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Abstract 
 

This thesis examines the frequency of high-volatility regimes in European energy and carbon 

markets, and their correspondence with the Russo-Ukrainian war using a Markov Switching 

Bayesian Vector Autoregressive (MS-BVAR) model. Utilizing monthly price data from 

January 2015 to February 2024, the study identifies significant shifts in volatility and market 

dynamics triggered by geopolitical events.  The findings reveal pronounced regime-dependent 

variability in market responses, with high volatility regimes becoming more conspicuous post-

invasion. In lower volatility regimes, markets typically stabilize quickly post-disturbance, 

demonstrating resilience. However, in high-volatility regimes, markets exhibit prolonged 

deviations from baseline levels, indicating deeper impacts of geopolitical risks. Particularly, 

the oil, gas, and clean energy sectors show significant sensitivity to changes in the geopolitical 

landscape. Additionally, the thesis highlights the crucial role of the Geopolitical Risk Index 

(Caldara & Iacoviello, 2022) in understanding the broader effects of geopolitical tensions on 

energy markets. By integrating geopolitical risk analysis into the MS-BVAR model, the 

research provides nuanced insights into how shifts in geopolitical stability resonate through the 

energy markets over time. This research contributes to the empirical literature by 

demonstrating the differential impacts of geopolitical events across various states of market 

volatility. It underscores the importance of robust risk management and energy diversification 

strategies to enhance the resilience of energy systems. 
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1 Introduction  
 

The Russian invasion of Ukraine on February 24, 2022 sparked a global energy crisis of 

unprecedented scale (International Energy Agency, 2024b). A raft of economic sanctions, trade 

restrictions, government policy responses to the conflict, and Russia’s energy supply cut led to 

an acute energy demand across an already beleaguered Europe, attempting to cope with the 

aftermath of the COVID-19 pandemic and spiraling energy prices (Benton et al., 2022, p. 8). 

Supply chain disruptions and apprehensions of supply shortfalls have further intensified the 

situation, and as the war continues to reshape the global energy system, there is an accelerating 

shift towards cleaner energy alternatives as nations seek to increase energy security 

(International Energy Agency, 2024b). Geopolitical risk is identified as a critical factor for 

driving the state of the economy and is proven to be closely related to energy markets (Liu et 

al., 2021; Zhang et al., 2023). In particular, work by Jiang et al. (2024) has explored the 

connectedness between geopolitical risk and the carbon market, offering valuable insights. 

Therefore, it becomes pertinent to investigate how the Russo-Ukrainian war has influenced the 

interplay between carbon and energy markets. 

 

As the world’s third largest oil producer, Russia’s military actions in Ukraine have significantly 

disrupted the global energy markets (International Energy Agency, 2022b). Russia’s role as a 

massive exporter of crude oil, natural gas, and coal, comprising nearly half of the European 

Union’s gas imports and significant shares of oil and coal imports, rendered the EU particularly 

vulnerable in the aftermath of the invasion (European Commission, 2024). The EU, together 

with the G7 countries and their allies, responded by imposing a series of embargoes and trade 

restrictions targeting Russian goods and commodities. These measures precipitated a 

pronounced escalation in energy prices (Mahlstein et al., 2022). Despite these sanctions, Russia 

has continued to hold a prominent position as an exporter of fossil fuels by redirecting exports 

to nations such as India, China, Turkey, and the Middle East (International Energy Agency, 

2024b).  

 

The European energy sector faced a critical challenge due to its excessive dependence on 

energy imports from Russia, which underscored the risk of reliance on a single nation 

(European Commission, 2024). To mitigate the dependence on Russian energy, the European 

Commission developed the REPowerEU plan (European Commission, 2022). With this 
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initiative, the European Commission aims to strengthen Europe’s energy security by energy 

conservation measures, speed up the clean energy transition, and diversify the sources of 

energy imports. As nations look for alternative energy, the expansion of renewable energy has 

accelerated. In a time marked by escalating geopolitical risk and persistent market volatility, 

nations’ efforts are increasingly focused on enhancing energy self-reliance through increased 

investments in clean energy, thereby diminishing the repercussions of the conflict. 

 

While the conflict has implicitly contributed to the green transition in Europe, the immediate 

response in the price of carbon permits in the European Union Emission Trading System (EU 

ETS) differed. Carbon prices experienced a historical crash after the invasion, lowering the 

cost of pollution (Ambrose, 2022). The EU ETS emerged as the EU’s strategy to achieve 

climate neutrality by 2050 and attain a minimum of 55% reduction in greenhouse gas emissions 

by 2030 (European Commission, 2019). This is facilitated through the implementation of a 

cap-and-trade system that governs the allocation of carbon allowances for entities such as 

power plants, industrial factors, and the aviation industry. Allowances are distributed via 

auctioning, and the standard contract unit, referred to as a lot, corresponds to 1,000 European 

Union Allowances (EUAs). Each EUA authorizes the holder to emit one ton of carbon dioxide 

or an equivalent volume of other potent greenhouse gases (European Commission, n.d.). 

 

Typically, carbon prices are positively correlated with energy prices, but unlike oil and gas, 

which saw rapid price increases post-invasion, EUA prices deviated from this trend. According 

to Ingvild Sørhus, a lead analyst for EU Carbon Analysis, this decline was driven by investors 

pulling funding, prompted by uncertainties related to the conflict (Ambrose, 2022).  

 

While it is well-documented that energy markets are interconnected with carbon markets and 

geopolitical risk (Chen et al., 2022; Gong et al., 2021; Liu et al., 2021; Zhang et al., 2023), 

there is limited literature exploring how these dynamics are specifically influenced by the 

Russo-Ukrainian conflict. Jiang et al. (2024) contribute to existing research by analyzing the 

interplay between geopolitical risk, energy markets, and carbon markets, revealing strong 

interconnectedness in the short term, intensified during periods of heightened geopolitical risk. 

Yet, within the context of the Russo-Ukrainian war, the dynamics remain underexplored.  

 

Maneejuk et al. (2024) add to filling the research gap by studying how the conflict has affected 

fossil and renewable energy cycles by innovatively implementing the Russian Economic Policy 



	

	 8 

Uncertainty (REPU) index coupled with a dummy variable, following Google Trends data on 

"Ukraine and Russia Tensions". This approach allows them to capture complex geopolitical 

dimensions in their Markov Switching Bayesian Vector Autoregressive (MS-BVAR) analysis, 

facilitating a more profound comprehension of the long-term economic consequences spanning 

geopolitics and energy markets. Their findings include evidence of significant regime 

switching post-invasion, with high-volatility regimes appearing more frequent for both fossil 

energy cycles and renewable energy cycles.  

 

Building upon the foundational research of Maneejuk et al. (2024) and Jiang et al. (2024), this 

thesis aims to bridge the existing research gap regarding the impact of the Russian invasion of 

Ukraine on energy markets, encompassing fossil fuels, clean energy, and the European carbon 

market. By employing an MS-BVAR model, together with impulse response function (IRF) 

analysis, this thesis examines the relationship between the returns on EUA carbon futures, 

European Brent crude oil futures, Dutch TTF natural gas futures, the S&P Global Clean Energy 

Index, and the Geopolitical Risk Index (Caldara & Iacoviello, 2022), by utilizing end-of-month 

price data spanning from January 2015 to February 2024.  

 

The Markov switching methodology can adequately capture nonlinearities and asymmetries 

among variables, a challenge at which a regular VAR model would fail. This approach is 

particularly advantageous in the context of geopolitical instabilities and conflicts such as the 

Russo-Ukrainian war, where market fluctuations tend to be unpredictable. These fluctuations 

are a result of jumps between economic states, shifting between low and high volatility 

regimes, such that the distribution of the price data changes (Kim & Nelson, 1999). To 

understand the dynamics between the variables prior to and during the conflict, the Markov 

switching model allows for the definition of two distinct regimes that mirror periods of high 

and low market volatility. This approach enables an analysis of the shifts in the interplay 

between the variables as market volatility varies.   

 

The importance of investigating these complex interactions lies in the crucial insights they 

provide into the broader economic and environmental strategies required to mitigate the 

adverse effects of geopolitical tensions. By seeking to close this research gap, this study aims 

to provide a nuanced perception of the changing dynamics between energy and carbon markets 

and their connection to geopolitical risk during high-volatility regimes. By understanding the 

conflict’s far-reaching implications on energy security and climate policy initiatives, 
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policymakers can develop robust responses to enhance both energy independence and 

environmental sustainability. 

 

The thesis will commence with an exploration of existing literature on energy markets, carbon 

markets, and geopolitical risk in Section 2. Next, the data collection process and a description 

of the historical price data are provided in Section 3, together with descriptive statistics and 

tests on the underlying structure of the data. Section 4 describes the MS-BVAR model and the 

IRF analysis, including methodological assumptions, drawbacks, and software used. Section 5 

presents the results from the MS-BVAR and IRF analysis. A discussion of these results and 

their implications for the research topic are explored in Section 6, followed by a conclusion of 

the study and suggestions for further research in Section 7. 
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2 Literature review 
 

The drivers of energy and carbon markets have been extensively studied, revealing close 

interconnections between these markets. It is increasingly recognized that both markets are 

influenced by the macroeconomic environment and geopolitical tensions, emphasizing the 

importance of understanding these relations during crises to mitigate risks. However, there is 

limited research on how the Russo-Ukrainian war has impacted energy markets, and even less 

on its effects on carbon markets. The following section will outline relevant literature that 

forms the foundation of this thesis. Initially, key studies focusing on the European carbon 

market will be presented, followed by an exploration of the interconnectedness between 

geopolitical risk, clean energy, fossil fuels, and carbon markets. Finally, preliminary research 

addressing the impact of the Russo-Ukrainian war on these markets will be reviewed.  

 

Alberola et al. (2008) were pioneers in their study of price drivers for EUAs, that emerged in 

2005. Via regression, their efforts advance prior work by demonstrating that the prices of 

carbon futures respond not only to energy price forecasting errors but also to unexpected 

temperature changes. Their findings showed that the significant fall in EUA prices in April 

2006 suggested that an insufficiently stringent cap could cause allowance prices to be too low 

to stimulate mitigated emissions. During Phase I of the EU ETS, it was evident that the rigor 

of the cap was inadequate for market participants, resulting in a collapse of the price. They 

claim that the post-pilot period offers enhanced insights into the institutional and market 

dynamics that influence allowance price movements. 

 

Batten et al. (2021) incorporate weather, alongside energy prices, as predictors of carbon prices 

in Phase III of the EU ETS, to investigate the magnitude of the effect on price trends. Their 

study, with models based on Alberola et al. (2008) and Mansanet-Bataller et al. (2007), 

confirms earlier findings by showing that while the level of temperature does not influence 

carbon prices, unexpected temperature fluctuations do. Given the association of climate change 

with increased temperature volatility, their results indicate that intensified climate change is 

linked to increased volatility in carbon prices. However, the contribution of other energy 

markets to carbon price determination was minor compared to initial expectations, indicating 

that additional factors might be more decisive in setting prices. They encourage future studies 

to investigate the effect that policy uncertainty and other macroeconomic variables have on the 

carbon pricing dynamics.  
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Sun and Xu (2021) employ a modified wavelet least square support vector machine for carbon 

price prediction in China, the world’s largest emitter, addressing the unpredictability and non-

linear characteristics observed in carbon pricing series. They argue that relying solely on a 

single model is inadequate for achieving precise predictions, and demonstrate that 

implementing hybrid models significantly enhances prediction accuracy, offering valuable 

practical insights. Results showed that a hybrid approach for carbon price determination 

yielded the most accurate output. They attribute the irregularities in carbon prices to a complex 

interplay of policy- and market uncertainties as well as the prices of related energy markets. 

The researchers suggest that future work could investigate how fossil energy prices and market 

policies influence changes in the carbon price. 

 

Abbas et al. (2023) establish that heightened geopolitical risks substantially obstruct green 

financing and environmental taxation, especially considering the global financial slowdown 

triggered by COVID-19. Their research underscores the critical roles of geopolitical risk, green 

finance, and environmental taxes on investments in renewable energy (IRE) sources. Through 

quantile regression and dynamic analysis techniques, the study investigates the influence of 

IRE on companies’ energy production. The findings indicate that while green financing and 

environmental taxes notably enhance IRE, geopolitical risk pose barriers to such initiatives. 

The authors assert that green investments are vital for sustainable development, suggesting that 

even if energy outputs may rise in the short run, such investments are essential to address 

environmental change.  

 

Zhang et al. (2023) investigate the causality dynamics between green finance and geopolitical 

risk by utilizing a novel time-varying causality testing framework following Nasir et al. (2021) 

and Shi et al. (2019) The study reveals that geopolitical risk exerts a significant influence on 

the volatility rather than the returns of green bonds and renewable energy. Notably, European 

clean energy has shown resilience to global geopolitical risk since 2015, suggesting it may act 

as a safe haven asset during uncertain times. Findings underscore the importance for 

policymakers to strengthen the green finance regulatory environment, especially in turbulent 

periods, to stabilize the green finance market. The authors suggest that further research could 

use country-level geopolitical risk or a subindex including geopolitical threats and acts.  

 

Liu et al. (2021) empirically investigate the relationship between energy and geopolitics by 

utilizing the geopolitical risk index constructed by Caldara and Iacoviello (2022) to examine 
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the volatility of fossil energy commodities. Employing the GARCH-MIDAS model, they find 

compelling evidence of geopolitical uncertainty significantly impacting the long-run volatility 

of fossil energy. Firstly, they point to geopolitical uncertainty providing explanatory power 

regarding the observed energy volatility, even after controlling for realized volatility, 

fundamental variables, financial market stress, and economic policy uncertainty. Second, the 

transmission mechanism indicates that the impact of geopolitical uncertainty on energy 

markets is more likely to occur through threats rather than actual events. Thirdly, the use of 

high-frequency information in the GARCH-MIDAS model enables it to capture the persistent 

effects of geopolitical uncertainty, significantly enhancing out-of-sample predictions of energy 

volatility. This study paves the way for future research into how geopolitical uncertainty 

impacts the decoupling of oil and gas prices. 

 

The study by Jiang et al. (2024) examines the connectedness among geopolitical risk, fossil 

energy fuels, and carbon markets through a time-frequency lens, utilizing the Diebold and 

Yilmaz (DY), and the Baruník and Křehlík (BK) spillover index models. The results suggest a 

greater total connectedness in the short term, which intensifies in periods of heightened 

geopolitical risk, with switching pathways of connectedness. Notably, the research revealed 

substantial evidence that during the COVID-19 pandemic, carbon markets affected the level of 

geopolitical risk. The findings imply that carbon and fossil fuel markets possess inherent 

political attributes, enabling policymakers to adjust supply and demand strategies in response 

to rising geopolitical risk to mitigate market volatility. Furthermore, the researchers point out 

that in times of global crises with rising geopolitical tensions, it may be possible to manage the 

geopolitical risk by manipulating carbon prices. Results indicate that the performance of the 

natural gas market is inconsistent with other traditional energy markets, thus, further study of 

its uniqueness is recommended.  

 

Ha (2023) studied the dynamic connectedness between the renewable energy sector and carbon 

risk during the Russo-Ukrainian conflict by employing a novel multivariate wavelet analysis, 

such as partial wavelet coherency and partial wavelet gain. The study identifies significant 

relationships between green bonds, clean energy, and carbon futures across various 

frequencies. Particularly, findings suggest that carbon risk harms renewable energy and green 

energy during the Russo-Ukrainian war. The study highlights the impact of geopolitical events 

on the renewable energy market, and how crises can reset industry growth and reshape market 
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dynamics. Ha suggests that further analysis should examine the environmental performance of 

renewable energy sources in developing countries.  

 

The study by Enescu and Szeles (2023) discusses the energy price volatility in the aftermath 

of the Russo-Ukrainian conflict, and policy responses to manage the high energy prices. A 

variety of GARCH models are utilized to capture the volatility of Brent crude oil, TTF natural 

gas, and UK natural gas. The analysis shows persistent high volatility in all prices, especially 

for TTF natural gas, which exhibited the highest range of conditional variance. The researchers 

underscore the EU’s vulnerability due to its heavy reliance on Russian energy supplies. Despite 

sanctions against Russia, gas prices remain volatile. The authors suggest that a comprehensive 

understanding of the conflict’s impact requires analysis over a longer time frame and 

recommend incorporating a Markov switching model to better capture non-linear and 

asymmetric responses of the market to geopolitical risk.  

 

Research by Balsalobre-Lorente et al. (2023) explores how the influence of the Russo-

Ukrainian conflict sentiments on the returns within the oil and gas markets of G7 nations. The 

researchers conducted the analysis by creating a comparative scenario between a pre- and post-

conflict period of six months, employing Cross-Quantilogram and Partial Cross-Quantilogram 

methodologies. Findings indicated that the repercussions of the conflict were modeled by the 

degree of reliance on Russian oil and gas supplies, with significant differences between pre- 

and post-conflict scenarios. The paper underscores the critical nature of the Russo-Ukrainian 

conflict in the research domain, particularly from a policymaker’s perspective striving to 

enhance energy resilience and mitigate the impact of unexpected shocks in supplies and prices 

for fossil fuels, by motivating renewable energy development. The proposed policy framework 

presented in the paper serves as a benchmark for countries dependent on Russian energy 

imports. For further studies, researchers suggest incorporating social dimensions to design a 

more robust policy framework. 

 

By establishing the state of current literature, the intricate interconnections between energy and 

carbon markets are shown to be significantly influenced by geopolitical tensions. Still, a 

notable research gap exists concerning the specific impacts of the Russo-Ukrainian war. This 

thesis aims to bridge this gap by providing a detailed analysis of how this conflict has affected 

the dynamics between energy and carbon markets by utilizing the Geopolitical Risk index by 

Caldara and Iacoviello (2022) in an MS-BVAR and IRF analysis.  
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3 Data 
 
3.1 Data Collection 

 

Focusing on the dynamics of energy and carbon markets in Europe, this section contains an in-

depth analysis of monthly data encompassing EUA Carbon Futures, European Brent Crude Oil 

Futures, Dutch TTF Natural Gas Futures, the S&P Global Clean Energy Index, and the 

Geopolitical Risk Index (Caldara & Iacoviello, 2022). As articulated in the introductory 

section, the onset of the Russian invasion of Ukraine in February 2022 has precipitated many 

research endeavors in this domain, examining a wide array of impacts beyond the immediate 

repercussions on the various European energy markets.  

 

The Geopolitical Risk Index by Caldara and Iacoviello (2022) quantifies adverse geopolitical 

events and measures the prevalence of associated risks using data sourced from articles in 

established newspaper sources. The index utilizes automated text-search results from the 

following newspapers: Chicago Tribune, the Daily Telegraph, Financial Times, The Globe and 

Mail, The Guardian, the Los Angeles Times, The New York Times, USA Today, The Wall 

Street Journal, and The Washington Post. The index counts the number of articles categorized 

by search results that focus on terms related to wars, terrorism, and geopolitical tensions, and 

normalizes the results to an average of 100. Higher index values indicate an increased presence 

and severity of adverse events, suggesting a greater likelihood and potential intensity of such 

events in the future. The index graphically displays the ratio of articles that discuss geopolitical 

developments relative to the total article count each month, providing a graphical 

representation of geopolitical instability derived from journalistic coverage, enabling an 

empirical assessment of geopolitical threats. 
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Variable Definition Log Returns Source 

ICE EU Carbon Allowance 

(EUA) Futures 

€ / ton of emitted CO2 or 

equivalent greenhouse gases 
Carbon Bloomberg 

European Brent Crude Oil 

Futures 
$ / barrel Oil 

Federal Reserve 

Economics Data 

Dutch TTF Natural Gas Futures € / MW Gas Bloomberg 

S&P Global Clean Energy 

Index 
€ / Index performance Clean Bloomberg 

Geopolitical Risk Index 

Ratio of newspaper articles 

covering geopolitical events and 

risk compared to the total amount 

of articles 

GPR Index Caldara & Iacoviello1 

Table 1 – Research variables definitions 

 

The analysis utilizes a transformation of five variables into logarithmic returns and logarithmic 

growth rates. Data on EUA carbon futures, Dutch TTF natural gas futures, and the S&P Global 

Clean Energy Index are retrieved from Bloomberg, while data on European Brent crude oil 

futures is retrieved from FRED. Monthly data on the Geopolitical Risk Index is retrieved from 

Caldara and Iacoviello (2022). The dataset spans from January 2015 through February 2024, 

yielding a sample size of 110 observations, aligned with a monthly frequency. In addressing 

the issue of asynchronous dates attributable to variations in trading dates, a methodological 

adjustment was employed. This involved the synthetic alignment of monthly closing values to 

the first day of each respective month, thereby standardizing the temporal aspect of the dataset 

for consistency.  

 

 
 
 
 
 
 
 

 
1	Retrieved	from	https://www.matteoiacoviello.com/gpr.htm	on	March	8th,	2024.	

https://www.matteoiacoviello.com/gpr.htm
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3.2 Description of data 
 

 
Figure 1 - Monthly EUA Carbon Future prices in EUR for the sample period (2015/01/01 – 2024/02/01) 

 
At the onset of the sample period, the price for EUA carbon futures commenced at €7.03, 

peaking at an all-time high of €96.58 in February 2023. By the two years following the end of 

2021, prices remained elevated, before experiencing a swift decline. The observed upward 

trend that can be seen in 2021 is likely due to the implementation of phase IIII of the EU ETS, 

which limited the supply of carbon allowances (European Central Bank, 2022).  Furthermore, 

Europe experienced particularly cold weather conditions in 2021, which heightened the energy 

demand. This increased demand, coupled with the elevated prices for fossil fuels during this 

period, significantly contributed to a surge in carbon prices (European Central Bank, 2022).  

 

The correlation between the price of carbon allowance and fossil fuel prices has been 

thoroughly studied, revealing a clear linkage where carbon prices generally track the demand 

and pricing dynamics of fossil fuels (Chen et al., 2022; Gong et al., 2021). However, as Russia 

invaded Ukraine in 2022, EUAs unexpectedly experienced a crash, decoupling from the 

broader energy market trends as later seen in Brent crude oil and TTF natural gas. 

Subsequently, carbon prices began to recover in the second half of 2022. Despite the peak in 

February 2023, the price of carbon allowances has since seen a rapid decline, largely attributed 

to falling fossil fuel prices.  
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Figure 2 – Monthly European Brent Crude Oil Future prices in USD per barrel for the sample period 

(2015/01/01 – 2024/02/29) 

 
 
Brent crude oil traded at $47.52 per barrel at the beginning of 2015 and peaked in May 2022 

with a trading price of $125.53 per barrel. In a two-year period prior to the peak, the oil market 

was in a recovery after the unexpected demand shock triggered by the COVID-19 pandemic. 

The first half of 2020 was characterized by uncertainty, restrictions, and reduced economic 

activity, leading to a historical dip in oil demand (Ostashko, 2023, p. 12). However, in the 

second half of 2020, the oil price progressed as nations gradually emerged from their 

lockdowns. By the end of 2020, the price had recovered and was trading at $51.22 per barrel.  

 

The year 2021 witnessed a persistent rise in trading prices, with the World Bank (2021) voicing 

concerns by year-end about the potential impact of escalating energy prices on short term 

global inflation. The rising trend in oil prices continued into 2022 as tensions of the Russo-

Ukrainian conflict grew. After the invasion in February 2022, the peak was reached in May. 

Russia is one of the world’s largest oil exporters on the global market (International Energy 

Agency, 2022b), and as a reaction to the invasion, the European Commission implemented the 

REPowerEU plan, an initiative aimed at reducing Europe´s dependency on Russian fossil fuels 

(Eurostat, 2024). Thus, the reduction was compensated by an increased import from Saudi 

Arabia, the United States, and Norway, contributing to the rise in Brent crude oil prices.  In the 
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second half of 2022, oil prices began to decline due to the increase in interest rates by central 

banks, as well as growing concerns about recession (Kearney, 2022). 

 

Throughout 2023, Brent crude oil experienced market volatility, influenced by the EU´s 

continued embargo on Russian crude oil imports and high interest rates. The peak oil price of 

the year was recorded in September, shortly after Saudi Arabia announced extended cuts in oil 

production. Concurrently, U.S. commercial crude oil inventories fell, which resulted in limited 

supply and an upward pressure in Brent crude oil prices (French, 2024). 

 

 
Figure 3 – Monthly Dutch TTF Natural Gas Future prices in EUR per MW for the sample period 

(2015/01/01 – 2024/02/29) 

 

Figure 3 presents the end-of-month trading prices for Dutch TTF natural gas from 2015 to 

2024. The time up to the end of 2021 shows a period of relative stability, with minimal price 

fluctuations and an average trading price of €16.2/MWh. However, a significant shift in the 

trend occurs towards the end of 2021. This shift reflects gradual increased economic activity 

and energy demand as countries were recovering from COVID-19. 

 

The situation escalated as Russia’s tapering of gas supplies to Europe in the second half of 

2021 resulted in a reduction in gas supplies corresponding to a 25% reduction compared to the 

fourth quarter the year before (International Energy Agency, 2022a). After the invasion of 
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Ukraine in 2022, Russia further reduced their pipeline gas supplies with 80bcm (billion cubic 

meters), leading to a surge in TTF prices to €125.9/MWh (International Energy Agency, 

2024b). The sharpest increase in TTF prices occurred in August 2022 when prices exploded to 

an unprecedented high of €239.9/MWh.  

 

Gas prices started to stabilize in the second half of 2022, a reaction partly due to an upsurge in 

liquefied natural gas imports from the U.S., which bolstered European gas storage before the 

winter. A decrease in demand, due to mild winter conditions, also contributed to this 

stabilization. Additionally, the European Commission and the member states continued their 

work to mitigate high gas prices by improving conditions in joint gas purchasing, implementing 

correction mechanisms to temper episodes of extreme price surges, and fostering the growth 

of renewable energy infrastructure (European Commission, 2023, p. 3). 

 

 
Figure 4 – Monthly S&P Global Clean Energy Index performance for the sample period (2015/01/01 – 

2024/02/29) 

 

From 2016 to 2019, the S&P Global Clean Energy Index maintained a relatively consistent 

development with small fluctuations in performance, averaging at 535 index points. The index 

displays more pronounced fluctuations after 2020, initially caused by a downturn at the outset 

of the COVID-19 pandemic. This downturn was followed by a swift escalation in prices 
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towards the end of the year, cumulating in a peak in January 2021 with a record high end-of-

month performance of 1569 index points. 

 

Throughout 2020 and 2021, the global clean energy market experienced a substantial increase 

in prices of the production and transportation of renewables, such as solar PV modules, wind 

turbines, and biofuels (International Energy Agency, 2021, p. 138). However, during the same 

period, prices hiked for oil, gas, and coal, which strengthened renewables’ overall 

competitiveness. 

 

The year 2022 was characterized by pronounced price volatility, largely due to geopolitical 

tensions and the Russo-Ukrainian war, cumulating in the European energy crises. The 

European Commission’s REPowerEU plan to reduce reliance on Russian fossil fuels further 

motivated the acceleration of renewable energy deployment (International Energy Agency, 

2022a, p. 36). The 2022 peak of 1414 index points was observed in August after the U.S. 

Congress approved the Inflation Reduction Act (IRA) of 2022, including grants, loans, and tax 

provisions to accelerate the deployment of clean energy (International Energy Agency, 2023).  

 

The capacity of clean energy reached new heights in 2023 with a 50% increase from 2022, 

spurred by policy support across more than 130 countries. China, in particular, emerged as a 

leading country with expanding capacities of solar PV and wind energy by 116% and 66%, 

respectively (International Energy Agency, 2024a, p. 14). Despite greater capacity and 

stabilization of commodity and shipping costs from prior years, financing costs remained 

elevated due to high interest rates, casting a shadow on the economic landscape of clean energy 

projects in 2023 (BloombergNEF, 2023). 
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Figure 5 – Monthly Geopolitical Risk Index for the sample period (2015/01/01 – 2024/02/29) 

 
Figure 5 illustrates a series of significant geopolitical events that have had far-reaching global 

repercussions over the past decade. Notably, the November 2015 terrorist attacks in Paris 

marked the onset of heightened global tensions. Subsequently, 2017 faced escalating tensions 

due to North Korea’s aggressive missile and nuclear armament programs, leading to strained 

relations with the U.S. (Nilsson-Wright, 2017). In January 2020 the geopolitical landscape was 

marked by increasing tensions between Iran and the U.S. (Thomas et al., 2020). Then, in 

October 2023 an armed conflict between Israel and Hamas-led Palestinian military groups took 

place on the Gaza Strip. These episodes, among others, have significantly precipitated an 

acceleration in a shift toward unprecedented geopolitical changes and uncertainty. 

 

Yet, it is the Russian invasion of Ukraine on February 24, 2022, that stands out as the most 

defining moment in geopolitical events in the last decade. The conflict has affected 

international relations, transforming global geopolitical uncertainty and the world order. The 

repercussions extend beyond the immediate military engagements between Russia and 

Ukraine, signifying a multifaced struggle and game between Russia, the U.S., and Europe (Liu 

& Shu, 2023). 
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3.3 Logarithmic returns and growth rates  

 

To examine the interrelations among the European carbon market, energy markets, and the 

GPR Index, this study converts end-of-month price data into logarithmic returns. Since the 

GPR Index does not represent a price-based series, it makes the application of logarithmic 

returns unfit. Instead, variations in the GPR Index are expressed as logarithmic growth rates. 

The formula employed to calculate these logarithmic returns and growth rates, hereafter 

referred to simply as returns and growth rates, is as follows:  

 

 𝑟! = log & "#$%&!
"#$%&!"#

' ∙ 100. (3.1) 

 

The transformation of monthly price data to returns and GPR to growth rates provides various 

benefits for statistical analysis. This statistical technique stabilizes the variance of the time 

series data, which is effective in achieving stationarity (Brooks, 2019, p. 53). Moreover, 

expressing the data as logarithmic returns and growth rates allows for an interpretation of the 

results in terms of percentage changes. This transformation not only standardizes the 

comparison across different scales of data but also simplifies the comprehension of the 

magnitude of market movements.  
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Figure 6 – Monthly logarithmic returns and growth rates for the sample period (2015/01/01 – 2024/02/29) 

 

From figure 6, the historical monthly returns and growth rates are visualized through the 

sample period spanning from 2015 to February 2024. Figure 6(e) appears to have the most 

volatile fluctuations, reflecting the varying tensions in the geopolitical landscape. The most 

significant spikes from 2018, 2020, 2022, and 2024, reflect the same events as observed in 

figure 5.  
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Figure 6(a) demonstrates considerable variability throughout the sample period, with 

particularly significant spikes observed from 2016 to 2020. During this period, the price of 

EUAs was relatively low, resulting in even small price changes appearing as large return 

fluctuations, thereby contributing to the heightened volatility observed in this period. After 

2020, variability in returns diminished as carbon prices increased. Meanwhile, returns in figure 

6(b) and 6(d) exhibited relatively stable behaviors with minor fluctuations, except for 2020 

when both markets exhibited significant disruptions. More notable for Oil, due to the sharp 

decline triggered by COVID-19. Returns on Gas remained relatively stable from 2015 to 2020 

but became significantly more volatile thereafter. The European energy crises of 2021 and the 

repercussions of the Russo-Ukrainian conflict beginning in 2022 are visible in the plot. 

 

The return series exhibited in figure 6 is closer to mean-variance stationarity than the raw price 

series, yet extreme events such as the reaction to COVID-19 and the European energy crises 

are visible in both price and return plots across several variables. These observations suggest 

that there may be substantial changes in the underlying data generating process. The extent and 

implications of these shifts will be further tested in Section 3.5. The next section will provide 

descriptive statistics for the return and growth rates.  

 

3.4 Descriptive statistics 

 

 Carbon Oil Gas Clean GPR 

Mean 1.8672 0.5288 0.1877 0.3430 0.1887 

Median 1.6261 1.2867 0.8455 0.1846 -1.2074 

SD 12.3146 16.6359 20.5169 7.3963 21.3730 

IQR 13.4875 12.3008 23.2911 8.6626 23.6635 

Min -31.0155 -123.9886 -65.1453 -25.7333 -60.0151 

Max 35.7766 63.4298 66.3898 18.8848 68.8595 

Skewness -0.3296 -3.3298 0.1477 -0.1423 0.4915 

Kurtosis 3.6129 31.6258 4.2285 3.7409 4.3120 

JB p-value 0.1589 0.0000 0.0266 0.2392 0.0022 

Table 2 – Descriptive statistics for the sample period (2015/01/01 – 2024/02/29) 
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Carbon returns display the overall highest mean and median of the variables, indicating a 

positive trend. A kurtosis of 3.61 is indicative of a leptokurtic nature and pronounced tails, 

which along with a skewness of -0.33 points to a modest asymmetry. However, with a Jarque-

Bera p-value at 0.16, the evidence is not sufficiently strong to definitively discard the normality 

of the distribution, hence failing to reject the null hypothesis. The most prominent characteristic 

of Oil returns stems from the variations in extrema, along with the observation that the median 

is exceedingly larger than the mean, indicating a left-skewed distribution where observing 

negative returns is a commonality. The elevated minimum value of -123.99 aids in confirming 

this distributional description. This can also be read from the skewness, which at -3.33 is 

sufficiently negative to support the rationale of a rejected null hypothesis, as the p-value from 

the Jarque-Bera test is 0. An augmented leptokurtic value of 31.63 validates this decision while 

being synonym with frequently observed extreme values. The standard deviation of 16.64 can 

confirm this and is suggestive of observations widely dispersed from the mean. The same 

pattern regarding mean and median is also observable for Gas returns, where the discrepancy 

implies a non-normal distribution that is additionally corroborated by both a heightened 

skewness and kurtosis, therefore allowing for the rejection of normality. The elevated 

interquartile range, of 23.29, is telling of a large spread within the middle 50%, aligning well 

with the elevated standard deviation of 20.52 and the heightened kurtosis. 

 

Clean returns display on average a marginal negative skewness of -0.14, reflecting a slightly 

leftward skewed distribution. Despite the leptokurtic nature of the returns, with a Jarque-Bera 

p-value of 0.24, there is insufficient statistical evidence to reject the hypothesis of normality. 

The GPR Index is on average characterized by a modestly positive average change in the ratio 

of geopolitically related newspaper articles to the total number of articles across the observed 

newspapers. However, the median value of -1.21 suggests that growth often falls on the lower 

end of the spectrum, highlighting a disparity between the mean and median growth rate values. 

However, this tendency towards lower values is offset by a positive skewness of 0.49, 

indicating that while lower values are more common, there are some positive extreme values 

in the data. Additionally, the substantial standard deviation of 21.37 highlights the index's 

volatility. The pronounced leptokurtosis of the index, with a value of 4.31, combined with the 

low Jarque-Bera p-value, strongly suggests that the distribution does not conform to normality, 

characterized by fat tails and a peaked distribution. 
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3.5 Structural Breaks and nonlinearity 
 

3.5.1 Structural Break test 

 
The detection of structural breaks in time series analysis is essential, as it identifies instances 

of substantial change in the underlying data generation. To determine if the wanted 

methodology is contextually appropriate, structural breaks can be identified to allow for 

disruption in the data stemming from significant events. Bai and Perron (2003) advanced a 

methodology for discerning structural breaks within an econometric framework, with 

parameters that may exhibit either temporal variability or constancy. This approach provides 

the necessary flexibility to define model specifications that are crucial for deriving accurate 

analytical outcomes. Neglecting these breaks can lead to forecasts that are off the mark, flawed 

statistical inferences, and markedly distorted interpretations of economic relationships. For 

example, overlooking them might lead to an incorrect assumption of non-stationarity in the 

series, which could in turn lead to the use of inadequate analytical models. Therefore, the 

identification of structural breaks plays a pivotal role in fostering a deeper understanding of the 

dynamics that drive changes in the data. 

 

The constructed model analyzes logarithmic returns and growth rates of the selected variables, 

incorporating the allowance of both heterogeneity and autocorrelation within the residuals. 

Additionally, it accommodates time-varying volatility present in the dataset.  

 

 

SupF(l+1|l) – Sequential F-statistic 
 Carbon Oil Gas Clean GPR 

Break Test F CV F CV F CV F CV F CV 

0 vs. 1 4.631 18.680 10.133 18.680 5.707 9.100 4.612 9.100 1.014 9.100 

1 vs. 2 16.230 20.570 99.599 20.570** 13.342 10.550** 15.641 10.550** 8.714 10.550 

2 vs. 3 11.382 21.600 91.559 21.600** 1.724 11.360 8.372 11.360 8.714 11.360 

3 vs. 4 21.231 22.550 91.559 22.550** 4.318 12.350 1.673 12.350 0.941 12.350 

1  
11/2019 

[06/2018, 01/2020] 

05/2020 

[11/2019, 08/2021] 

03/2020 

[05/2019, 09/2020] 
 

2  
09/2020 

[08/2020, 01/2021] 

08/2022 

[10/2021, 02/2023] 

01/2021 

[08/2020, 08/2021] 
 

Table 3 – Bai and Perron (2003) Structural Break test, where ** denotes the 95% significance level. 
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The empirical analysis of the model reveals the detection of two structural breaks in the returns 

of Oil, Gas, and Clean, while no analogous breaks were observed in the returns of Carbon nor 

for the growth rate of the GPR Index. Specifically, the F-statistics associated with Carbon 

returns did not surpass the critical thresholds at any point, indicating a lack of statistically 

significant evidence for structural breaks within the time series. Similarly, the F-statistics for 

the GPR Index remained consistently below the threshold values required for identifying 

breaks, confirming the absence of such disruptions. Conversely, for the returns of Oil, Gas, and 

Clean, two structural breaks were identified upon setting the maximum permissible structural 

changes at four. Alterations to this parameter did not yield any variation in the outcomes, 

underscoring the robustness of these findings. 

 

 

 

Figure 7 – Structural Breaks for Oil, Gas, and Clean for the sample period 
(2015/01/01 – 2024/02/29) 
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Figure 7 illustrates the historical returns for Oil, Gas, and Clean, marking significant structural 

breaks during the sample period. The test identifies two prominent breaks in the returns of Oil 

and Clean, notably during the COVID-19 outbreak and subsequently as market returns began 

to stabilize post-crises. In the case of Gas returns, the initial break occurs within the early stage 

of the pandemic, leading to a period marked by sustained volatility. The second break is 

detected shortly after the onset of the Russo-Ukrainian war. These findings highlight the 

importance of including the structural break test in the analysis to capture the shifts in market 

dynamics under external shocks. They also motivate the methodological choice of employing 

a Markov switching model to adequately capture the switching dynamics in the underlying 

data.  

 

3.5.2 BDS test 

 

Brock, Dechert, and Scheinkman (1986) initially developed a nonlinearity test, known as the 

BDS test, which was further refined in 1996. The test was introduced to evaluate the 

independent and identically distributed (i.i.d.) nature of time series data, thereby expanding the 

scope of analysis beyond merely second- or third-order dynamics. This methodology employs 

a correlation integral, a technique commonly used in chaotic time series analysis, to detect 

nonlinear dependencies in serial data. The null hypothesis of the BDS test follows a standard 

normal distribution, and tests if the data constitute complete randomness or the alternative, that 

there is a potentially forecastable structure or hidden patterns (Brock et al., 1991).  

 

An adaptation of the test is used to check for hidden structure in the VAR(2) residuals as a 

diagnostic tool. By implementing first-differencing to eradicate any linear trends through the 

fitting of a linear model, the BDS test then assesses if the residuals are i.i.d. Should this 

hypothesis be refuted, it would suggest residual structures within the time series that could be 

indicative of underlying nonlinearities or unobserved non-stationarities. 
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The table presents the empirical findings of the BDS test applied to the residuals of a standard 

vector autoregressive model with two lags. For the Carbon returns and Clean energy returns, 

all p-values exceed the 0.05 threshold, thereby failing to reject the null hypothesis that the 

residuals are i.i.d. This implies that the VAR(2) model adequately captures the dynamics of 

these markets’ returns. In contrast, the results for Gas returns and the GPR Index suggest the 

presence of underlying nonlinearities. This is evidenced by certain elevated test statistics being 

associated with p-values below the accepted significance level, signifying the remnant of 

forecastable structure. Specifically, for Gas returns, the BDS statistics of 8.6 and 34.4 for 

dimensions 1 and 4 respectively, and the GPR Index, with a test statistic of 29.6 for the third 

VAR(2) residuals 
Embedding 

dimension 
BDS statistic z-statistic p-value 

Carbon 1 5.9640 -0.0574 0.9542 

 2 11.9280 1.5930 0.1112 

 3 17.8920 1.4172 0.1564 

 4 23.8559 0.8243 0.4098 

Oil 1 7.5804 3.8937 0.0001 

 2 15.1608 3.7144 0.0002 

 3 22.7412 3.7287 0.0002 

 4 30.3216 4.5118 0.0000 

Gas 1 8.5976 2.3995 0.0164 

 2 17.1951 1.3421 0.1796 

 3 25.7927 1.7389 0.0821 

 4 34.3903 2.0018 0.0453 

Clean 1 3.5046 1.6508 0.0988 

 2 7.0091 1.5432 0.1228 

 3 10.5137 0.8111 0.4173 

 4 14.0183 0.8037 0.4216 

GPR 1 9.8684 1.8350 0.0665 

 2 19.7368 1.9467 0.0516 

 3 29.6052 2.6854 0.0072 

 4 39.4736 1.8538 0.0638 

Table 4 – Nonlinearity test by Brock, Dechert, and Scheinkman (1986) for the sample period (2015/01/01 – 
2024/02/29) 

Table 5 - Brock, Dechert, and Scheinkman (1986) nonlinearity test 
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dimension, the null hypothesis is rejected, indicating clear nonlinearities and the need for a 

better model. 

 

Particularly notable are the findings for Oil returns, where the p-values are consistently low 

across embedding dimensions, strongly suggesting a persistent nonlinear dependency not 

captured by the linear VAR(2). The increasing BDS statistic along the dimensions, with 

associated low p-values, suggests that the nonlinearity and forecastable structure is 

strengthened as more periods back are considered. This consistent rejection of the null 

hypothesis of i.i.d. across dimensions underscores a complex dynamic structure within Oil 

returns. 

 

In summary, the BDS test demonstrates that while the linear VAR(2) model adequately 

accounts for the dynamics of the returns for the Carbon and Clean markets, it inadequately 

addresses the complexities observed in the returns on Oil, Gas, and the growth rate of the GPR 

Index, hence motivating the further study of unit roots while constructing the basis for the 

relevancy of the MS-BVAR.  

 

3.6 Unit Root tests 

 

The examination of unit roots within time series data is a fundamental prerequisite for 

establishing cointegrated relationships. In situations where structural breaks are present within 

the series under investigation, the standard Dickey-Fuller unit root test may yield unreliable 

results. This unreliability stems from its diminished power in such scenarios, which may lead 

to an incorrect failure to reject the null hypothesis. Specifically, the presence of an unaccounted 

structural break biases the slope parameter in the regression toward unity, consequently 

affecting the accuracy of the test (Perron, 1989). The influence of the structural break on the 

power of the test is directly proportional to the magnitude of the break, and inversely 

proportional to the size of the sample. Larger breaks and smaller samples tend to reduce the 

power of the test significantly.  

 

In response to the limitations of the standard Dickey-Fuller (DF) unit root test in the presence 

of structural breaks, the Augmented Dickey-Fuller (ADF) test is often employed as a more 

robust alternative. The test addresses the key issue of reduced test power, especially in cases 
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of structural breaks, by incorporating additional lagged difference terms of the dependent 

variable into the testing equation. The added terms help to control for autocorrelation and serial 

correlation that might be present in the error term, a common occurrence in the presence of 

structural breaks. By conducting this adjustment the reliability of the test in differentiating 

between a true unit root and a stationary process affected by structural breaks is enhanced. 

(Dickey & Fuller, 1979) 

 

The Phillips-Perron (PP) test advances the methodology of the standard DF test, which 

hypothesizes a unit root under the condition 𝜌 = 1 within the model ∆𝑦! = (𝜌 − 1)𝑦!'( + 𝑢! 

(Dickey & Fuller, 1979). It addresses the limitations of the DF test that arise from the potential 

existence of autocorrelation within the data-generating process for 𝑦! , which is not 

accommodated within the DF test equation. Such autocorrelation may induce endogeneity in 

𝑦!'(, thereby rendering the DF t-statistic unreliable. To mitigate this issue, the DF test has been 

augmented to include lagged differences of the dependent variable 𝛥𝑦!  as additional 

regressors. Conversely, the PP test employs a non-parametric method to adjust the t-statistic, 

enhancing the robustness against unspecified forms of autocorrelation and potential 

heteroskedasticity within the error term (Phillips & Perron, 1988). 

 
 ADF p-value PP p-value 

Carbon -3.0876 0.1254 -6.3093 0.0000 

Oil -5.962 0.0000 -80.052 0.0000 

Gas -3.7699 0.0230 -118.95 0.0000 

Clean -3.9122 0.0161 -100.04 0.0000 

GPR -6.3093 0.0000 -85.222 0.0000 

Table 6 - Augmented Dickey-Fuller and Phillips-Perron unit root tests 

 

Table 6 displays the test statistics belonging to the ADF test and the PP test, alongside the p-

values that determine whether the null hypothesis of a unit root is rejected or not. The 

predominance of significant test statistics, except for Carbon returns under the ADF 

methodology, affords a robust basis to deduce stationarity within the series under review at the 

95% confidence level. It is noteworthy that, despite the intrinsic differences in their 

methodologies, the ADF and PP tests often arrive at analogous inferential outcomes concerning 
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unit root presence. Although the p-values from the PP test yield constant 0, the conclusion on 

the hypothesis is similar on all except for Carbon returns. 

 

The identification of structural breaks and nonlinearities, alongside the predominant rejection 

of unit roots confirming stationarity, underscores the complexities inherent in the return series. 

While the predominant absence of unit roots facilitates the use of conventional VAR models, 

the presence of structural breaks challenges their capacity to consistently capture dynamic 

changes. Thus, underscoring the complexities of market behaviors and necessitating the 

application of more advanced methodologies that can accommodate these intricacies for a 

deeper analysis.  
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4 Methodology 
 

4.1 Markov Switching Bayesian Vector Autoregressive Model (MS-BVAR) 

 

Granger (1996) emphasizes the importance of addressing structural breaks and regime shifts in 

macroeconomic time-series analysis, and in this thesis, a Markov Switching Bayesian Vector 

Autoregressive Model (MS-BVAR) is employed to examine the impact of the Russo-Ukrainian 

war on the dynamics of the European carbon and energy markets. Building upon the 

foundational VAR model by Sims (1980), the MS-BVAR integrates the features of a Markov 

chain, as originally proposed by Hamilton (1989). Krolzig (1997) further integrated the Markov 

chain with the multivariate VAR framework, efficiently addressing the limitations that linear 

models face in capturing market asymmetries as shown by Kunitomo and Sato (1999). 

 

The MS-BVAR model is able to adequately capture the dynamic and multifaced nature of the 

carbon and energy markets, as well as identifying distinct states or regimes, each reflecting 

different phases of market behavior. This methodological choice enables a comprehensive 

exploration of the underlying factors driving these markets by scrutinizing the behavior and 

interplay of the variables within different regimes (Krolzig, 1997).  

 

For this analysis, a two-regime MS model is assumed to describe the dynamic interactions 

between the carbon and energy market before and during the Russo-Ukrainian war. The 

empirical literature sufficiently demonstrates that a two-regime MS model is comprehensive 

enough to capture the regime switching behavior observed in macroeconomic time series data 

(Balcilar et al., 2015; Filardo & Gordon, 1998; Hamilton, 1989; Maneejuk et al. 2024). Based 

on preliminary tests, such as the likelihood ratio test and the Akaike Information Criterion 

(AIC), the order of two lags is chosen to sufficiently capture the dynamics from the data. 

 

A reduced form MSIAH(2)-BVAR(2) specified by Krolzig (1997) has been employed, where 

“I” refers to the intercept, “A” is for the autoregressive coefficients, and “H” refers to 

heteroskedasticity in the variance-covariance matrix. All parameters of the two-regime model 

are assumed to be conditioned on the unobservable regime variable 𝑠!. The model specification 

of the two-state MS-BVAR model, where 𝑦! = (Carbon! , Oil! , Gas! , Clean! , GPR!) is a 5 by 1 

vector of endogenous variables at time t, is outlined as follows:   
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𝑦! =	

⎩
⎨

⎧𝛼( +	H 𝛽)(𝑦!')
*+,

)+(
+ 𝑢! , 𝑖𝑓	𝑠! = 1

𝛼, +H 𝛽),𝑦!') +
*+,

)+(
𝑢! , 𝑖𝑓	𝑠! = 2

	. 																													(4.1) 

 

Each regime is characterized by an intercept 𝛼) , autoregressive coefficients 𝛽)-  of lagged 

endogenous variables, and error term 𝑢!|𝑠!	~	𝑁𝐼𝐷(0, Σ.!). The regime-dependent error terms 

are assumed to follow a normal and independent distribution with a mean of zero and a positive 

definite 5 by 5 variance-covariance matrix that can change depending on the state at time t. 

The number of lags of the autoregressive terms are represented in 𝑝. 

 

The foundational concept of the MS-BVAR model is that the parameters of the underlying data 

generating process of the observed time series vector 𝑦! depend on the unobservable regime 

variable 𝑠!, which represents the regime prevailing at time t (Krolzig, 1997, p. 11).  For this 

specific case, the regime variable 𝑠! = 1, 2, indicates if the market is in a low-volatility regime 

or in a high-volatility regime. 

 

4.1.2 The Hidden Markov Chain 

 

To further complete the description of the data-generating process, Markov switching models 

assume that the unobservable realization of the regime variable, 𝑠!, is dictated by a discrete 

time, discrete state Markov stochastic process, which is defined by the transition probabilities, 

 

𝑝$/ = Pr(𝑠!0( = ℎ	| 𝑠! = 𝑙), ∑ 𝑝$/ = 1, 𝑙, ℎ = 1,2,,
/+(    (4.2) 

 

where 𝑝$/ is the conditional probability of moving from a low-volatility regime l at time t, to a 

high-volatility regime h, at time (t+1). The 𝑠! is assumed to follow a two-state Markov process 

that is irreducible and ergodic. The transition probabilities between states are collected in the 

transition matrix P, 
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𝑃 = Y
𝑝(( 𝑝(,
𝑝,( 𝑝,,Z.	     (4.3) 

 

The transition matrix presents the probability of transitioning from the current state to any 

future state. For further description, it is convenient to collect all information on the realization 

of the Markov chain in the vector 𝜉! to denote the unobserved state of the system  

 

𝜉! = \𝐼(𝑠! = 1)
𝐼(𝑠! = 2)],  𝐼(𝑠! = 𝑚) = 	_ 1	𝑖𝑓	𝑠! = 𝑚

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,  (4.4) 

 

where the different states are denoted through an indicator function with m = 1, 2. Relevant 

information about the future state of the Markov process depends exclusively on the current 

state 𝜉!,   

 

Pr(𝜉!0(|𝜉! , 𝜉!'(, … ; 𝑦! , 𝑦!'(, … ) = Pr	(𝜉!0(|𝜉!),    (4.5) 

 

where the past and additional variables such as 𝑦!	where the past and additional variables, such 

as 𝑦!	do not provide additional information beyond what is captured by the current state of the 

system. A Markov chain is said to be ergodic if one eigenvalue of the transition matrix P is 

unity, with all others residing inside the unit circle, ensuring that each state is aperiodic and 

recurrent (Krolzig, 1997, p. 17). When this assumption holds, the ergodic probability vector of 

the Markov chain represents the unconditional probability distribution for 𝑠!, which is denoted 

by 𝜉̅ = Ε[ξ!]. When solving the stationarity condition 𝑃′𝜉̅ = 𝜉 ,̅ while honoring the adding up 

restriction of 1,1 𝜉̅ = 1, one finds 

 

𝜉̅ = 	 \
𝐼,'( − 𝑃′(,( 𝑃′(,,
1′,'( 1

]
'(

Y0,'(1 Z,        (4.6) 

 

𝜉̅ = Y1 − 𝑝(( 𝑝,(
1 1 Z

'(
Y01Z.           (4.7) 

 

The first row is derived from the stationarity condition by transposing the transition matrix P, 

and the second row reflects the adding up restriction which ensures that the sum of probabilities 

equals 1. If 𝜉  ̅is strictly positive, such that all regimes have a positive unconditional probability 
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𝜉)̅ > 0, 𝑖 = 1,2,  the respective Markov process is called irreducible. This attribute of 

irreducibility suggests that the process is capable of entering alternative states. The 

assumptions of ergodicity and irreducibility are vital for the property of stationarity of the MS-

BVAR model to ensure that the process converges to a steady state distribution regardless of 

the initial state (Krolzig, 1997, p. 17). 

 

4.2 Bayesian Estimation 

 

In Bayesian estimation within the MS-BVAR model, the inferential process is conducted 

through the application of Bayes’ theorem to deduce the joint posterior distribution of the 

model parameters given the observed data. The joint posterior distribution is a combination of 

the prior distribution, representing prior knowledge about the parameter space, and the 

likelihood function, which is derived from the observed data specific to the MS-BVAR model 

(Frühwirth-Schnatter, 2006). The integration of Bayesian inference is especially useful due to 

its provision of complete posterior distributions rather than point estimates, a feature 

particularly crucial when estimating nonlinear models with regime switches, such as the MS-

BVAR with its dynamic nature. 

 

The application of Bayesian inference begins by positing a prior distribution,  𝑝(Θ, 𝑃), over 

the space of the regime-dependent VAR model parameters Θ = n𝛼(𝑠!), 𝛽(𝑠!), u(𝑠!)p and the 

transition matrix 𝑃 of the Markov process. The prior captures historical beliefs about model 

parameter values before considering the observed data. The likelihood function, 

𝑝(𝑌!|Θ(𝑠!), 𝑃),  indicates the likelihood of the observed values of 𝑦! , namely 𝑌! =

(𝑦!1, 𝑦!'(1 , ⋯ , 𝑦!'*1 )′, given the set of regime-dependent VAR parameters Θ and the transition 

matrix 𝑃.  

 

By combining the two via Bayes’ theorem, the joint posterior distribution over the VAR 

parameters and the regime states can be formulated as: 

 

𝑝(Θ, P|𝑌!) ∝ 𝑝(𝑌!|Θ(𝑠!), 𝑃)𝑝(Θ, 𝑃).    (4.8) 

 

The estimation process for the posterior mode is computed via an iterative maximum likelihood 

(ML) function, known as an expectation-maximization (EM) algorithm (Navidi, 1997). In 
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models with numerous variables or multiple regimes, the EM algorithm grapples with 

nonlinear complexities, often requiring extensive iterations for full posterior distribution 

convergence, with the risk of not reaching a definitive solution. Consequently, to help reach 

the full posterior distribution, the next section introduces the Monte Carlo Markov Chain 

(MCMC) algorithm, namely the Gibbs sampler.  

 

4.2.1 Gibbs Sampler 

 

Gibbs sampling, developed by Geman and Geman (1984) and later expanded by Gelfand and 

Smith (1990), emerged as a Monte Carlo Markov Chain (MCMC) method of dealing with 

“missing values” in data analysis. As an MCMC method, Gibbs sampling has substantially 

expanded the scope of Bayesian inference, especially for complex and multi-dimensional space 

models (Frühwirth-Schnatter, 2006, p. 54). This method has gained increasing prevalence in 

parameter estimation for models with missing values as it treats the unobservable states as 

additional unknown parameters. Subsequently, Markov chain simulations are employed to 

derive the joint posterior distribution of parameters and regimes (Krolzig, 1997). 

 

The Gibbs sampler procedure involves four steps. Initially, the state-space for the Markov 

process is drawn from the full conditional distribution, utilizing the Baum-Hamilton-Lee-Kim 

(BHLK) filter and smoother to estimate the regime probabilities (Kim & Nelson, 1999). 

Secondly, the posterior distribution of the transition probability matrix 𝑃 is drawn, where a 

Dirichlet prior is assumed for 𝑃  (Frühwirth-Schnatter, 2006, pp. 432-433). Thirdly, the 

posterior of the covariance matrices of Σ.! is drawn utilizing the inverse-Wishart distribution 

(Frühwirth-Schnatter, 2006, p. 439). In the last step, the regression coefficients 𝛽(𝑠!) are 

drawn assuming a Sims-Zha prior (Sims & Zha, 1998). 

 

The Gibbs sampler performs 25,000 iterations of parameter sampling, with the initial 5,000 

iterations discarded to account for the burn-in period. This ensures that the sampling process 

adequately represents a random and stationary distribution. The remaining 20,000 iterations 

allow the distribution of the sampled parameters to closely approximate the true joint posterior 

distribution. This approach does not only facilitate precise parameter estimation but also yields 

credible probabilistic inferential statistics for the analysis.  
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4.3 Impulse Response Function 
  

Since the seminal work of Sims (1980), impulse response functions (IRF) have emerged as an 

analytical tool for exploring the dynamic interactions between variables and disturbances in 

VAR models. IRFs quantify the magnitude and persistence of the effects that a shock to one 

variable imposes on all other variables in the system, mapping out the recovery trajectory 

(Koop et al., 1996, pp. 120-121). By defining generalized impulse response functions, Koop et 

al. (1996), established a methodological basis for applying IRFs within nonlinear models. In 

the development of IRFs for MS-VAR models, two principal methodologies have emerged. 

Ehrmann et al. (2003) proposed a model where regime switching is not assumed to occur 

beyond the horizon of the IRF, an assumption that poses a limitation as regime switches are 

likely to happen during the propagation of shocks, thereby potentially misrepresenting the 

dynamics of the system. In contrast, Krolzig (2006) introduced an approach that accounts for 

any regime changes within the time horizon, enabling a more realistic depiction of how shocks 

influence the system’s behavior. However, Krolzig’s approach does not incorporate the 

construction of confidence intervals, hence motivating the choice of a Bayesian approach for 

IRFs. 

 

In this thesis, Bayesian impulse response functions as described by Sims and Zha (1999) and  

Waggoner and Zha (2003) are utilized. To provide interpretable shocks, a Cholesky 

decomposition is employed to identify and estimate the effects of the shocks within the MS-

BVAR model. This process involves decomposing the variance-covariance matrix into a lower 

triangular matrix and its transpose, creating a recursive system where a shock to each variable 

affects only itself and the subsequent variables in the MS-BVAR model. Initially, the 

identification matrix 𝐿.! is derived from the decomposition of the variance-covariance matrix 

using the Cholesky decomposition, satisfying 𝛴.! = 𝐿.!𝐿.!
1 . Subsequently, by using the matrix 

𝐿.!, the orthogonalized shocks are computed by transforming 𝑢! into a structural form: 

 

𝑢! =	𝐿.!𝜖!,      (4.9) 

𝜖! = 𝐿.!
'(𝑢!,  with  𝜖!	~	𝑁𝐼𝐷(0, 𝐼(4,4)).    (4.10) 
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The structural residuals 𝜖! represent the orthogonalized shocks, which are assumed to follow a 

normal and independent distribution with a mean of zero and a variance-covariance matrix 

taking the form of a 5 by 5 identity matrix. 

 

To estimate the IRFs, the Gibbs sampler is employed to simulate the posterior densities for the 

MS-BVAR parameters, joint with the simulations of its identification matrix 𝐿.! , which 

directly yields the posterior densities of the IRFs. The Gibbs sampler provides accurate 

probabilistic statistical inference by simulating 5,000 burn-ins and 20,000 sample iterations, 

yielding confidence intervals for the IRF.  

 

The method allows for the possibility of regime switches throughout the duration of the impulse 

responses, providing a more dynamic depiction of how the shocks influence the variables under 

varying conditions. It also overcomes the limitations in Krolzig (2006) by assessing the 

uncertainty associated with the IRFs through direct computation of confidence intervals.  

 

4.4 Drawbacks of the MS-BVAR Model 
  

Droumaguet (2012) discusses an acknowledged set of methodological constraints within MS-

BVAR models. First, the incorporation of multiple regimes injects a layer of complexity 

through the introduction of nonlinearities, which complicates interpretation as the output 

escalates unidirectionally with the presence of additional regimes, each characterized by 

distinct dynamic properties. Furthermore, MS-BVAR models inherently embrace a higher 

degree of uncertainty in economic shock analysis, a byproduct of their capacity to encompass 

various regime transitions, leading to broader confidence intervals when assessing shock 

effects. This intricacy is however deemed essential for accuracy in the portrayal of economic 

phenomena and is not uniquely attributed to MS-BVAR.   

 

In MS-BVAR model specification it is important to balance analytical rigor with intuitive 

judgment. This sensitivity in model specification often merges subjective data interpretation 

with empirical evidence, possibly impacting the outcome. Similarly, the selection of regimes 

may be dependent on external considerations, including specific aims and research context. 

This approach may skew results, as the determination of regimes is not solely based on intrinsic 

data characteristics but is also influenced by the research objective. 
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4.5 Computational framework and software 
 

In this thesis, RStudio (version 2023.12.1+402) was employed as the main software. The 

primary statistical analysis was carried out using the “MSBVAR” package (version 0.9-3), 

obtained from the Comprehensive R Archive Network CRAN (Brandt, 2016). This package is 

equipped with a wide range of tools for estimating various models, including VAR, Markov 

switching, and Bayesian framework. For this specific study, the Markov Switching Bayesian 

VAR model was utilized, along with methods for generating posterior inference and impulse 

response functions. 

 

Due to the complexity of the MS-BVAR methodological approach, some parts of the 

estimation procedure within the “MSBVAR” package are executed as a mixture of native R 

code and compiled Fortran. To specify, the sampling of MS-BVAR coefficients, transition 

matrix, and error covariances for each regime is conducted using native R coding. The most 

computationally intense parts, such as the state-space filtering algorithms and the forward-

filtering-backward-sampling procedures of the Markov switching process are handled in 

compiled Fortran (Brandt, 2016).  

 

The “MSBVAR” package was last updated in 2016, which posed a complication with the 

reliance on code from the “bit” package in some essential functions, as they were no longer 

compatible. The problem was resolved by downloading an older version of the "bit" package 

(version 1.1-8), that was compatible with the newest version of “MSBVAR”. 

 

Overall, the integration of the “MSBVAR” package in RStudio, together with compiled Fortran 

for computational efficiency, provides a powerful analytical toolkit. It is especially 

advantageous for interpreting and visualizing the output of such a complex statistical 

methodology as the MS-BVAR. The reproducibility of the analysis is fortified by documenting 

the specific software versions of RStudio and related packages, as well as the script utilized for 

the analysis.  
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5 Results 
 

A detailed assessment of the methodological framework supports that the selected approach is 

relevant for the intended analysis. This section utilizes the Markov Switching Bayesian Vector 

Autoregressive model with two regimes and two lags to explore whether there is a noticeable 

increase in the frequency of high-volatility regimes in European energy and carbon markets 

following the Russian invasion of Ukraine. The MS-BVAR model is instrumental in 

differentiating between market regimes, allowing for a nuanced understanding of how market 

conditions shift in response to external geopolitical events. This capability makes the MS-

BVAR particularly suitable for examining the impacts of such shocks on market volatility. 

 

This section will thoroughly assess whether the underlying theories that motivated this thesis 

hold, using the MS-BVAR as a critical analytical tool. By applying this model, the analysis 

aims to identify the specific characteristics and triggers of regime shifts, thereby providing 

insights into the resilience and responsiveness of European energy and carbon markets under 

geopolitical stress. The outcomes of this model will seek to enhance the understanding of 

complex market dynamics under crisis conditions. 

 
5.1 MS-BVAR analysis 

 
 REGIME 1 

Dependent variable Carbon Oil Gas Clean GPR 

𝛂𝟏(𝐬𝟏) 1.3720** -0.0820 -1.5839** -0.4879** -0.8427** 

𝐂𝐚𝐫𝐛𝐨𝐧𝐭#𝟏 0.0008 0.1456** 0.2012** -0.0490** -0.1090** 

𝐎𝐢𝐥𝐭#𝟏 -0.0109 0.2050** 0.0810** 0.0785** 0.0867** 

𝐆𝐚𝐬𝐭#𝟏 -0.0319** 0.0263** 0.4215** -0.0936** -0.0333** 

𝐂𝐥𝐞𝐚𝐧𝐭#𝟏 -0.1028** -0.1227** 0.0057 0.0861** 0.5543** 

𝐆𝐏𝐑𝐭#𝟏 -0.0065 -0.0326** -0.0601 0.0563** -0.4101** 

𝐂𝐚𝐫𝐛𝐨𝐧𝐭#𝟐 -0.0138 -0.0131 0.0602 0.0835** 0.2391** 

𝐎𝐢𝐥𝐭#𝟐 0.1226** -0.0463** -0.0505 -0.0432 -0.0356 

𝐆𝐚𝐬𝐭#𝟐 0.0243** 0.0071 0.0535 0.0669** 0.0306 

𝐂𝐥𝐞𝐚𝐧𝐭#𝟐 -0.2358** 0.2130** -0.2354** -0.0229 -0.9594** 

𝐆𝐏𝐑𝐭#𝟐 -0.0254** -0.0032 -0.1344** -0.0344** -0.3260** 

Table 7 – Estimated coefficients from the MS-BVAR model in regime 1, where ** denotes the 95% 
significance level. 
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The findings from the MS-BVAR are compelling for the hypothesis of distinctive regime 

characteristics in the investigated time frame. Regime 1 is associated with low volatility, while 

regime 2 depicts periods of high volatility. There is an enlarged spread in the estimated 

intercept terms associated with high volatility in regime 2, as opposed to the small, negative 

but significant intercepts observed in regime 1. The estimated coefficients for the second lag, 

which are elevated and often statistically significant, affirm the robustness of the initial model 

selection, particularly in regime 2. Various information criteria and preliminary likelihood-

ratio tests favored the inclusion of two lags as exerting substantial influence on the data. The 

prevalence of heightened coefficient estimation for the second lag is more common across both 

regimes when compared to the first lag. This suggests that regardless of volatility-state, the 

value two months prior has a higher predictive power for the current value than the immediate 

month, although with exceptions. For instance, in regime 2, The GPR Index’ influence on Oil 

returns, with an estimated effect of 0.75% movement in the same direction per percentage point 

change, demonstrates that an increased amount of newspaper articles linked to geopolitical risk 

can positively affect Oil returns in the immediate period with everything else being fixed.  

 

 

 

 REGIME 2 

Dependent variable Carbon Oil Gas Clean GPR 

𝛂𝟐(𝐬𝟐) 2.6248** 0.5781 6.6038** 1.7756** 2.5369** 

𝐂𝐚𝐫𝐛𝐨𝐧𝐭#𝟏 0.1386** -0.2718** 0.1384 -0.1246** -0.1218 

𝐎𝐢𝐥𝐭#𝟏 0.0606** 0.4175** 0.2065** 0.0372** 0.0532 

𝐆𝐚𝐬𝐭#𝟏 -0.2213** 0.1001** -0.1264** 0.1537** 0.0314 

𝐂𝐥𝐞𝐚𝐧𝐭#𝟏 0.0284 -0.3277** 0.2784** 0.0607 0.1897** 

𝐆𝐏𝐑𝐭#𝟏 0.0756** 0.7459** -0.0353 0.0402** 0.4161** 

𝐂𝐚𝐫𝐛𝐨𝐧𝐭#𝟐 0.0946 0.4301** -0.3468 -0.1204** 0.4178** 

𝐎𝐢𝐥𝐭#𝟐 -0.0762** -0.5849** 0.5898** 0.0493** -0.0722** 

𝐆𝐚𝐬𝐭#𝟐 0.0696** -0.1651** 0.3895** 0.0134 -0.1141** 

𝐂𝐥𝐞𝐚𝐧𝐭#𝟐 0.1142 0.2081** -1.2257** -0.2598** -0.0990 

𝐆𝐏𝐑𝐭#𝟐 -0.1521** -0.5194** -0.4342** -0.1102** 0.2363** 

 

𝝆𝟏𝟏 
 

0.9717 
    

𝝆𝟐𝟐 

 
0.9614 

 
    

Table 8 – Estimated coefficients from the MS-BVAR model in regime 2 and transition probabilities, where 
** denotes the 95% significance level.   
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The GPR Index is included to allow for the bidirectional effect of time-varying volatility, 

measured by the ratio of geopolitically related newspaper articles to the total number of articles 

across the established news outlets, on energy markets, yielding notable findings.  A 

noteworthy finding for the fluctuations in the current value of the GPR Index revealed that the 

direction of the growth rate both one and two months prior has a heightened impact on itself, 

demonstrating an inverse relationship in low-volatility regimes. This is suggestive of a 

predictable pattern for the succeeding months. The same relationship is observable for the 

estimated coefficients for the GPR Index in regime 2. This implies that when economic 

conditions are marked by instability, the current level of geopolitical risk can provide insights 

into the future geopolitical environment. Specifically, a one percent change in the subsequent 

month is associated with a 0.42% estimated movement in the same direction for the current 

value, assuming other factors remain constant. Regime 1 exhibits a similar trend, where the 

direction for the growth rate one and two months prior is estimated to predict the current 

movement in the opposite direction by 0.41% and 0.33% given everything else being fixed. 

 

In volatile conditions, regime 2 shows a greater cumulative impact for coefficients from two 

months earlier compared to the preceding month, suggesting that the current energy market 

values are more influenced by values from two months ago. This lagged effect can indicate a 

delay in repercussions when the markets are exposed to shocks. In contrast, regime 1 shows 

negligible differences in the impacts between the first and second months’ effect on the current 

value, with only a slight amplification observed in the estimated coefficients related to two 

months prior. For instance, a one percentage point change in Oil returns two months prior is 

estimated to correspond with a 0.59% movement in the same direction for current Gas returns 

in regime 2. This contrasts the marginal estimated impact of 0.05% in the opposite direction 

observed in regime 1 if all factors are assumed constant. Similarly, in regime 2, a one 

percentage point change in Clean returns from two months prior is estimated to affect the 

current value of Gas returns by 1.23% in the opposite direction. This inverse relationship 

suggests that positive returns for Clean are estimated to have a negative effect on Gas returns. 

 

Changes in the GPR Index influence Oil returns and Gas returns in regime 2, particularly for a 

two-month lag. A one percent change in the GPR Index is linked to an estimated 0.52% 

movement in the opposite direction for Oil returns and 0.43% for Gas returns. Thus, it appears 

that when there is an increase in the amount of geopolitically related newspaper articles as 

compared to the total amount of articles, the returns for Oil and Gas tend to fall. Conversely, a 
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decrease in geopolitical media coverage is associated with an increase in returns for Oil and 

Gas. The heightened, yet significant estimated coefficients in regime 2 for the GPR Index’ 

impacts on the other variables two months prior enable conclusive inference on the strong 

connection between geopolitical risk and energy markets. In regime 2, Gas returns feature a 

notably high intercept term at 6.60%, significantly aligning with the sharp, manifold surge in 

gas prices initially driven by intracontinental energy politics, and further escalated by the 

invasion of Ukraine. This high baseline is more pronounced than those estimated for other 

variables and presents a stark contrast to the intercept of -1.59% for Gas returns in low-

volatility regimes. 

 

Analyzing Carbon returns across regimes underscores its distinct response patterns and 

interactions with the other variables. While Carbon's return dynamics remain stable in regime 

1, regime 2 shows sensitivity to rapid economic and policy changes, influenced by intensified 

market fluctuations. Furthermore, the coefficients reveal that Carbon returns two months prior 

have a substantial impact on current returns on Oil, Gas, and the GPR Index. This interaction 

suggests a dynamic interplay where changes in Carbon prices could lead to substantial 

adjustments in the two energy markets. For instance, an increase in the price of carbon, 

potentially reflecting tighter emission regulations or increased demand for emission credits, 

could drive the oil price up. This is depicted in table 8, as a one percentage change in Carbon 

returns two months prior affect current Oil returns and growth rates in the GPR Index by 0.43% 

and 0.42% respectively, in the same direction. However, Gas returns are estimated to move 

0.35% in the opposite direction, assuming other factors held constant. Additionally, in regime 

2, Carbon returns show autocorrelation from the previous month's performance to the current 

value, reflecting pronounced self-impact during unstable market conditions.  

 

The transition probabilities indicate the likelihood of persisting in each regime, with 

compelling results that underscore the presence of distinct regimes. With regime 1 showing a 

97.17% likelihood of continuity, and regime 2 not far behind at 96.14%, there is consistency 

serving as evidence of regime stability, emphasizing the clear differentiation between the two 

regimes. These rates are also informative about the expected tenure of each regime, estimating 

an average span of 35 months for regime 1 and 26 months for regime 2. Nonetheless, the higher 

probability of remaining in regime 1, coupled with its longer average duration, indicates that 

periods of economic stability are more frequently observed in the sample period and last longer 

than those marked by economic volatility. 
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Figure 8 presents the smoothed transition probabilities for regime 2, identified by significant 

volatility in carbon and energy markets, prominently observed during periods of increased 

uncertainty. The initial significant appearance of regime 2, in 2020, could be linked to the onset 

of economic turbulence triggered by COVID-19. Although this period was characterized by 

economic instability, COVID-19 has no geopolitical relevance. The enduring regime shift may 

be related to the instabilities following the pandemic, but is also supported by the spike in the 

GPR Index in 2020, coinciding with the tensions between the U.S. and Iran. This phase 

persisted for a prolonged period before reverting to regime 1. The correction was transient, as 

the second and third regime shifts in the plot are associated with the tensions initiated by the 

invasion of Ukraine and the energy market instabilities that followed. The black line on the 

graph represents the trajectory of the GPR Index, underscoring its concurrent trends with the 

spikes observed in the high-volatility regime, thereby emphasizing the synchronous 

fluctuations and hence the validation of regimes. 

 

The visualization of regime 2 reveals a notable increase in high-volatility states beginning in 

2020 and persisting in later years, validating the estimated high transition probabilities of 

remaining within the same regime. To conclude, there is a clear association between the timing 

of the Russian invasion and the frequency of the estimated high-volatility states. 

Figure 8 – Smoothed transition probabilities for regime 2 and Geopolitical Risk Index for the 
sample period (2015/01/01 – 2024/02/29) 
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5.2 Regime-dependent Impulse Response analysis 

 
Figure 9 – Impulse Response plots for regime 1 

Figure 10 – Impulse Response plots for regime 2 
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Figure 9 and 10 show the impulse response plots generated from the MS-BVAR, incorporating 

error bands for the posterior in the manner of Waggoner and Zha (2003). The results reveal 

divergent responses between regime 1 and regime 2, corroborating the existence of distinct 

behavioral regimes in the European carbon and energy markets during the period from January 

2015 to February 2024. In regime 1, the impact of shocks appears to be more transient, 

stabilizing back to baseline levels within 10 months. Conversely, regime 2 demonstrates a 

tendency not to revert as consistently to baseline, often displaying a prolonged deviation over 

the course of 10 months.  

 

The persistence of shock effects in regime 2 is notable, with deviations from equilibrium 

continuing beyond 10 months. This pattern is consistent across the impulse response plots, and 

particularly pronounced for shocks to the GPR Index, with an observed negative impact on Oil 

and Gas returns, and positive for Clean returns. These observations support the notion that 

significant geopolitical shocks may have long-lasting impacts. Furthermore, the wider error 

bands observed in high-volatility regimes reflect the uncertainty related to the precision of 

impulse response estimates. This visual representation of uncertainty can be interpreted as 

supporting the regime-dependent nature of market responses as it is not visibly present in 

regime 1.  

 

The impulse response functions highlight the robustness of the MS-BVAR model, and 

conveniently visualize responses to shocks, in order to capture the prolonged dynamics of the 

European energy and carbon markets. The consistent impact of the shocks underscores the 

importance of considering temporal dependencies in market behavior, which are crucial for 

understanding how shocks propagate through the energy and carbon markets, alongside the 

GPR Index. 
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6 Discussion 
 

This section explores the results of the MS-BVAR analysis and the associated financial 

implications. It seeks to connect these findings with relevant literature to better understand the 

underlying forces shaping the pricing dynamics in European carbon and energy markets in a 

geopolitical context. The discussion includes insights that reveal distinct behavioral patterns of 

the variables across two separate regimes. This section sets the stage for a deeper examination 

of how these regime-specific differences influence market behavior, further elaborating on the 

practical implications of these findings for policy formulation and market prediction in the 

volatile landscape of energy economics. 

 

The detection of structural breaks in the time series prompted a deeper exploration of the 

underlying mechanisms influencing pricing dynamics that are not adequately addressed by 

conventional linear modeling. This led to the introduction of the MS-BVAR model, to examine 

the interconnectedness of the variables, while allowing for distinctive regime characteristics. 

The initial theory proposed that high-volatility regimes would occur more frequently following 

the significant disruptions to the energy landscape caused by Russia invading Ukraine, and the 

results validate this belief. Comparing the results from the different regimes, the analysis 

highlights how specific market dynamics, such as sudden shifts in oil prices or rapid changes 

in gas demand, tend to align with notable fluctuations in geopolitics. For instance, the elevated 

volatility in regime 2 could be contextualized as reflecting markets becoming increasingly 

erratic and sensitive to external shocks during periods of heightened geopolitical tension.  

 

The ADF test uniquely identified unit root presence in the returns of Carbon, which may be 

attributable to the market’s artificial nature. The EUA Carbon market involves trading emission 

allowances, a mechanism progressively transitioning from full subsidization towards full 

market-driven pricing. This gradual shift influences the distinct behavior observed in Carbon 

returns dynamics, compared to the other markets investigated in this thesis. The persistence of 

non-stationarity in Carbon returns, as indicated by the ADF test, is likely mirroring the unique 

pricing mechanisms affecting this market, with policy changes, regulatory updates, and 

significant shifts in demand leading to the stochastic trend. This might also be suggestive of 

the carbon market experiencing shocks with permanent effects that go beyond short-term 

ramifications. 
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Preliminary data testing, along with practicalities linked to desired research objectives, 

facilitated landing on two regimes as a solid choice. This is however arbitrarily fixed within 

the MS-BVAR, which fundamentally shapes the analysis and interpretation of the 

interconnectedness across the investigated variables. This is a methodological choice, where 

the sensitivity of the results and regime-specific boundaries are introduced by pre-determined 

regime classifications. This approach does allow for a structured examination of regime-

specific dynamics but may also obscure the dynamic nature of economic relationships under 

different geopolitical or economic conditions.  

 

The high transition probabilities of 97.17% for regime 1 and 96.14% for regime 2 reflect 

substantial persistence within each market regime. This suggests that once markets enter a 

specific state, such as one characterized by high volatility, they are likely to remain in that state 

until interventions or natural market corrections trigger a shift to a low-volatility state. 

Previously noted durations, with regime 1 typically lasting 35 months and regime 2 enduring 

for 26 months within the selected time frame, emphasize the necessity for policies and 

strategies that minimize periods of instability and steer the markets back towards states of 

reduced volatility.  

 

Jiang et al. (2024) found the carbon market to differ from the more conventional energy 

markets by unidirectionally affecting the GPR Index. Like the findings from this thesis, the 

GPR Index is found to be the volatility spillover receiver in high-volatility periods, while 

Carbon acts as the transmitter. It is seen that a one percentage change in Carbon returns from 

two months prior, corresponds to a 0.42% movement in the same direction in the GPR Index. 

Intriguingly, this suggests that shifts in Carbon returns could serve as an indicator of 

fluctuations in geopolitical trends, a distinctive correlation relative to other variables examined. 

If this relationship is established through further study, the precise quantification of the carbon 

market’s influence on the GPR Index may offer an advanced forecasting tool, potentially aiding 

in the anticipation of geopolitical events based on observable market trends. This insight would 

be valuable in the formulation of energy policies, particularly as global markets navigate the 

challenges of transitioning to low-carbon economies.  

 

Findings identified by Jiang (2024), serve as an intricate study of the connectedness between 

the GPR Index, carbon and energy markets as it encompasses geopolitical events and tensions 
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beyond Russia’s invasion of Ukraine. While this study specifically examines the observed 

increased frequency of high-volatility regimes following the invasion, it is important to note 

that the GPR Index captures a broader range of geopolitical events. Consequently, this wider 

scope may influence the interpretation of the results, as the estimated effects and relationships 

could be attributed to other influences, and not solely the Russo-Ukrainian war. This broader 

array of geopolitical events reflected in the GPR Index is essential to recognize when assessing 

the predictive capacity of the carbon market on geopolitical trends. 

 

Initially, there was consideration to use a more targeted index, such as the Russian Economic 

Policy Uncertainty (REPU) Index, which could tailor the analysis more closely to the specific 

geopolitical context of interest, as seen in Maneejuk et al. (2024). However, the core objective 

of the analysis is not to align variables to a preconceived outcome but rather to examine 

whether the included variables demonstrate clear trends corresponding to periods of high or 

low volatility. By utilizing the comprehensive GPR Index, the analysis can explore whether 

there are unique dynamics in the variables that emerge specifically during times of heightened 

geopolitical tensions, regardless of their specific origin. This approach allows for a broader 

investigation into how global geopolitical unrest influences market volatility, providing 

insights into the overall resilience and sensitivity of these markets to external shocks. This 

could reveal underlying patterns that are crucial for understanding the broader implications of 

geopolitical risks on energy markets.  

 

During periods of high volatility, the GPR Index was observed to respond to changes in Carbon 

returns, while simultaneously functioning as a transmitter influencing Oil returns. Balsalobre-

Lorente et al. (2023) studied the effect of the Russo-Ukrainian war on oil and gas returns in a 

pre- and post-invasion period. They found that oil returns exhibited a prolonged impact in the 

post-invasion scenario, compared to the pre-invasion period. Although this thesis does not 

explicitly analyze the periods before and after the invasion, the findings from the MS-BVAR 

model somewhat align with their observations. The interconnectedness between the lagged 

coefficients of the GPR Index on Oil returns has intensified from -0.03% and -0.003% in the 

low-volatility regime, to 0.75% and -0.52% in the high-volatility regime. These findings 

suggest that during periods of heightened geopolitical tensions, the impacts on Oil returns are 

greater. Given that high-volatility regimes have become more frequent following COVID-19 

and the Russo-Ukrainian war, it could be argued that the intensified relationship between the 

GPR Index and Oil returns reflects a post-invasion effect.  
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The MS-BVAR analysis revealed that if Clean returns two months prior experience a one 

percentage change, current Gas returns will move 1.23% in the opposite direction during high 

volatility regimes, as observed after the invasion. In response to the surging energy prices, the 

REPowerEU plan was introduced to mitigate the risk of future critical energy crises in Europe, 

emphasizing the importance of diversifying energy sources to enhance security and decrease 

reliance on fossil fuels during crises. The estimated inverse relationship between Clean and 

Gas returns in regime 2 may be due to increased investments and capacity of renewable energy 

sources, hence lowering the returns of Gas. Conversely, a reduced emphasis on clean energy 

could lead to heightened returns for Gas. This dynamic suggests that shifts in investment 

priorities between renewable and fossil fuel sources are likely to influence the respective 

financial performance of these energy sectors. 

 

The impulse response plots depict the mildest volatility spillover transmissions from Carbon 

to the other variables comparably, which is intriguingly identified in both low- and high-

volatility regimes. The motivation for including Carbon in the analysis stemmed from its 

underrepresentation in previous literature, which allowed for curiosity about how this market 

behaved in connection with others under distinct regime behaviors. In addition to Carbon’s 

unwavering role as a volatility spillover transmitter, it is also notable how shocks to the other 

investigated variables barely impact Carbon returns, indicating a weak reception from shocks 

to the other variables. As previously mentioned, the price of carbon futures is driven by 

partially artificial pricing mechanisms, controlled by regulatory and policy frameworks, which 

likely insulates it from the pure supply-demand dynamics that drive conventional energy 

markets. These pricing mechanisms of the carbon market may provide a stabilizing effect, 

secluding it from the immediate impacts of market volatility seen in other energy sectors.  

These findings may suggest that the carbon market operates with a degree of independence 

from the fluctuations affecting traditional energy markets. 

 

In high volatility regimes, shocks to the GPR Index demonstrate a lasting negative effect on 

Oil and Gas returns, with little indication that the system will revert to normal. These 

observations align with the research by Liu et al. (2021) which found that geopolitical 

uncertainty has a significant impact on the long-run volatility in fossil fuels. Another 

noteworthy finding from the impulse response functions during high-volatility regimes are the 

effect shocks to Oil returns have on Clean returns, exhibiting a sustained negative impact. This 

extended recovery period for clean energy during high-volatility states implies a critical 
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vulnerability within the renewable energy sector. It suggests that these markets are perhaps 

more sensitive to global political instability or may lack the robustness that more established 

energy markets have. However, shocks to the GPR Index exhibited a positive lasting impact 

on Clean returns, which might indicate that heightened geopolitical risk boosts the clean energy 

markets, a development observed following the invasion of Ukraine. Abbas et al. (2023) on the 

other hand, found that heightened geopolitical risk obstruct green financing, while Zhang et al. 

(2023) argues that geopolitical risk exert significant influence on the volatility rather than 

returns on green bonds and renewable energy, suggesting clean energy as a safe haven asset 

during uncertain times.  

 

The estimated prolonged impact of the GPR Index and Oil returns on Clean energy returns in 

regime 2, as compared to the transient instabilities observed in regime 1, has significant 

implications for energy security, policies, and strategic planning. This is particularly relevant 

for countries and institutions committed to transitioning to renewable energy sources or those 

heavily reliant on a singular energy source. To enhance energy security and ensure a stable 

transition towards renewable energy, it becomes imperative to invest more substantially in the 

development of renewable energy markets. By broadening the spectrum of energy sources to 

include a variety of renewables such as solar, wind, hydro, and bioenergy, it is possible to 

reduce susceptibility to shocks from any singular source and more effectively distribute 

geopolitical risk across their entire energy infrastructure, thereby fortifying energy security. 

These initiatives would help cushion clean energy markets from the immediate impacts of 

geopolitical shocks and support quicker corrections. 

 

The analysis yields a broad insight into the interconnections between energy markets, carbon 

markets, and geopolitical risk, but it is important to note the limitations posed by this study. 

Firstly, many considerations were weighing in when ultimately deciding on monthly data. It 

was convenient due to the time frame that was decided upon, and necessary for several of the 

functions needed for the MS-BVAR analysis. Moreover, the GPR Index is available as monthly 

data, simplifying the decision. However, the choice of monthly data inherently impacts the 

results and necessitates several considerations. Utilizing only the final observation of each 

month means that daily fluctuations within the month are condensed into a single data point. 

This aggregation might obscure significant short-term volatility and the immediate impacts of 

market-altering events. Consequently, substantial developments that resolve within a month's 

time may not be adequately captured, potentially overlooking crucial market dynamics. This 
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smoothing effect could understate the true volatility and responsiveness of the markets to 

immediate geopolitical or economic events, which might lead to an underestimation of risk or 

an oversimplification of market behaviors in the analysis. As such, while the use of monthly 

data aids in managing large datasets and aligns with the availability of key indices, it also 

introduces a layer of abstraction that may distance the analysis from the nuances of real-time 

market fluctuations.  

 
Secondly, there are limitations associated with the use of a fixed number of regimes. 

Predetermined regimes might not fully capture the dynamic nature of markets, as they may not 

account for unexpected economic shifts or new geopolitical developments that necessitate a 

regime change (Psaradakis & Spagnolo, 2003). This static approach could lead to a failure in 

detecting critical transitions that would be obvious if a more flexible regime model was used, 

potentially leading to different interpretations of market relationships. Both overfitting and 

underfitting the model could result in markedly different conclusions, highlighting the 

importance of thorough preliminary testing and the rationale from other studies in determining 

the number of regimes. These challenges are not exclusive to the specific model employed in 

this thesis, nor to the generalized MS-BVAR model, but are common across econometric 

methodologies that incorporates regimes. While integrating a more flexible approach into a 

time-constrained thesis like this one may be complex, future applications involving machine 

learning algorithms could potentially overcome these limitations. By allowing for regime 

adjustments based on real-time data, such technologies could enhance the model’s precision 

and responsiveness, offering a more accurate and dynamic understanding of market behaviors 

and their underlying drivers. 

 

Lastly, while this thesis provides a comprehensive empirical analysis of market reactions to the 

Russo-Ukrainian war, it primarily operates within an empirical framework without a 

corresponding theoretical framework. Further research could benefit from the incorporation of 

theoretical models that offers a deeper conceptual understanding of the observed dynamics. 

For instance, theoretical economic models could serve to predict potential outcomes under 

different scenarios or explain the causal mechanisms driving market behaviors during 

geopolitical conflicts. Including a theoretical approach would enhance the robustness of 

predictive models and deepen the understanding of the complex interplay within energy and 

carbon markets. 
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7 Conclusion 
 
Motivated by the research of Maneejuk et al. (2024) and Jiang et al. (2024), this thesis has 

explored the connectedness among the EUA Carbon futures, European Brent crude oil futures,  

Dutch TTF natural gas futures, S&P Global Clean Energy Index, and the Geopolitical Risk 

Index by Caldara and Iacoviello (2022). The thesis employs a Markov Switching Bayesian 

Vector Autoregressive model and impulse response analysis, with a specific focus on the period 

marked by the initiation of the Russo-Ukrainian war in 2022. The study converted monthly 

price data into logarithmic returns and growth rates spanning from January 2015 to February 

2024. The findings indicate a significant regime-dependent variability in the response of these 

markets to geopolitical shocks, with high volatility regimes becoming more pronounced post-

invasion. 

 

The study has demonstrated that there is compelling evidence for the existence of distinct 

regime-specific characteristics, where regime 1, characterized by lower volatility and less 

instability, typically sees quicker market stabilizations after being exposed to shocks. This 

behavior underscores the resilience of energy markets under less turbulent conditions. In 

contrast, regime 2, which corresponds with periods of heightened volatility, exhibits a 

prolonged adjustment period. This is particularly evident by the effect of shocks to the GPR 

Index on the returns of Oil, Gas, and Clean, which suggests a long-lasting impact of heightened 

geopolitical risk on the stability of these markets. 

 

Moreover, the thesis has highlighted the importance of considering a wider geopolitical context 

to capture the broader implications on energy markets. The inclusion of the GPR Index in the 

MS-BVAR model has allowed for a nuanced analysis of how shifts in geopolitical stability 

propagate through the energy markets over time. The analysis confirms that significant 

geopolitical events, such as the invasion of Ukraine by Russia, not only disrupt immediate 

market conditions but also instigate long-term shifts in market dynamics and volatility regimes. 

 

This research enhances the existing literature by providing empirical evidence on the varying 

impacts of European energy markets and geopolitical risk across different market volatility 

states, offering insights into the underlying mechanisms of these impacts. The findings 

highlight the critical importance of robust energy security and the need for diversified energy 

sources to bolster resilience against geopolitical shocks. This is especially relevant in today’s 
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interconnected and politically volatile global landscape. The European Commission’s 

REPowerEU plan, which seeks to reduce dependency on Russian energy, exemplifies proactive 

measures aimed at mitigating such risks.   

 

Looking ahead, there is a clear necessity for ongoing research into the complex relationship 

between geopolitical events and energy markets. This should particularly focus on employing 

advanced econometric models capable of handling regime switches and nonlinear dynamics. 

Future studies could expand upon this analysis by integrating a theoretical model and include 

variables that incorporate economic policy uncertainty or environmental policy changes. An 

enhanced understanding of these dynamics is vital to assist the development of strategies that 

not only ensure energy security and market stability but also contribute to climate change 

mitigation. A continued investigation will provide deeper insights into global energy dynamics, 

facilitating more informed decisions. 

 

To conclude, this thesis highlights the intricate links between geopolitical risks and the 

dynamics of energy markets, delivering thorough insights into the evolution of these 

relationships under diverse market conditions. It establishes a strong foundation for additional 

empirical research and strongly advocates for the inclusion of geopolitical risk analysis within 

energy market assessments. This integration is vital in an increasingly interconnected and 

politically volatile global landscape. 
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9 Appendix 
 

9.1 R Script 
 
rm(list=ls(all=TRUE)) 
 
#install_version("MSBVAR", version="0.9-3", repos = "http://cran.us.r-project.org") 
#install_version("bit", version = "1.1-8", repos = "http://cran.us.r-project.org") 
 
library(MSBVAR) 
library(bit) 
library(remotes) 
library(zoo) 
library(lmtest) 
library(readxl) 
library(moments) 
library(ggplot2) 
library(stats) 
library(tidyr) 
library(urca) 
library(tseries) 
library(coda) 
library(MTS) 
library(mbreaks) 
library(strucchange) 
 
# DATA IMPORTS ------------------------------------------------------------------------------------------------ 
 
setwd("~/Documents/masteroppg/data") 
 
CARBON <- read_excel("~/Documents/masteroppg/data/EUAmonthly.xlsx", col_types = c("date", 
"numeric")) 
OIL <- read_excel("~/Documents/masteroppg/data/OILmonthly.xls", col_types = c("date", 
"numeric")) 
GAS <- read_excel("~/Documents/masteroppg/data/GASmonthly.xlsx", col_types = c("date", 
"numeric")) 
CLEAN <- read_excel("~/Documents/masteroppg/data/SPCLNmonthly.xlsx", col_types = c("date", 
"numeric")) 
GPR <- read_excel("~/Documents/masteroppg/data/GPRmonthly.xls", col_types = c("date", 
"numeric")) 
 
carbon <- zoo(CARBON[,2], order.by = CARBON$Date) 
oil <- zoo(OIL[,2], order.by = OIL$Date) 
gas <- zoo(GAS[,2], order.by = GAS$Date) 
clean <- zoo(CLEAN[,2], order.by = CLEAN$Date) 
gpr <- zoo(GPR[,2], order.by = GPR$Date) 
 
data <- merge(carbon, oil, gas, clean, gpr) 
names(data) <- c("Carbon", "Oil", "Gas", "Clean", "GPR") 
 
plot(data[,1], main = "", ylab = "Price", xlab = "", lwd = 1) 
plot(data[,2], main = "", ylab = "Price", xlab="", lwd = 1) 
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plot(data[,3], main = "", ylab = "Price", xlab = "", lwd = 1) 
plot(data[,4], main = "", ylab = "Index Points", xlab = "", lwd = 1) 
 
plot(data[,5], main = "", ylab = "GPR ratio", xlab = "", lwd = 1) 
points <- locator(n=5) 
text(points$x, points$y, labels= c("Paris Attacks", "U.S. - N.Korea", "U.S. - Iran",  
                                   "Russia - Ukraine", "Israel - Palestine"), col="red") 
 
# LOG-RETURN TRANSFORMATION ------------------------------------------------------------------------ 
 
returns <- 100*diff(log(data)) 
 
par(mfrow=c(3,2), mar = c(3,3,4,2)) 
plot(returns[,1], main = "(a) Carbon Log-Returns", ylab = "", xlab = "", lwd = 1) 
plot(returns[,2], main = "(b) Oil Log-Returns", ylab = "", xlab="", lwd = 1) 
plot(returns[,3], main = "(c) Gas Log-Returns", ylab = "", xlab = "", lwd = 1) 
plot(returns[,4], main = "(d) Clean Log-Returns", ylab = "", xlab = "", lwd = 1) 
plot(returns[,5], main = "(e) GPR Log-Growth Rates", ylab = "", xlab = "", lwd = 1) 
 
ret <- ts(returns) 
 
# DESCRIPTIVE STATISTICS ----------------------------------------------------------------------------------- 
 
stat.desc(ret, desc = TRUE, norm = TRUE) 
 
IQR(ret[,1]) 
IQR(ret[,2]) 
IQR(ret[,3]) 
IQR(ret[,4]) 
IQR(ret[,5]) 
 
jarque.bera.test(ret[,1])  
jarque.bera.test(ret[,2])  
jarque.bera.test(ret[,3])  
jarque.bera.test(ret[,4])    
jarque.bera.test(ret[,5]) 
 
# NONLINEARITY - STRUCTURAL BREAKS TEST ------------------------------------------------------ 
 
mdlCarbon <- mdl("Carbon", z_name = c("Oil", "Gas", "Clean", "GPR"), data = ret, hetvar = 1, 
robust = 1, m = 4, eps1 = 0.1); mdlCarbon                  
mdlOil <- mdl("Oil", z_name = c("Carbon", "Gas", "Clean", "GPR"), data = ret, hetvar = 1, robust = 
1, m = 4, eps1 = 0.1);mdlOil 
mdlGas <- mdl("Gas", x_name = c("Carbon", "Oil", "Clean", "GPR"), data = ret, hetvar = 1, robust = 
1, m = 4, eps1 = 0.1); mdlGas 
mdlClean <- mdl("Clean", x_name = c("Carbon", "Oil", "Gas", "GPR"), data = ret, hetvar = 1, robust 
= 1, m = 4, eps1 =  0.1); mdlClean 
mdlGPR <- mdl("GPR", x_name = c("Carbon", "Oil", "Gas", "Clean"), data = ret, hetvar = 1, robust = 
1, m = 4, eps1 =  0.1); mdlGPR 
 
# Plot structural breaks 
 
par(mfrow=c(3,1), mar = c(2,5,4,4)) 
offset <-  2 
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oildate <-  mdlOil$KT$date 
plot(ret[,2], main = "Oil 2015 - 2024", ylab = "", lwd = 1) 
for (i in 1:2) { 
  abline(v = oildate[i,1], col = 'red', lty = 2) 
} 
text(x = oildate[1,1], y = par("usr")[4], pos = 2, labels = "11/2019", srt = 90) 
text(x = oildate[2,1] + offset, y = par("usr")[4], adj = 1 , labels = "09/2020", srt = 90) 
 
#------------------------------------------------------------------------------------------------------------------------- 
 
gasdate <-  mdlGas$KT$date 
plot(ret[,3], main = "Gas 2015 - 2024", ylab = "", lwd = 1) 
for (i in 2:3) { 
  abline(v = gasdate[i,1], col = 'red', lty = 2) 
} 
text(x = gasdate[2,1], y = par("usr")[4], pos = 2, labels = "05/2020", srt = 90) 
text(x = gasdate[3,1], y = par("usr")[4], pos = 2, labels = "08/2022", srt = 90) 
 
#------------------------------------------------------------------------------------------------------------------------- 
 
cleandate <-  mdlClean$KT$date 
plot(ret[,4], main = "Clean 2015 - 2024", ylab = "", lwd = 1) 
for (i in 1:2) { 
  abline(v = cleandate[i,1], col = 'red', lty = 2) 
} 
text(x = cleandate[1,1], y = par("usr")[4], pos = 2, labels = "03/2020", srt = 90, adj = 1, xpd = TRUE) 
text(x = cleandate[2,1] + offset, y = par("usr")[4], labels = "01/2021", srt = 90, adj = 1, xpd = TRUE) 
 
# NONLINEARITY - BDS TEST --------------------------------------------------------------------------------- 
 
# Optimal lag number 
 
var.lag.specification(ret, lagmax = 10) 
VARorder(ret, maxp = 10) 
 
VARmod <- VAR(ret, p = 2, output = T, include.mean = T, fixed = NULL) 
VARres <- residuals(VARmod) 
 
bds.test(VARres[,1], m = 4) 
bds.test(VARres[,2], m = 4) 
bds.test(VARres[,3], m = 4) 
bds.test(VARres[,4], m = 4) 
bds.test(VARres[,5], m = 4) 
 
# UNIT ROOT TESTS ---------------------------------------------------------------------------------------------- 
 
# Augmented Dickey-Fuller test for stationarity  
adf.test(ret[,1],alternative="stationary") 
adf.test(ret[,2],alternative="stationary") 
adf.test(ret[,3],alternative="stationary") 
adf.test(ret[,4],alternative="stationary") 
adf.test(ret[,5],alternative="stationary") 
 
# Phillips-Perron test for stationarity  
pp.test(ret[,1], alternative ="stationary", type ="Z(alpha)", lshort =TRUE) 
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pp.test(ret[,2], alternative ="stationary", type ="Z(alpha)", lshort =TRUE) 
pp.test(ret[,3], alternative ="stationary", type ="Z(alpha)", lshort =TRUE) 
pp.test(ret[,4], alternative ="stationary", type ="Z(alpha)", lshort =TRUE) 
pp.test(ret[,5], alternative ="stationary", type ="Z(alpha)", lshort =TRUE) 
 
# TEST FOR OPTIMAL MODEL - BAYES FACTOR-------------------------------------------------------- 
 
mod1 <- msbvar(ret, p=1, h=2, 
             lambda0=0.8, lambda1=0.85, lambda3=1, lambda4=1, 
             lambda5=1, mu5=0.1, mu6=0.1, qm=12, prior=0, max.iter=40, 
             initialize.opt=NULL) 
 
res1 <- mod1$init.model$residuals 
acf(res1) 
 
gib1 <- gibbs.msbvar(mod1, N1 = 5000, N2 = 20000, permute = TRUE, 
                    Beta.idx = NULL, Sigma.idx = NULL, Q.method = "Gibbs") 
 
plot(ts(mod1$fp)) 
print(mod1$Q) 
 
mod2 <- msbvar(ret, p=2, h=2, 
               lambda0=0.8, lambda1=0.85, lambda3=1, lambda4=1, 
               lambda5=1, mu5=0.1, mu6=0.1, qm=12, prior=0, max.iter=40, 
               initialize.opt=NULL) 
 
res2 <- mod2$init.model$residuals 
acf(res2) 
 
gib2 <- gibbs.msbvar(mod2, N1 = 5000, N2 = 20000, permute = TRUE, 
                     Beta.idx = NULL, Sigma.idx = NULL, Q.method = "Gibbs") 
 
#MS-BVAR(1) vs MS-BVAR(2) 
post1 <- posterior.fit(gib1, A0.posterior.obj=NULL, maxiterbs=500); post1 
post2 <- posterior.fit(gib2, A0.posterior.obj=NULL, maxiterbs=500); post2 
 
mlr <- post1$marglik.BS/post2$marglik.BS; mlr 
 
# MSBVAR MODEL ------------------------------------------------------------------------------------------------ 
 
gibb <- gibbs.msbvar(mod2, N1 = 5000, N2 = 20000, permute = FALSE, 
                     Beta.idx = c(5,1), Sigma.idx = NULL, Q.method = "Gibbs") 
 
summary <- regimeSummary(gibb) 
 
# PLOT REGIME 2 -------------------------------------------------------------------------------------------------- 
 
# Apply min-max normalization to GPR 
min_gpr <- min(GPR$GPR, na.rm = TRUE) 
max_gpr <- max(GPR$GPR, na.rm = TRUE) 
normalized_values <- (GPR$GPR - min_gpr) / (max_gpr - min_gpr) 
 
# Adding the normalized values back to GPR data 
GPR$Normalized <- normalized_values 
gprline <- ts(GPR$Normalized) 
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# Extracting high-volatility regime probabilities 
regime <- mean.SS(gibb)[,2] 
regime <- ts(regime) 
regime <- as.matrix(regime, nrow=109, ncol=1, byrow=TRUE) 
x_values <- 1:107  
 
# Regime plot 
par(mar=c(1, 4, 2, 1) + 0.1) 
plot.ts(regime, col="red", ylab="Probabilities", main="Regime 2: High Volatility") 
polygon(c(x_values[1], x_values, x_values[length(x_values)]),  
        c(0, regime, 0), col = "red", border = NA, density=40) 
lines(gprline, col="black", lwd=1.5) 
legend("topleft", legend=c("Regime 2","GPR"), col=c("red","black"), lty=1, bty="n") 
 
# AUTOREGRESSIVE COEFFICIENTS ----------------------------------------------------------------------- 
 
ar <- summary(gibb$Beta.sample);ar 
 
Beta.sample <- gibb$Beta.sample 
Beta.sample <- mcmc(Beta.sample) 
 
interval <- HPDinterval(Beta.sample, prob = 0.95) 
print(interval) 
 
lower_bounds <- interval[,"lower"] 
upper_bounds <- interval[,"upper"] 
 
significant_coeffs <- (lower_bounds * upper_bounds) > 0 
 
# Print the results 
print(significant_coeffs) 
 
# Average regime durations 
1/(1-0.9614) # Regime 1 
1/(1-0.9717) # Regime 2 
 
# IMPULSE RESPONSE FUNCTIONS ------------------------------------------------------------------------- 
 
irf <- mc.irf(gibb, nsteps=20, draws=20000) 
plot.mc.irf(irf) 
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9.2 Autocorrelation from initial model residuals 
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9.3 Discussion Paper  
 
9.3.1 Maria Rimestad Orre - International 
 
This discussion paper serves as my concluding remark of my Master's Degree in Business 

Administration with a specialization in Analytical Finance at the University of Agder. After 

five years of intensive study, my academic journey concludes with this master thesis, as I have 

written together with Anna Jeppedal Moen. The process of writing this thesis has been both 

challenging and rewarding, as I have learned a lot about myself and developed myself 

academically. This paper aims to discuss how our research and findings engage with the broad 

concept of "international". Initially, it will provide a brief overview of our thesis, followed by 

how it relates to global trends and forces.  

 

Introduction 

 

The Russo-Ukrainian conflict of February 2022 significantly changed the global energy 

system, highlighting the profound impact of geopolitical events on international energy 

dynamics. Russia's role as a major supplier of fossil fuels, particularly to the European Union 

(EU), rendered the region highly vulnerable following the invasion of Ukraine. As Russia cut 

the energy supply to Europe and nations agreed upon the impositions of sanctions and trade 

restrictions on Russian goods, the EU were forced find new energy suppliers. The EU’s reliance 

on Russian fossil fuels resulted in a sudden shock in energy demand in Europe, which escaladed 

energy prices, particularly within the gas market. In response to the imperative of securing and 

stabilizing its energy supply, the EU introduced the REPowerEU plan, a multifaceted strategy 

aimed at diversifying energy imports, bolstering energy conservation efforts, and accelerating 

renewable energy development (European Commission, 2022). In the following years of the 

conflict, there has been a notable surge in the adoption and development of green energy 

solutions across European nations (International Energy Agency, 2024a, p. 14). 

 

As the conflict has highlighted the consequences of nations being heavily reliant on a single 

energy supplier, it triggered a shift towards renewable energy sources, but this was not the 

immediate response. The European Union Emission Trading System (EU ETS) were developed 

as the EU’s strategy of achieving climate neutrally by 2050 by implementing a cap-and-trade 

system to govern the allowance of businesses emitting carbon dioxide (European Commission, 

n.d). The price of EUA carbon allowances does usually follow the fluctuations in prices for 
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fossil fuels, but when Russia invaded Ukraine, energy prices experienced a rapid incline and 

EUA carbon prices experienced a historical drop, decoupling from the rest of the system. When 

the price for carbon allowances dropped, it means that its cheaper for businesses to pollute. 

Ingvild Sørhus, a lead analyst for EU Carbon Analysis, attributed this decline in EUA carbon 

prices to investor withdrawals due to uncertainties stemming from the conflict (Ambrose, 

2022). The speculation surrounding Russian investors potentially pulling out due to sanctions 

and the risk of frozen assets further contributed to this historical deviation in EUA Carbon 

Futures.  

 

The period post invasion has witnessed intriguing market responses which has motivated this 

thesis to study these reactions and their implications for the intricate relationship between 

energy and carbon markets. Our research journey was influenced by the work of Maneejuk et 

al. (2024) who studied the conflict's impact on renewable and fossil energy cycles, leveraging 

the Russia Economic Policy Uncertainty Index. Thus, our goal is to contribute to filling the 

existing research gap on the effects following the Russo-Ukrainian war, by building upon the 

research by Maneejuk et al. (2024) by including the EUA carbon market to get an even broader 

understanding of the conflict’s impact on the energy sector.  

 

In this thesis, we examine whether the interplay between the European carbon and energy 

markets has shifted following Russia's invasion of Ukraine. We analyze monthly logarithmic 

returns from January 2015 to February 2024 for EUA Carbon Futures, European Brent Crude 

Oil Futures, Dutch TTF Natural Gas Futures, and the S&P Global Clean Energy Index. These 

returns are integrated into a Markov Switching Bayesian Vector Autoregressive Model (MS-

BVAR) alongside the Geopolitical Risk (GPR) index by Caldara and Iacoviello (2022) to 

assess geopolitical influences on market returns. The MS-BVAR model, which alternates 

between high and low volatility regimes based on transition probabilities, is particularly suited 

to capture the nonlinear dynamics and asymmetries in the markets. Our findings highlight a 

pronounced increase in the occurrence of high volatility regimes post-invasion which 

underscores the critical need to understand the dynamics between geopolitical risks and energy 

and carbon markets to effectively mitigate the impacts of future crises.  
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Discussion 

 

The research topic of this master thesis is related to international trends and forces in various 

ways. Firstly, Russia’s invasion of Ukraine sparked a global energy crisis which still has a 

significant impact on economic growth, straining the finances of households and businesses in 

many parts of the world (International Energy Agency, n.d). The conflict underscored how 

sensitive important commodities, such as oil and gas, are to geopolitical uncertainty and events, 

and the importance of understanding these market reactions in times of crises to mitigate future 

consequences. By utilizing the GPR index, which encompasses a wide spectrum of geopolitical 

tensions which goes beyond the Russo-Ukrainian war. This expanded scope has the potential 

to influence the interpretation of our findings, as the observed enhancements in estimated 

effects and relationships may be influenced by various geopolitical developments, not solely 

limited to the Russo-Ukrainian conflict. But by incorporating the GPR index, we aimed to 

adopt a robust approach that captures the multifaceted nature of global geopolitical dynamics, 

recognizing their far-reaching impacts on international tensions and disruptions. 

 

Secondly, the thesis relates to the development of renewable energy sources which contributes 

to nations energy security and combating climate change. By including the S&P Global Clean 

energy index in the analysis, we are able to get a comprehensive understanding of the 

performance of clean energy related businesses form both developing and emerging countries. 

Thus, reactions in the clean index gives us a perspective on how geopolitical shocks affects the 

investments in renewable energy sources in a global scale, and its implications in the broader 

environmental context. The thesis also considers the market reactions in the EU ETS, which is 

the world’s largest carbon pricing mechanism (European Commission, n.d). The system was 

developed to limit the amount of greenhouse gas emissions to combat climate change and reach 

climate neutrally. As the cornerstone of the EU's policy to reduce emissions, it becomes 

important to examine if the Russo-Ukraine war has changed the interconnectedness between 

carbon prices and fossil fuels, reducing the effectiveness of such environmental policies. 

Especially after the observed decoupling in prices at the outbreak of the war, which can indicate 

that the European carbon market is exposed to geopolitical shocks. 

 

The MS-BVAR analysis revealed high transition probabilities, indicating a substantial 

persistence within each regime. Which mean that if the system was currently in a low volatility 

regime, there is a 97.17% chance of the system remaining in the same regime in the next period. 
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While if the system were in a high volatility regime, there is a 96.14% probability that the 

system continues to be in a volatile state for the following period. The high transition 

probabilities suggests that when a geopolitical event such as the Russo-Ukraine conflict 

triggers the markets to enter a high volatility state, they are most likely to remain in this state 

for the following months. These findings can help nations to understand the duration and long-

term effects of such crises. 

 

Another interesting finding were the connectedness between carbon returns and the GPR 

growth rates. Overall, the analysis showed mild volatility spillovers between carbon returns 

and the other variables included, which might suggest that the pricing mechanisms for carbon 

allowances operates with a degree of independence form the fluctuations driving fossil and 

clean energy markets. But there was one exception, because carbon returns were found to be a 

volatility spillover transmitter for the GPR index during high volatility regimes, so a one 

percentage change in the returns of carbon futures from two months back, would lead to a 

0.42% change in the same direction in today’s growth rates for GPR. Meaning, a decrease in 

carbon returns could result in reduced geopolitical risk. These findings suggests that 

fluctuations in European carbon market could serve as an indicator of geopolitical risks.  

 

Findings from the impulse response analysis reveals a lasting effect in Oil and Gas returns after 

a shock to the GPR index during high volatility regimes. Meaning, when a shock occurs in the 

GPR index, which may correspond to heightened geopolitical risk, it will have a long-term 

impact on the returns on Oil and Gas. It was also found that shocks to Oil, Gas, and GPR had 

a lasting impact on Clean returns, suggesting these markets to be particularly vulnerable to 

global political instability or lack the robustness that more established energy markets has, 

during high volatility regimes. The lasting impact on Clean returns could serve as a motivation 

for nations to prioritize investments and strategies that enhances the resilience of renewable 

energy sources against geopolitical shocks.  

 

The thesis topic and findings are useful in an international context for various reasons. The 

high transition probabilities underscore the need for strategic planning to mitigating the 

negative impact of geopolitical tensions and events, as when the system enters a high volatility 

state, it is most likely to remain in this state for a long time. By understanding how the 

interconnectedness between energy markets and carbon markets changes during periods of 
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heightened geopolitical risk, policy makers, investors, and heavy-carbon enterprises will be 

better prepared to cope with future fluctuations of geopolitical risks.  

 

Conclusion 

 

This thesis examines the profound interconnections between geopolitical events and the 

dynamics of energy and carbon markets. The Russo-Ukrainian conflict, which has served as 

our central focus, exemplifies the vulnerability of the global energy system to political 

instability. By utilizing the MS-BVAR model, together with an impulse response analysis, we 

have investigated how geopolitical risk affects fluctuations in energy and carbon markets, and 

how the dynamics between these market changes between high and low volatility regimes.  

 

Our findings indicate a pronounced tendency in the occurrence of high volatility regimes post-

invasion, and high transition probabilities for the system to remain in the high volatility state 

for the coming periods. It was also shown that energy markets were particularly vulnerable 

during heightened geopolitical risk, which underscored the importance for nations to diversify 

its energy sources and become more self-reliant on renewable energy sources. By diversifying 

and investing in more renewable energy, nations could increase their energy security while 

reducing emissions. These findings mark the importance of understanding changing dynamics 

during high volatility regimes to be able to develop strategies and policies to tackle future crises 

as geopolitical risk emerges.  

 

In conclusion, I find the research topic of how the dynamics between energy and carbon 

markets changes during heightened geopolitical risk, especially during the Russo-Ukrainian 

conflict, to be highly relevant, connecting intricately with international trends and forces. The 

Russo-Ukrainian war has had profound and far-reaching implications at a global scale, 

highlighting the critical role of geopolitical events and energy dynamics. By contributing to 

filling the research gap regarding implications following this conflict, we have seen the 

importance of energy security in a world increasingly shaped by frequent geopolitical tensions. 

 

 

  



	

	 72 

References: 

 

Ambrose, T. (2022, March 2). EU carbon permit prices crash after Russian invasion of 

Ukraine. The Guardian. https://www.theguardian.com/environment/2022/mar/02/eu-

carbon-permit-prices-crash-after-russian-invasion-of-ukraine 

Caldara, D., & Iacoviello, M. (2022). Measuring Geopolitical Risk. American Economic 

Review, 112(4), 1194-1225. https://doi.org/10.1257/aer.20191823  

European Commission. (2022). REPowerEU (COM(2022) 230 final).  

European Commission. (n.d). What is the EU ETS?. Retrived May 29, 2024 from 

https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/what-eu-

ets_en 

International Energy Agency. (2024). Renewables 2023. 

https://www.iea.org/reports/renewables-2023 

International Energy Agency. (n.d). Russia’s War on Ukraine. Retrieved April 19, 2024 from 

https://www.iea.org/topics/russias-war-on-ukraine 

Maneejuk, P., Kaewtathip, N., & Yamaka, W. (2024). The influence of the Ukraine-Russia 

conflict on renewable and fossil energy price cycles. Energy Economics, 129, 107218. 

https://doi.org/10.1016/j.eneco.2023.107218  

  

https://www.theguardian.com/environment/2022/mar/02/eu-carbon-permit-prices-crash-after-russian-invasion-of-ukraine
https://www.theguardian.com/environment/2022/mar/02/eu-carbon-permit-prices-crash-after-russian-invasion-of-ukraine
https://doi.org/10.1257/aer.20191823
https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/what-eu-ets_en
https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/what-eu-ets_en
https://www.iea.org/reports/renewables-2023
https://www.iea.org/topics/russias-war-on-ukraine
https://doi.org/10.1016/j.eneco.2023.107218


	

	 73 

9.3.2 Anna Jeppedal Moen - International 
 

This discussion paper marks the completion of my Master of Science in Business 

Administration at the University of agder, specializing in Analytical Finance. The master’s 

thesis represents the culmination of my accumulated knowledge after five years at UiA, 

finalized with a thesis co-authored by Maria Rimestad Orre. The creation of this thesis has been 

immensely challenging yet rewarding throughout the process, leading to both academic and 

personal growth. This discussion paper starts with an introduction of the thesis and the 

geopolitical context that inspired it, along with the research objectives that guided its 

development. I then discuss the findings and related research, focusing on the theme of 

'international' throughout. 

 

The recency of the Russian invasion of Ukraine has profoundly reshaped global energy supply 

chains and needs (International Energy Agency, 2024). This geopolitical event caused 

significant disruptions of established energy flows, which has particularly affected Europe, due 

to its substantial dependence on Russian energy exports. The decision of curtailing energy 

supplies to Europe was aimed at undermining European support for Ukraine, but instead led to 

a dramatic escalation in gas prices and raised acute demands for alternative energy sources. 

Russia redirected the energy flow towards Asian markets, while Europe urgently had to address 

the resulting energy shortfall (International Energy Agency, 2024). This necessitated a rapid 

and unplanned shift back to fossil fuel sources, impacting both the energy security and green 

investments. This disruption in supply chains highlighted the vulnerability of Europe’s energy 

infrastructure, underscoring the risk related to over-reliance on a single supplier. Consequently, 

this event has prompted a re-evaluation of energy policies while emphasizing the strategic 

importance of diversifying energy sources and sustained investments in renewable energy. 

Such diversification is essential not only for enhancing energy security but also for mitigating 

long-term risks associated with geopolitically induced energy market volatility, to ensure a 

stable transition towards a sustainable energy future. 

 

The thesis employs the Markov Switching Bayesian Vector Autoregressive (MS-BVAR) 

model to examine whether there is an observed increase in the frequency of high-volatility 

regimes in European carbon and energy markets following the Russian invasion of Ukraine. 

The geopolitical landscape saw a major shift when Russia initiated aggressive actions against 

Ukraine in February 2022, leading to significant disruptions in international energy markets 
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and further straining the already precarious energy situation in Europe (Benton et al., 2022, p. 

8). This act of war triggered widespread consequences, and the implementation of trade 

embargoes and restrictions on Russia, a key supplier of crude oil, natural gas, and coal, 

intensified the already escalating energy crisis.  

 

To explore these dynamics, the MS-BVAR analysis includes the study of benchmarked energy 

markets, namely EUA carbon futures, European Brent crude oil futures, Dutch TTF natural gas 

futures, the S&P Global Clean Energy Index, and the Geopolitical Risk (GPR) Index by 

Caldara and Iacoviello (2022). This approach helps reveal the patterns and frequency of high-

volatility periods following the invasion. By conducting an in-depth analysis of market 

dynamics and incorporating changes in the geopolitical landscape, this thesis aims to 

understand how geopolitical events like the Russo-Ukrainian war have increased volatility in 

the post-invasion period. This thesis adds to the academic discussion by investigating the 

development in the European carbon market, a previously understudied market in collaboration 

with shocks to geopolitics.  

 

The GPR Index has become increasingly prevalent in empirical research in recent years, 

highlighting the necessity of integrating the evolving geopolitical landscape into the analysis 

of economic relationships. Liu et al (2023) and Zhang et al. (2023) establish geopolitical risk 

to be a critical factor for driving the state of the economy and have proven its relation to energy 

markets. The GPR Index quantifies geopolitical risk by measuring the proportion of articles 

from major newspapers that mention geopolitical tensions or risks relative to the total number 

of articles (Caldara & Iacoviello, 2022). An increase in the index signifies heightened 

geopolitical uncertainty. Although the index is artificially constructed, its interaction with 

conventional energy markets provides valuable insights into addressing the growing 

geopolitical uncertainties that significantly impact the market. By understanding these 

dynamics, policymakers and researchers can better anticipate and mitigate the effects of 

geopolitical risks on economic stability and energy security. The implications are profound, as 

a higher GPR Index can signal potential market disruptions, prompting the need for preemptive 

measures such as diversifying energy sources and enhancing international cooperation to 

ensure energy resilience. 

 

The findings demonstrate the interconnectedness of the European carbon and energy markets, 

particularly during high-volatility periods, underscoring the extensive international 
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implications of geopolitical events. The results indicate that in times of increased market 

instability, shocks to the growth rate of the GPR Index have a prolonged impact on oil and 

natural gas returns, amplifying the global effects of actions taken by a major military power 

against another country. The impulse response plots reveal negative consequences that persist 

well beyond the investigated 10-month period, suggesting that during heightened volatility, 

markets are unable to return to equilibrium in the short term due to the severity of these impacts. 

 

The thesis findings affirm the critical importance of sustained investments in renewable energy, 

not only for mitigating climate risks but also for enhancing energy security. This necessity is 

highlighted by the fact that singular events can drastically reshape the energy landscape with 

international repercussions. Furthermore, empirical analysis reveals that the GPR Index has a 

substantial influence on the clean energy market. The magnitude of this effect is significant, 

with shocks to the GPR Index causing persistent impacts that extend beyond ten months 

without reverting to baseline. This enduring influence underscores the interconnectedness 

between political stability and the performance of the clean energy market. Therefore, 

continuous investments in renewable energy are not only an environmental necessity but also 

a strategic imperative for mitigating the effects of geopolitical fluctuations and their extensive 

implications. 

 

Regime 1 is characterized by low volatility and stable markets, while regime 2 is marked by 

high volatility. The analysis estimates that regime 1 typically lasts for 35 months, whereas 

regime 2 persists for 26 months. The transition probabilities for these regimes are 97.17% and 

96.14%, respectively, indicating a high likelihood of remaining within each state. These high 

probabilities indicate the persistence of distinct regimes over the investigated period. This 

implies that once markets enter a specific state, they are likely to remain in that state for an 

extended period. If a geopolitical shock can push markets into a prolonged high-volatility state, 

it emphasizes the critical need for enhanced energy security and diversification to expedite the 

return to normal conditions. Remaining in a high-volatility state over time leads to increased 

uncertainty, which can potentially harm economic growth. Additionally, prolonged volatility 

can strain energy resources and infrastructure, complicating the task of ensuring consistent 

supply and fair pricing on an international scale. 

 

The unforeseen international impact of the Russo-Ukrainian war on European carbon and 

energy markets underlines the critical importance of understanding the persistence and 
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implications of shocks in these markets. Drawing on knowledge from the master’s program, 

this research investigates the crucial role that international dynamics play in shaping market 

responses. By examining the effects of geopolitical events on conventional energy markets and 

their interconnectedness over time, the findings highlight the need for robust analytical 

frameworks to ensure that singular events do not destabilize intercontinental energy markets.  

 

The REPowerEU plan, developed to mitigate this risk, was specifically designed to reduce 

dependence on Russian energy supplies (European Commission, 2022). The creation of this 

plan was crucial not only for addressing the immediate impact of geopolitical shocks but also 

for enhancing long-term resilience and sustainability in the global energy system. Our analysis 

provides valuable insights into the resilience of energy markets under geopolitical tensions and 

shocks, emphasizing the need to bolster energy security and diversify energy sources to 

effectively manage varying levels of volatility through initiatives like the REPowerEU plan. 

Furthermore, the results highlight the importance of sustained investments in renewable energy 

sources to avoid reliance on fossil fuels in situations such as when a major energy exporter cuts 

off supply. 

 

The findings in this thesis highlight the complex dynamics and interconnectedness of the 

European carbon and energy markets, particularly in relation to the GPR Index. These 

complexities are especially pronounced when examining the increased frequency of high-

volatility regimes following Russia's invasion of Ukraine. The MS-BVAR analysis robustly 

evidences the heightened prevalence of these regimes in subsequent years, highlighting the 

urgent need for enhanced international energy security measures and policies aimed at 

mitigating climate change through sustained investments in renewable energy sources. This 

approach is crucial to avoid reverting to fossil fuels as a resort when the geopolitical landscape 

shifts unexpectedly.  The prolonged impact of shocks, as observed in the impulse response 

plots, highlight the critical necessity of promptly implementing strategies to enhance energy 

security, such as the REPowerEU plan. These initiatives are vital to prevent scenarios where a 

single geopolitical disruption can significantly alter international energy dynamics. The 

analysis clearly indicates that delayed responses to geopolitical shifts can hinder economic 

growth and divert focus from investing in renewable energy sources, leading to adverse 

environmental consequences.  Furthermore, the research elucidates how geopolitical shocks 

not only trigger immediate market responses but also induce long-lasting volatility in energy 
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markets. This highlights the importance of robust, proactive strategies to ensure energy security 

and stability in the face of global geopolitical challenges. 
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