean test accuracies in Table D.2. Subsequently, we
systematically determined optimal hyperparameters, including kernel dimension kd
and learning rate lr, for Models 4–6. Among these, Model 6 emerged as the most
promising classifier, achieving the average (maximum) accuracy of 94% (98.4%) with
optimized hyperparameters. The average percentage accuracies of Model 6 across
different kernel dimensions kd and learning rates lr are depicted through the curves
in Fig. D.10(a) and the heatmap in Fig. D.10(b).

D.8.3 Testing of the Simulation-Based HAR System Employ-
ing Model 6

The train–test (or simulation–real) data split ratio was 80 : 20. From the real radar-
based HAR dataset, the 306 TV radial velocity distributions p(v, t) corresponding
to the real human subjects were used to test our trained simulation-based HAR
system. The confusion matrix presented in Fig. D.11 shows the performance of our
simulation-based HAR system (see Fig. D.9), specifically focusing on the trained
model with the maximum performance. The x- and y-axis of the confusion matrix
correspond to the predicted and true class of a human activity, respectively. Thus,
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Table D.2: Mean classification accuracies of the DCNN models.

Model CNN layers MLP layers Trainable
parameters

Mean accuracy
± SD (%)

0 [16, 32] [32, 16] 3, 232, 117 80.5± 7.5

1 [16, 32, 48] [48, 16] 1, 882, 805 81.9± 5.7

2 [16, 16, 32, 32, 48, 48] [48, 32, 16] 658, 485 77.4± 16.5

3 [32, 48, 64, 80] [128, 64, 32] 2, 371, 557 85.3± 4.7

4 [32, 64, 72, 80] [256, 128, 32] 4, 502, 205 87± 3.3

5 [32, 64, 96, 128] [256, 128, 32] 7, 201, 029 86.2± 4.7

6 [32, 64, 128, 256] [256, 128, 32] 14, 434, 725 86.7± 4.8

7 [48, 128, 256, 512] [256, 128, 32] 31, 853, 109 47.3± 31.1

8 [48, 128, 512, 512] [256, 128] 37, 747, 957 66.4± 30.8

9 [48, 128, 256, 256,

512, 512]

[256, 128, 64] 43, 654, 645 19.7± 5.5
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Figure D.10: Model 6 performance analysis: (a) the mean accuracy curves and
(b) mean accuracy heatmap for kernel dimensions kd and learning rates lr.

the first five diagonal elements of the confusion matrix represent the number of
correct classifications. The number of misclassifications is represented by the off-
diagonal elements in the first five rows and columns of the confusion matrix. For
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Figure D.11: Confusion matrix of the simulation-based HAR classifier with a clas-
sification accuracy of 98.4% on real data.

example, a “walking” activity was misclassified as a “falling” activity, as shown in
the second row of the first column. Fig. D.11 also shows that four “sitting” activities
were misclassified as “picking” activities as indicated by the fourth row of the fifth
column. In the confusion matrix, the precision and recall quantities [52] are shown
by the green color in the last row and last column, respectively. The worst precision
and recall values are 95.9% and 92.3%, respectively. Most importantly, the overall
classification accuracy of our simulation-based HAR system is 98.4% as shown by
the white entry in Fig. D.11.

Note that the classification accuracy of our simulation-based HAR system is
similar to today’s real or experimental-based HAR systems [21, 53, 54]. However, the
proposed simulation-based approach is quite unique in that it effortlessly generates a
large amount of high-quality simulation data for training purposes. In the context of
radar-based HAR, it is difficult to claim the superiority of one method or system over
another as these systems are designed to address different constraints and resolve
distinct problems. Nevertheless, in Table D.3, we have reported the performance
of various state-of-the-art HAR systems using classification accuracy as the base
metric.

The joint domain and semantic transfer learning (JDS-TL) [8] approach em-
ployed semi-supervised transfer learning (TL) and domain adaptation on partially
labeled radar data to achieve an accuracy of 87.6%, as shown in Table D.3. Uti-
lizing a hybrid architecture of CNNs and recurrent neural networks (RNNs) for
spatial-temporal pattern extraction, the hybrid CNN-RNN [55] approach achieved
a classification accuracy of 90.8% in recognizing human activities. Through a com-
bination of convolutional auto encoder (CAE)-based unsupervised feature learning
and multi-view data fusion, the CNN-LSTM method in [56] achieved an accuracy of
92%. The few-shot adversarial domain adaptation (FS-ADA) [32] method learned
a common feature space from existing and new datasets, yielding a 91.6% accuracy
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in radar-based HAR despite limited training data. The aforementioned state-of-
the-art HAR systems relied on experimental-based training datasets, as outlined
in Table D.3. Now, let’s turn our attention to HAR systems trained with either
partially (GAN-based) simulated datasets or fully simulated datasets.

To tackle kinematic inconsistencies associated with GAN-based data synthe-
sis, the multibranch generative adversarial network (MBGAN) system in [57] em-
ployed physics-aware GAN-based techniques to synthesize micro-Doppler signatures,
achieving 89.2% classification accuracy. For dataset augmentation, [58] employed a
Wasserstein refined generative adversarial network with gradient penalty (WRGAN-
GP) to generate synthetic micro-Doppler spectrograms. Vid2Doppler [59] employed
cross-domain translation to generate synthetic Doppler signatures from videos, achiev-
ing an accuracy of 81.4% through entirely simulated training data. In contrast, our
proposed simulation-based framework translated MoCap data into radar data via
channel modeling, achieving a mean (maximum) accuracy of 94% (98.4%) using
entirely simulated training data.

In this section, we have explained the design of the proposed simulation-based
HAR system. It is worth noting that the proposed simulation framework of Fig. D.1(b)
can be easily extended to other mm-wave radar-based application areas, such as
gesture classification. The only difference would be to animate different types of
gestures in the Unity software, while the rest of the modules of Fig. D.1(b) would
remain the same.

D.9 Conclusion

The development of the modern radar-based HAR systems is mostly hindered by
the scarce, unbalanced and partial datasets, because the acquisition of real radar
data is not an easy task, especially for real human subjects. Therefore, in this
paper, we alleviated the problems related to data scarcity for radar-based HAR
classifiers. As a proof-of-concept, we presented an end-to-end simulation framework
that synthesizes human motion and simulates the realistic mm-wave FMCW radar
signatures. By generating large amounts of high-quality synthetic data, the proposed
simulation framework significantly decreases the overall training effort of radar-based
HAR systems. We used the synthetic and real data to train and test the HAR
system, respectively. The proposed simulation-based HAR system demonstrated a
classification accuracy of 98.4% on the unseen real radar data. Since the proposed
end-to-end simulation framework reduces the involvement of real human subjects,
it is crucial to improve the capabilities of future radar-based HAR classifiers.

In addition, the proposed simulation framework provides control over numerous
radar and target parameters, such as avatar speed, acceleration, deceleration, height,
position, motion type, radar antenna configuration, frequency, PRF, and bandwidth.
This allows us to generate different types of radar datasets corresponding to different
radar-operating conditions and different applications. Additionally, the proposed
framework enables us to augment the data at the motion synthesis layer. Thus, at
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Table D.3: State-of-the-art radar-based HAR approaches and their performance.

HAR
method

System description Training
dataset

Dataset
simulation
method

Accuracy

JDS-TL [8] Semisupervised TL and
domain adaptation using
partially (10%) labeled
radar data for HAR

Experimental None 87.6%

Hybrid
CNN-
RNN [55]

Distributed radar
network with
spatial-temporal pattern
extraction for HAR

Experimental None 90.8%

Multi-view
CNN-
LSTM [56]

CAE-based
unsupervised feature
learning and multi-view
data fusion via LSTM

Experimental None 92%

FS-ADA
[32]

Learning common
feature space of
pre-existing and newly
acquired training
datasets

Experimental None 91.6%

MBGAN [57] Physics-aware
GAN-based systems
that utilize limited real
data to synthesize
micro-Doppler
signatures

Simulated
and experi-
mental

GAN-based data
synthesis using
limited real data

89.2%

WRGAN-
GP [58]

Generation and
refinement models for
realistic spectrogram
synthesis

Simulated
and experi-
mental

GAN-based data
synthesis using
limited real data

94.9%

Vid2Doppler
[59]

Cross-domain
translation: Creating
synthetic Doppler
signatures from videos of
human activities

Simulated Translation of
video dataset to
Doppler dataset

81.4%

Proposed
simulation-
based
framework

Simulating RF signals
and radar signatures by
using simulated 3D
trajectories of virtual
point scatterers

Simulated Translating
MoCap data to
radar data using
sensor modeling

Mean: 94%
Max: 98.4%
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the base motion synthesis layer, the target motion characteristics can be randomized
to generate impartial, unbiased or balanced datasets that can be used to train radar-
based classifiers.

In the proposed simulation framework, the scatterer-level modelling of the radar
signal opens up new avenues of research for the radar-based classifiers. For in-
stance, different optimization techniques can be explored to further improve the
quality of the simulated radar signal and ultimately the simulated radar signatures.
Furthermore, the work presented in this paper can be extended to classify other
types of everyday human activities. The proposed approach can also be used to
actualize other mm-wave radar-based classifiers, such as gesture recognition. We
anticipate that the proposed end-to-end simulation framework will empower future
radar-based classifiers with enhanced capabilities. We plan to extend the proposed
simulation framework to multiple-input multiple-output radar systems incorporating
multi-directional HAR.
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Abstract— The development of radar-based classifiers driven by empiri-
cal data can be highly demanding and expensive due to the unavailability
of radar data. In this paper, we introduce an innovative simulation-
based approach that addresses the data scarcity problem, particularly
for our multiple-input multiple-output (MIMO) radar-based direction-
independent human activity recognition (HAR) system. To simulate re-
alistic MIMO radar signatures, we first synthesize human motion and
generate corresponding spatial trajectories. From these trajectories, a
received radio frequency (RF) signal is synthesized using our MIMO
channel model, which considers the non-stationary behavior of human
motion and the multipath components originating from the scatterers
on human body segments. Subsequently, the synthesized RF signals are
processed to simulate MIMO radar signatures for various human activi-
ties. The proposed simulation-based direction-independent HAR system
achieves a classification accuracy of 97.83% when tested with real MIMO
radar data. A significant advantage of our simulation-based framework
lies in its ability to facilitate multi-stage data augmentation techniques
at the motion-layer, physical-layer, and signal-layer syntheses. This ca-
pability significantly reduces the training workload for radar-based clas-
sifiers. Importantly, our simulation-based proof-of-concept is applicable
to single-input single-output and MIMO radars in monostatic, bistatic,
and multistatic configurations, making it a versatile solution for realizing
other radar-based classifiers, such as gesture classifiers.

Index Terms— Aspect angle, data augmentation, data synthesis, deep
learning, distributed MIMO radar simulation, human activity recogni-
tion (HAR), micro-Doppler analysis, motion capture, motion synthesis,
multiclass classification, virtual reality.
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E.1 Introduction

E.1.1 Background

The generation of area-specific synthetic data has been an important topic of interest
among researchers [1, 2]. Device-specific or sensor-tailored simulation models help
generate realistic sensory data and have been used to realize real-world solutions [3,
4]. Given the increasing prevalence of machine learning and artificial intelligence
methodologies and applications today, the importance of the concept of device-
specific synthetic data generation, as well as the significance of sensor modeling,
cannot be overstated. For many sensing modalities such as magnetometer, infrared,
light detection and ranging (LiDAR), sonar, and radar, data scarcity often hinders
the realization of machine learning-based solutions [5, 6]. Sensor-tailored simulation
models mitigate the data scarcity problem by providing clean and labeled synthetic
datasets for various real-world conditions. Such synthetic datasets are important to
develop machine learning-based applications, e.g., medical imaging [7].

Human activity recognition (HAR) [8, 9, 10, 11, 12, 13] remains an important
and active research area facing the challenge of data scarcity, especially when using
radio frequency (RF) sensors such as Wi-Fi [14] and radar [15, 16, 17]. Further-
more, for multiple-input multiple-output (MIMO) radar systems with user-defined
(required) operating parameters and antenna configurations, readily-available HAR
datasets are almost non-existent. Optimal radar operating conditions and antenna
configurations are often not known in advance for different environmental conditions
and applications. Synthetic data generation is therefore a pragmatic and promis-
ing approach to realizing radar-based classifiers, offering tremendous design control
and system flexibility in a cost-effective manner. Realizing HAR systems through a
simulation-based approach poses two main challenges: (a) how to synthesize human
activities, and (b) how to simulate single-input single-output (SISO) and MIMO
radar signatures for the synthesized human activities. Before going into further de-
tails of synthetic data generation and our proposed simulation-based approach, we
first provide an overview of the relevant research in the following subsection.

E.1.2 Related Work

The ongoing miniaturization and commercialization of radar sensors, as well as many
Internet of Things (IoT) sensors, have encouraged the development of human-centric
applications, including HAR. Small-scale radar systems are increasingly preferred by
researchers for the development of HAR systems [18, 19], gesture [20, 21] and sign
language [22] recognition systems. Realizing empirical-data-driven (experimental-
based) HAR systems is often very challenging due to the low availability of recorded
radar datasets. Among other challenging and monotonous tasks, the development
of experimental-based HAR systems requires the involvement of human subjects, an
actual SISO or MIMO radar system, and the manual labeling of the recorded data.
The authors of [23] used manually labeled point cloud data to train the HAR system,
which was built upon a long short-term memory (LSTM) network. By utilizing the
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measured features of a millimeter wave (mm-wave) radar, the authors in [24] tackled
the issue of HAR in multi-view settings.

Recent studies have shown that, to some extent, data augmentation techniques
can reduce the scarcity of empirical data for HAR systems. For instance, a rotation-
shift technique was utilized in [25] to expand the three-dimensional (3D) point cloud
dataset. A generative adversarial network (GAN)-based data augmentation tech-
nique was adopted in [26] to create varied radar signatures of human activities. The
use of the few-shot learning method was suggested by the authors of [27], which
offers a unique way of augmenting the capabilities of pre-trained and pre-existing
HAR systems. According to a recent study [28], a two-stage domain adaptation ap-
proach can be used to alleviate the data scarcity issue as well. With this approach,
the simulated micro-Doppler signatures can be translated into measurement-like
micro-Doppler signatures by using small real datasets. Note that even with such
data augmentation methods, time-consuming and tedious data collection cannot be
avoided.

Radar-based classifiers may face unique challenges in different situations and
application areas, which may necessitate the adaptation of radar antenna config-
urations and operating conditions. This exacerbates the problem of data scarcity
in radar systems because the training dataset recorded from a radar system in one
scenario, may not be applicable and useful in another. Therefore, the synthetic
data generation is the way to realize radar-based HAR systems. To date, only a
few studies have been conducted in the context of RF sensing that deal with syn-
thetic data generation for HAR. In this regard, the utilization of motion capture
(MoCap) systems [29] is an effective means of modeling and reanimating complex
human motion for further motion synthesis. For passive Wi-Fi radar (PWR), the
authors of [30] devised a system, namely SimHumalator, to generate target returns.
In [31], a simulation tool was created to evaluate the radar cross-section of a walking
individual in close proximity. However, this technique is inadequate for reproducing
detailed and complex human movements.

E.1.3 Our Approach

In this paper, we present a proof-of-concept that overcomes the problems related
to radar data scarcity, offers significant design control and flexibility of the radar
system, and allows the simulation of unbounded, clean and labeled radar datasets.
We emulate a 2× 2 MIMO radar system with the help of our proposed simulation-
based framework to realize a simulation-based direction-independent HAR system.
First, we devise an activity simulation module that synthesizes multiple types of
human activities in a virtual environment by using the 3D animation tools from the
Unity [32] and MotionBuilder [33] software. An appropriate avatar or a humanoid
character, equipped with multiple simulated point scatterers on its body segments,
is used to reanimate MoCap data in these programs (see Sect. E.3). Subsequently,
we generate spatial trajectories corresponding to all simulated point scatterers or
body segments of the avatar, which effectively characterize the overall humanoid
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motion.
The spatial trajectories of the body segments are processed by our channel model,

which simulates the received RF signal from a frequency-modulated continuous wave
(FMCW) radar system for software-defined antenna positions. While simulating
the raw in-phase and quadrature (IQ) components of a received baseband signal,
our channel model takes into account the multipath components originating from
the non-stationary simulated (real) point scatterers with distinct time-variant (TV)
propagation delays (see Sect. E.4). In the proposed channel model, the long- and
short-time stationarity characteristics of the scatterers are considered in an indoor
wireless propagation environment. Additionally, to train the 2 × 2 MIMO radar-
based direction-independent HAR system (see Sect. E.7), we simulated five types of
multi-directional human activities by rotating the transmitter and receiver antennas
of the emulated MIMO radar system (see Sect. E.5).

Unlike conventional or experimental-based designs of HAR systems, the pro-
posed simulation-based approach is highly versatile and offers numerous advantages.
Our simulation-based approach is capable of simulating diverse training datasets to
meet various radar-based applications and a wide range of operational requirements.
For monostatic/bistatic/multistatic SISO/MIMO radar systems, the scatterer-level
modeling of moving objects in our simulation-based framework opens up new re-
search opportunities to further fine-tune the simulated radar signatures, such as TV
micro-Doppler signatures (TV radial velocity distributions) and TV range distribu-
tions (see Sect. E.4 and Sect. E.6). For example, the TV path gains of the scatterers
(simulated point scatterers) can be adjusted or optimized to improve and augment
the simulated radar signatures. Moreover, the simulation-based framework provides
multi-stage data augmentation techniques (see Sect. E.5), which allow us to generate
diverse and high-quality SISO/MIMO radar datasets in a flexible and cost-effective
manner. For instance, at the motion-layer synthesis data augmentation stage, var-
ious animation parameters and avatar characteristics, e.g., speed and height, can
be arbitrarily varied to simulate a range of human motions. Most importantly, the
proposed simulation-based framework radically reduces the workload and resources
for classifier training. As our simulation-based approach is versatile, it can be eas-
ily extended to implement many other SISO/MIMO radar-based classifiers, such as
air-writing gesture classification [34].

E.1.4 Contributions

The key findings and contributions of this study can be delineated as follows:

1. This research proposes a simulation-based framework to significantly minimize
the data collection workload required for devising real-world radar-based HAR
systems. The simulation-based framework is capable of synthesizing realistic,
diverse, and clean datasets for MIMO radar systems, regardless of their config-
uration: monostatic, bistatic, or multistatic. Although this study focuses on a
2×2 MIMO radar-based direction-independent HAR system, the utility of the

206



Human Motion and MIMO Radar Data Syntheses

simulation-based framework extends beyond the HAR application, making it
also valuable for other radar-based applications, e.g., sign language detection.

2. We have developed a MoCap-data-driven activity simulation module that en-
ables the synthesis of multiple types of human activities in a virtual environ-
ment. For a total of 21 simulated point scatterers placed on body segments of
an avatar, the activity simulation module generates 3D trajectories that essen-
tially characterize the overall human motion. Our activity simulation module
can integrate motion data from diverse sources, including biomechanical, wear-
able, and optical MoCap systems (see Sect. E.3). Additionally, the activity
simulation module can generate arbitrary software-defined motion data.

3. We formulate a MIMO channel model that simulates realistic RF data or raw
IQ data by using the spatial trajectory data from non-stationary simulated
point scatterers. In this channel model, we study and simulate the TV propa-
gation delays corresponding to the multipath components emanating from the
non-stationary simulated point scatterers on the avatar’s body segments. The
proposed MIMO channel model helps generate unlimited radar datasets and
provides extensive design control and versatility.

4. We present multi-stage data augmentation techniques for motion-layer syn-
thesis, physical-layer synthesis, and signal-layer synthesis. For example, in the
proposed simulation-based framework, we first diversified the target motion
data in the motion-layer synthesis using the activity simulation module. And
subsequently in the physical-layer synthesis, we augmented the radar data by
varying physical layer parameters such as radar orientation. Lastly, we fur-
ther augmented the radar data by using multiple sets of simulated point scat-
terers’ weights (TV path gains) at the signal-layer synthesis of the proposed
simulation-based framework. The multi-stage, simulation-based data augmen-
tation techniques allowed us to vary target motion characteristics and antenna
configurations, simulate multiple radar sensors, and transform uni-directional
motion data to multi-directional motion data.

5. For the simulated human activities, we generated high-quality MIMO radar
signatures, such as TV radial velocity distribution and mean radial velocity,
which closely resemble the actual MIMO radar signatures of actual human
activities. This demonstrates the efficacy of the proposed simulation-based
framework, which is highly versatile as it can be effortlessly extended to sim-
ulate radar signatures for various other moving objects such as cars, drones,
and aircraft.

6. By employing our simulation-based framework, we generated a unique sim-
ulated dataset to train/realize classifiers based on (deep) machine learning.
The training dataset for HAR incorporates simulated radar patterns, derived
from software-defined avatar movements. This approach proves highly advan-
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tageous and practical as the training data is developed entirely from scratch,
eliminating the need for real individuals and an actual MIMO radar system.

7. For the 2×2 MIMO radar framework, we realized a simulation-based HAR sys-
tem by employing a deep convolutional neural network (DCNN). The system
employed multiperspective simulated radar signatures as input features. To
showcase the practical applicability of our simulation-driven HAR system, we
evaluated its performance using actual mm-wave radar data collected from ac-
tual individuals. Our simulation-based multiperspective HAR system achieved
an impressive classification accuracy of 97.83%, providing compelling evidence
for its effectiveness.

E.1.5 Paper Organization

The article is divided into eight sections. Section E.2 deals with the system design
and the general structures of the conventional and the proposed approaches. Human
motion capture and synthesis techniques are presented in Section E.3. Section E.4
details channel modeling and simulation. Multi-stage data augmentation approaches
are elucidated in Section E.5. Section E.6 discusses the generation of MIMO radar
signatures. Section E.7 presents the design, training, and testing phases of our
simulation-based direction-independent HAR system. Finally, we conclude our re-
search in Section E.8.

E.2 System Design

In this section, we discuss a conventional experimental-based design of a HAR sys-
tem and the proposed simulation-based realization of a HAR system. We also discuss
problems of conventional HAR systems and how the proposed end-to-end simula-
tion framework resolves them. Note that SISO radar-based HAR systems struggle
to classify multi-directional human activities [35, 36]. To classify different types of
multi-directional human activities, we need multiple radar subsystems illuminating
the environment from different perspectives. Therefore, in the following subsec-
tions, we consider multi-directional human activities recorded by a multiperspective
distributed MIMO radar system.

E.2.1 Conventional Experimental-Based Designs of HAR Sys-
tems

In radar sensing, state-of-the-art experimental-based HAR systems [19, 18, 17, 36,
15, 14, 9, 13, 23, 24] generally face challenges, such as data scarcity and their adapt-
ability to environmental conditions. As an example of state-of-the-art experimental-
based designs, we considered a direction-independent HAR system implemented with
a mm-wave 2×2 MIMO radar system, as shown in Fig. E.1(a). In Fig. E.1(a), Radari
represents the ith radar subsystem of the distributed MIMO radar system, ATx

i is
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the ith transmitter antenna, and ARx
i is the ith receiver antenna for i = 1, 2. Note

that the two horn antennas, namely ATx
i and ARx

i , are arranged in a monostatic
configuration for Radari. In the conventional experimental-based HAR system of
Fig. E.1(a), six human subjects performed the following types of multi-directional
activities: falling on a mattress, walking, standing up from a chair, sitting down on
a chair, and picking up an object from the floor.

The distributed MIMO radar system simultaneously illuminates the human sub-
ject from two aspect angles and generates the corresponding raw IQ data, as shown
in Fig. E.1(a). Then, the radar signal processing block (see Sect. E.6) generates
the TV micro-Doppler signatures or, equivalently, the TV radial velocity distribu-
tions for Radar1 and Radar2. These recorded radar signatures (TV radial velocity
distributions) are accumulated to create a real radar dataset. In conventional ex-
perimental HAR systems, the real radar data set is usually divided into a training
subset and a testing subset to train and test these HAR systems, respectively. How-
ever, for this research, we only use the experimentally obtained radar dataset to test
our proposed simulation-based HAR system (see Fig. E.2).

Similar to any multiclass classifier, radar-based HAR systems require extensive
amounts of recorded data for their training. However, unlike other sensing modalities
such as cameras, radar systems often suffer from data scarcity. To experimentally
design a HAR system, real human subjects must perform various types of activities
in front of the MIMO radar system in multiple directions. These requirements make
data collection time-consuming and costly. Additionally, the recorded radar training
dataset usually cannot be reused for different antenna configurations and operating
conditions. For instance, changing the position of a transmitter or a receiver antenna
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Figure E.1: (a) Design of conventional (experimental-based) direction-independent
HAR systems that require human subjects and a MIMO radar system for their
training. (b) Design of the proposed simulation-based HAR system that requires
the simulated radar signatures for its training.
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Figure E.2: The testing phase of both experimental and simulation-based direction-
independent HAR systems. In the testing phase, the performance of the simulation-
based HAR system is evaluated against unseen real radar signatures.

of the MIMO radar system can invalidate the entire recorded training dataset.

E.2.2 A Simulation-Based Design of HAR Systems

In this paper, we propose a feasible alternative to overcome the aforementioned
limitations of radar-based classifiers, particularly with regard to the scarcity of radar
data. To develop real-world HAR systems, we propose a comprehensive simulation-
based framework that utilizes MoCap systems to synthesize realistic MIMO radar
data, as depicted in Fig. E.1(b). The objective is to generate a simulated MIMO
radar-based training dataset by seamlessly simulating a large number of realistic
MIMO radar signatures without real human subjects and a physical radar system.

The block diagram in Fig. E.1(b) provides a general overview of the proposed
end-to-end simulation framework for HAR systems. In Fig. E.1(b), the activity sim-
ulation module synthesizes the five types of human activities in the 3D space from
motion data collected by the MoCap systems (see Sect. E.3). The activity simu-
lation module simulates 3D trajectories corresponding to different body segments
of an avatar, e.g., head, neck, torso, and upper and lower extremities. To simulate
the human activities in multiple directions as shown in Fig. E.1(b), we rotate the
positions of the transmitter antenna ATx

i and receiver antenna ARx
i in our simulation-

based framework for i = 1, 2 (see Sect. E.5.2). For a desired antenna configuration
of the MIMO radar system, our channel simulation module first transforms the 3D
trajectories into TV propagation delays. Then, the channel simulation module gen-
erates realistic RF or raw IQ data for the simulated TV propagation delays and a set
of scatterer weights. Eventually, the radar signal processor arranges the simulated
raw IQ data in the fast- and slow-time domain and processes it to simulate realistic
radar signatures, i.e., range distribution, radial velocity distribution (micro-Doppler
signature), and mean velocity (mean Doppler shift).

We synthesize numerous examples of the five types of human activities, simu-
late the corresponding radial velocity distributions (micro-Doppler signatures), and
store them in our simulated radar dataset, as shown in Fig. E.1(b). The proposed
simulation-based framework has no limits on the generation of simulation data. The
simulated radar dataset is used to train the simulation-based HAR system, which is
based on a DCNN architecture. To demonstrate the practical importance and the
generalizability of this simulation-based framework, we need to evaluate its perfor-
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mance in a real scenario. Therefore, the proposed simulation-based HAR system
is evaluated on a previously unseen real radar dataset acquired with a mm-wave
distributed MIMO radar system and real human subjects, as shown in the testing
phase of Fig. E.2. Note that we used an identical radar signal processing block in
Fig. E.1 because the simulated and real RF signals are structurally indistinguish-
able. More details on each block of the simulation-based HAR system are provided
in the following sections.

E.3 Human Motion Capture and Synthesis

This section explores several ways of capturing and synthesizing human motion.
First, biomechanical modeling and its limitations will be briefly discussed. Second,
wearable sensors as a means of MoCap systems are briefly mentioned. Third, we
discuss optical motion capture systems such as Mixamo [37] and Qualisys [38]. It is
important to highlight that the proposed simulation-based framework allows incor-
porating synthesized or recorded motion data from diverse sources such as biome-
chanical, wearable, and optical MoCap systems. Lastly, we explain the process of
generating 3D trajectories of human body segments using software such as Unity [32]
and Autodesk’s MotionBuilder [33]. These software programs (3D animation tools)
help us augment the motion data at the motion-layer synthesis.

E.3.1 Biomechanical Modeling of Human Body Segments

The utility of biomechanical modeling [39] for human body segments is undeniable,
yet its complexity is inherently high, primarily due to the intricate nature of the
human body. Also, it is difficult to develop generalizable biomechanical models
because individuals differ in physiology, anatomy, and motor function. Moreover,
the interaction between the human body and the environment can further increase
the complexity of a biomechanical model.

Obtaining high-fidelity motion data of human body segments can be more fea-
sible and accessible through MoCap repositories and systems such as Mixamo and
Qualisys. In addition, the Unity and MotionBuilder software provide a cost-effective
and pragmatic alternative to biomechanical modeling, enabling the seamless and dy-
namic simulation of new motion data in a virtual environment. Therefore, we use
MoCap systems to capture the human motion and employ 3D animation tools from
MotionBuilder and Unity to synthesize and subsequently augment human motion.

E.3.2 Wearable Motion Capture Systems

Wearable MoCap systems offer a versatile and cost-effective solution for capturing
human movement data. The sensors, typically accelerometers and gyroscopes, are
often integrated into garments to capture data on the orientation and acceleration
of body segments. In this area, Rokoko Smartsuit Pro [40] is a viable choice with
multiple inertial sensors for real-time tracking of an individual’s skeletal movements.
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It facilitates seamless transfer of motion data to various applications such as sports,
biomechanical analysis, and virtual reality. Compared to optical MoCap systems,
wearable MoCap systems have limitations in terms of accuracy. Additionally, wear-
able MoCap systems can suffer from magnetic interference, which can affect the
precision of the MoCap data.

E.3.3 Optical Motion Capture Systems

We used Mixamo and Qualisys optical MoCap systems to capture motion data for
human activities. Mixamo is an online platform that offers an extensive selection of
readily available MoCap data captured from real performers [41]. Our Qualisys Mo-
Cap system was based on six Miqus M3 cameras connected in a daisy chain, capable
of tracking passive reflective markers placed on a subject at 340 frames per second
(fps). The Qualisys MoCap system includes proprietary Qualisys track manager
(QTM) software that provides an interface for tasks such as camera configuration
and calibration, session setup and organization, marker-set definition, and MoCap
measurements. Furthermore, QTM offers a suite of tools for marker labeling, data
processing, analysis, and the export of MoCap data, thereby enabling seamless in-
tegration with third-party software. The camera system was calibrated according
to the QTM guidelines to ensure accurate tracking of the markers and capturing
their position and orientation in 3D space. Next, 41 passive reflective markers were
attached to a full body suit. The participant wore the suit, and we recorded a Mo-
Cap trial to generate an automatic identification of markers (AIMs) model. This
model applies computer vision, localization, and motion estimation techniques to
detect and track markers, facilitating an automated workflow for identifying and
labeling markers. Once the AIM model was created, the skeleton solver function
of QTM was used to calibrate the skeleton based on the marker positions. Next,
a person’s motion data was recorded for four activities: normal walking, standing
up from a chair, sitting down onto a chair from a standing position, and picking
up a small object from the floor. The recorded skeleton data was then exported in
the Filmbox (FBX) file format and further processed in the MotionBuilder software.
Note that for the falling activity, the MoCap data was relatively difficult to collect
due to markers attached to the body. Therefore, we obtained MoCap data of the
falling activity from Mixamo [37], a freely-accessible online platform. In the next
step, we import the acquired MoCap data into specialized software such as Unity or
MotionBuilder, which are equipped with powerful tools that allow for the creation
of comprehensive, meticulous and lifelike 3D animations.

E.3.4 3D Trajectories of Human Body Segments

By using the basic MoCap data and the 3D animation tools, we synthesized, aug-
mented and visualized five human activities: falling on the floor, walking in an indoor
environment, standing up from and sitting down on a chair, and picking up an object
from the floor. Initially, the human activities were simulated and varied in a single
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direction or at an aspect angle of zero degrees with the help of 3D animation tools,
as shown in Fig. E.1(b). However, we also needed to synthesize multi-directional hu-
man activities to realize a simulated MIMO radar-based direction-independent HAR
system. Instead of using 3D animation tools, we simulated multi-directional human
activities more conveniently and efficiently by spatially rotating the transmitter and
receiver antennas of the radar subsystem, Radari (see Sect. E.5.2).

Following the synthesis of the human movement, we extract the spatial trajecto-
ries corresponding to each body segment of the avatar. To track the different body
segments, 21 simulated point scatterers were placed on the avatar (see Fig. E.3),
these model the actual body scatterers that backscatter the transmitted RF signal
to the receiver antennas of the 2× 2 distributed MIMO radar system. We recorded
the TV positions (trajectories) of the simulated point scatterers in the 3D space for
the simulated human activities. For example, the 3D trajectories of the simulated
point scatterers for a simulated walking activity are shown in Fig. E.3.

At the outset, only 34 MoCap files were recorded, each representing one of the
five distinct types of human activities. We visualized these activities using the
Unity and MotionBuilder 3D animation tools, and computed the corresponding 3D
trajectories. To expand, the total number of synthesized human activities to 84,
we applied data augmentation at the motion-layer synthesis using the Unity and
MotionBuilder software (see Sect. E.5.1). Subsequently, we processed the 3D trajec-
tories in MATLAB for further data augmentation at the physical- and signal-layer
syntheses. Although data augmentation at the motion-layer synthesis may require
some attention to motion details, the physical-layer synthesis and signal-layer syn-
thesis data augmentation stages in the proposed simulation-based framework are
fairly automated. With the help of such multi-stage data augmentation techniques,
we generated 2826 micro-Doppler signatures (TV radial velocity distributions) for
each radar subsystem of the MIMO radar system. Section E.5 provides more de-
tails on the multi-stage data augmentation techniques furnished by the proposed
simulation-based framework.

E.4 Channel Modeling and Simulation

In this section, we first present a geometrical 3D indoor channel that models an
indoor propagation scenario using the proposed simulation-based framework (see
Fig. E.3). Second, we investigate the multipath components caused by non-stationary
simulated (real) point scatterers on avatar (human) body segments and simulate the
corresponding TV propagation delays for a human activity. Lastly, we explain how
the simulated propagation delays can be used to synthesize a received RF signal,
specifically for an FMCW 2× 2 MIMO radar system.

E.4.1 Geometrical Channel Model

We model and simulate a 3D channel for an indoor environment, which consists of a
2×2 distributed MIMO radar system, a moving person, and stationary miscellaneous
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items such as furniture and electronics, as illustrated in Fig. E.1(a). Recall that
Radari represents the ith radar subsystem of the distributed MIMO radar system,
ATx

i is the ith transmitter antenna, and ARx
i is the ith receiver antenna for i = 1, 2.

Let [·]⊤ denote the vector transpose operation. Then, the position of the ith transmit
(receive) antenna ATx

i (ARx
i ) of the 2 × 2 MIMO radar system is represented by

CTx
i = [xTx

i , yTx
i , zTx

i ]⊤ (CRx
i = [xRx

i , yRx
i , zRx

i ]⊤), as illustrated in Fig. E.3.

A virtual propagation environment that resembles a real geometrical 3D in-
door channel is depicted in Fig. E.3. In a real propagation environment, a mov-
ing human subject has countless non-stationary scatterers. For this research, we
model these non-stationary bodily scatterers with L = 21 non-stationary simulated
point scatterers on a moving avatar, as shown in Fig. E.3. Moreover, in Fig. E.3,
Cl(t) = [xl(t), yl(t), zl(t)]

⊤ denotes the TV spatial trajectory of the lth marker S(l),
dTx
l,i (t) (d

Rx
l,i (t)) represents TV Euclidean distance between the lth marker S(l) and the

ith transmit antenna ATx
i (receive antenna ARx

i ), where i = 1, 2 and l = 1, 2, . . . ,L.

For the lth marker S(l) and the ith radar subsystem Radari, the TV radial
distance dl,i(t) is equal to one-half of the overall propagation distance, i.e., dl,i(t) =
(dTx

l,i (t)+ dRx
l,i (t))/2. Fig. E.3 shows that the antenna configuration {CTx

i , CRx
i } of the

ith radar subsystem, Radari, follows a monostatic configuration, where CTx
i = CRx

i

for i = 1, 2. This leads to the following simplification: dl,i(t) = dTx
l,i (t) = dRx

l,i (t).
The obtained TV radial distances dl,i(t) of the L non-stationary simulated point
scatterers play an important role in simulating the TV propagation delays τ

(l)
i (t),

as explained in the following subsection.
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Figure E.3: Virtual 3D propagation environment comprising a non-stationary avatar
with 21 simulated point scatterers on its body segments and a simulated 2 × 2

multiperspective MIMO radar system.
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E.4.2 Modeling of Multipath Components Caused by Human
Body Segments

RF signals generally experience multipath propagation, particularly in indoor en-
vironments with numerous stationary and non-stationary reflective objects. In
Fig. E.3, the transmitted RF signal takes on multiple propagation paths, traveling
from the transmitter antenna to the receiver antenna via multiple real (simulated)
point scatterers on the human (avatar) body segments. Recall that in our simulation-
based framework, the 21 simulated point scatterers on the avatar’s body segments
basically model the actual bodily scatterers that scatter the transmitted RF signal
back to the receiver antennas of the 2 × 2 distributed MIMO radar system. For
this study, by virtue of the cross-channel interference mitigation technique [16], we
assume that the two radar subsystems, Radar1 and Radar2, of Ancortek’s mm-wave
radar system do not interfere with each other.

In the proposed simulation-based framework, we only consider multipath com-
ponents originating from the L = 21 non-stationary dominant and non-dominant
scatterers located on various body segments of the avatar, as shown in Fig. E.3.
The multipath components originating from stationary dominant scatterers, such as
walls, furniture, and floor, are excluded from the analysis because they are easily
filtered out through signal preprocessing. Moreover, the bistatic components of the
2× 2 distributed MIMO radar systems are not considered for this study. However,
if required, the bistatic components of the 2 × 2 distributed MIMO radar system
can be easily simulated in the proposed simulation-based framework.

The receiver antennas receive the multipath components, or multiple copies of
the transmitted RF signal, with distinct TV propagation delays τ (l)i (t). For Radari,
the lth TV propagation delay τ

(l)
i (t) is related to the lth TV radial distances dl,i(t)

according to the relation τ
(l)
i (t) = 2dl,i(t)/c0, where c0 is the speed of light. Within

the framework of radar sensing, the synthesized motion is completely characterized
by the simulated TV propagation delays τ

(l)
i (t), as explained in the subsequent

section.

For the five distinct types of simulated human activities and Radar1, Fig. E.4
shows the simulated TV propagation delays τ

(l)
1 (t) of the L = 21 simulated point

scatterers. The lth TV propagation delay τ
(l)
i (t) depends solely on the spatial trajec-

tory of the lth marker. Therefore, when a person suddenly falls, the abrupt change
in the spatial positions of the upper-body segment is reflected in the corresponding
TV propagation delays τ

(l)
1 (t), as illustrated in Fig. E.4. In Fig. E.4, the TV prop-

agation delays τ
(l)
1 (t) demonstrate the repetitive nature of the walking activity. By

analyzing the TV propagation delays τ
(l)
1 (t), it is evident that the simulated walk-

ing activity comprised four steps towards Radar1. In contrast, the TV propagation
delays τ

(l)
1 (t) in Fig. E.4 for the other three types of simulated human activities in

place, namely sitting, standing up and picking up an object, show smaller variations
corresponding to the mobility of the simulated point scatterers.
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Figure E.4: The simulated TV propagation delays τ
(l)
1 (t) of the L simulated point

scatterers for the five distinct human activities and Radar1.

E.4.3 Channel Modelling for Radio-Frequency Sensing

This section elucidates the simulation of a composite RF signal or equivalently, raw
IQ data in fast time t′ and slow time t, corresponding to a specific motion. To
simulate the composite RF signal of Radari, we need user-defined scatterer weights,
a user-defined antenna configuration {CTx

i , CRx
i }, and the simulated TV propagation

delays τ (l)i (t) corresponding to the spatial trajectories of the simulated point scatter-
ers for a specific motion or a human activity (see Fig. E.1(b) and Fig. E.4). For this
study, we consider the L bodily scatterers to be long-time non-stationary over the
slow time t, and short-time stationary over a limited chirp duration Tsw [42]. In the
following, for the FMCW 2×2 distributed MIMO radar system placed in the indoor
wireless channel, we synthesize the complex baseband signal called the composite
beat signal sb,i(t′, t) [43], where i = 1, 2. Additionally, we discuss an interpolation
procedure that is integral to our channel-simulation module of Fig. E.1(b), as it
mitigates the issues of aliasing in the Doppler domain.

FMCW radar systems operate by repetitively emitting a chirp waveform c(t′) [44],
which is scattered back to the receiver antenna by multiple stationary and non-
stationary scatterers present on the human body segments and other objects in the
environment. A quadrature mixture element integrated into the receiver chain of the
FMCW 2×2 distributed MIMO radar system is responsible for transforming the in-
coming passband RF signal into complex baseband (composite beat) signal sb,i(t′, t).
The received complex baseband signal sb,i(t′, t) is sampled in the fast-time domain
by the analog to digital converter (ADC) module of the receiver with the discrete
sampling interval Ts in the fast-time domain. Subsequently, for the coherent pro-
cessing interval (CPI) of the ith radar subsystem, Radari, the discrete samples of
the received complex baseband signal sb,i(t′, t) are organized in fast- and slow-time
domains. During the CPI, the phase of Radari is preserved. This organization or
rearrangement of the discrete fast- and slow-time samples results in the radar’s raw
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IQ data matrix Di [42], which can be expressed as

Di =


sb,i(0, 0) sb,i(Ts, 0) . . .

sb,i(0, Tsw) sb,i(Ts, Tsw) . . .
...

...
...

sb,i(0, (Nc − 1)Tsw) sb,i(Ts, (Nc − 1)Tsw) . . .

sb,i(Tsw − Ts, 0)

sb,i(Tsw − Ts, Tsw)
...

sb,i(Tsw − Ts, (Nc − 1)Tsw)


(E.1)

where Nc represents the number of chirps present within the CPI of the FMCW
radar system.

We want to synthesize the actual received complex baseband signal sb,i(t′, t) of
the FMCW 2×2 distributed MIMO radar system, so that we can simulate the radar’s
raw IQ data matrices Di for i = 1, 2. The received complex baseband signal sb,i(t′, t)
of Radari can be synthesized by adding up the L distinct beat signals s

(l)
b,i(t

′, t) [42,
43], each corresponding to the lth multipath component originating from the lth
simulated point scatterer, i.e.,

sb,i(t
′, t) =

L∑
l=1

s
(l)
b,i(t

′, t). (E.2)

For Radari, the lth beat signal s
(l)
b,i(t

′, t) or the lth multipath component can be
simulated by using the expression [42]

s
(l)
b,i(t

′, t) =
∞∑
n=0

a
(l)
i (t) exp

[
j
(
2πf

(l)
b,i (t)t

′ + ϕ
(l)
i (t)

)]
×

δ(t− τ
(l)
i (t)− Tn)

(E.3)

where a
(l)
i (t), f (l)

b,i (t), and ϕ
(l)
i (t) denote the TV path gain, beat frequency, and phase

of the lth beat signal s(l)b,i(t
′, t), respectively, and δ(·) denotes the Dirac delta function.

The symbol Tn in (E.3) represents the nth discrete slow-time instance, which is
determined by the chirp duration Tsw, such that Tn = nTsw, where n is a non-
negative integer. Let γ represent the slope of the chirp signal. Then, the lth TV
beat frequency f

(l)
b,i (t) of Radari in (E.3) is given by f

(l)
b,i (t) = τ

(l)
i (t)γ. The ith and

lth TV phase ϕ
(l)
i (t) component is determined by the TV propagation delay τ

(l)
i (t)

according to ϕ
(l)
i (t) = 2πf0τ

(l)
i (t), where f0 is the carrier frequency.

The TV path gain a
(l)
i (t) in (E.3) models the strength of the lth marker in

the received signal. For Radari and L simulated point scatterers, we use time-
invariant path gains a

(l)
i in (E.3) to avoid unnecessary complexity. Therefore, we

have a
(l)
i (t) = a

(l)
i . In this study, for the five types of synthesized human activities,

the values of the time-invariant path gains a
(l)
i are adjusted by investigating the
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actual TV radial velocity distributions pi(v, t) (see Sect. E.6) and the body surface
area [45]. It is worth noting that by using different sets of time-invariant path gains,
we can augment the radar data at the signal-layer synthesis for a synthesized human
activity (see Sect. E.5.3).

We consider the L bodily scatterers to be long-time non-stationary over the
slow time t, and short-time stationary over the fast time t′ for a limited chirp du-
ration Tsw [42]. Thus, the TV propagation delays τ

(l)
i (t), beat frequencies f

(l)
b,i (t),

and phases ϕ
(l)
i (t) of the L simulated point scatterers are only a function of the

slow time t. For Radari and the kth slow-time instant tk (kth row of the raw IQ
data matrix Di in (E.1)), the short-time stationarity assumption simplifies the syn-
thesis of the discrete complex baseband signal sb,i(t′, tk) for a synthesized human
activity. At the slow-time instant tk, the IQ components of the complex base-
band signal sb,i(t

′, tk) can be digitally simulated as a sum of tone signals, i.e.,
sb,i(t

′, tk) =
∑L

l=1 s
(l)
b,i(t

′, tk), where the lth tone signal s(l)b,i(t
′, tk) has the constant

(time-invariant) beat frequency f
(l)
b,i (tk) and phase ϕ

(l)
i (tk).

Within the framework of radar sensing, the synthesized motion can be completely
characterized by the simulated TV propagation delays τ

(l)
i (t) of the L simulated

(real) point scatterers. The L TV propagation delays τ (l)i (t) are computed from the
TV spatial trajectories Cl(t) of the L simulated point scatterers, which are animated
with a fixed frame interval denoted by Tf . Therefore, the frame interval Tf is the
slow-time sampling interval of the simulated TV spatial trajectories Cl(t) and the
propagation delays τ (l)i (t). In actual radar systems, the slow-time sampling interval
is equal to the radar’s pulse repetition interval (PRI), which is smaller (better) than
the frame interval Tf . Concretely, for the actual (simulated) raw IQ data matrix Di

in (E.1), the slow-time sampling interval Tsw is equal to the radar’s PRI (frame
interval Tf ). Thus, to ensure that the simulated frame interval Tf is equal to the
radar’s PRI, we interpolate the spatial trajectories or the simulated TV propagation
delays τ (l)i (t) in our simulation framework. This is necessary because the upper limit
of the actual (synthesizable) radial velocity, denoted by vmax (v′max), is determined
by the radar’s PRI (animation’s frame interval Tf ). Let λ denote the wavelength,
then we have vmax = λ/(4 · PRI), and v′max = λ/(4Tf ).

E.5 Multi-Stage Data Augmentation

In this section, we explore multi-stage data augmentation techniques (see Fig. E.5)
provided by the proposed simulation-based framework that allow us to simulate
large quantities of quality radar signatures. First, we discuss a motion-layer data
augmentation technique, where various animation parameters and avatar character-
istics, e.g., size and speed, can be randomly varied to synthesize a variety of human
motions. We then explain data augmentation of the physical layer that allows us to
vary numerous physical-layer configurations and the radar’s operating parameters,
e.g., number of antennas and their setup and PRI. Lastly, we delve into a data
augmentation technique at the signal-layer synthesis.
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Figure E.5: The proposed multi-stage data augmentation techniques offered by our
simulation-based framework.
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E.5.1 Motion-Layer Synthesis

For the five types of distinct human activities, we acquired a small and basic MoCap
dataset from the Mixamo platform and the Qualisys MoCap system. A person with a
height of about 1.74 m performed the activities several times in a room equipped with
the Qualisys MoCap system. The MoCap dataset we acquired comprised only 34

MoCap files, each representing one of the five types of activities. The 3D animation
tools from both Unity and MotionBuilder software were used to visualize the basic
MoCap data for the human activities. We complemented the basic MoCap data
with the 3D animation tools to render realistic and diverse motion data.

In this study, one of our objectives is to synthesize a large amount of data
representing real human motions at the motion-layer synthesis of our simulation-
based framework. To this end, we first adjusted the height of the avatar in the
MotionBuilder software by reducing it to 1.52 m (5 ft) and increasing it to 1.83 m
(6 ft). We then aligned the MoCap data to the avatars with different sizes to account
for the effects of avatar dimensions and extended the data on the motion-layer
synthesis. Therefore, in the Unity and MotionBuilder software, the total number of
synthesized human activities were increased to 84 by applying data augmentation
at the motion-layer synthesis stage, as indicated by Fig. E.5. Note that we can
synthesize complex, varied, and entirely new sequences of human movements by
using the blend tree animation tool in the Unity software that facilitates seamless
transitions between multiple humanoid animations. For the augmented human-
motion data (synthesized human activities), we computed TV spatial trajectories
(see Sect. E.3.4) and imported them into MATLAB for further data augmentation
at the physical- and signal-layer syntheses (see Fig. E.5).

E.5.2 Physical-Layer Synthesis

The simulation-based framework allows the adjustment of the radar operating pa-
rameters and physical layer configurations, e.g. PRI, carrier frequency fc, band-
width Bw, and antenna configuration {CTx

i , CRx
i }. Through these adjustments it is

possible to both extend the simulated radar data and simulate specific scenarios. At
the physical-layer synthesis data augmentation stage, appropriate antenna configu-
rations {CTx

i , CRx
i } were chosen to simulate the two radar subsystems, Radar1 and

Radar2, as shown in Fig. E.6. To maintain consistency with the actual 2 × 2 dis-
tributed MIMO radar system depicted in Fig. E.1(a), the emulated radar system’s
operating parameters, such as PRI, carrier frequency fc, and bandwidth Bw, were
kept the same.

We first simulated different positions of the radar subsystems, Radar1 and Radar2,
by using the rotation matrix Ry(θRi), which can be expressed as [46]

Ry(θRi) =

 cos θRi 0 sin θRi

0 1 0

− sin θRi 0 cosθRi

 (E.4)

where θRi denotes the clockwise angular rotation along the y-axis for Radari and
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Figure E.6: Simulation of a multiperspective 2× 2 MIMO radar system and multi-
directional human activities.

i = 1, 2. Initially, the simulated radar subsystems, Radar1 and Radar2, were placed
at θR1 = 0◦ (CTx

1 ≈ CRx
1 ≈ [3, 1.1, 0]⊤) and θR2 = −90◦ (CTx

2 ≈ CRx
2 ≈ [0, 1.1, 3]⊤),

respectively, i.e., CTx
2 = Ry(−90◦)CTx

1 and CRx
2 = Ry(−90◦)CRx

1 . In other words,
Radar2 can be simulated by simply rotating Radar1 counterclockwise by 90 degrees
along the y-axis, as illustrated in Fig. E.6. Using this method, we emulated a 2× 2

distributed MIMO radar system, similar to the actual radar system in Fig. E.1(a),
to simulate the MIMO radar signatures. Note that, with the use of the rotation
matrix Ry(θRi), any number of radar subsystems, sensors, or nodes can be simulated
at the physical-layer synthesis data augmentation stage.

Recall that the human activities were initially simulated with 3D animation tools
in a single direction or at an aspect angle of zero degrees. However, to develop a sim-
ulated MIMO radar-based direction-independent HAR system, we required multi-
directional human activities. Compared to the motion-layer synthesis, the required
multi-directional human activities can be simulated more easily and efficiently at
the physical-layer synthesis data augmentation stage. The multi-directional human
activities are simulated by spatially rotating the transmitter and receiver antennas
of the radar subsystem Radari, for i = 1, 2. The angular difference between the two
radar subsystems is always kept at 90 degrees, i.e., θR1 − θR2 = 90◦, as depicted in
Fig. E.6. The different rotations of Radar1 and Radar2 (θR1, θR2) correspond to the
different directions of the human activities, where (θR1, θR2) ∈ [−180◦, 180◦). We
simulated 18 different directions of the human activities at the physical-layer syn-
thesis data augmentation stage, namely Direction 1 to Direction 18, as illustrated
in Fig. E.6. For instance, for a human activity, Direction 11 in Fig. E.6 corresponds
to the scenario, where (θR1, θR2) = (−160◦, 110◦).

To summarize, at the physical-layer synthesis, we first simulated the two radar
subsystems, Radar1 and Radar2, to emulate the 2× 2 distributed MIMO radar sys-
tem. Secondly, by using the rotation method, we simulated the multi-directional hu-
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man activities by simultaneously rotating the two radar subsystems, as illustrated in
Fig. E.6. Thus, our proposed simulation-based framework includes a physical-layer
synthesis data augmentation stage, which efficiently and conveniently transforms
and augments uni-directional motion data into multi-directional motion data and
single radar data into multiple radar data.

E.5.3 Signal-Layer Synthesis

The signal-layer synthesis data augmentation stage of the proposed simulation-
based framework allows to simulate realistic and diverse TV radial velocity distri-
butions pi(v, t) (micro-Doppler signatures) for a single human activity. Using (E.3),
we can simulate numerous multipath components corresponding to the stationary
and non-stationary scatterers in the received complex baseband signal sb,i(t′, t) (see
(E.2)). In this research, multipath components originating from stationary scatter-
ers, such as walls and furniture, are not considered, as they can be effectively filtered
out during the signal preprocessing stage. However, if necessary, the signal-layer
synthesis can simulate numerous complex propagation scenarios, e.g., those with or
without radar clutter, by adjusting the path gains a

(l)
i (t), beat frequencies f

(l)
b,i (t),

and phases ϕ
(l)
i (t) of the lth beat signal s(l)b,i(t

′, t) for Radari.

For the five types of synthesized human activities, we first adjusted the values of
the time-invariant path gains a

(l)
i by looking into the actual radar signatures (TV

radial velocity distributions pi(v, t) (see Sect. E.6)) and the body surface area [45].
Subsequently, we augmented the simulated radar signatures by varying the power
levels (time-invariant path gains a(l)i ) of the individual multipath component. There-
fore, at the signal-layer synthesis of the proposed simulation-based framework, we
augmented the radar data by using different sets of time-invariant path gains a

(l)
i

for the five types of synthesized human activities.

In this section, we discussed three data augmentation techniques implemented
at multiple layers of the proposed simulation-based framework: the motion-layer
synthesis, physical-layer synthesis, and signal-layer synthesis. By applying these
multi-stage data augmentation techniques, we simulated 2826 TV radial velocity
distributions pi(v, t) (micro-Doppler signatures) for each radar subsystem of the
2 × 2 MIMO radar system. In other words, for the two radar subsystems, Radar1
and Radar2, a total of 5652 TV radial velocity distributions pi(v, t) were simulated.
To conclude, the multi-stage data augmentation methods in the proposed simulation-
based framework are quite useful and they allowed for increased variability, realism,
and diversity in the simulated radar dataset. With these methods, we were able
to transform and augment the basic motion data (34 MoCap files) into 5652 radar
signatures, which indicates the utility of the proposed simulation-based approach
for realizing radar-based classifiers.
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E.6 MIMO Radar Signatures

In this section, we delineate the radar signal processing module of Fig. E.1 that
generates the MIMO radar signatures: range distribution, TV radial velocity distri-
bution pi(v, t) (micro-Doppler signature), and mean velocity (mean Doppler shift).
For i = 1, 2, the radar signal processing module transforms the actual and the
simulated complex baseband signals sb,i(t

′, t) into the TV radial velocity distribu-
tions pi(v, t). The first step is to compute the beat frequency function Sb,i(fb, t)

as [47]

Sb,i(fb, t) =

Tsw∫
0

sb,i(t
′, t)e−j2πfbt

′
dt′ (E.5)

where fb refers to the beat frequency.
Let f and fb,max denote the Doppler frequency and maximum beat frequency,

respectively. Then, the micro-Doppler signatures Si(f, t) are obtained from the beat
frequency function Sb,i(fb, t) according to the relation [35]

Si(f, t) =
∣∣∣ fb,max∫

0

∞∫
−∞

Sb,i(fb, t
′′)Wr(t

′′ − t)e−j2πft′′dt′′dfb

∣∣∣2 (E.6)

where t′′ denotes the running time, and Wr(·) denotes a rectangular window func-
tion that spans over 64 chirp intervals. According to [43], the TV radial velocity
distribution pi(v, t) can be obtained as

pi(v, t) =
Si

(
2f0
c0
v, t

)
∫∞
−∞ Si

(
2f0
c0
v, t

)
dv

(E.7)

where v denotes the radial velocity. From the TV radial velocity distribution pi(v, t)

in (E.7), we can compute the TV mean radial velocity v̄i(t) as [43]

v̄i(t) =

∞∫
−∞

vpi(v, t)dv. (E.8)

For Radari, the TV beat-frequency signatures S ′
i(fb, t) can be computed as

S ′
i(fb, t) =

∣∣∣ PRF∫
0

∞∫
−∞

Sb,i(fb, t
′′)Wr(t

′′ − t)e−j2πft′′dt′′df
∣∣∣2 (E.9)

where PRF is the pulse repetition frequency of the radar system, and i = 1, 2.
Finally, for the 2× 2 MIMO radar system, the TV range distribution p′i(r, t) can be
obtained as [42]

p′i(r, t) =
S ′
i

(
2γ
c0
r, t

)
∫∞
−∞ S ′

i

(
2γ
c0
r, t

)
dr

. (E.10)
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Recall that the real (simulated) point scatterers on the human (avatar) body
segments, each with unique TV radial velocity components, scatter the transmitted
RF signal back to the receiver antennas of the 2×2 distributed MIMO radar system.
For Radari and the L distinct non-stationary real (simulated) point scatterers, the
TV radial velocity distribution pi(v, t) in (E.7) indicates the strengths of the radial
velocity components over the slow time t (see Fig. E.7). The TV mean radial
velocity v̄i(t) in (E.8), obtained from the TV radial velocity distribution pi(v, t),
shows the weighted average of the velocity components of all L real (simulated)
bodily scatterers over the slow time t (see Fig. E.8). Moreover, the strengths of the
TV radial distances of all L non-stationary real (simulated) point scatterers over
the slow time t are provided by the TV range distributions p′i(r, t). Due to the
current practical limitations of radar systems, the TV range distributions p′i(r, t)

are not usually used to realize HAR systems, so their simulation results are omitted
for brevity. However, for completeness and possible future applications, we have
included the expression in (E.10) to simulate the TV range distribution p′i(r, t).

In Section E.5, we saw that multi-directional human activities can be simulated
by simultaneously rotating the two radar subsystems, Radar1 and Radar2, as shown
in Fig. E.6. For some of the 18 directions and all five types of simulated (actual) hu-
man activities, the simulated (actual) TV radial velocity distributions, p1(v, t) and
p2(v, t), are shown in Fig. E.7(a) (Fig. E.7(b)). The images of the simulated (ac-

Fall Walk Stand up Sit down Pick

Direction 1 Direction 10 Direction 4 Direction 5 Direction 5

(a)

Fall Walk Stand up Sit down Pick

Direction 1 Direction 10 Direction 4 Direction 5 Direction 5

(b)

Figure E.7: (a) Simulated TV radial velocity distributions, p1(v, t) and p2(v, t),
for the emulated multi-directional human activities. (b) Real TV radial velocity
distributions, p1(v, t) and p2(v, t), for the real multi-directional human activities.
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Figure E.8: Simulated and measured TV mean radial velocities v̄1(t) and v̄2(t) of
Radar1 (—) and Radar2 (· · · ), respectively.

tual) TV radial velocity distributions, p1(v, t) and p2(v, t), were used to train (test)
the proposed 2 × 2 MIMO radar-based direction-independent HAR system. In the
subsequent section, the two colored images of the TV radial velocity distributions,
p1(v, t) and p2(v, t), will serve as input feature maps to the HAR system. Moreover,
for the five types of human activities and the two radar subsystems, Radar1 and
Radar2, the simulated and actual TV mean radial velocities v̄i(t) are depicted in
Fig. E.8. The utility and effectiveness of the proposed simulation-based framework
is evident from the high-fidelity simulated radar signatures, which are quite similar
to the actual radar signatures, as exemplified by Figs. E.7 and E.8.

To quantitatively assess the similarity between simulated and real radar sig-
natures, we employ the dynamic time warping (DTW) algorithm [48]. Table E.1
presents the normalized DTW distances between the real and simulated TV mean
radial velocities v̄i(t) from Fig. E.8 across five human activities. Remarkably, the
DTW distance metric is minimized for each activity, indicating close resemblance be-
tween the simulated and real radar signatures. For example, for the sitting activity,
a DTW distance of 0.01 between the simulated and real TV mean radial veloc-
ities v̄i(t) demonstrates precise replication of this pattern. This consistent trend
across all activities confirms the accuracy of our approach in simulating realistic
radar data.

Table E.1: The DTW distance metric is calculated for the simulated and real (actual)
TV mean radial velocities v̄i(t) of Fig. E.8.

Activity type
Real

fall walk stand sit pick

Si
m

ul
at

ed

fall 0.03 0.30 0.14 0.21 0.14

walk 0.28 0.01 0.36 0.03 0.22

stand 0.06 0.24 0.03 0.11 0.05

sit 0.17 0.05 0.17 0.01 0.08

pick 0.09 0.13 0.08 0.04 0.02
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E.7 Simulation-Based HAR System

This section elucidates the training and testing phases of our simulation-based
direction-independent HAR system that was realized by using a DCNN-based mul-
ticlass classifier. First, we look into the design of the HAR classifier and its training
with the simulated radar dataset. Then, to demonstrate the practical importance
and the generalizability of our proposed simulation framework in real-world sce-
narios, we used a real 2 × 2 MIMO radar dataset to evaluate the classification
performance of the trained simulation-based direction-independent HAR system.

E.7.1 Design of the Simulation-Based HAR System

To develop a simulation-based HAR system, we first created a large labeled dataset
of simulated radar signatures. For Radari (i = 1, 2) of the 2×2 MIMO radar system
and the five types of humanoid activities, we simulated 2826 TV radial velocity dis-
tributions pi(v, t) by using the proposed multi-stage data augmentation techniques of
our simulation-based framework (see Sect. E.5). Thus, the simulated radar dataset
consisted of a total of 5652 simulated TV radial velocity distributions pi(v, t), which
were used to train the proposed simulation-based direction-independent (multiper-
spective) HAR classifier.

The simulation-based direction-independent HAR system comprises two feature
extraction networks (FENs) and a multilayer perceptron (MLP) network. Fig. E.9(a)
illustrates the FEN that computes relevant features from the simulated (actual) TV
radial velocity distributions pi(v, t) during the training (testing) phase for the ith
radar subsystem, Radari. It consists of four convolutional layers, containing 64, 72,
80, and 96 two-dimensional (2D) trainable kernels with dimension kd either equal
to 4× 4 pixels or 3× 3 pixels. Each 2D kernel uses the rectified linear unit (ReLU)
activation function to avoid the problem of vanishing gradients [49]. The max-pool
layers were employed to reduce redundancies in the feature maps. To avoid overfit-
ting the training data, we used dropout layers with the dropout rates of 10% and
15% for the FEN and MLP, respectively. The flatten layer of our FEN rearranges
the extracted features into a vector of order 18816× 1, as shown in Fig. E.9(a).

The two FENs in the DCNN-based multiperspective HAR system are identical,
as shown in Fig. E.9(b). As Radar1 and Radar2 illuminate the indoor environment
from multiple perspectives, the extracted features from the two TV radial velocity
distributions, p1(v, t) and p2(v, t), are merged by the multiperspective feature fusion
block, as shown in Fig. E.9(b). Subsequently, based on the received multiperspec-
tive features, the MLP network is trained to detect the type of the human activity.
The multiperspective feature fusion block enables the HAR classifier to recognize the
human activities regardless of their directions. Note that the design of this multiper-
spective deep neural network closely resembles the architecture reported in [35]. To
train the parameters of our DCNN-based multiperspective HAR classifier, we used
the adaptive moment estimation (Adam) optimizer [50] and the simulated radar
signatures of multi-directional human activities. The training dataset, comprising
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2826 pairs of simulated TV radial velocity distributions pi(v, t), was further divided
into training and validation subsets in an 80 : 20 ratio. During the training phase,
our DCNN-based multiperspective HAR classifier showed no signs of overfitting, as
demonstrated by the training and validation curves in Fig. E.10.

E.7.2 Testing of the Simulation-Based HAR System

To evaluate the performance of the trained 2×2 MIMO radar-based multiperspective
HAR classifier in a real-world setting, we used a real radar dataset recorded by
Ancortek SDR-KIT 2400T2R4, as shown in Fig. E.2. The operating parameters and
antenna configurations of the real and the simulated 2×2 MIMO radar systems were
kept similar for consistency. Specifically, we set the PRI, carrier frequency fc, and
bandwidth Bw of the real and simulated MIMO radar systems to 0.5 ms, 24.125 GHz,
and 250 MHz, respectively. For Radar1 and Radar2, the antennas were placed at
CTx
1 ≈ CRx

1 ≈ [3, 1.1, 0]⊤ and CTx
2 ≈ CRx

2 ≈ [0, 1.1, 3]⊤, respectively.
A total of 875 multi-directional human activities were recorded with the 2 × 2
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Figure E.9: (a) Feature extraction network, FEN, based on convolutional filters.
(b) The proposed DCNN-based multiperspective HAR classifier that is trained
(tested) using the simulated (real) HAR dataset.
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Figure E.10: Training history of our simulation-based direction-independent HAR
system.

MIMO radar system from six human subjects, including a female participant. Thus,
the real radar dataset consisted of 1750 TV radial velocity distributions pi(v, t)

(micro-Doppler signatures) for the two radar subsystems, Radar1 and Radar2. As a
direct result of this extensive measurement campaign, the simulation–real (training–
testing) data ratio approximately came out to be 76: 24. Our simulation-based
framework enabled the realization of the simulation-based direction-independent
HAR system, which exhibited remarkable performance and efficacy in the real world,
as demonstrated by the confusion matrix in Fig. E.11. For each of the five types
of multi-directional human activities, the number of correct classifications is rep-
resented by the first five diagonal entries of the confusion matrix. The green col-
ored entries in the last row and column exhibit the precision and recall [51] in
Fig. E.11. Finally, the white colored entry of the confusion matrix shows the overall
classification accuracy of our simulation-based direction-independent HAR system,
which is 97.83%. As our test dataset was sufficiently balanced, the macro average
F1-score [52] came out to be approximately 97.6%, which is close to the overall
classification accuracy.

For RF-based HAR systems, asserting the superiority of one method proves chal-
lenging, given their tailored design to address diverse research challenges. Nonethe-
less, Table E.2 presents the performance of various contemporary HAR systems,
utilizing classification accuracy for comparison. Notably, the measurement-based
HAR methods and those partially utilizing measurement data demonstrate strong
classification accuracies. The Vid2Doppler [53] method, which translates video to
radar data, achieves an accuracy of 81.4%, while our simulation-based approach,
converting MoCap data to radar data, achieves a higher accuracy of 97.8%, both
utilizing entirely simulated training data.

This section demonstrated the utility and efficacy of the simulation-based frame-
work in the real world. The classification accuracy of the simulation-based direction-
independent HAR system is comparable to the current HAR systems [59, 18],
with the additional consideration of the multi-directional human activity recog-
nition problem. Moreover, our simulation-based framework is unique in its abil-

228



Human Motion and MIMO Radar Data Syntheses

Fall Walk Stand Sit Pick
Predicted Class

Fa
ll

W
al
k

S
ta
nd

S
it

P
ic
k

T
ru
e
C
la
ss

94 2 0 1 0

2 151 0 0 0

2 0 163 0 0

0 1 3 223 4

4 0 0 0 225

96.91%
3.09%

98.69%
1.31%

98.79%
1.21%

96.54%
3.46%

98.25%
1.75%

92.16%
7.84%

98.05%
1.95%

98.19%
1.81%

99.55%
0.45%

98.25%
1.75%

97.83%
2.17%

Figure E.11: Confusion matrix of our simulation-based multiperspective HAR clas-
sifier with a classification accuracy of 97.83%.

ity to generate realistic, diverse, and unlimited labeled MIMO radar datasets with
software-defined operating parameters and configurations. Therefore, the proposed
simulation-based framework in Fig. E.1(b) can be readily used to develop other SISO
and MIMO radar-based classifiers, e.g., for sign language detection.

E.8 Conclusion

The progression of SISO and MIMO radar-based classifiers is primarily impeded
by the unavailability of large labeled training datasets. Therefore, as a proof-of-
concept, we have presented in this work a simulation-based approach to address the
concern of data scarcity for monostatic, bistatic, and multistatic SISO and MIMO
radar systems. Although our focus was on realizing a 2 × 2 MIMO radar-based
direction-independent HAR system, the utility of our simulation-based framework
extends beyond HAR applications.

The proposed simulation-based framework provides the flexibility to synthesize
software-defined human movements using MoCap data-driven activity simulation.
We proposed a MIMO channel model to convert simulated 3D trajectories into
received RF signals, while considering a user-defined antenna configuration of a
distributed MIMO radar system and the multipath components emanating from
the non-stationary simulated point scatterers. The synthesized RF signals were
further processed to simulate the multiperspective MIMO radar signatures used to
implement our simulation-based direction-independent HAR system.

To generate a diverse training dataset for radar-based HAR systems, we in-
troduced multi-stage data augmentation techniques at the motion-layer synthe-
sis, physical-layer synthesis, and signal-layer synthesis within our simulation-based
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Table E.2: Comparing the classification performance of state-of-the-art RF-based
HAR approaches.

Approach Training data type & brief description Accuracy
Wi-Sense [14] Involves measurement data; Obtaining

fingerprints from the Wi-Fi channel
state information (CSI)

97.8%

Convolutional neural
network (CNN)-LSTM [54]

Involves measurement data;
Unsupervised learning and data fusion
using LSTM

92%

Few-shot adversarial
domain adaptation
(FS-ADA) [55]

Involves measurement data;
Discovering shared feature spaces in
training datasets

91.6%

CNN-recurrent neural
network (RNN) [56]

Involves measurement data; Extracting
patterns over space and time

90.8%

Joint domain and semantic
transfer learning
(JDS-TL) [12]

Involves measurement data; Utilizing
10% labeled radar data for domain
adaptation

87.6%

Wasserstein refined
generative adversarial
network with gradient
penalty (WRGAN-GP) [57]

Synthesizing data with GANs utilizing
limited measurements; Employing a
refinement model to synthesize
high-fidelity spectrograms

94.9%

Multibranch generative
adversarial network
(MBGAN) [58]

GAN-centered data generation using
limited real data; Physics-informed
method improving GANs for accurate
micro-Doppler synthesis

89.2%

Vid2Doppler [53] Simulation-based training; Converting
video data into Doppler data

81.4%

Our simulation- based
approach

Simulation-based training; Converting
motion data into radar signatures

97.8%

framework. The multi-stage data augmentation techniques helped to gain absolute
control over various factors, such as avatar size, location, velocity, acceleration, PRI,
and radar antenna configuration. By using these techniques, we augmented the ba-
sic MoCap data to 5652 micro-Doppler signatures, drastically minimizing the overall
training workload and demonstrating the effectiveness of our simulation-based ap-
proach for realizing radar-based classifiers. Our MIMO radar-based HAR system
trained on the simulated micro-Doppler signatures achieved classification accuracy
of 97.83% when tested with actual radar data. As our study eliminates the need for
direct involvement of human participants and an actual radar system, we believe
that the proposed proof-of-concept will be of great importance for training future
SISO/MIMO radar-based classifiers.

Our MIMO channel model opens up new research perspectives for modelling
received RF signals at the scatterer level. For example, future studies can explore
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the optimization of scatterer-level parameters, such as the simulated TV path gains.
A limitation of this research is that the methods discussed are not directly applicable
to the moving clutter scenario where the radar antennas are non-stationary. This
research gap is beyond the scope of this work and can be addressed in future studies.
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