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Abstract

The proliferation of drones has significantly impacted various sectors, including agricul-

ture, surveillance, and delivery services, presenting both opportunities and challenges.

Effective management and monitoring of drone activity are crucial for ensuring safety, se-

curity, and compliance with regulations. Traditional methods for drone detection, such as

radar and visual surveillance, often face limitations in terms of accuracy, range, and sus-

ceptibility to environmental conditions. This thesis explores the integration of 5G Channel

State Information (CSI) with advanced machine learning techniques to develop a robust

system for estimating drone counts in a given scene.

Leveraging the high resolution and precision of 5G technology, this research utilizes CSI

data to detect and identify drones. A Multimodal 1D Convolutional Neural Network (1D-

CNN) is employed to analyze the one-dimensional time-series data obtained from CSI

measurements. The model is designed to automatically learn and extract features indica-

tive of drone presence and movement, thereby enhancing the accuracy and reliability of

the detection system.

The study involves the collection of CSI data from controlled experiments, followed by

data preprocessing, feature engineering, and model training. The performance of the

developed 1D-CNN model is evaluated using standard metrics, demonstrating its efficacy

in accurately estimating drone counts. Additionally, the research addresses the challenges

and limitations of using 5G CSI and CNNs for drone detection, providing insights into

potential improvements and future research directions.

This thesis contributes to the advancement of wireless sensing technologies and offers

practical solutions for effective drone management and surveillance, paving the way for

further innovations in this field.
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Chapter 1

Introduction

This chapter presents a comprehensive overview, beginning with the background that pro-

vides context and sets the stage for the research conducted. It then discusses the motiva-

tion behind the study, explaining the driving factors and the significance of the research.

The chapter outlines the specific research topic and the primary questions it aims to ad-

dress, followed by the objectives that define the goals and intended outcomes of the study.

Next, the scope of the research are discussed, setting the context of the study by clearly

defining what is focused on and what is not. This ensures clarity regarding the specific

areas covered and those excluded from the research. The chapter also lists the articles

published related to the research, highlighting contributions to the academic community.

Finally, it concludes with an overview of the thesis, summarising the structure and content

of the subsequent chapters, providing a road-map for the reader.

1.1 Background

The rapid advancement and increasing adoption of drone technology have brought about

significant transformations across various industries, including agriculture, delivery ser-

vices, surveillance, and entertainment[1]. Drones, also known as unmanned aerial vehi-

cles (UAVs), offer numerous benefits due to their versatility, cost-effectiveness, and abil-

ity to access hard-to-reach areas. In agriculture, for instance, drones are used for crop

monitoring, spraying pesticides, and mapping fields, which enhances precision farming

practices and improves crop yields (Liu et al., 2019). Similarly, in the delivery sector, com-

panies like Amazon and UPS are exploring drone-based delivery systems to expedite the

delivery process and reduce logistical costs. [2]

However, the proliferation of drones also presents significant challenges, particularly in

terms of airspace management, security, and privacy [3]. With the increasing number

of drones in the sky, there is a pressing need for robust systems to monitor and manage

drone activity effectively. Traditional methods for detecting and counting drones, such
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as radar and visual surveillance, often struggle with limitations in range, accuracy, and

susceptibility to environmental conditions (Sundaresan et al., 2017). These limitations

underscore the necessity for more advanced and reliable sensing technologies.

5G technology, the fifth generation of mobile networks, has emerged as a promising so-

lution to these challenges. With its superior data rates, ultra-low latency, and massive

connectivity, 5G offers significant improvements over previous generations of mobile net-

works (Wang et al., 2019). One of the critical features of 5G for drone detection is its

ability to utilize Channel State Information (CSI). CSI provides detailed information about

the propagation environment of wireless signals, which can be exploited to detect and

identify objects, including drones, within the coverage area (Chen et al., 2018).

In parallel, advancements in machine learning, particularly Convolutional Neural Net-

works (CNNs), have demonstrated remarkable success in various pattern recognition and

data analysis tasks [4]. CNNs are capable of automatically learning and extracting fea-

tures from raw data, making them highly effective for analyzing complex datasets. When

applied to 5G CSI data, CNNs can enhance the accuracy and reliability of drone detec-

tion systems by identifying patterns indicative of drone presence and movement (Li et al.,

2021).

Despite the potential benefits, the integration of 5G CSI with CNNs for drone detection re-

mains an underexplored area. This research aims to bridge this gap by developing a robust

system for estimating drone counts using 5G CSI and a Multimodal 1D-CNN model. By

leveraging the high-resolution data provided by 5G technology and the powerful pattern

recognition capabilities of CNNs, this study seeks to address the existing challenges and

contribute to the advancement of drone monitoring technologies.

1.2 Problem Statement

The widespread use of drones in sectors such as agriculture, delivery, and surveillance

has brought about significant challenges in airspace management, security, and privacy

(Zhang et al., 2020; Gonzalez-Ruiz et al., 2016). Traditional methods for drone detection,

like radar and visual surveillance, face limitations in range, accuracy, and environmental

susceptibility (Sundaresan et al., 2017). These challenges necessitate the development of

more advanced and reliable sensing technologies.

5G technology, with its high resolution and precision, offers a promising solution for en-

hanced drone detection and counting through the use of Channel State Information (CSI),

which provides detailed insights into the wireless signal propagation environment (Wang

et al., 2019). However, effectively leveraging 5G CSI for drone detection presents techni-

cal challenges, including accurately interpreting complex data patterns and differentiating

drones from other objects or noise (Chen et al., 2018).

Integrating machine learning techniques, particularly Convolutional Neural Networks (CNNs),
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with 5G CSI data can significantly improve the accuracy and reliability of drone detection

systems (Li et al., 2021). A Multimodal 1D-CNN model can process and analyze the one-

dimensional time-series data from CSI measurements, identifying patterns indicative of

drone activity. Despite its potential, there is a lack of comprehensive research combining

5G CSI with advanced machine learning models for drone detection (Huang et al., 2020).

This research aims to address the following problems:

• How can 5G CSI data be effectively utilized to detect and count the number of drones

in a given scene?

• How can a Multimodal 1D-CNN model be designed, trained, and validated to ensure

accurate and reliable drone count estimation?

• What are the challenges and limitations associated with using 5G CSI and CNNs for

drone detection, and how can they be mitigated?

By addressing these questions, this research seeks to develop a robust and efficient system

for estimating drone counts using 5G CSI and a Multimodal 1D-CNN model.

1.3 Research Methodology

In this study, the general theory needs to be examined, followed by a comprehensive litera-

ture review to survey existing methodologies, technologies, and models related to wireless

sensing, 5G technology, and drone detection. This review will identify the current state

of knowledge, highlight gaps in the existing literature, and provide a foundation for the

development of the proposed system.

This research involves the collection of 5G CSI data from a controlled experimental setup.

The drones will be flown, and data will be captured using USRPs. The study will include

the design and configuration of both hardware and software components. This includes

setting up 5G system, configuring drones, and integrating these components with data

collection and processing modules. Moreover, the raw 5G CSI data will be preprocessed to

remove noise and enhance signal quality for accurate drone count estimation.

The core of the research involves developing a Multimodal 1D-CNN model. The model

will be designed to process the preprocessed 5G CSI data and other relevant features to

estimate the number of drones in a given scene. The 1D-CNN model will be trained using

the collected and preprocessed data. The model will be validated to evaluate its accuracy

and robustness.
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1.4 Research Limitations

The study aims to develop an accurate system for estimating drone count in a scene using

5G Channel State Information (CSI) and a Multimodal 1D Convolutional Neural Network

(1D-CNN), several limitations must be acknowledged that could impact the study’s out-

comes and applicability.

Firstly, the quality and reliability of the 5G CSI data are dependent upon the performance

and stability of the 5G network infrastructure. Variations in signal strength, interference

from other devices, and environmental factors such as physical obstructions can affect the

accuracy of the CSI data collected. These factors could introduce noise and variability into

the dataset, potentially impacting the performance of the 1D-CNN model.

Secondly, the experimental setup is limited by the specific hardware and software configu-

rations used in this study. Additionally, the computational resources required for training

and validating the 1D-CNN model might limit the complexity and size of the neural net-

work, potentially affecting its accuracy and robustness.

Thirdly, the study’s focus on a particular scene or environment may limit the applicability

of the findings to other contexts. The characteristics of the testing environment, such as

the size of the area, the number and types of drones, and the presence of other objects

or obstacles, may influence the system’s performance. Consequently, the results obtained

in this specific context may not directly translate to different scenarios or environments

without further adaptation and testing.

Moreover, the scope of the study is restricted to the use of 5G CSI and a 1D-CNN model

for drone count estimation. While this approach leverages the advantages of 5G tech-

nology and deep learning, it may not fully capture the complexities of multimodal data

integration or the potential benefits of alternative machine learning models. Exploring

other modalities and models could provide additional insights and improve the system’s

overall performance.

Finally, the time constraints and available resources for this research impose practical lim-

itations on the extent and depth of the study. Comprehensive testing and validation across

diverse scenarios and conditions are ideal but may not be feasible within the project’s time-

frame. As such, the findings and conclusions drawn from this research should be viewed

as preliminary and subject to further validation and refinement in future work.

1.5 Organisation

Weekly meetings were held with supervisor to help in consistently tracking progress, op-

portunity to review, identify deviations, and make necessary adjustments. Receiving reg-

ular feedback was provided to improve the quality of work. The meetings were held

physicals on campus and occasionally online. As the deadline was approaching, irregular
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meetings were conducted to discuss challenges and issues arised from the study. Tabel 1.1

presents the people and their roles for the study. Tabel 1.2 presents an overview of the

meetings occured for the study.

Name Role Company Email
Sriram M. Akella Student UiA mahata16@uia.no

Linga R. Cenkeramaddi Supervisor UiA linga.cenkeramaddi@uia.no
Sreenivasa R. Yeduri Co-Supervisor UiA sreenivasa.r.yeduri@uia.no

Table 1.1: Overview of the project roles

Meeting place Participants Frequency Day of week
Online Student and supervisor Weekly Thursday

Physical Student and supervisor Irregular Any weekday

Table 1.2: Overview of meetings

1.6 Publications

This research aims to make contributions to the field of wireless sensing using 5G tech-

nology and machine learning. The study’s findings and data will be disseminated through

multiple publications.

Firstly, two datasets generated during the course of this research will be published. These

datasets will include detailed 5G Channel State Information (CSI) captured from the ex-

perimental setup and the other will include detailed 5G Received Signal Strength (RSS)

values. In addition to the dataset articles, the research findings and methodologies will be

documented in a scientific journal article.

This journal publication will detail the development and evaluation of the proposed system

for estimating drone counts using 5G CSI and a Multimodal 1D Convolutional Neural Net-

work (1D-CNN). The article will cover the experimental setup, data collection processes,

machine learning model development, and the results of our validation studies.

1.7 Thesis Outline

Overview of the structure of the thesis, including chapters and sub-chapters Brief summary

of what each section will cover

• Chapter 2 is dedicated to the theoretical background and a thorough review of the

existing literature. The methodologies and theoretical frameworks relevant to the

research are discussed, providing a foundation for the study.

• Chapter 3 focuses on the setup of the system used in the research. The chapter

presents a detailed descriptions of all hardware and software components utilised
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in the study. The integration of hardware and software is discussed, detailing how

the different components work together as a cohesive system and concludes with

a discussion of the testing and validation procedures used to ensure the system’s

functionality and reliability.

• Chapter 4 presents a comprehensive guide to the software installation process, the

configuration of both hardware and software.

• Chapter 5 provides a detailed account of the data collection and analysis processes.

The methods used for data collection are described, covering the techniques and

tools employed. The chapter focuses on the development of the machine learning

model. The selection of the machine learning approach is justified, explaining the

choice of algorithms. The feature selection and engineering process is described,

followed by the training and validation of the model.

• Chapter 6 results of the research are presented and analyzed. The results obtained

from the experiments are presented in detail, followed by an analysis and interpre-

tation of these results. The chapter compares the findings with the initial research

objectives, highlighting how the results address the research problem. A summary of

the key findings is provided, emphasizing the contributions of the research.

• Chapter 7 provides a comprehensive discussion of the research findings. It begins

with an integration of the findings from all chapters, providing a clear view of the

research outcomes. The implications of the research for are discussed, highlighting

its potential impact. A comparison with previous studies is provided, situating the

research within the broader literature.

• Chapter 8 summarises the main findings of the research, discussing their contribu-

tions to knowledge and practical implications. It provides concluding thoughts and

reflections on the research journey. The chapter emphasises the significance of the

research outcomes and suggests potential areas for future investigation.

• Chapter 9 discusses additional work that extends beyond the primary research find-

ings. This chapter includes supplementary experiments conducted to support or en-

hance the main research. It provides an opportunity to present related work that may

not fit directly into the core chapters but is valuable for the overall understanding

and context of the study.
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Chapter 2

State-of-the-art

2.1 Theoretical Background

2.1.1 Channel State Information (CSI)

Channel State Information (CSI) is a critical component in the realm of wireless sensing

due to its fine subcarrier-level granularity and its accessibility through commodity Wi-

Fi devices. The chapter titled "Understanding of Channel State Information" by Liu et

al. (2021) provides a comprehensive introduction to CSI, elaborating on its fundamental

aspects and practical applications in wireless sensing technologies [5].

CSI refers to the detailed information about the state of a wireless communication channel,

which includes various signal features such as amplitude and phase information of the

subcarriers. This data is crucial for understanding and predicting the behavior of the

wireless channel, thereby enabling the development of more sophisticated and effective

wireless sensing algorithms.

CSI can be represented mathematically as a matrix that describes the effect of the wireless

channel on the transmitted signals. Let H denote the CSI matrix, where H consists of

complex values representing the channel’s amplitude and phase response for each subcar-

rier. The relationship between the transmitted signal X and the received signal Y can be

expressed as:

Y = HX+N (2.1)

where: - Y is the received signal vector, - X is the transmitted signal vector, - N is the

noise vector.

Each element hij of the CSI matrix H can be decomposed into its amplitude |hij| and phase

∠hij components:
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hij = |hij|ej∠hij (2.2)

The article [5] emphasize the importance of comprehending the underlying model of CSI

to leverage its full potential. The chapter breaks down the main components of CSI, in-

cluding:

Signal Features: Detailed characteristics of the transmitted and received signals, includ-

ing amplitude, phase, and frequency responses of the subcarriers.

Error Terms: Various sources of errors that can affect the accuracy of CSI measurements,

such as noise, interference, and hardware imperfections.

Understanding CSI and its components allows researchers and engineers to develop ad-

vanced wireless sensing algorithms. These algorithms can be used in a variety of applica-

tions, including indoor positioning, motion detection, and environmental monitoring. The

chapter also lists devices that support CSI collection, highlighting the practical feasibility

of implementing CSI-based solutions using off-the-shelf hardware.

The work by Liu et al. (2021)[5] serves as a foundational reference for those looking to

delve into the field of wireless sensing using CSI. By providing a detailed breakdown of

CSI’s components and their implications, the chapter aids in the development of robust

and efficient wireless sensing technologies.

2.1.2 CSI in Sensing Applications:

In the context of drone detection, CSI can provide valuable information about the presence

and movement of drones by analyzing the changes in the wireless channel caused by the

drones’ movements. The high resolution and precision of 5G CSI enable the detection of

subtle changes in the channel, which are indicative of the drones’ presence and activity.

• Gesture Recognition: Using CSI data, systems can recognize different gestures by

analyzing the variations in wireless signals caused by the movement of the human

body [6].

• Vital Sign Monitoring: CSI-based systems can monitor vital signs like respiration and

heartbeat by detecting subtle changes in the wireless signal patterns [7].

• Indoor Positioning: CSI data enables precise indoor positioning by analyzing the

multipath propagation effects of wireless signals within an environment [8].

• Activity Recognition: By processing CSI data with machine learning algorithms, it is

possible to recognize various human activities, enhancing the capabilities of smart

home and surveillance systems [9].
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2.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models designed to

process data with a grid-like topology, such as images. The fundamental building block of

a CNN is the convolutional layer, which applies convolution operations to the input data

using a set of filters or kernels. This operation helps in capturing spatial hierarchies by

learning features from small, localized regions of the input [10].

The architecture of a typical CNN includes multiple layers such as convolutional layers,

pooling layers, and fully connected layers. The convolutional layers perform the core

operation of the CNN, extracting features from the input data. Pooling layers, such as max

pooling or average pooling, reduce the spatial dimensions of the feature maps, leading to

a reduction in the number of parameters and computational complexity. Fully connected

layers, placed at the end of the network, perform the classification based on the features

extracted by the convolutional layers [10].

Residual Networks (ResNet)

Residual Networks (ResNet) are an advanced form of CNNs that address the problem of

vanishing gradients, which hinders the training of very deep networks. ResNet introduces

the concept of residual learning, where the network learns residual functions with refer-

ence to the layer inputs, rather than learning unreferenced functions directly [11]. The

core idea is to use shortcut connections, or skip connections, that bypass one or more lay-

ers. These connections enable the gradient to flow directly through the network, allowing

for the training of much deeper networks.

A ResNet model consists of residual blocks, each containing two or more convolutional

layers with batch normalization and ReLU activation. The shortcut connection adds the

input of the block to the output, forming the residual function. This structure helps in

mitigating the degradation problem where adding more layers to a deep network leads to

higher training error [11].

The ResNet architecture has several variants, including ResNet-18, ResNet-34, ResNet-50,

and ResNet-101, each differing in the number of layers and the depth of the network.

ResNet-50, for instance, uses a combination of 1x1, 3x3, and 1x1 convolutions in its resid-

ual blocks to enhance feature extraction capabilities while maintaining a manageable num-

ber of parameters [10].

Applications and Advances

The combination of CNNs and ResNet architectures has led to significant advancements in

various fields, including image classification, object detection, and medical image analysis.

For example, the use of ResNet-50 in complex image demarcation tasks demonstrates its

ability to handle detailed and intricate features in images, providing high accuracy and
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robustness in classification tasks [11].

Recent research has also focused on optimizing CNN and ResNet architectures for edge-

IoT devices, aiming to reduce energy consumption and computational requirements while

maintaining high performance. Techniques such as dependency graph-based pruning and

reinforcement learning-driven optimization have been proposed to enhance the efficiency

of these models in resource-constrained environments [12].

The theoretical foundations of CNNs and ResNet architectures form the basis for many

state-of-the-art deep learning applications. By leveraging convolutional operations and

residual learning, these models have achieved remarkable success in various domains. On-

going research continues to explore new ways to optimize and extend these architectures,

ensuring their relevance and effectiveness in emerging applications.

2.2 Literature Review

Recent advancements in wireless sensing technologies have significantly contributed to hu-

man activity recognition. In this article [13], the authors discuss the utilization of wireless

signal variations caused by human body movements to enable applications such as intru-

sion detection, daily activity recognition, gesture recognition, vital signs monitoring, and

user identification. Krovvidi (2024) explores the fusion of RF and sensor data to enhance

activity detection, demonstrating how combining multiple data sources can improve the

accuracy and reliability of recognizing human activities [14]. Candell et al. (2024) address

the deployment challenges of wireless sensor networks in construction sites, proposing a

5G strategy to enhance activity monitoring and improve site management through real-

time data collection and analysis [15]. Yadav et al. (2024) present tinyRadar, a real-time

multi-target activity recognition system using LSTM models for edge computing environ-

ments, which allows for efficient processing and immediate response to detected activities

[16]. Tian et al. (2024) introduce a low-power wearable sensor designed for fall detection

in the elderly, leveraging shallow-learning algorithms to provide accurate and timely alerts,

thereby enhancing safety for at-risk populations [17]. Mazzieri et al. (2024) examine

attention-refined unrolling techniques for sparse sequential micro-Doppler signal recon-

struction, highlighting advancements in processing complex signal data for more precise

human activity recognition [18]. These studies collectively underscore the potential and

ongoing innovations in wireless sensing for human activity recognition, offering insights

into various methodologies and applications that drive forward the field’s development.

Channel State Information (CSI) has become a focal point in wireless sensing research due

to its ability to provide detailed subcarrier-level data, enabling sophisticated analysis and

applications. Li et al. [6] investigated the use of WiFi CSI data for gesture recognition,

focusing on techniques to enhance data quality and improve recognition accuracy. Their

study demonstrated that by applying data enhancement methods, the reliability of gesture
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recognition systems could be significantly improved. This research highlights the potential

of CSI data in developing robust and accurate gesture recognition systems, which can be

applied in various interactive and security applications. In another study, Li et al. [8] devel-

oped a method for efficient Doppler speed estimation using WiFi CSI. This approach lever-

ages the fine-grained data provided by CSI to enhance passive tracking capabilities. The

proposed method showed that accurate Doppler speed estimation is feasible, which can

significantly improve the performance of tracking systems in various environments. This

advancement underscores the utility of CSI in developing high-precision tracking systems

for applications such as security surveillance and motion detection. Wang [7] explored

the application of multi-task contrastive learning to WiFi CSI data for high-accuracy vital

sign detection. The study demonstrated that this advanced machine learning technique

could be used to monitor vital signs like respiration and heartbeat with high accuracy.

This research indicates that CSI data, combined with sophisticated learning algorithms,

can be a powerful tool in health monitoring systems, providing non-invasive and contin-

uous monitoring solutions. Mao et al. [9] proposed a novel framework using a modi-

fied Generative Adversarial Network (GAN) for cross-domain activity recognition utilizing

WiFi CSI. Their framework showcased the flexibility of CSI in diverse application scenarios,

demonstrating its capability to adapt to different domains and improve activity recognition

performance. This research highlights the potential of CSI in creating adaptable and ro-

bust activity recognition systems that can be used in smart homes, workplaces, and public

spaces.

1D Convolutional Neural Networks (1D-CNN) are a variant of CNNs specifically designed

to process sequential data or time-series data. Unlike 2D-CNNs, which operate on two-

dimensional data such as images, 1D-CNNs apply convolution operations along one dimen-

sion, making them suitable for tasks involving temporal sequences or signal processing. In

wireless sensing, 1D-CNNs are employed to analyze data collected from various sensors,

capturing temporal patterns and features that are essential for accurate sensing and recog-

nition tasks [19]. Santhosh et al. (2023) developed an intelligent robust 1D-CNN model

for human activity recognition using wearable sensor data. The proposed model, trained

on the WISDM dataset, achieved high accuracy in classifying various human activities,

demonstrating the effectiveness of 1D-CNN in extracting meaningful features from time-

series sensor data [20]. Nguyen et al. (2023) utilized 1D-CNN layers concatenated with a

Flatten layer in their low-cost wireless sensor network (LWSN) for monitoring construction

emissions. The 1D-CNN effectively processed the sequential data collected from sensors,

enabling accurate emission monitoring and environmental assessments [19]. Rostovski et

al. (2024) employed a 1D-CNN combined with LSTM for real-time gait anomaly detection

using data from wearable sensors. The hybrid model effectively captured both spatial and

temporal dependencies in the sensor data, facilitating accurate and real-time detection of

gait anomalies [21]. Lau (2024) developed a 1D-CNN model for keystroke inference based

on wireless sensing data. The model successfully identified keystroke patterns, highlight-

ing the potential of 1D-CNNs in security and user behavior analysis applications [22].
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Chapter 3

System Architecture

This chapter aims to provide a comprehensive overview of the system, highlighting the

design choices and considerations that ensure the system meets the research objectives

and performance requirements. We begin with the system requirements, highlighting the

criteria driving architectural decisions. This is followed by a system overview, providing a

perspective on the structure and functionality and an overview of the workflow synthesizes

the various components and processes into a cohesive framework.

Next, we examine the building blocks of the system, including hardware like laptops (e.g.,

Lenovo Thinkpad T460s), and software frameworks such as Python, Gnuradio, and Ubuntu

24.02. The integration of specialized hardware, such as the USRP E312 and Drones used

in this study, is also covered, showcasing their roles within the system.

3.1 System Requirements

The requirements involve several aspects that ensure the system’s effectiveness and effi-

ciency. The system must be capable of collecting Channel State Information (CSI) from

5G signals and additional sensor data from the environment. This data acquisition should

be real-time to facilitate continuous monitoring and analysis. Pre-processing is essential to

filter noise and manage missing values, followed by feature extraction and data transfor-

mation to prepare the data for analysis.

From a technical perspective, the hardware specifications should include at least 8GB of

RAM, multi-core processors, and SSD storage, supported by high-bandwidth network in-

frastructure for real-time data transfer. The software stack involves using the latest version

of a Linux-based operating system, the latest version of Python for programming and ma-

chine learning, and an appropriate version of a signal processing tool such as Gnuradio.

Operationally, the system requires automated updates and patches to maintain its up-to-

date status, along with regular data backups and offsite storage to ensure data integrity.
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3.2 System Overview

Figure 3.1: Overview of the components.

The core of the system is built around a combination of powerful laptops, versatile software

frameworks, and specialized hardware. These components work together to ensure that

the system meets the research objectives and performance requirements.

The integration of these components is critical for the system’s functionality. Laptops,

equipped with the necessary software tools, process and analyze data in real-time. The

USRP E312, connected via USB or Ethernet, captures the CSI from 5G signals, which is

then processed using GNU Radio running on the laptops. The VERT400 antenna enhances

signal reception, ensuring data quality and reliability. Figure 3.1 presents an overview of

the components used in the study.

Communication between components is facilitated through well-defined interfaces and

protocols, ensuring interoperability and efficient data flow. USB and Ethernet connec-

tions enable high-speed data transfer between the USRP E312 and the laptops. Python

scripts manage drone communication via libraries such as DroneKit and ROS, supporting

autonomous operations and data collection.

3.3 Building Blocks

3.3.1 Laptops

For this study, three laptops were utilised for their portability, computational power, and

flexibility. These devices are facilitated for on-site processing, collecting dataset, building

machine learning model, and etc, making them a powerful tool for this study’s success.
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Lenovo Thinkpad T460s

The Lenovo thinkpad T460s is a robust business laptop renowned for its durability, porta-

bility, and performance. Equipped with 6th generation Intel Core i5 and up to 8GB of RAM,

the T460s provides the necessary computational power to handle intensive signal process-

ing tasks efficiently. Its solid-state drive (SSD) ensures fast data access speeds, which is

critical for real-time operations in GNU Radio. [23]

Additionally, the laptop’s lightweight and compact design makes it ideal for fieldwork and

mobile applications. The T460s also offers multiple USB ports, including USB 3.0, facilitat-

ing seamless connections to various software-defined radio (SDR) hardware such as USRP

devices. With its durable build quality, the ThinkPad T460s ensures reliability in diverse

working conditions, making it a dependable tool for this study. [23] [24]

Figure 3.2: Lenovo Thinkpad T460s running GNU Radio

Acer Aspire 5

Acer Aspire 5 is a highly versatile laptop manufactured in 2020.[25] The laptop running

Pop!_OS 22.04 LTS equipped with an AMD Ryzen 7 5825U processor featuring 16 cores

and a clock speed of up to 4.546GHz, the laptop offers computational power necessary for

developing machine learning model. With 32 GB of RAM, it is capable of handling large

datasets and memory-intensive tasks, such as training deep learning models.[25] Figure

3.3 presents further specification of the laptop.

3.3.2 Python

Python is a high-level, interpreted programming language known for its readability and

simplicity. Its versatility and power make it crucial to my study due to its wide range of

applications and ease of use. Python’s extensive standard library and dynamic typing facil-

itate various tasks, including data analysis, artificial intelligence, scientific computing, and

automation. These features make it an ideal choice for complex tasks such as program-
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Figure 3.3: Acer Aspire Software and Hardware specifications

ming drones, developing machine learning models, and transmitting and receiving OFDM

signals.

Python’s extensive libraries and frameworks, such as DroneKit and ROS (Robot Operating

System), facilitate seamless communication with drone hardware and the implementation

of autonomous flight algorithms. It’s compatibility with various machine learning libraries,

including TensorFlow and scikit-learn, enables the efficient development and training of

sophisticated models to interpret and analyze data. Additionally, It’s robust mathematical

and scientific libraries, such as NumPy and SciPy, are instrumental in performing precise

and complex calculations necessary for this study.

3.3.3 Gnuradio

According to gnuradio, GNU Radio is a free, open-source toolkit for developing software

radios. It offers signal processing blocks and can be used with low-cost RF hardware or

in a simulation environment. Widely used in research, industry, academia, government,

and by hobbyists, it supports wireless communications research and the development of

real-world radio systems.[26]

3.3.4 Ubuntu 24.02

Ubuntu is a free and open-source Linux distribution developed by Canonical Ltd. It is one

of the most popular Linux distributions worldwide. It offers regular updates and long-term

support (LTS) versions, ensuring stability and security for both personal and enterprise use.

Canonical has released Ubuntu 24.04 LTS, codenamed "Noble Numbat," which builds on

previous versions and contributions from the open-source community to deliver a secure,

optimized platform. [27]

Several features and benefits make Ubuntu an ideal choice for this study.

• Ubuntu offers long-term support versions, such as Ubuntu 24.02 LTS, which provide
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five years of security updates and bug fixes. This ensures a stable and secure envi-

ronment for the study, reducing the risk of disruptions due to software issues.[28]

• Ubuntu has extensive compatibility with a wide range of hardware and software. It

supports the latest versions of Python and GNU Radio, which are essential for this

study. Additionally, the large user community and extensive documentation provide

valuable support and resources for troubleshooting and optimizing the system [28].

• Despite being a powerful and flexible operating system, Ubuntu maintains an intu-

itive and user-friendly interface. This makes it accessible for users with varying levels

of technical expertise, facilitating smoother operation and collaboration within the

research team [29].

By leveraging Ubuntu’s robust features and advantages, the research team can ensure a

stable, secure, and efficient environment for conducting their study.

Etcher

BalenaEtcher, also known as (Etcher), is a free and open-source utility used for burning

image files, such as ISO and IMG files, to create bootable USB drives and SD cards. It is de-

veloped by Balena, Etcher is a simple and user-friendly tool, making the process of creating

bootable media straightforward even for users with limited technical experience.[30]

3.3.5 USRP E312

The USRP E312 is a software-defined radio platform developed by Ettus Research, de-

signed for applications that require a portable and rugged SDR solution. It is part of the

USRP family, known for their versatility and wide range of applications in wireless com-

munication research, development, and deployment.

The E312 is designed for standalone operation with an integrated ARM-based processor,

allowing users to run custom applications directly on the device without the need for an

external computer. It includes a Xilinx Zynq-7020 SoC (System on Chip) that combines a

dual-core ARM Cortex-A9 processor with FPGA fabric. This provides both the processing

power and flexibility for real-time signal processing.

The E312 supports a frequency range of 70 MHz to 6 GHz, making it suitable for a wide

range of wireless communication standards and applications. It offers up to 56 MHz of in-

stantaneous bandwidth. It features multiple connectivity options including USB, Ethernet,

and GPIO, allowing for flexible integration into various systems and setups. The E312 is

compatible with GNU Radio, a popular open-source toolkit for SDR development making

it a perfect tool for this study. [31][32]
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Figure 3.4: USRP E312

UHD

The USRP Hardware Driver (UHD) is a comprehensive software framework developed

by Ettus Research for managing and controlling the Universal Software Radio Peripheral

(USRP) family of software-defined radios (SDRs). UHD provides a standardized interface

for users to interact with USRP devices, facilitating tasks such as signal processing, data

streaming, and device configuration. UHD abstracts the hardware details of USRP devices,

offering a uniform API across different USRP models. This allows users to develop applica-

tions that can work with various USRP devices without needing to modify the underlying

code for each specific model [33].

UHD is compatible with multiple operating systems, including Linux, macOS, and Win-

dows, ensuring broad accessibility and ease of integration into diverse development envi-

ronments. It supports high-throughput data streaming between the host computer and the

USRP hardware, enabling real-time signal processing applications. It leverages efficient

data transfer mechanisms such as direct memory access (DMA) and zero-copy buffers

to maximize performance. UHD comes with comprehensive documentation and numer-

ous example programs, aiding users in understanding and utilizing the driver effectively.

These resources help both novice and experienced users to quickly get started and develop

advanced applications [34].

VERT400 Antenna

The VERT400 antenna is a highly versatile and efficient component designed for the USRP

(Universal Software Radio Peripheral), covering 144 MHz, 400 MHz, and 1200 MHz. This

tri-band omni-directional vertical antenna is ideal for a wide range of wireless communi-

cation applications. [35]

Supporting the 2-meter, 70-centimeter, and 1200-megahertz bands, the VERT400 allows

users to operate on different frequencies without switching antennas. Its extended receive

range includes 118-160 MHz, 250-290 MHz, 360-390 MHz, 420-470 MHz, 820-960 MHz,

and 1260-1300 MHz, ensuring it can capture signals from various sources for enhanced

utility in diverse scenarios. Performance-wise, the VERT400 offers a gain of 0 dBi for both

the 146 MHz and 446 MHz bands as a 1⁄4 wave antenna, and 3.4 dBi for the 1200 MHz
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band with a 5⁄8 wave design. The antenna handles a maximum power of 10 watts, which

is suitable for most handheld and portable transceivers. [35]

Including the VERT400 antenna in my study is essential due to its versatility and per-

formance capabilities. Moreover, the compact design and reliable performance make it a

practical and effective choice for both experimental and real-world applications. [35]

Figure 3.5: VERT400 Antenna [35]

3.3.6 UAVs

Count Drone Name Max Speed
4 CoDrone EDU 2m/s
2 DJI Mini SE 13m/s
1 DJI Mini 2 16m/s

Table 3.1: Overview of drones used for the study

Dji Mini SE

The DJI Mini SE is an entry-level, lightweight drone that offers impressive aerial photog-

raphy and videography features, making it accessible to beginners and casual users. It

combines portability with ease of use, providing a high-quality flying experience. [36]

The DJI Mini SE is an affordable and lightweight drone, weighing just 249 grams, which

is perfect for those new to drone flying or looking for a budget-friendly option. It comes

equipped with a 12 MP camera and a 1/2.3” CMOS sensor, capable of recording video in

2.7K at 30fps. The drone has a maximum flight time of 30 minutes and can reach speeds

of up to 13 m/s in Sport mode. With a transmission range of up to 4 km via enhanced

Wi-Fi, the DJI Mini SE can ascend to 3,000 meters above sea level. [36]

Dji Mini 2

The DJI Mini 2 is a compact, lightweight drone designed for both recreational and profes-

sional use, offering high-quality aerial photography and videography capabilities. Known

for its ease of use and portability, the DJI Mini 2 is an excellent choice for beginners and

enthusiasts alike. [37]

The DJI Mini 2 is a highly portable and user-friendly drone, weighing just 249 grams,

making it ideal for aerial photography and videography. It features a 12 MP camera with a

1/2.3” CMOS sensor, capable of shooting 4K video at 30fps. The drone offers a maximum
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flight time of 31 minutes and a top speed of 16 m/s in Sport mode. It supports a transmis-

sion range of up to 10 km through OcuSync 2.0 and can fly up to 4,000 meters above sea

level. The DJI Mini 2 also boasts Level 5 wind resistance, ensuring stable flights in windy

conditions. [37]

CoDrone EDU

According to [38], CoDrone Edu is designed to facilitate learning in programming and

robotics through hands-on projects and exercises. It is specifically tailored for educational

purposes, providing an accessible way for students to engage with coding, robotics, and

STEM concepts through hands-on learning. CoDrone Edu can be programmed using vari-

ous languages such as Python, Blockly, and Arduino, making it suitable for different levels

of programming expertise. Additionally, it includes sensors and modules for more ad-

vanced projects and experiments.

The CoDrone Edu from Robolink is a compact educational drone measuring 130 mm x

130 mm x 45 mm and weighing 46 grams. It offers a flight time of approximately 8

minutes per charge and requires about 40 minutes to recharge its 3.7V 300mAh Li-Po

battery. Equipped with a 480p VGA camera, the drone features multiple sensors including

a gyroscope, accelerometer, optical flow sensor, and barometer. It connects via Bluetooth

4.0 and supports programming in Python, Blockly, and Arduino, making it versatile for

various educational levels. The CoDrone Edu can be controlled using the CoDrone app on

Android and iOS devices, with a range of about 50 meters. [38]

Figure 3.6: Drones used for the study
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Chapter 4

Setup & Testing

This chapter provides a comprehensive guide for the installation, configuration, testing,

and validation of the hardware and software components required for the study. The

successful deployment and operation of the system hinge on the precise execution of these

steps to ensure reliability and accuracy in data collection and analysis.

The first section, "Installation and Configuration Guide," details the step-by-step proce-

dures for setting up the necessary software and hardware components. The second sec-

tion, "Testing and Verification," focuses on validating the setup to ensure all components

operate as intended.

4.1 Installation and Configuration Guide

4.1.1 Installation of Ubuntu 24.02

Ubuntu has a step-by-step guide as to how to install Ubuntu on the laptop.[39] I reccomend

to check the documentation for a through installation process. First step is to ensure

that the laptop is compatible. Website [40] provides with a list of certified hardware

which supports Ubuntu. Lenovo Thinkpad T460 (see 3.3.1) has the required capabilities

necessary to ensuring reliability. Here are the following step for installing Ubuntu:

• Download the Ubuntu ISO file: Download the Ubuntu ISO file from the official

Ubuntu website. For this study, I have chosen latest release of Ubuntu 24.04 LTS.

• Create a bootable USB drive: Once the download is complete, a bootable USB drive

needs to be created. Insert the USB flash drive into the computer and open the etcher.

In etcher, select the ISO file, then choose USB drive, and start flash.

• Boot from the USB drive: With the bootable USB drive ready, insert it into the

computer. Restart the computer and enter the boot menu. Select the USB drive from

the list of boot options, which will load the Ubuntu welcome screen.
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• Install Ubuntu: A prompt appears to choose between Interactive and Automated

installation, choose Interactive installation. Interactive is standard, while Automated

allows advanced users to import a configuration file for multiple installs. Next step,

choose Extended selections; Default includes essentials, and Extended adds addi-

tional tools. On the next step, it’s recommended to install third-party software for

improved device support and additional media formats.

• Installation Type: On this step, three options were given - Erase disk and install

Ubuntu, Installing Ubuntu alongside another operating system, Manual Installation.

Manual Installation was selected as Bitlocker was enabled for my computer. I did not

have access to windows operating system to deactivate Bitlocker. Option 1, Erase

disk and install Ubuntu, presented issue with bitlocker, as such, manual installation

was selected.

• User Creation: Follow the on-screen instructions to set the timezone and create an

account with username and password.

• Review and Install: Final step is to review the settings. If unsatisfied with the

settings it is possible to change before installing ubuntu. Once the installation is

complete, restart the computer. Remove the USB drive when instructed, and the

computer will reboot into Ubuntu.

Upon rebooting, Ubuntu login screen is presented. Log in using the account created during

the installation process. To ensure the system is up-to-date, open a terminal and run the

following commands:

1 sudo apt update
2 sudo apt upgrade

Listing 4.1: Update and Upgrade Packages

These commands will update the system’s package lists and upgrade any installed packages

to their latest versions. This is a crucial step as often packages are not at their most recent

version. This step keeps the system secure, stable, and up-to-date with the latest features

and bug fixes.

4.1.2 Installation of Core Packages (Optional)

This step is optional in the installation process. I previously encountered error with both

GNU radio and UHD, hence to ensure error free and stability it was necessary to install

dependencies. Most distributions install these packages through package manager when

installing GNU radio and UHD (see 4.1.3).

The command sudo apt install followed by a long list of packages is used to install all

the necessary dependencies and tools for building and running GNU Radio and UHD on
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Ubuntu. This command includes development tools (e.g., autoconf, automake, cmake), li-

braries (e.g., libboost-all-dev, libusb-1.0-0), Python packages (e.g., python3-numpy, python3-

requests), and various other required components.

1 sudo apt install autoconf automake build -essential ccache cmake ...

cpufrequtils ethtool g++ git inetutils -tools libboost -all -dev ...

libncurses5 libncurses5 -dev libusb -1.0-0 libusb -1.0-0-dev libusb -dev...
python3 -dev python3 -mako python3 -numpy python3 -requests python3 -...

scipy python3 -setuptools python3 -ruamel.yaml git cmake g++ libboost -...
all -dev libgmp -dev swig python3 -numpy python3 -mako python3 -sphinx ...

python3 -lxml libfftw3 -dev libsdl1.2-dev libgsl -dev libqwt -qt5 -dev ...

libqt5opengl5 -dev python3 -pyqt5 liblog4cpp5 -dev libzmq3 -dev python3 -...
yaml python3 -click python3 -click -plugins python3 -zmq python3 -scipy ...

python3 -gi python3 -gi -cairo gir1.2-gtk -3.0 libcodec2 -dev libgsm1 -dev...
libusb -1.0-0 libusb -1.0-0-dev libudev -dev python3 -setuptools ...

pybind11 -dev python3 -matplotlib libsndfile1 -dev libsoapysdr -dev ...

soapysdr -tools python3 -pygccxml python3 -pyqtgraph libiio -dev ...

libad9361 -dev libspdlog -dev python3 -packaging python3 -jsonschema ...

python3 -qtpy

Listing 4.2: Installing Core packages

4.1.3 Installation of GnuRadio 3.11 and UHD 4.6

After installing To install GNU Radio on modern Ubuntu versions, it’s recommended to use

pre-built binary packages, which are sufficient for most users. This approach avoids the

need to build from source unless the have specific requirements or modifications. Use the

following commands:

1 sudo add -apt -repository ppa:gnuradio/gnuradio -releases ppa:...
ettusresearch/uhd

2 sudo apt -get update
3 sudo apt -get install gnuradio libuhd -dev uhd -host python3 -uhd uhd -doc ...

gnuradio -doc gnuradio -dev

Listing 4.3: Installing GnuRadio and UHD
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4.1.4 Configuration USRP E312

The USRP E312 comes pre-assembled, requiring no additional setup of the motherboard

or daughterboard. This makes the initial setup process straightforward and convenient,

allowing to focus on deployment and usage rather than assembly.

To begin, connect the power supply and network cables to the USRP E312. The USRP is

connect to network using Ethernet cable. Ensure all connections are secure to avoid any

interruptions during operation. It’s also essential to review and configure any necessary

security settings to protect the device and network.

Updating the File System

• Download the Latest Image: Install the required version of UHD (v4.6.0) on a

host system with Internet access. Execute the following command to download the

appropriate image for the E312. This will download the image to

/usr/local/share/uhd/images/usrp_e310_fs.sdimg.

1 sudo uhd_images_downloader -t sdimg -t e310 -t sg3
2

• Unmounting SD Card: It is important to make sure that the SD card is unmounted.

First step is to find the location the device is attached to by using the Linux utility

lsblk. By using umount utility, the device is unmounted.

Figure 4.1: Identifying device node attachment point

• Flash the Image to the SD Card: Insert the micro SD card into the host system. Use

the dd command to write the image to the SD card.

1 sudo dd if=/usr/local/share/uhd/images/usrp_e310_fs.sdimg of=/dev/...
sda bs=1M

2
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4.2 Testing and Verification

4.2.1 Secenario 1: Identifying and verifying the operation of USRP

E312

USRP devices are identified and addressed using key/value string pairs, which help narrow

down the search for specific devices or groups of devices. Most UHD utility applications

and examples include an --args parameter that accepts a device address. Each USRP

device can be identified on the host system using various identifiers.

Identifier Key Example Value
Serial Number serial 135782412
IP Address addr 128.168.0.221

Table 4.1: Common identifiers and their corresponding keys for USRP

Discovery of devices attached to the system using the uhd_find_devices program. This

program scans the system for supported devices and outputs a list of discovered devices

along with their addresses. The following commands (4.4) help identify and locate the

USRP devices connected to the system.

1 uhd_find_devices
2 uhd_find_devices --args="addr =128.168.0.221"
3 uhd_find_devices --args="serial =135782412"

Listing 4.4: Identifying USRP

Verifying the operation of the USRP is a critical step that ensures functionality, perfor-

mance, and reliability. The UHD includes a variety of example programs designed to verify

the operation of USRP devices. These examples help ensure that the USRP is functioning

correctly and performing as expected. The examples files are located in

/usr/local/lib/uhd/examples

The benchmark_rate example tests the maximum data rates for transmitting (TX) and re-

ceiving (RX) samples, helping to ensure that your system can handle the required through-

put.

1 ./ benchmark_rate --rx_rate 10e6 --tx_rate 10e6

Listing 4.5: Benchmark Testing

4.2.2 Secenario 2: Testing Signal Transmission and Reception with

USRP Using GNU Radio

The test aims to verify the proper functionality of both the USRP and GNU Radio platforms.

This test illustrates a fundamental yet an important signal processing task using GNU
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Radio and USRP hardware. By transmitting a constant signal and observing it through

frequency spectrum analysis, validates the functionality of the USRP and GNU Radio setup,

confirming that both the transmission and reception processes work as intendedW.

The initial phase of the experiment involves setting up the transmission path, as shown in

figure 4.2a. The figure illustrates the configuration for transmitting a constant signal. The

setup comprises the following components:

• Constant Source Block: This block generates a steady signal with a magnitude

of 800 millivolts. This unmodulated, continuous signal serves as the input to the

transmission chain.

• USRP Sink Block: The primary component responsible for emitting the signal into

the airwaves. The block takes crucial parameters such as device address, sample

rate, Center Frequency, and Gain. For this test, 1.5 million samples per second were

configured at 980MHz center frequency with a gain of 70.

• QT GUI Frequency Sink: A graphical user interface element that displays the fre-

quency domain representation of the transmitted signal.

The subsequent phase involves setting up the reception path, as depicted in Figure 4.2b.

The figure illustrates the configuration for receiving and analyzing the signal. The setup

includes the following components:

• USRP Source Block: This block is configured to receive signals with same parame-

ters as the USRP sink block.

• QT GUI Frequency Sink: Similar to the transmission setup, this graphical interface

element visualizes the received signal’s frequency spectrum.

(a) Transmitter (b) Receiver

Figure 4.2: Testing Transmission and Reception using USRP

The transmitted signal’s frequency spectrum is captured and visualized using the QT GUI

Frequency Sink, as shown in Figure 4.3. The figure presents the frequency domain repre-

sentation of the transmitted signal. The plot depicts the relative gain (dB) as a function of

frequency (MHz). The prominent peak at the center frequency (0 MHz in relative terms)

corresponds to the constant signal transmitted at 980 MHz. The baseline noise level ob-

served across the spectrum, which is intrinsic to the system and influenced by external
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interference. The distinctiveness of the peak indicates a constant signal with minimal

frequency deviation, aligning with the expected output from a constant source.

Figure 4.3: Visualisation of received signal

This test confirms the proper operation of both the USRP hardware and GNU Radio soft-

ware, ensuring their reliability for further research and development. The test lays the

groundwork for subsequent development of 5G system that delve into more intricate and

sophisticated signal processing techniques.
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Chapter 5

System Implementation

5.1 5G System Design

The 5G system design forms the backbone of our wireless sensing application. Central to

this design are the transmitter and receiver, implemented using GNU Radio (see 3.3.3).

This section describes the configuration and functionality of both the transmitter and re-

ceiver, which are critical for the successful implementation of our 5G-based wireless sens-

ing system.

5.1.1 OFDM Transmitter

The GNU Radio flowgraph for the Orthogonal Frequency-Division Multiplexing (OFDM)

transmitter is a pivotal element in the dataset collection process aimed at estimating drone

counts using 5G Channel State Information (CSI). This flowgraph 5.1 integrates various

signal processing blocks to generate and transmit OFDM signals, which are robust against

multipath fading and interference. This section provides an in-depth analysis of the trans-

mitter flowgraph, examining its components, configurations, and operational workflow to

elucidate its critical role in the experimental setup.

Components and Their Functions

The GNU Radio flowgraph for the OFDM transmitter comprises several key blocks, each

serving specific functions to ensure accurate and efficient signal generation and transmis-

sion. The primary components include the Constant Source, Stream to Tagged Stream,

UChar to Float, OFDM Transmitter, Multiply Const, UHD: USRP Sink, and QT GUI blocks.

Each block’s parameters and configurations are meticulously set to achieve the desired

performance.

The Constant Source Block, identified as analog_const_source_x_0, generates a contin-

uous stream of constant data values. This constant data simulates a steady input for the
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transmitter, essential for maintaining a reliable data flow. The parameter for this block is

set to a constant value of 50, representing a simple data packet or control information.

The Stream to Tagged Stream Block, labeled blocks_st_tgged_stream_0, converts this

continuous data stream into tagged packets. These tagged packets are crucial for managing

packet lengths and synchronization during transmission. The packet length is set to 50,

and the length tag key is identified as packet_len.

The UChar to Float Block (blocks_uchar_to_float_0) converts data from unsigned char

to float format, preparing it for subsequent modulation processes. This conversion is nec-

essary because the OFDM modulation requires floating-point arithmetic for accurate signal

processing.

The OFDM Transmitter Block (digital_ofdm_tx_0) is the core component responsible for

generating OFDM signals. This block manages data packetization, modulation, the Inverse

Fast Fourier Transform (IFFT), and cyclic prefix addition. Key parameters include an FFT

Length of 64, which determines the number of subcarriers (N). The FFT operation can be

represented mathematically as:

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N

where x[n] are the time-domain samples and X[k] are the frequency-domain symbols. The

Cyclic Prefix Length is set to 16, which helps mitigate inter-symbol interference (ISI) by

adding a prefix that is a copy of the end of the OFDM symbol. This process can be described

as:

xcp[n] = x[n+N − Lcp]

where Lcp is the length of the cyclic prefix. The block also defines Occupied Carriers and

Pilot Carriers, specifying which subcarriers are used for data transmission and channel

estimation, respectively. Occupied carriers are set as (−4,−3,−2,−1, 1, 2, 3, 4), , and pi-

lot carriers are set as (−6,−5, 5, 6) with pilot symbols as (−1, 1,−1, 1). The modulation

schemes for header and payload data are BPSK (Binary Phase-Shift Keying) and QPSK

(Quadrature Phase-Shift Keying), respectively, ensuring robust and efficient data encod-

ing.

The Multiply Const Block (blocks_multiply_const_vxx_0) scales the amplitude of the

OFDM signal, ensuring it is within the desired range for transmission. The multiplication

factor is set to 50m, meaning the signal amplitude is scaled by a factor of 0.05.

The UHD: USRP Sink Block (uhd_usrp_sink_0) transmits the processed OFDM signal us-

ing USRP hardware. It is configured with a device address (addr=128.39.200.106), a

sample rate of 1.5M samples per second, a center frequency of 980 MHz, a transmission
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gain of 50 dB, and a bandwidth of 1 MHz. These parameters ensure the signal is transmit-

ted at the correct frequency and power level.

Real-time visualization of the transmitted signal is facilitated by the QT GUI blocks, includ-

ing the QT GUI Time Sink (qtgui_time_sink_x_0_0_1), QT GUI Waterfall Sink

(qtgui_waterfall_sink_x_0), and QT GUI Frequency Sink (qtgui_freq_sink_x_0_0).

These blocks provide real-time visualizations in the time domain, frequency domain, and

spectral view, respectively. The QT GUI Time Sink displays the signal with a sample rate of

1.5M and 1.024k points. The QT GUI Waterfall Sink has an FFT size of 1024, center fre-

quency of 980 MHz, and bandwidth of 750 kHz, while the QT GUI Frequency Sink shares

the same center frequency and bandwidth settings.

Figure 5.1: OFDM Transmitter Flowchart

Operational Workflow

The operational workflow of the GNU Radio flowgraph for the OFDM transmitter can be

broken down into several stages, each responsible for specific signal processing tasks. Ini-

tially, the Constant Source Block generates a steady stream of constant data values, serving

as the input for the transmitter. This data stream is then converted into tagged packets by

the Stream to Tagged Stream Block, ensuring proper management and synchronization of

data packets during transmission.

The UChar to Float Block transforms the data packets from unsigned char to float format,

preparing them for modulation. Subsequently, the OFDM Transmitter Block processes

the float data packets through several critical steps. First, data packets are mapped to

modulation symbols (BPSK for headers and QPSK for payloads). The frequency-domain

symbols are then converted to time-domain samples using the IFFT process, creating the

OFDM signal. A cyclic prefix is added to each OFDM symbol to combat inter-symbol

interference.
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The Multiply Const Block scales the amplitude of the OFDM signal, ensuring it is appro-

priate for transmission. The UHD: USRP Sink Block then sends the scaled OFDM signal

to the USRP hardware for over-the-air transmission. The USRP is configured with the ap-

propriate sample rate, center frequency, gain, and bandwidth to match the experimental

setup.

Real-time visualization of the transmitted signal is provided by the QT GUI Time Sink, Wa-

terfall Sink, and Frequency Sink blocks. These visualizations are essential for monitoring

the transmission process, ensuring the integrity and quality of the transmitted signals, and

allowing for immediate detection and troubleshooting of any anomalies.

The flowgraph leverages these configurations to transmit OFDM signals using a USRP

device. The transmitted signals propagate through the environment, influenced by the

presence and movement of drones. The receiver captures these signals, and the collected

CSI data reflects the impact of the drones on the signal propagation.

5.1.2 OFDM Receiver

The GNU Radio flowgraph for the Orthogonal Frequency-Division Multiplexing (OFDM)

receiver is a critical component in the dataset collection process aimed at estimating drone

counts using 5G Channel State Information (CSI). This flowgraph incorporates various sig-

nal processing blocks to receive, demodulate, and decode OFDM signals, ensuring accurate

data recovery despite the challenges posed by the wireless channel. The OFDM receiver

comprises two sections - the OFDM part and the CSI part. This section provides a com-

prehensive analysis of the receiver flowgraph, focusing on its components, configurations,

and operational workflow to highlight its essential role in the experimental setup.

OFDM Section

The OFDM section of the GNU Radio flowgraph is fundamental to demodulating and de-

coding the received OFDM signals. This process begins with the UHD: USRP Source Block,

which is responsible for receiving the incoming RF signals and converting them to base-

band. The USRP Source Block is meticulously configured with a sample rate of 1.5M

samples per second, a center frequency of 980 MHz, a gain of 70 dB, and a bandwidth of 1

MHz. These parameters ensure that the signals are captured with high fidelity, maintaining

the integrity of the received data.

Once the signals are converted to baseband, they are processed by the OFDM Receiver

Block. The OFDM Receiver Block (digital_ofdm_rx_0) is the core component responsible

for demodulating and decoding the received OFDM signals. Key parameters include an

FFT Length of 64, consistent with the transmitter’s configuration, ensuring proper align-

ment of subcarriers. The cyclic prefix length is set to 16, matching the transmitter’s con-

figuration to effectively handle multipath effects. The block also defines occupied carriers

(−4,−3,−2,−1, 1, 2, 3, 4) and pilot carriers (−6,−5, 5, 6), ensuring accurate data recovery
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and channel estimation. The pilot symbols are configured as (−1, 1,−1, 1). This block per-

forms several critical functions to decode the received OFDM signals accurately. Initially,

the cyclic prefix, which was added during transmission to combat inter-symbol interfer-

ence (ISI), is removed. This step is crucial for mitigating ISI and preparing the signal

for FFT processing. The FFT Length is set to 64, aligning with the transmitter’s configura-

tion, ensuring proper demultiplexing of the composite signal into its constituent subcarrier

signals.

Real-time visualization of the received signals is provided by several QT GUI blocks, in-

cluding the QT GUI Time Sink (qtgui_time_sink_x_0), QT GUI Waterfall Sink

(qtgui_waterfall_sink_x_0), and QT GUI Frequency Sink (qtgui_freq_sink_x_0). These

blocks provide time-domain, frequency-domain, and spectral views of the received signals,

respectively, facilitating real-time monitoring of the reception process.

Figure 5.2: OFDM Receiver Flowchart

Operational Workflow

The operational workflow of the GNU Radio flowgraph for the OFDM receiver involves

several stages, each responsible for specific signal processing tasks. Initially, the UHD:

USRP Source Block captures the incoming RF signals and converts them to baseband. This

baseband signal is then fed into the OFDM Receiver Block, where it undergoes several

critical processing steps.

First, the cyclic prefix is removed from the received OFDM symbols, mitigating inter-

symbol interference. The time-domain symbols are then converted to the frequency do-

main using the FFT operation:
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X[k] =
N−1∑
n=0

x[n]e−j2πkn/N

where x[n] are the time-domain samples and X[k] are the frequency-domain symbols. The

pilot carriers and symbols are used for channel estimation, allowing the receiver to correct

for any distortions introduced by the channel.

The demodulated data is then converted from unsigned char to float format by the UChar

to Float Block, preparing it for further processing. Real-time visualization of the received

signals is provided by the QT GUI Time Sink, Waterfall Sink, and Frequency Sink blocks.

These visualizations are crucial for monitoring the reception process, ensuring the integrity

and quality of the received signals, and allowing for immediate detection and troubleshoot-

ing of any anomalies.

Channel State Information (CSI)

The CSI section of the flowgraph is dedicated to extracting Channel State Information from

the received OFDM signals. This information is crucial for understanding how the environ-

ment, particularly the presence and movement of drones, affects the signal propagation.

The CSI Estimation Block processes the output of the OFDM Receiver Block to estimate

the channel characteristics. Configured with an FFT Length of 64, the block uses the same

pilot carriers and symbols as the OFDM Receiver Block, ensuring consistent and accurate

channel estimation.

Channel estimation involves comparing the received pilot subcarriers with the known pi-

lot symbols, allowing the block to determine the channel’s effect on the transmitted signal.

This process is critical for analyzing the impact of drone movements on the transmitted sig-

nals. The extracted CSI data provides a detailed representation of the channel’s behavior,

which is essential for further analysis and model training in the research. The CSI data en-

ables the researchers to understand the multipath effects, signal fading, and other channel

impairments introduced by the drones, facilitating the development of robust algorithms

for drone detection and estimation.

Detailed Analysis of CSI Estimation The process begins with the CSI Estimation Block

receiving input symbols, which are complex values representing the received OFDM sym-

bols. The input symbols are divided into chunks corresponding to the FFT length (64 in

this case). These symbols are then reshaped into a matrix where each row represents an

OFDM symbol, and each column corresponds to a subcarrier.

in0 = input_items[0]

num_symbols =
len(in0)
fft_len
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in0 = in0[: num_symbols × fft_len].reshape((num_symbols, fft_len))

The pilot carriers are strategically placed within the subcarriers. For example, if the pilot

carriers are [−6,−5, 5, 6], they are offset by half the FFT length to map them into the correct

positions within the FFT output:

pilot_indices = pilot_carriers +
fft_len

2

pilot_indices = [−6 + 32,−5 + 32, 5 + 32, 6 + 32] = [26, 27, 37, 38]

These indices must be within the valid range of [0, FFT Length), ensuring no out-of-bound

errors. The corresponding pilot symbols are [−1, 1,−1, 1].

Next, the block extracts the received pilot symbols from the incoming OFDM symbols at

these pilot positions. The channel response at the pilot subcarriers is estimated by dividing

the received pilot symbols by the known transmitted pilot symbols:

Hestimated[i, pilot_indices] =
received_pilots
pilot_symbols

This estimation is performed for each OFDM symbol, resulting in a channel estimate ma-

trix Hestimated of size (num_symbols, fft_len). The estimated channel response at the pilot

subcarriers is then interpolated across all subcarriers to obtain a full channel estimate for

each OFDM symbol. Linear interpolation is used, where the interpolated channel response

for subcarrier k is:

Hinterpolated[i, k] = interp(indices, pilot_indices, Hestimated[i, pilot_indices])

where indices is an array of all subcarrier indices [0, 1, ..., fft_len − 1].

Finally, the full channel estimate Hinterpolated is reshaped back into a flat array to match the

output format of the block, ensuring compatibility with downstream processing blocks in

the flowgraph.

The CSI Estimation Block’s detailed process ensures accurate channel state information

extraction from the received OFDM signals. By leveraging pilot subcarriers and known

pilot symbols, the block estimates the channel response, crucial for analyzing the impact

of environmental factors, such as drone movements, on signal propagation.

Significance and Impact

The GNU Radio flowgraph for the OFDM transmitter and receiver is integral to the dataset

collection process for several reasons. First, it ensures the generation and reception of

high-quality OFDM signals, which are resilient against multipath fading and interference,
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essential for reliable data transmission and recovery. The proper packetization, modula-

tion, and cyclic prefix addition within the transmitter flowgraph guarantee that transmit-

ted data can be accurately received and decoded by the receiver, facilitating precise CSI

estimation.

The inclusion of QT GUI blocks for real-time visualization allows researchers to contin-

uously monitor both the transmission and reception processes, ensuring signal integrity

and quality. The transmitter flowgraph’s flexible design permits easy adjustments to pa-

rameters such as FFT length, cyclic prefix length, modulation schemes, and transmission

gain, making it adaptable to various experimental conditions. Similarly, the receiver flow-

graph allows adjustments to parameters such as FFT length, cyclic prefix length, and gain

settings, ensuring adaptability and accuracy in data recovery.

In conclusion, the GNU Radio flowgraph for both the OFDM transmitter and receiver is

a sophisticated and essential component of the experimental setup for estimating drone

counts using 5G CSI. The detailed configuration and robust processing pipeline ensure the

reliable generation, transmission, reception, and decoding of OFDM signals, ultimately

contributing to the accuracy and reliability of the collected dataset. This in-depth analysis

underscores the importance of each component and the intricate interactions that make

the flowgraph an effective tool for advanced wireless communication experiments.

5.2 Dataset Collection

The success of any data-driven research relies on the quality of the data collected. In this

section the methodologies and processes employed for collecting and analyzing the data

necessary for counting the number of drones is presented. The aim is to ensure that the

data is accurate, relevant, and sufficient to support model development. This section also

discusses the specific parameters and configurations used during the data collection phase

to ensure consistency and reliability.

The dataset, consisting of Channel State Information (CSI) values, is crucial for the accu-

rate training and validation of the model. The data collection process involved through

planning and execution to ensure the integrity and reliability of the data.

The core components used for data collection were two USRP E312s (Universal Software

Radio Peripheral), one designated as the transmitter and the other as the receiver. These

devices were strategically placed 4 meters apart to create a controlled environment for

capturing the CSI values accurately. The drones were flown within this setup to simulate

real-world scenarios while ensuring that the collected data was relevant for the intended

application.

The physical setup involved securing the USRP devices to stable platforms to prevent any

movement during the experiments. The transmitter was configured to emit 5G signals,

while the receiver was set up to capture the CSI values generated by the interaction of
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Figure 5.3: Dataset collection system overview

these signals with the flying drones. Ensuring a stable and interference-free environment

was paramount to obtaining high-quality data.

The data collection process was designed to systematically gather CSI values as different

numbers of drones were flown within the experimental setup. The procedure began with

flying a single drone for a duration of 30 seconds. This initial experiment established a

baseline for the CSI values with minimal interference. Subsequently, additional drones

were introduced one at a time, up to a maximum of seven drones, each flown for the same

duration.

A total of seven drones were used in the experiments: four Edu CoDrone drones and

three DJI Mini drones. The Edu CoDrone drones were programmed to move at speeds

ranging from 0.1 to 2 meters per second in a sway pattern. These drones were placed on

the floor facing different directions, causing them to sway in various directions. The DJI

Mini drones were manually controlled, with human operators determining their speed and

direction during the flights. All drones were flown at different altitudes to simulate diverse

real-world conditions.

To simulate real-world conditions, the drones were flown at different speeds and followed

varied paths. This was critical to ensure that the collected data reflected the complexi-

ties of real-world scenarios. The Edu CoDrone drones, which moved in a sway pattern,

provided consistent, programmable movements, while the manually controlled DJI Mini

drones introduced variability in speed and direction, as determined by the operators. The

speeds of the drones ranged from slow hovering (around 0.1 meters per second) to more

rapid movements (up to 2 meters per second). The paths included straight lines, curves,

circular patterns, and random movements to simulate different flight behaviors.

35



The experiments were conducted in an indoor classroom at the university, ensuring con-

trolled environmental conditions. The classroom was cleared of tables and chairs to pro-

vide a spacious area for the drones to fly without obstructions. This controlled environment

helped minimize external interferences and maintain consistency across all experiments.

5.3 CNN Model Design

In this chapter, we delve into the development of the machine learning model designed

to estimate the drone count using wireless sensing data collected via 5G technology. The

integration of machine learning, particularly Convolutional Neural Networks (CNNs), is

a critical aspect of this research, as it allows for the accurate analysis and interpretation

of complex data patterns. This chapter outlines the comprehensive process involved in

developing the machine learning model, data preparation and preprocessing, feature en-

gineering, model construction, and training.

We begin by discussing the detailed steps for preparing and preprocessing the data to

ensure its integrity, and suitable for training the model. Next, we cover the feature en-

gineering process, where relevant features are extracted and transformed to enhance the

model’s performance. We then move on to the construction of the CNN model, describing

the architecture, layer configuration, and parameters used. The model training process is

elaborated upon, including the methods employed for optimizing the model.

5.3.1 Data Loading and Preprocessing

The DataLoader class is a crucial component of the preprocessing phase, designed to han-

dle the loading, normalization, and preparation of the Channel State Information (CSI)

data for training and evaluation of the neural network model. This section describes the

functionality and implementation details of the DataLoader class, which facilitates efficient

and standardized data preprocessing.

Class Initialization

The initialization of the DataLoader class sets up essential parameters and attributes re-

quired for data handling. The constructor (__init__ method) accepts three parameters.

• base_path: Specifies the directory where the data files are stored.

• samples_to_take: Indicates the number of samples to be extracted from each file

for processing.

• sequence_length: Defines the length of each sequence to be used as input to the

neural network.

• data_list: A list to store the loaded and processed data sequences.
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• labels_list: A list to store the corresponding labels for each data sequence.

1 class DataLoader:
2 def __init__(self , base_path , samples_to_take =1_000_000 , ...

sequence_length =256):
3 self.base_path = base_path
4 self.samples_to_take = samples_to_take
5 self.sequence_length = sequence_length
6 self.data_list = []
7 self.labels_list = []

Listing 5.1: Initializing Dataloader class

Data Loading Method

The load_data method is responsible for reading the CSI data files, normalizing the data,

and organizing it into a format suitable for model training. This method processes each

file sequentially and extracts the necessary information.

1 def load_data(self):
2 for i in range(1, 8):
3 file_path = f"{self.base_path }{i}"
4 label = i - 1
5 file_data = np.fromfile(open(file_path , 'rb'), dtype=np....

complex64)
6 start_idx = len(file_data) // 2 - self.samples_to_take // 2
7 end_idx = start_idx + self.samples_to_take
8 real_part = file_data.real[start_idx:end_idx]
9 imag_part = file_data.imag[start_idx:end_idx]

10 abs_part = np.abs(file_data)[start_idx:end_idx]
11 combined_data = np.column_stack ((real_part , imag_part , abs_part...

))
12 self.data_list.append(combined_data)
13 self.labels_list.extend ([label] * len(combined_data))
14 self.data = np.vstack(self.data_list)
15 self.labels = np.array(self.labels_list)
16 self.reshape_data ()

Listing 5.2: Method for reading CSI file

The process begins with the method that iterates through the data files, which are assumed

to be named sequentially. Each file is read as a binary file with complex64 data type using

np.fromfile. A subset of the data is extracted based on samples_to_take, ensuring a

central segment of the data is used. The real part, imaginary part, and absolute value of the

complex data combined into a single array using np.column_stack. Labels corresponding

to the number of drones are appended to labels_list. The combined data is reshaped to

the appropriate format by calling the reshape_data method.
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Data Normalization

The normalize method standardizes the data by adjusting the mean to 0 and the standard

deviation to 1. This normalization process is crucial for ensuring that the neural network

can effectively learn from the data.

Normalized Data =
X − µ

σ

where X represents the original data, µ is the mean of the data, and σ is the standard

deviation of the data.

Data Reshaping

The reshape_data method restructures the data into sequences of a specified length, mak-

ing it suitable for input into the neural network. This method also ensures that the labels

are correctly aligned with the reshaped data sequences.

1 def reshape_data(self):
2 num_samples = self.data.shape [0] // self.sequence_length
3 self.data = self.data[: num_samples * self.sequence_length]
4 self.labels = self.labels [: num_samples * self.sequence_length]
5 self.data = self.data.reshape(num_samples , self.sequence_length , 3)
6 self.labels = self.labels [:: self.sequence_length]

The method calculates the number of complete sequences that can be formed from the

data. The data is truncated to ensure it fits into the calculated number of sequences.

The data is reshaped into the format (num_samples, sequence_length, 3), where 3 rep-

resents the three components (real, imaginary, absolute). Labels are aligned with the

reshaped data sequences to ensure correct labeling.

Train-Test Split

The get_train_test_split method divides the data into training and testing sets, facili-

tating model evaluation.

1 def get_train_test_split(self , test_size =0.2, random_state =42):
2 return train_test_split(self.data , self.labels , test_size=test_size...

, random_state=random_state)

The method uses train_test_split from sklearn.model_selection to split the data and

labels into training and testing sets. The method allows specification of the test set size

(test_size) and a random seed (random_state) for reproducibility.

To summarize, the DataLoader class is an essential component for preprocessing CSI data,

ensuring that the data is properly normalized, reshaped, and split for effective training
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and evaluation of the neural network model. By automating these preprocessing steps, the

DataLoader class enhances the reproducibility and reliability of the data pipeline, provid-

ing a robust foundation for subsequent model training and evaluation phases.

5.3.2 CNN Model Architecture

Figure 5.4: CNN model architecture

The proposed model is a Residual Network (ResNet) designed for classifying the num-

ber of drones based on the Channel State Information (CSI) data represented as complex

numbers. This model leverages the powerful feature extraction capabilities of convolu-

tional neural networks (CNNs) and the efficient gradient propagation of residual networks.

The model processes three distinct input features—real part, imaginary part, and absolute
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value of the complex numbers—through parallel input branches. Each branch applies a se-

ries of convolutional and residual blocks to extract high-level features before these features

are concatenated and classified by a fully connected layer.

The CSI data for each drone is preprocessed into three separate components: the real part,

the imaginary part, and the absolute value of the complex numbers. These components

are structured into sequences of fixed length, serving as inputs to the neural network. The

input shape for each component is defined as (sequence_length, 1), where the sequence

length is a hyperparameter determined based on the characteristics of the data.

1 inputs = layers.Input(shape=input_shape)

The network architecture consists of three parallel branches, each dedicated to one of the

input components. The structure of each branch is described below:

Initial Convolutional Layer: Each branch begins with a one-dimensional convolutional

layer (Conv1D) with 8 filters, a kernel size of 7, and a stride of 2. This layer is followed

by batch normalization and a ReLU activation function. The convolutional layer aims to

capture local temporal patterns in the input sequences. The output of this layer is then

downsampled using a max-pooling layer with a pool size of 3 and a stride of 2 to reduce

the computational complexity and the risk of overfitting.

Residual Blocks: Residual blocks form the core of the network, allowing it to learn

deeper representations while mitigating the vanishing gradient problem. Each residual

block comprises:

• A Conv1D layer with batch normalization and ReLU activation.

• A second Conv1D layer with batch normalization.

• A shortcut connection that adds the input of the block to the output of the second

Conv1D layer. This shortcut connection may include a Conv1D layer with a kernel

size of 1 if the input and output dimensions differ.

• The output of the residual block is obtained by adding the shortcut connection to the

output of the second Conv1D layer, followed by a ReLU activation.

The number of filters in the Conv1D layers increases as the network deepens, starting

from 8 and doubling at each downsampling stage. The use of residual connections ensures

that the gradient can flow back through the network effectively, facilitating the training of

deeper models.

Global Average Pooling and Dropout: After passing through the residual blocks, the

output is subjected to global average pooling, which reduces each feature map to a single
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value. This operation preserves spatial information while significantly reducing the num-

ber of parameters. To further prevent overfitting, a dropout layer with a dropout rate of

0.5 is applied.

Feature Concatenation and Classification: The outputs of the three parallel branches

are concatenated, combining the extracted features from the real part, imaginary part, and

absolute value of the input sequences. The concatenated features are then fed into a fully

connected dense layer with a softmax activation function, which outputs the probability

distribution over the seven classes (number of drones).

1 def residual_block(self , x, filters , kernel_size =3, stride=1, ...

conv_shortcut=False):
2 shortcut = x
3 if conv_shortcut:
4 shortcut = layers.Conv1D(filters , 1, strides=stride , ...

kernel_regularizer=regularizers.l2 (0.001))(shortcut)
5 shortcut = layers.BatchNormalization ()(shortcut)
6 x = layers.Conv1D(filters , kernel_size , strides=stride , padding='...

same', kernel_regularizer=regularizers.l2 (0.001))(x)
7 x = layers.BatchNormalization ()(x)
8 x = layers.ReLU()(x)
9 x = layers.Conv1D(filters , kernel_size , padding='same', ...

kernel_regularizer=regularizers.l2 (0.001))(x)
10 x = layers.BatchNormalization ()(x)
11 x = layers.add([shortcut , x])
12 x = layers.ReLU()(x)
13 return x
14

15 def build_model(self):
16 input_layers = []
17 outputs = []
18

19 for _ in range(self.channels):
20 inputs = layers.Input(shape=self.input_shape)
21 x = layers.Conv1D(8, 7, strides=2, padding='same', ...

kernel_regularizer=regularizers.l2 (0.001))(inputs)
22 x = layers.BatchNormalization ()(x)
23 x = layers.ReLU()(x)
24 x = layers.MaxPooling1D (3, strides=2, padding='same')(x)
25

26 x = self.residual_block(x, 8)
27 x = self.residual_block(x, 16, stride=2, conv_shortcut=True)
28 x = self.residual_block(x, 16)
29 x = self.residual_block(x, 32, stride=2, conv_shortcut=True)
30

31 x = layers.GlobalAveragePooling1D ()(x)
32 x = layers.Dropout (0.5)(x)
33 input_layers.append(inputs)
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34 outputs.append(x)
35

36 merged = layers.concatenate(outputs)
37 output = layers.Dense(self.num_classes , activation='softmax ')(...

merged)
38 model = models.Model(inputs=input_layers , outputs=output)
39 return model

Listing 5.3: Resnet Code

The model is compiled using the Adam optimizer with a learning rate of 1 × 10−4. The

loss function used is sparse categorical crossentropy, suitable for multi-class classification

problems. The model is trained with early stopping and learning rate reduction on plateau

callbacks to prevent overfitting and to ensure efficient convergence. Early stopping moni-

tors the validation loss and halts training if no improvement is observed for 10 consecutive

epochs. The learning rate reduction on plateau reduces the learning rate by a factor of 0.5

if the validation loss does not improve for 5 consecutive epochs, with a minimum learning

rate of 1× 10−7.

1 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy ',...
metrics =['accuracy '])

2

3 history = model.fit(X_train , y_train , validation_data =(X_test , y_test),...
epochs =100, batch_size =64, callbacks=callbacks_list)

The model’s performance is evaluated on a separate test set, and the best model based

on validation loss is saved. Additionally, the training history, including accuracy and loss

curves, is plotted to visualize the model’s performance over the training epochs.
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Chapter 6

Results

6.1 Training and Validation Loss

The training and validation loss curves for the ResNet model are presented in Figure 6.1.

The loss curves demonstrate the model’s learning process over 75 epochs. Initially, both

the training and validation losses decrease sharply, indicating that the model is learning

effectively. The training loss continues to decrease steadily, suggesting that the model fits

the training data well. However, the validation loss starts to plateau around epoch 30,

indicating that the model begins to generalize to the validation data.

Despite slight fluctuations in the validation loss beyond epoch 30, it remains relatively low

and close to the training loss, indicating that the model is not significantly overfitting. The

final validation loss is approximately 0.05, demonstrating the model’s ability to generalize

to unseen data.

Figure 6.1: Training and Validation Loss
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6.2 Training and Validation Accuracy

The training and validation accuracy curves for the ResNet model are shown in Figure

5.2. These curves highlight the model’s performance in terms of correctly classifying the

number of drones. Similar to the loss curves, the accuracy curves show a rapid increase in

both training and validation accuracy during the initial epochs.

The training accuracy reaches to 100%, indicating that the model can almost perfectly clas-

sify the training data. The validation accuracy also increases steadily, peaking at approx-

imately 90% around epoch 30. This high validation accuracy demonstrates the model’s

robust performance and its ability to generalize well to the validation dataset.

The slight decline in both training and validation accuracy beyond epoch 50 suggests that

the learning rate may need to be reduced further, or that the model could benefit from ad-

ditional regularization to prevent overfitting. However, the overall high accuracy indicates

the effectiveness of the model in classifying the number of drones based on the CSI data.

Figure 6.2: Training and Validation Accuracy

6.3 Confusion Matrix

The confusion matrix for the ResNet model is presented in Figure 5.3. The confusion

matrix provides a detailed breakdown of the model’s classification performance across all

classes (i.e., the number of drones). The rows of the matrix represent the actual number

of drones, while the columns represent the predicted number of drones.

The diagonal elements of the confusion matrix indicate the number of correctly classi-

fied instances for each class, while off-diagonal elements represent misclassifications. The
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model demonstrates high classification accuracy across all classes, with most of the confu-

sion matrix’s values concentrated along the diagonal.

Figure 6.3: CNN Confusion Matrix

Drones Overall Accuracy
1 92%
2 96%
3 96%
4 94%
5 93%
6 96%
7 92%

Table 6.1: Overall Accuracy of the CNN Model

These results indicate that the model performs well in distinguishing between different

numbers of drones, with relatively few misclassifications. However, there are minor confu-

sions observed between adjacent classes, suggesting that the model occasionally struggles

with differentiating between similar numbers of drones.

The table 6.2 summarizes the Precision, Recall, and F1 Score for each class (number of

drones) based on the confusion matrix. The provided metrics indicate that the CNN model

generally performs well across all classes, but there are some variations. The model shows

very high precision and recall for classifying two and three drones, indicating that it is

highly accurate in both identifying these instances and not misclassifying others as such.
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For most classes, the precision, recall, and F1 scores are above 0.9, indicating strong over-

all performance. The model is reliable in identifying and correctly classifying different

numbers of drones. The precision and recall for one and seven drones are slightly lower

compared to other classes. This suggests that the model may occasionally misclassify these

instances or miss some actual instances.

Drones Precision Recall F1 Score
1 0.929 0.920 0.924
2 0.970 0.960 0.965
3 0.960 0.960 0.960
4 0.949 0.940 0.945
5 0.930 0.930 0.930
6 0.960 0.960 0.960
7 0.911 0.920 0.915

Table 6.2: Precision, Recall, and F1 Score of the CNN model

This implies that the CNN model is robust and performs well in classifying multiple drones,

particularly when there are two, three, or six drones, where it achieves the highest F1

scores. The slight drop in precision and recall for one and seven drones suggests room

for improvement. Further training or adjustments to the model may help in enhancing

the accuracy for these specific cases. With F1 scores consistently above 0.9 for all classes,

the CNN model is reliable for practical applications where accurate classification of the

number of drones is critical.
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Chapter 7

Discussions

7.1 Interpretation of Results

The results demonstrate that integrating 5G CSI with a Multimodal 1D-CNN model signif-

icantly enhances the accuracy of drone detection and counting. The high resolution and

precision of 5G CSI allow for detailed analysis of the propagation environment, enabling

the model to identify subtle patterns indicative of drone presence. The 1D-CNN model

effectively learns and extracts features from the CSI data, achieving high accuracy across

various experimental scenarios.

The ResNet model trained on the drone CSI data exhibits strong performance, achieving

high accuracy on both training and validation datasets. The loss curves and accuracy

metrics indicate effective learning and generalization, while the confusion matrix confirms

robust classification capabilities with minimal misclassifications across all classes.

Metrics such as accuracy, precision, recall, and F1-score show substantial improvement

over traditional methods like radar and visual surveillance. These results align with previ-

ous studies highlighting the potential of machine learning techniques in enhancing wireless

sensing capabilities. The findings confirm that advanced machine learning models, com-

bined with high-resolution 5G data, can overcome the limitations of conventional drone

detection methods.

Further improvements could be achieved by fine-tuning the learning rate schedule, in-

creasing the dataset size, or exploring additional regularization techniques. These strate-

gies could help reduce slight fluctuations observed in the validation loss and enhance the

model’s robustness.

Overall, the results validate the effectiveness of using a ResNet architecture for time-series

classification tasks involving complex CSI data. The model’s strong performance provides

a solid foundation for future research and potential real-world applications in the field of

drone detection.
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7.2 Comparison with Existing Studies

Comparing the findings with existing literature, it is evident that the use of 5G CSI provides

a significant advantage over other wireless sensing technologies. Previous research has

demonstrated the limitations of Wi-Fi and Bluetooth-based sensing in terms of range and

accuracy [41, 42]. The enhanced capabilities of 5G, particularly its ability to provide

detailed CSI data, contribute to the improved performance observed in this study.

Furthermore, the application of CNNs in wireless sensing is supported by several studies

that have shown their effectiveness in pattern recognition tasks [43, 44]. The use of a

Multimodal 1D-CNN in this research further validates the model’s capability to handle

complex time-series data and extract meaningful features for drone detection.

7.3 Challenges

One significant challenge during the experiments was the collision of drones, particularly

because some required manual control, increasing the risk of accidents. These collisions

posed risks to equipment and introduced noise into the dataset, potentially compromising

CSI data quality. To mitigate this, operators received additional training, and safety pro-

tocols, including physical barriers, were enhanced, reducing collisions and improving data

quality.

Network connectivity issues also posed challenges, with laptops struggling to connect to

USRP devices due to closed Ethernet ports. This disrupted data collection and timing. The

network configuration was reviewed and adjusted, and backup equipment was kept ready

to ensure continuity of the experiments.

The varying battery life of drones was another challenge, causing delays due to frequent

battery changes and introducing environmental noise. A rotation system with fully charged

spare batteries and regular maintenance checks helped reduce downtime and maintain

consistency.

Developing the ResNet model for drone classification using CSI data involved managing

and preprocessing complex datasets, balancing model complexity and generalization, and

integrating multiple input channels. Techniques like normalization, dropout, and batch

normalization were critical but required extensive experimentation to optimize. Despite

these challenges, a systematic and iterative approach enabled the creation of an effective

model.
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Chapter 8

Conclusions

This thesis has explored the integration of 5G Channel State Information (CSI) with ad-

vanced machine learning techniques, specifically a Multimodal 1D Convolutional Neural

Network (1D-CNN), to develop a robust system for estimating drone counts in various

environments. The research was driven by the increasing challenges posed by the prolif-

eration of drones in sectors such as agriculture, surveillance, and delivery services, which

require effective monitoring and management to ensure safety, security, and compliance

with regulations.

The study began with the collection and preprocessing of high-resolution 5G CSI data,

addressing the complexities of managing and normalizing this data to extract meaningful

features. By leveraging the powerful pattern recognition capabilities of CNNs, the devel-

oped model was able to accurately detect and count drones, demonstrating substantial

improvements over traditional methods like radar and visual surveillance.

Key findings highlighted the significant advantages of using 5G technology for wireless

sensing applications, with CSI providing detailed insights into the propagation environ-

ment that are crucial for accurate drone detection. The 1D-CNN model’s ability to handle

complex time-series data and extract relevant features further validated the potential of

machine learning in enhancing wireless sensing capabilities.

Despite the promising results, the research also identified several limitations, including

the controlled experimental setup that may not fully represent real-world complexities,

and the computational demands of processing high-dimensional CSI data. Future research

should focus on conducting experiments in diverse environments, optimizing models for

real-time applications.

In conclusion, this thesis contributes to the advancement of wireless sensing technologies

by demonstrating the feasibility and effectiveness of integrating 5G CSI with CNNs for

drone detection. The findings provide valuable insights for the development of sophisti-

cated monitoring systems and set a foundation for future innovations in the field.
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Chapter 9

Additional Work

9.1 Capturing Received Signal Strength Values

The RSSI section of the flowgraph measures the received signal strength and provides

visualizations of the signal power. This part of the flowgraph includes several blocks that

compute, average, and visualize the RSSI values. The process begins with the Complex

to Mag2 Block, which calculates the magnitude squared of the complex received signals.

This calculation is essential for understanding the strength and quality of the received

signals, as it provides a direct measure of signal power. The operation is represented by

|X[k]|2 = ℜ(X[k])2 + ℑ(X[k])2, where ℜ(X[k]) and ℑ(X[k]) are the real and imaginary

parts of the received signals, respectively [45].

The Moving Average Block smooths the data by averaging the signal power over a length

of 1.024k, reducing noise and providing a more stable measure of signal strength. This av-

eraging process is crucial for mitigating the effects of short-term fluctuations and providing

a clearer representation of the signal’s overall strength. The averaged signal power is then

converted to a logarithmic scale using the Log10 Block. The logarithmic transformation is

represented by PdB = 10 log10(Plinear), facilitating easier analysis and visualization [46].

To ensure the signal power is within a suitable range for visualization and analysis, the

logarithmic power measure is adjusted by adding a constant value of 10 using the Add

Const Block and scaling by a factor of 10 using the Multiply Const Block. These adjust-

ments are essential for standardizing the signal power measurements, making them easier

to compare and analyze across different conditions [47].

The processed RSSI data is saved to a file using the File Sink Block, enabling further

analysis and archiving of the signal strength data. Real-time visualization is provided by

the QT GUI Time Sink and Waterfall Sink blocks, which display the RSSI values in the

time domain and frequency domain, respectively. The QT GUI Time Sink visualizes the

RSSI values with a sample rate of 1.5M and 1.024k points, while the QT GUI Waterfall

Sink provides a spectral view with an FFT size of 1024, center frequency of 980 MHz,
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Figure 9.1: Flowchart of RSSI

and bandwidth of 750 kHz. These visualizations are crucial for monitoring the reception

process, ensuring signal integrity and quality, and allowing for immediate detection and

troubleshooting of any anomalies [48].
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Appendix A

5G System Code

A.1 OFDM Transmitter and Receiver

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3

4 #
5 # SPDX -License -Identifier: GPL -3.0
6 #
7 # GNU Radio Python Flow Graph
8 # Title: OFDM Transmitter
9 # Description: Transmit a pre -defined signal (a complex sine) as OFDM ...

packets.
10 # GNU Radio version: v3 .11.0.0git -717- g72e21b54
11

12 from PyQt5 import Qt
13 from gnuradio import qtgui
14 from PyQt5 import QtCore
15 from gnuradio import analog
16 from gnuradio import blocks
17 from gnuradio import digital
18 from gnuradio import gr
19 from gnuradio.filter import firdes
20 from gnuradio.fft import window
21 import sys
22 import signal
23 from PyQt5 import Qt
24 from argparse import ArgumentParser
25 from gnuradio.eng_arg import eng_float , intx
26 from gnuradio import eng_notation
27 from gnuradio import uhd
28 import time
29 from gnuradio.digital.utils import tagged_streams
30 import sip
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31

32

33 class OFDM_Tx(gr.top_block , Qt.QWidget):
34

35 def __init__(self):
36 gr.top_block.__init__(self , "OFDM Transmitter", ...

catch_exceptions=True)
37 Qt.QWidget.__init__(self)
38 self.setWindowTitle("OFDM Transmitter")
39 qtgui.util.check_set_qss ()
40 try:
41 self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio -grc'))
42 except BaseException as exc:
43 print(f"Qt GUI: Could not set Icon: {str(exc)}", file=sys....

stderr)
44 self.top_scroll_layout = Qt.QVBoxLayout ()
45 self.setLayout(self.top_scroll_layout)
46 self.top_scroll = Qt.QScrollArea ()
47 self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
48 self.top_scroll_layout.addWidget(self.top_scroll)
49 self.top_scroll.setWidgetResizable(True)
50 self.top_widget = Qt.QWidget ()
51 self.top_scroll.setWidget(self.top_widget)
52 self.top_layout = Qt.QVBoxLayout(self.top_widget)
53 self.top_grid_layout = Qt.QGridLayout ()
54 self.top_layout.addLayout(self.top_grid_layout)
55

56 self.settings = Qt.QSettings("GNU Radio", "OFDM_Tx")
57

58 try:
59 geometry = self.settings.value("geometry")
60 if geometry:
61 self.restoreGeometry(geometry)
62 except BaseException as exc:
63 print(f"Qt GUI: Could not restore geometry: {str(exc)}", ...

file=sys.stderr)
64

65 ##################################################
66 # Variables
67 ##################################################
68 self.samp_rate = samp_rate = 1.5e6
69 self.packet_length_tag_key = packet_length_tag_key = "...

packet_len"
70 self.packet_len = packet_len = 50
71 self.noise_voltage = noise_voltage = 0.1
72 self.len_tag_key = len_tag_key = "packet_len"
73 self.freq_offset = freq_offset = 0
74 self.fft_len = fft_len = 64
75 self.center_freq = center_freq = 980e6
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76 self.band_width = band_width = 7.5e5
77

78 ##################################################
79 # Blocks
80 ##################################################
81

82 self.uhd_usrp_sink_0 = uhd.usrp_sink(
83 ",".join(("addr =128.39.200.106", '')),
84 uhd.stream_args(
85 cpu_format="fc32",
86 args='',
87 channels=list(range(0, 1)),
88 ),
89 "",
90 )
91 self.uhd_usrp_sink_0.set_samp_rate(samp_rate)
92 self.uhd_usrp_sink_0.set_time_unknown_pps(uhd.time_spec (0))
93

94 self.uhd_usrp_sink_0.set_center_freq(center_freq , 0)
95 self.uhd_usrp_sink_0.set_antenna("TX/RX", 0)
96 self.uhd_usrp_sink_0.set_bandwidth (1e6 , 0)
97 self.uhd_usrp_sink_0.set_gain (50, 0)
98 self.qtgui_waterfall_sink_x_0 = qtgui.waterfall_sink_c(
99 1024, # size

100 window.WIN_HAMMING , # wintype
101 center_freq , # fc
102 band_width , # bw
103 "", # name
104 1, # number of inputs
105 None , # parent
106 )
107 self.qtgui_waterfall_sink_x_0.set_update_time (0.10)
108 self.qtgui_waterfall_sink_x_0.enable_grid(True)
109 self.qtgui_waterfall_sink_x_0.enable_axis_labels(True)
110

111 labels = ['', '', '', '', '', '', '', '', '', '']
112 colors = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
113 alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
114

115 for i in range (1):
116 if len(labels[i]) == 0:
117 self.qtgui_waterfall_sink_x_0.set_line_label(i, "Data ...

{0}".format(i))
118 else:
119 self.qtgui_waterfall_sink_x_0.set_line_label(i, labels[...

i])
120 self.qtgui_waterfall_sink_x_0.set_color_map(i, colors[i])
121 self.qtgui_waterfall_sink_x_0.set_line_alpha(i, alphas[i])
122
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123 self.qtgui_waterfall_sink_x_0.set_intensity_range (-140, 10)
124

125 self._qtgui_waterfall_sink_x_0_win = sip.wrapinstance(
126 self.qtgui_waterfall_sink_x_0.qwidget (), Qt.QWidget
127 )
128

129 self.top_layout.addWidget(self._qtgui_waterfall_sink_x_0_win)
130 self.qtgui_time_sink_x_0_0_1 = qtgui.time_sink_c(
131 1024, # size
132 samp_rate , # samp_rate
133 'Transmitter Input ', # name
134 1, # number of inputs
135 None , # parent
136 )
137 self.qtgui_time_sink_x_0_0_1.set_update_time (0.10)
138 self.qtgui_time_sink_x_0_0_1.set_y_axis(-1, 1)
139

140 self.qtgui_time_sink_x_0_0_1.set_y_label('Amplitude ', "")
141

142 self.qtgui_time_sink_x_0_0_1.enable_tags(True)
143 self.qtgui_time_sink_x_0_0_1.set_trigger_mode(
144 qtgui.TRIG_MODE_FREE , qtgui.TRIG_SLOPE_POS , 0.0, 0, 0, ""
145 )
146 self.qtgui_time_sink_x_0_0_1.enable_autoscale(True)
147 self.qtgui_time_sink_x_0_0_1.enable_grid(False)
148 self.qtgui_time_sink_x_0_0_1.enable_axis_labels(True)
149 self.qtgui_time_sink_x_0_0_1.enable_control_panel(True)
150 self.qtgui_time_sink_x_0_0_1.enable_stem_plot(False)
151

152 labels = ['', '', '', '', '', '', '', '', '', '']
153 widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
154 colors = [
155 'blue',
156 'red',
157 'green',
158 'black',
159 'cyan',
160 'magenta ',
161 'yellow ',
162 'dark red',
163 'dark green',
164 'dark blue',
165 ]
166 alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
167 styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
168 markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
169

170 for i in range (2):
171 if len(labels[i]) == 0:
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172 if i % 2 == 0:
173 self.qtgui_time_sink_x_0_0_1.set_line_label(
174 i, "Re{{Data {0}}}".format(i / 2)
175 )
176 else:
177 self.qtgui_time_sink_x_0_0_1.set_line_label(
178 i, "Im{{Data {0}}}".format(i / 2)
179 )
180 else:
181 self.qtgui_time_sink_x_0_0_1.set_line_label(i, labels[i...

])
182 self.qtgui_time_sink_x_0_0_1.set_line_width(i, widths[i])
183 self.qtgui_time_sink_x_0_0_1.set_line_color(i, colors[i])
184 self.qtgui_time_sink_x_0_0_1.set_line_style(i, styles[i])
185 self.qtgui_time_sink_x_0_0_1.set_line_marker(i, markers[i])
186 self.qtgui_time_sink_x_0_0_1.set_line_alpha(i, alphas[i])
187

188 self._qtgui_time_sink_x_0_0_1_win = sip.wrapinstance(
189 self.qtgui_time_sink_x_0_0_1.qwidget (), Qt.QWidget
190 )
191 self.top_layout.addWidget(self._qtgui_time_sink_x_0_0_1_win)
192 self.qtgui_time_sink_x_0 = qtgui.time_sink_f(
193 1024, # size
194 samp_rate , # samp_rate
195 "Data", # name
196 1, # number of inputs
197 None , # parent
198 )
199 self.qtgui_time_sink_x_0.set_update_time (0.10)
200 self.qtgui_time_sink_x_0.set_y_axis(-1, 1)
201

202 self.qtgui_time_sink_x_0.set_y_label('Amplitude ', "")
203

204 self.qtgui_time_sink_x_0.enable_tags(True)
205 self.qtgui_time_sink_x_0.set_trigger_mode(
206 qtgui.TRIG_MODE_FREE , qtgui.TRIG_SLOPE_POS , 0.0, 0, 0, ""
207 )
208 self.qtgui_time_sink_x_0.enable_autoscale(True)
209 self.qtgui_time_sink_x_0.enable_grid(True)
210 self.qtgui_time_sink_x_0.enable_axis_labels(True)
211 self.qtgui_time_sink_x_0.enable_control_panel(True)
212 self.qtgui_time_sink_x_0.enable_stem_plot(False)
213

214 labels = [
215 'Signal 1',
216 'Signal 2',
217 'Signal 3',
218 'Signal 4',
219 'Signal 5',
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220 'Signal 6',
221 'Signal 7',
222 'Signal 8',
223 'Signal 9',
224 'Signal 10',
225 ]
226 widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
227 colors = [
228 'blue',
229 'red',
230 'green',
231 'black',
232 'cyan',
233 'magenta ',
234 'yellow ',
235 'dark red',
236 'dark green',
237 'dark blue',
238 ]
239 alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
240 styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
241 markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
242

243 for i in range (1):
244 if len(labels[i]) == 0:
245 self.qtgui_time_sink_x_0.set_line_label(i, "Data {0}"....

format(i))
246 else:
247 self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
248 self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
249 self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
250 self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
251 self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
252 self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])
253

254 self._qtgui_time_sink_x_0_win = sip.wrapinstance(
255 self.qtgui_time_sink_x_0.qwidget (), Qt.QWidget
256 )
257 self.top_layout.addWidget(self._qtgui_time_sink_x_0_win)
258 self.qtgui_freq_sink_x_0_0 = qtgui.freq_sink_c(
259 1024, # size
260 window.WIN_HAMMING , # wintype
261 center_freq , # fc
262 band_width , # bw
263 'Rx Spectrum1 ', # name
264 1,
265 None , # parent
266 )
267 self.qtgui_freq_sink_x_0_0.set_update_time (0.10)

62



268 self.qtgui_freq_sink_x_0_0.set_y_axis (( -140), 10)
269 self.qtgui_freq_sink_x_0_0.set_y_label('Relative Gain', 'dB')
270 self.qtgui_freq_sink_x_0_0.set_trigger_mode(qtgui....

TRIG_MODE_FREE , 0.0, 0, "")
271 self.qtgui_freq_sink_x_0_0.enable_autoscale(True)
272 self.qtgui_freq_sink_x_0_0.enable_grid(True)
273 self.qtgui_freq_sink_x_0_0.set_fft_average (1.0)
274 self.qtgui_freq_sink_x_0_0.enable_axis_labels(True)
275 self.qtgui_freq_sink_x_0_0.enable_control_panel(True)
276 self.qtgui_freq_sink_x_0_0.set_fft_window_normalized(False)
277

278 labels = ['Rx Spectrum ', '', '', '', '', '', '', '', '', '']
279 widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
280 colors = [
281 "blue",
282 "red",
283 "green",
284 "black",
285 "cyan",
286 "magenta",
287 "yellow",
288 "dark red",
289 "dark green",
290 "dark blue",
291 ]
292 alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
293

294 for i in range (1):
295 if len(labels[i]) == 0:
296 self.qtgui_freq_sink_x_0_0.set_line_label(i, "Data {0}"...

.format(i))
297 else:
298 self.qtgui_freq_sink_x_0_0.set_line_label(i, labels[i])
299 self.qtgui_freq_sink_x_0_0.set_line_width(i, widths[i])
300 self.qtgui_freq_sink_x_0_0.set_line_color(i, colors[i])
301 self.qtgui_freq_sink_x_0_0.set_line_alpha(i, alphas[i])
302

303 self._qtgui_freq_sink_x_0_0_win = sip.wrapinstance(
304 self.qtgui_freq_sink_x_0_0.qwidget (), Qt.QWidget
305 )
306 self.top_layout.addWidget(self._qtgui_freq_sink_x_0_0_win)
307 self._noise_voltage_range = qtgui.Range(0, 1, 0.01, 0.1, 200)
308 self._noise_voltage_win = qtgui.RangeWidget(
309 self._noise_voltage_range ,
310 self.set_noise_voltage ,
311 "Noise Amplitude",
312 "counter_slider",
313 float ,
314 QtCore.Qt.Horizontal ,
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315 )
316 self.top_layout.addWidget(self._noise_voltage_win)
317 self._freq_offset_range = qtgui.Range(-3, 3, 0.01, 0, 200)
318 self._freq_offset_win = qtgui.RangeWidget(
319 self._freq_offset_range ,
320 self.set_freq_offset ,
321 "Frequency Offset (Multiples of Sub -carrier spacing)",
322 "counter_slider",
323 float ,
324 QtCore.Qt.Horizontal ,
325 )
326 self.top_layout.addWidget(self._freq_offset_win)
327 self.digital_ofdm_tx_0 = digital.ofdm_tx(
328 fft_len=fft_len ,
329 cp_len =( fft_len // 4),
330 packet_length_tag_key=len_tag_key ,
331 occupied_carriers =((-4, -3, -2, -1, 1, 2, 3, 4) ,),
332 pilot_carriers =((-6, -5, 5, 6) ,),
333 pilot_symbols =((-1, 1, -1, 1) ,),
334 sync_word1=None ,
335 sync_word2=None ,
336 bps_header =1,
337 bps_payload =2,
338 rolloff=0,
339 debug_log=True ,
340 scramble_bits=False ,
341 )
342 self.blocks_uchar_to_float_0 = blocks.uchar_to_float ()
343 self.blocks_stream_to_tagged_stream_0 = blocks....

stream_to_tagged_stream(
344 gr.sizeof_char , 1, packet_len , len_tag_key
345 )
346 self.blocks_multiply_const_vxx_0_0 = blocks.multiply_const_cc...

(0.05)
347 self.blocks_file_sink_0_0 = blocks.file_sink(
348 gr.sizeof_char * 1,
349 '/home/acps/Documents/data/Velocity_Track_OFDM_Tx ',
350 False ,
351 )
352 self.blocks_file_sink_0_0.set_unbuffered(False)
353 self.analog_const_source_x_0 = analog.sig_source_b(
354 0, analog.GR_CONST_WAVE , 0, 0, 50
355 )
356

357 ##################################################
358 # Connections
359 ##################################################
360 self.connect(
361 (self.analog_const_source_x_0 , 0),
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362 (self.blocks_stream_to_tagged_stream_0 , 0),
363 )
364 self.connect(
365 (self.blocks_multiply_const_vxx_0_0 , 0), (self....

qtgui_freq_sink_x_0_0 , 0)
366 )
367 self.connect(
368 (self.blocks_multiply_const_vxx_0_0 , 0), (self....

qtgui_time_sink_x_0_0_1 , 0)
369 )
370 self.connect(
371 (self.blocks_multiply_const_vxx_0_0 , 0), (self....

qtgui_waterfall_sink_x_0 , 0)
372 )
373 self.connect ((self.blocks_multiply_const_vxx_0_0 , 0), (self....

uhd_usrp_sink_0 , 0))
374 self.connect(
375 (self.blocks_stream_to_tagged_stream_0 , 0), (self....

blocks_file_sink_0_0 , 0)
376 )
377 self.connect(
378 (self.blocks_stream_to_tagged_stream_0 , 0),
379 (self.blocks_uchar_to_float_0 , 0),
380 )
381 self.connect(
382 (self.blocks_stream_to_tagged_stream_0 , 0), (self....

digital_ofdm_tx_0 , 0)
383 )
384 self.connect ((self.blocks_uchar_to_float_0 , 0), (self....

qtgui_time_sink_x_0 , 0))
385 self.connect(
386 (self.digital_ofdm_tx_0 , 0), (self....

blocks_multiply_const_vxx_0_0 , 0)
387 )
388

389 def closeEvent(self , event):
390 self.settings = Qt.QSettings("GNU Radio", "OFDM_Tx")
391 self.settings.setValue("geometry", self.saveGeometry ())
392 self.stop()
393 self.wait()
394

395 event.accept ()
396

397 def get_samp_rate(self):
398 return self.samp_rate
399

400 def set_samp_rate(self , samp_rate):
401 self.samp_rate = samp_rate
402 self.qtgui_time_sink_x_0.set_samp_rate(self.samp_rate)

65



403 self.qtgui_time_sink_x_0_0_1.set_samp_rate(self.samp_rate)
404 self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate)
405

406 def get_packet_length_tag_key(self):
407 return self.packet_length_tag_key
408

409 def set_packet_length_tag_key(self , packet_length_tag_key):
410 self.packet_length_tag_key = packet_length_tag_key
411

412 def get_packet_len(self):
413 return self.packet_len
414

415 def set_packet_len(self , packet_len):
416 self.packet_len = packet_len
417 self.blocks_stream_to_tagged_stream_0.set_packet_len(self....

packet_len)
418 self.blocks_stream_to_tagged_stream_0.set_packet_len_pmt(self....

packet_len)
419

420 def get_noise_voltage(self):
421 return self.noise_voltage
422

423 def set_noise_voltage(self , noise_voltage):
424 self.noise_voltage = noise_voltage
425

426 def get_len_tag_key(self):
427 return self.len_tag_key
428

429 def set_len_tag_key(self , len_tag_key):
430 self.len_tag_key = len_tag_key
431

432 def get_freq_offset(self):
433 return self.freq_offset
434

435 def set_freq_offset(self , freq_offset):
436 self.freq_offset = freq_offset
437

438 def get_fft_len(self):
439 return self.fft_len
440

441 def set_fft_len(self , fft_len):
442 self.fft_len = fft_len
443

444 def get_center_freq(self):
445 return self.center_freq
446

447 def set_center_freq(self , center_freq):
448 self.center_freq = center_freq
449 self.qtgui_freq_sink_x_0_0.set_frequency_range(
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450 self.center_freq , self.band_width
451 )
452 self.qtgui_waterfall_sink_x_0.set_frequency_range(
453 self.center_freq , self.band_width
454 )
455 self.uhd_usrp_sink_0.set_center_freq(self.center_freq , 0)
456

457 def get_band_width(self):
458 return self.band_width
459

460 def set_band_width(self , band_width):
461 self.band_width = band_width
462 self.qtgui_freq_sink_x_0_0.set_frequency_range(
463 self.center_freq , self.band_width
464 )
465 self.qtgui_waterfall_sink_x_0.set_frequency_range(
466 self.center_freq , self.band_width
467 )
468

469

470 def main(top_block_cls=OFDM_Tx , options=None):
471

472 qapp = Qt.QApplication(sys.argv)
473

474 tb = top_block_cls ()
475

476 tb.start ()
477

478 tb.show()
479

480 def sig_handler(sig=None , frame=None):
481 tb.stop()
482 tb.wait()
483

484 Qt.QApplication.quit()
485

486 signal.signal(signal.SIGINT , sig_handler)
487 signal.signal(signal.SIGTERM , sig_handler)
488

489 timer = Qt.QTimer ()
490 timer.start (500)
491 timer.timeout.connect(lambda: None)
492

493 qapp.exec_ ()
494

495

496 if __name__ == '__main__ ':
497 main()

Listing A.1: OFDM Transmitter
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1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3

4 #
5 # SPDX -License -Identifier: GPL -3.0
6 #
7 # GNU Radio Python Flow Graph
8 # Title: OFDM receiver
9 # Description: Transmit a pre -defined signal (a complex sine) as OFDM ...

packets.
10 # GNU Radio version: v3 .11.0.0git -717- g72e21b54
11

12 from PyQt5 import Qt
13 from gnuradio import qtgui
14 from PyQt5 import QtCore
15 from gnuradio import blocks
16 from gnuradio import digital
17 from gnuradio import gr
18 from gnuradio.filter import firdes
19 from gnuradio.fft import window
20 import sys
21 import signal
22 from PyQt5 import Qt
23 from argparse import ArgumentParser
24 from gnuradio.eng_arg import eng_float , intx
25 from gnuradio import eng_notation
26 from gnuradio import uhd
27 import time
28 from gnuradio.digital.utils import tagged_streams
29 import ofdm_Rx_epy_block_0 as epy_block_0 # embedded python block
30 import sip
31

32

33

34 class ofdm_Rx(gr.top_block , Qt.QWidget):
35

36 def __init__(self):
37 gr.top_block.__init__(self , "OFDM receiver", catch_exceptions=...

True)
38 Qt.QWidget.__init__(self)
39 self.setWindowTitle("OFDM receiver")
40 qtgui.util.check_set_qss ()
41 try:
42 self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio -grc'))
43 except BaseException as exc:
44 print(f"Qt GUI: Could not set Icon: {str(exc)}", file=sys....

stderr)
45 self.top_scroll_layout = Qt.QVBoxLayout ()
46 self.setLayout(self.top_scroll_layout)
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47 self.top_scroll = Qt.QScrollArea ()
48 self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
49 self.top_scroll_layout.addWidget(self.top_scroll)
50 self.top_scroll.setWidgetResizable(True)
51 self.top_widget = Qt.QWidget ()
52 self.top_scroll.setWidget(self.top_widget)
53 self.top_layout = Qt.QVBoxLayout(self.top_widget)
54 self.top_grid_layout = Qt.QGridLayout ()
55 self.top_layout.addLayout(self.top_grid_layout)
56

57 self.settings = Qt.QSettings("GNU Radio", "ofdm_Rx")
58

59 try:
60 geometry = self.settings.value("geometry")
61 if geometry:
62 self.restoreGeometry(geometry)
63 except BaseException as exc:
64 print(f"Qt GUI: Could not restore geometry: {str(exc)}", ...

file=sys.stderr)
65

66 ##################################################
67 # Variables
68 ##################################################
69 self.samp_rate = samp_rate = 1.5e6
70 self.packet_length_tag_key = packet_length_tag_key = "...

packet_len"
71 self.packet_len = packet_len = 50
72 self.noise_voltage = noise_voltage = 0.1
73 self.len_tag_key = len_tag_key = "packet_len"
74 self.freq_offset = freq_offset = 0
75 self.fft_len = fft_len = 64
76 self.center_freq = center_freq = 980e6
77 self.band_width = band_width = 75e4
78

79 ##################################################
80 # Blocks
81 ##################################################
82

83 self.uhd_usrp_source_0 = uhd.usrp_source(
84 ",".join(("addr =128.39.200.112", '')),
85 uhd.stream_args(
86 cpu_format="fc32",
87 args='',
88 channels=list(range (0,1)),
89 ),
90 )
91 self.uhd_usrp_source_0.set_samp_rate(samp_rate)
92 self.uhd_usrp_source_0.set_time_unknown_pps(uhd.time_spec (0))
93
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94 self.uhd_usrp_source_0.set_center_freq(center_freq , 0)
95 self.uhd_usrp_source_0.set_antenna("RX2", 0)
96 self.uhd_usrp_source_0.set_bandwidth (1e6 , 0)
97 self.uhd_usrp_source_0.set_gain (70, 0)
98 self.qtgui_waterfall_sink_x_0_0 = qtgui.waterfall_sink_c(
99 1024, #size

100 window.WIN_HAMMING , #wintype
101 center_freq , #fc
102 band_width , #bw
103 "CSI Specto", #name
104 1, #number of inputs
105 None # parent
106 )
107 self.qtgui_waterfall_sink_x_0_0.set_update_time (0.10)
108 self.qtgui_waterfall_sink_x_0_0.enable_grid(True)
109 self.qtgui_waterfall_sink_x_0_0.enable_axis_labels(True)
110

111

112

113 labels = ['', '', '', '', '',
114 '', '', '', '', '']
115 colors = [0, 0, 0, 0, 0,
116 0, 0, 0, 0, 0]
117 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
118 1.0, 1.0, 1.0, 1.0, 1.0]
119

120 for i in range (1):
121 if len(labels[i]) == 0:
122 self.qtgui_waterfall_sink_x_0_0.set_line_label(i, "Data...

{0}".format(i))
123 else:
124 self.qtgui_waterfall_sink_x_0_0.set_line_label(i, ...

labels[i])
125 self.qtgui_waterfall_sink_x_0_0.set_color_map(i, colors[i])
126 self.qtgui_waterfall_sink_x_0_0.set_line_alpha(i, alphas[i...

])
127

128 self.qtgui_waterfall_sink_x_0_0.set_intensity_range (-140, 10)
129

130 self._qtgui_waterfall_sink_x_0_0_win = sip.wrapinstance(self....
qtgui_waterfall_sink_x_0_0.qwidget (), Qt.QWidget)

131

132 self.top_layout.addWidget(self._qtgui_waterfall_sink_x_0_0_win)
133 self.qtgui_waterfall_sink_x_0 = qtgui.waterfall_sink_f(
134 1024, #size
135 window.WIN_HAMMING , #wintype
136 center_freq , #fc
137 band_width , #bw
138 "RSSI Spectogram", #name
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139 1, #number of inputs
140 None # parent
141 )
142 self.qtgui_waterfall_sink_x_0.set_update_time (0.10)
143 self.qtgui_waterfall_sink_x_0.enable_grid(True)
144 self.qtgui_waterfall_sink_x_0.enable_axis_labels(True)
145

146

147 self.qtgui_waterfall_sink_x_0.set_plot_pos_half(not True)
148

149 labels = ['', '', '', '', '',
150 '', '', '', '', '']
151 colors = [0, 0, 0, 0, 0,
152 0, 0, 0, 0, 0]
153 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
154 1.0, 1.0, 1.0, 1.0, 1.0]
155

156 for i in range (1):
157 if len(labels[i]) == 0:
158 self.qtgui_waterfall_sink_x_0.set_line_label(i, "Data ...

{0}".format(i))
159 else:
160 self.qtgui_waterfall_sink_x_0.set_line_label(i, labels[...

i])
161 self.qtgui_waterfall_sink_x_0.set_color_map(i, colors[i])
162 self.qtgui_waterfall_sink_x_0.set_line_alpha(i, alphas[i])
163

164 self.qtgui_waterfall_sink_x_0.set_intensity_range (-140, 10)
165

166 self._qtgui_waterfall_sink_x_0_win = sip.wrapinstance(self....
qtgui_waterfall_sink_x_0.qwidget (), Qt.QWidget)

167

168 self.top_layout.addWidget(self._qtgui_waterfall_sink_x_0_win)
169 self.qtgui_time_sink_x_1 = qtgui.time_sink_f(
170 1024, #size
171 samp_rate , #samp_rate
172 "RSSI output", #name
173 1, #number of inputs
174 None # parent
175 )
176 self.qtgui_time_sink_x_1.set_update_time (0.10)
177 self.qtgui_time_sink_x_1.set_y_axis(-1, 1)
178

179 self.qtgui_time_sink_x_1.set_y_label('Amplitude ', "")
180

181 self.qtgui_time_sink_x_1.enable_tags(True)
182 self.qtgui_time_sink_x_1.set_trigger_mode(qtgui.TRIG_MODE_FREE ,...

qtgui.TRIG_SLOPE_POS , 0.0, 0, 0, "")
183 self.qtgui_time_sink_x_1.enable_autoscale(True)
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184 self.qtgui_time_sink_x_1.enable_grid(True)
185 self.qtgui_time_sink_x_1.enable_axis_labels(True)
186 self.qtgui_time_sink_x_1.enable_control_panel(True)
187 self.qtgui_time_sink_x_1.enable_stem_plot(False)
188

189

190 labels = ['Signal 1', 'Signal 2', 'Signal 3', 'Signal 4', '...
Signal 5',

191 'Signal 6', 'Signal 7', 'Signal 8', 'Signal 9', 'Signal 10'...
]

192 widths = [1, 1, 1, 1, 1,
193 1, 1, 1, 1, 1]
194 colors = ['blue', 'red', 'green', 'black', 'cyan',
195 'magenta ', 'yellow ', 'dark red', 'dark green ', 'dark blue']
196 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
197 1.0, 1.0, 1.0, 1.0, 1.0]
198 styles = [1, 1, 1, 1, 1,
199 1, 1, 1, 1, 1]
200 markers = [-1, -1, -1, -1, -1,
201 -1, -1, -1, -1, -1]
202

203

204 for i in range (1):
205 if len(labels[i]) == 0:
206 self.qtgui_time_sink_x_1.set_line_label(i, "Data {0}"....

format(i))
207 else:
208 self.qtgui_time_sink_x_1.set_line_label(i, labels[i])
209 self.qtgui_time_sink_x_1.set_line_width(i, widths[i])
210 self.qtgui_time_sink_x_1.set_line_color(i, colors[i])
211 self.qtgui_time_sink_x_1.set_line_style(i, styles[i])
212 self.qtgui_time_sink_x_1.set_line_marker(i, markers[i])
213 self.qtgui_time_sink_x_1.set_line_alpha(i, alphas[i])
214

215 self._qtgui_time_sink_x_1_win = sip.wrapinstance(self....
qtgui_time_sink_x_1.qwidget (), Qt.QWidget)

216 self.top_layout.addWidget(self._qtgui_time_sink_x_1_win)
217 self.qtgui_time_sink_x_0_1 = qtgui.time_sink_c(
218 1024, #size
219 samp_rate , #samp_rate
220 'CSI output ', #name
221 1, #number of inputs
222 None # parent
223 )
224 self.qtgui_time_sink_x_0_1.set_update_time (0.10)
225 self.qtgui_time_sink_x_0_1.set_y_axis(-1, 1)
226

227 self.qtgui_time_sink_x_0_1.set_y_label('Amplitude ', "")
228
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229 self.qtgui_time_sink_x_0_1.enable_tags(True)
230 self.qtgui_time_sink_x_0_1.set_trigger_mode(qtgui....

TRIG_MODE_FREE , qtgui.TRIG_SLOPE_POS , 0.0, 0, 0, "")
231 self.qtgui_time_sink_x_0_1.enable_autoscale(True)
232 self.qtgui_time_sink_x_0_1.enable_grid(True)
233 self.qtgui_time_sink_x_0_1.enable_axis_labels(True)
234 self.qtgui_time_sink_x_0_1.enable_control_panel(True)
235 self.qtgui_time_sink_x_0_1.enable_stem_plot(False)
236

237

238 labels = ['', '', '', '', '',
239 '', '', '', '', '']
240 widths = [1, 1, 1, 1, 1,
241 1, 1, 1, 1, 1]
242 colors = ['red', 'red', 'green', 'black', 'cyan',
243 'magenta ', 'yellow ', 'dark red', 'dark green ', 'dark blue']
244 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
245 1.0, 1.0, 1.0, 1.0, 1.0]
246 styles = [1, 1, 1, 1, 1,
247 1, 1, 1, 1, 1]
248 markers = [-1, -1, -1, -1, -1,
249 -1, -1, -1, -1, -1]
250

251

252 for i in range (2):
253 if len(labels[i]) == 0:
254 if (i % 2 == 0):
255 self.qtgui_time_sink_x_0_1.set_line_label(i, "Re{{...

Data {0}}}".format(i/2))
256 else:
257 self.qtgui_time_sink_x_0_1.set_line_label(i, "Im{{...

Data {0}}}".format(i/2))
258 else:
259 self.qtgui_time_sink_x_0_1.set_line_label(i, labels[i])
260 self.qtgui_time_sink_x_0_1.set_line_width(i, widths[i])
261 self.qtgui_time_sink_x_0_1.set_line_color(i, colors[i])
262 self.qtgui_time_sink_x_0_1.set_line_style(i, styles[i])
263 self.qtgui_time_sink_x_0_1.set_line_marker(i, markers[i])
264 self.qtgui_time_sink_x_0_1.set_line_alpha(i, alphas[i])
265

266 self._qtgui_time_sink_x_0_1_win = sip.wrapinstance(self....
qtgui_time_sink_x_0_1.qwidget (), Qt.QWidget)

267 self.top_layout.addWidget(self._qtgui_time_sink_x_0_1_win)
268 self.qtgui_time_sink_x_0_0 = qtgui.time_sink_c(
269 1024, #size
270 samp_rate , #samp_rate
271 'Receiver Output ', #name
272 1, #number of inputs
273 None # parent
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274 )
275 self.qtgui_time_sink_x_0_0.set_update_time (0.10)
276 self.qtgui_time_sink_x_0_0.set_y_axis(-1, 1)
277

278 self.qtgui_time_sink_x_0_0.set_y_label('Amplitude ', "")
279

280 self.qtgui_time_sink_x_0_0.enable_tags(True)
281 self.qtgui_time_sink_x_0_0.set_trigger_mode(qtgui....

TRIG_MODE_FREE , qtgui.TRIG_SLOPE_POS , 0.0, 0, 0, "")
282 self.qtgui_time_sink_x_0_0.enable_autoscale(True)
283 self.qtgui_time_sink_x_0_0.enable_grid(True)
284 self.qtgui_time_sink_x_0_0.enable_axis_labels(True)
285 self.qtgui_time_sink_x_0_0.enable_control_panel(True)
286 self.qtgui_time_sink_x_0_0.enable_stem_plot(False)
287

288

289 labels = ['', '', '', '', '',
290 '', '', '', '', '']
291 widths = [1, 1, 1, 1, 1,
292 1, 1, 1, 1, 1]
293 colors = ['magenta ', 'red', 'green', 'black', 'cyan',
294 'magenta ', 'yellow ', 'dark red', 'dark green ', 'dark blue']
295 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
296 1.0, 1.0, 1.0, 1.0, 1.0]
297 styles = [1, 1, 1, 1, 1,
298 1, 1, 1, 1, 1]
299 markers = [-1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1]
301

302

303 for i in range (2):
304 if len(labels[i]) == 0:
305 if (i % 2 == 0):
306 self.qtgui_time_sink_x_0_0.set_line_label(i, "Re{{...

Data {0}}}".format(i/2))
307 else:
308 self.qtgui_time_sink_x_0_0.set_line_label(i, "Im{{...

Data {0}}}".format(i/2))
309 else:
310 self.qtgui_time_sink_x_0_0.set_line_label(i, labels[i])
311 self.qtgui_time_sink_x_0_0.set_line_width(i, widths[i])
312 self.qtgui_time_sink_x_0_0.set_line_color(i, colors[i])
313 self.qtgui_time_sink_x_0_0.set_line_style(i, styles[i])
314 self.qtgui_time_sink_x_0_0.set_line_marker(i, markers[i])
315 self.qtgui_time_sink_x_0_0.set_line_alpha(i, alphas[i])
316

317 self._qtgui_time_sink_x_0_0_win = sip.wrapinstance(self....
qtgui_time_sink_x_0_0.qwidget (), Qt.QWidget)

318 self.top_layout.addWidget(self._qtgui_time_sink_x_0_0_win)
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319 self.qtgui_time_sink_x_0 = qtgui.time_sink_f(
320 1024, #size
321 samp_rate , #samp_rate
322 'Scope Plot Output ', #name
323 1, #number of inputs
324 None # parent
325 )
326 self.qtgui_time_sink_x_0.set_update_time (0.10)
327 self.qtgui_time_sink_x_0.set_y_axis(-1, 1)
328

329 self.qtgui_time_sink_x_0.set_y_label('Amplitude ', "")
330

331 self.qtgui_time_sink_x_0.enable_tags(True)
332 self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE ,...

qtgui.TRIG_SLOPE_POS , 0.0, 0, 0, "")
333 self.qtgui_time_sink_x_0.enable_autoscale(True)
334 self.qtgui_time_sink_x_0.enable_grid(True)
335 self.qtgui_time_sink_x_0.enable_axis_labels(True)
336 self.qtgui_time_sink_x_0.enable_control_panel(True)
337 self.qtgui_time_sink_x_0.enable_stem_plot(False)
338

339

340 labels = ['', '', '', '', '',
341 '', '', '', '', '']
342 widths = [1, 1, 1, 1, 1,
343 1, 1, 1, 1, 1]
344 colors = ['red', 'red', 'green', 'black', 'cyan',
345 'magenta ', 'yellow ', 'dark red', 'dark green ', 'dark blue']
346 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
347 1.0, 1.0, 1.0, 1.0, 1.0]
348 styles = [1, 1, 1, 1, 1,
349 1, 1, 1, 1, 1]
350 markers = [-1, -1, -1, -1, -1,
351 -1, -1, -1, -1, -1]
352

353

354 for i in range (1):
355 if len(labels[i]) == 0:
356 self.qtgui_time_sink_x_0.set_line_label(i, "Data {0}"....

format(i))
357 else:
358 self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
359 self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
360 self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
361 self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
362 self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
363 self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])
364

365 self._qtgui_time_sink_x_0_win = sip.wrapinstance(self....
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qtgui_time_sink_x_0.qwidget (), Qt.QWidget)
366 self.top_layout.addWidget(self._qtgui_time_sink_x_0_win)
367 self.qtgui_freq_sink_x_0_0 = qtgui.freq_sink_c(
368 1024, #size
369 window.WIN_BLACKMAN_hARRIS , #wintype
370 center_freq , #fc
371 band_width , #bw
372 "", #name
373 1,
374 None # parent
375 )
376 self.qtgui_freq_sink_x_0_0.set_update_time (0.10)
377 self.qtgui_freq_sink_x_0_0.set_y_axis (( -140), 10)
378 self.qtgui_freq_sink_x_0_0.set_y_label('Relative Gain', 'dB')
379 self.qtgui_freq_sink_x_0_0.set_trigger_mode(qtgui....

TRIG_MODE_FREE , 0.0, 0, "")
380 self.qtgui_freq_sink_x_0_0.enable_autoscale(True)
381 self.qtgui_freq_sink_x_0_0.enable_grid(True)
382 self.qtgui_freq_sink_x_0_0.set_fft_average (0.05)
383 self.qtgui_freq_sink_x_0_0.enable_axis_labels(True)
384 self.qtgui_freq_sink_x_0_0.enable_control_panel(True)
385 self.qtgui_freq_sink_x_0_0.set_fft_window_normalized(False)
386

387

388

389 labels = ['', '', '', '', '',
390 '', '', '', '', '']
391 widths = [1, 1, 1, 1, 1,
392 1, 1, 1, 1, 1]
393 colors = ["blue", "red", "green", "black", "cyan",
394 "magenta", "yellow", "dark red", "dark green", "dark blue"]
395 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
396 1.0, 1.0, 1.0, 1.0, 1.0]
397

398 for i in range (1):
399 if len(labels[i]) == 0:
400 self.qtgui_freq_sink_x_0_0.set_line_label(i, "Data {0}"...

.format(i))
401 else:
402 self.qtgui_freq_sink_x_0_0.set_line_label(i, labels[i])
403 self.qtgui_freq_sink_x_0_0.set_line_width(i, widths[i])
404 self.qtgui_freq_sink_x_0_0.set_line_color(i, colors[i])
405 self.qtgui_freq_sink_x_0_0.set_line_alpha(i, alphas[i])
406

407 self._qtgui_freq_sink_x_0_0_win = sip.wrapinstance(self....
qtgui_freq_sink_x_0_0.qwidget (), Qt.QWidget)

408 self.top_layout.addWidget(self._qtgui_freq_sink_x_0_0_win)
409 self._noise_voltage_range = qtgui.Range(0, 1, .01, 0.1, 200)
410 self._noise_voltage_win = qtgui.RangeWidget(self....
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_noise_voltage_range , self.set_noise_voltage , "Noise Amplitude", "...
counter_slider", float , QtCore.Qt.Horizontal)

411 self.top_layout.addWidget(self._noise_voltage_win)
412 self._freq_offset_range = qtgui.Range(-3, 3, .01, 0, 200)
413 self._freq_offset_win = qtgui.RangeWidget(self....

_freq_offset_range , self.set_freq_offset , "Frequency Offset (...
Multiples of Sub -carrier spacing)", "counter_slider", float , QtCore....
Qt.Horizontal)

414 self.top_layout.addWidget(self._freq_offset_win)
415 self.epy_block_0 = epy_block_0.blk(fft_len=fft_len , ...

pilot_carriers =((-6,-5,5,6) ,), pilot_symbols =((-1,1,-1,1) ,))
416 self.digital_ofdm_rx_0 = digital.ofdm_rx(
417 fft_len=fft_len , cp_len =( fft_len //4),
418 frame_length_tag_key='frame_ '+"rx_len",
419 packet_length_tag_key="rx_len",
420 occupied_carriers =((-4,-3,-2,-1,1,2,3,4) ,),
421 pilot_carriers =((-6,-5,5,6) ,),
422 pilot_symbols =((-1,1,-1,1) ,),
423 sync_word1=None ,
424 sync_word2=None ,
425 bps_header =1,
426 bps_payload =2,
427 debug_log=False ,
428 scramble_bits=False)
429 self.blocks_uchar_to_float_0 = blocks.uchar_to_float ()
430 self.blocks_tag_debug_0 = blocks.tag_debug(gr.sizeof_char *1, '...

Rx Packets ', "")
431 self.blocks_tag_debug_0.set_display(False)
432 self.blocks_nlog10_ff_0 = blocks.nlog10_ff (10, 1, 0)
433 self.blocks_multiply_const_vxx_0 = blocks.multiply_const_ff (10)
434 self.blocks_moving_average_xx_0 = blocks.moving_average_ff...

(1024, 1, 4000, 1)
435 self.blocks_file_sink_2 = blocks.file_sink(gr.sizeof_gr_complex...

*1, '/home/acps/Documents/data/Velocity_track_CSI_data ', False)
436 self.blocks_file_sink_2.set_unbuffered(False)
437 self.blocks_file_sink_1 = blocks.file_sink(gr.sizeof_float *1, '...

/home/acps/Documents/data/Velocity_Track_RSSI_data ', False)
438 self.blocks_file_sink_1.set_unbuffered(False)
439 self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_float *1, '...

/home/acps/Documents/data/velocity_track_OFDM_rx ', False)
440 self.blocks_file_sink_0.set_unbuffered(False)
441 self.blocks_complex_to_mag_squared_0 = blocks....

complex_to_mag_squared (1)
442 self.blocks_add_const_vxx_1 = blocks.add_const_ff (10)
443

444

445 ##################################################
446 # Connections
447 ##################################################
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448 self.connect ((self.blocks_add_const_vxx_1 , 0), (self....
blocks_multiply_const_vxx_0 , 0))

449 self.connect ((self.blocks_complex_to_mag_squared_0 , 0), (self....
blocks_moving_average_xx_0 , 0))

450 self.connect ((self.blocks_moving_average_xx_0 , 0), (self....
blocks_nlog10_ff_0 , 0))

451 self.connect ((self.blocks_multiply_const_vxx_0 , 0), (self....
blocks_file_sink_1 , 0))

452 self.connect ((self.blocks_multiply_const_vxx_0 , 0), (self....
qtgui_time_sink_x_1 , 0))

453 self.connect ((self.blocks_multiply_const_vxx_0 , 0), (self....
qtgui_waterfall_sink_x_0 , 0))

454 self.connect ((self.blocks_nlog10_ff_0 , 0), (self....
blocks_add_const_vxx_1 , 0))

455 self.connect ((self.blocks_uchar_to_float_0 , 0), (self....
blocks_file_sink_0 , 0))

456 self.connect ((self.blocks_uchar_to_float_0 , 0), (self....
qtgui_time_sink_x_0 , 0))

457 self.connect ((self.digital_ofdm_rx_0 , 0), (self....
blocks_tag_debug_0 , 0))

458 self.connect ((self.digital_ofdm_rx_0 , 0), (self....
blocks_uchar_to_float_0 , 0))

459 self.connect ((self.epy_block_0 , 0), (self.blocks_file_sink_2 , ...

0))
460 self.connect ((self.epy_block_0 , 0), (self.qtgui_time_sink_x_0_1 ...

, 0))
461 self.connect ((self.epy_block_0 , 0), (self....

qtgui_waterfall_sink_x_0_0 , 0))
462 self.connect ((self.uhd_usrp_source_0 , 0), (self....

blocks_complex_to_mag_squared_0 , 0))
463 self.connect ((self.uhd_usrp_source_0 , 0), (self....

digital_ofdm_rx_0 , 0))
464 self.connect ((self.uhd_usrp_source_0 , 0), (self.epy_block_0 , 0)...

)
465 self.connect ((self.uhd_usrp_source_0 , 0), (self....

qtgui_freq_sink_x_0_0 , 0))
466 self.connect ((self.uhd_usrp_source_0 , 0), (self....

qtgui_time_sink_x_0_0 , 0))
467

468

469 def closeEvent(self , event):
470 self.settings = Qt.QSettings("GNU Radio", "ofdm_Rx")
471 self.settings.setValue("geometry", self.saveGeometry ())
472 self.stop()
473 self.wait()
474

475 event.accept ()
476

477 def get_samp_rate(self):
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478 return self.samp_rate
479

480 def set_samp_rate(self , samp_rate):
481 self.samp_rate = samp_rate
482 self.qtgui_time_sink_x_0.set_samp_rate(self.samp_rate)
483 self.qtgui_time_sink_x_0_0.set_samp_rate(self.samp_rate)
484 self.qtgui_time_sink_x_0_1.set_samp_rate(self.samp_rate)
485 self.qtgui_time_sink_x_1.set_samp_rate(self.samp_rate)
486 self.uhd_usrp_source_0.set_samp_rate(self.samp_rate)
487

488 def get_packet_length_tag_key(self):
489 return self.packet_length_tag_key
490

491 def set_packet_length_tag_key(self , packet_length_tag_key):
492 self.packet_length_tag_key = packet_length_tag_key
493

494 def get_packet_len(self):
495 return self.packet_len
496

497 def set_packet_len(self , packet_len):
498 self.packet_len = packet_len
499

500 def get_noise_voltage(self):
501 return self.noise_voltage
502

503 def set_noise_voltage(self , noise_voltage):
504 self.noise_voltage = noise_voltage
505

506 def get_len_tag_key(self):
507 return self.len_tag_key
508

509 def set_len_tag_key(self , len_tag_key):
510 self.len_tag_key = len_tag_key
511

512 def get_freq_offset(self):
513 return self.freq_offset
514

515 def set_freq_offset(self , freq_offset):
516 self.freq_offset = freq_offset
517

518 def get_fft_len(self):
519 return self.fft_len
520

521 def set_fft_len(self , fft_len):
522 self.fft_len = fft_len
523 self.epy_block_0.fft_len = self.fft_len
524

525 def get_center_freq(self):
526 return self.center_freq
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527

528 def set_center_freq(self , center_freq):
529 self.center_freq = center_freq
530 self.qtgui_freq_sink_x_0_0.set_frequency_range(self.center_freq...

, self.band_width)
531 self.qtgui_waterfall_sink_x_0.set_frequency_range(self....

center_freq , self.band_width)
532 self.qtgui_waterfall_sink_x_0_0.set_frequency_range(self....

center_freq , self.band_width)
533 self.uhd_usrp_source_0.set_center_freq(self.center_freq , 0)
534

535 def get_band_width(self):
536 return self.band_width
537

538 def set_band_width(self , band_width):
539 self.band_width = band_width
540 self.qtgui_freq_sink_x_0_0.set_frequency_range(self.center_freq...

, self.band_width)
541 self.qtgui_waterfall_sink_x_0.set_frequency_range(self....

center_freq , self.band_width)
542 self.qtgui_waterfall_sink_x_0_0.set_frequency_range(self....

center_freq , self.band_width)
543

544

545

546

547 def main(top_block_cls=ofdm_Rx , options=None):
548

549 qapp = Qt.QApplication(sys.argv)
550

551 tb = top_block_cls ()
552

553 tb.start ()
554

555 tb.show()
556

557 def sig_handler(sig=None , frame=None):
558 tb.stop()
559 tb.wait()
560

561 Qt.QApplication.quit()
562

563 signal.signal(signal.SIGINT , sig_handler)
564 signal.signal(signal.SIGTERM , sig_handler)
565

566 timer = Qt.QTimer ()
567 timer.start (500)
568 timer.timeout.connect(lambda: None)
569
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570 qapp.exec_ ()
571

572 if __name__ == '__main__ ':
573 main()

Listing A.2: OFDM Receiver

A.2 Custom CSI Estimator Block

1 # Code implemented to calculate Channel State Information (CSI)
2

3 import numpy as np
4 from gnuradio import gr
5

6 class blk(gr.basic_block):
7 def __init__(self):
8 gr.basic_block.__init__(self ,
9 name="Custom Block",

10 in_sig =[np.complex64],
11 out_sig =[np.complex64 ])
12

13 def general_work(self , input_items , output_items):
14 in0 = input_items [0]
15 out = output_items [0]
16 # Implement custom processing here
17 out [:] = in0 * 2 # Example: amplify signal by 2
18 self.consume(0, len(in0))
19 return len(out)

Listing A.3: CSI Estimation
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Appendix B

Drone

B.1 Drone Count

1 from codrone_edu.drone import *
2 import threading
3 import time
4 from pathlib import Path
5

6 Drones = []
7 n_drones = 5
8

9 def get_ports ():
10 ports = []
11

12 for i in range(n_drones):
13 file = "/dev/ttyACM"
14 file_path = Path(f"{file}{i}")
15 if file_path.exists () == True:
16 ports.append(f"{file}{i}")
17

18 return ports
19

20 def drone_path(path:str):
21 drone = Drone ()
22 drone.pair(path)
23 drone.takeoff ()
24 #drone.circle ()
25 for i in range (3):
26 drone.sway (50 ,1)
27 drone.land()
28 drone.close()
29

30 if __name__ == "__main__":
31 ports = get_ports ()
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32 print(ports)
33

34 for i in range(len(ports)):
35 drone = threading.Thread(target=drone_path , args=(ports[i],))
36 Drones.append(drone)
37 drone.start()
38

39 # Join the threads
40 for drone in Drones:
41 drone.join()

Listing B.1: Code used for collecting drone count dataset

B.2 UAV Velocity

1 from codrone_edu.drone import *
2 import threading
3 import time
4 from pathlib import Path
5 import random
6 import logging
7

8 logging.basicConfig(filename='drone_log.txt', level=logging.INFO , ...

format='%( asctime)s - %( levelname)s - %( message)s')
9

10 Drones = []
11 n_drones = 5
12 speed = [0.1, 0.6, 1, 1.5, 2]
13

14 def get_ports ():
15 ports = []
16

17 for i in range(n_drones):
18 file = "/dev/ttyACM"
19 file_path = Path(f"{file}{i}")
20 if file_path.exists ():
21 ports.append(f"{file}{i}")
22

23 return ports
24

25 def drone_path(path:str):
26 drone = Drone ()
27 drone.pair(path)
28 drone.takeoff ()
29 time.sleep (5)
30

31 overall_start_time = time.time()
32 speed_list = speed.copy()
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33 random.shuffle(speed_list)
34 current_speed = speed_list.pop()
35 speed_change_interval = 30 # seconds
36 next_speed_change_time = time.time() + speed_change_interval
37 total_runtime = 3 * 60 # 5 minutes in seconds
38

39 while time.time() - overall_start_time < total_runtime:
40 if time.time() > next_speed_change_time:
41 if not speed_list:
42 speed_list = speed.copy()
43 random.shuffle(speed_list)
44 current_speed = speed_list.pop()
45 next_speed_change_time = time.time() + ...

speed_change_interval
46

47 duration = max(1, 1 * (1 / current_speed))
48

49 angular_speed_before_forward = drone.get_x_accel ()
50 logging.info(f"Moving forward - Angular Speed: {...

angular_speed_before_forward}, Current Speed: {current_speed}, ...

Duration: {duration}")
51 drone.move_forward(distance =150, units="cm", speed=...

current_speed)
52 time.sleep(duration)
53

54 angular_speed_after_forward = drone.get_x_accel ()
55 logging.info(f"Completed forward - Angular Speed: {...

angular_speed_after_forward}, Current Speed: {current_speed}, ...

Duration: {duration}")
56

57 angular_speed_before_backward = drone.get_x_accel ()
58 logging.info(f"Moving backward - Angular Speed: {...

angular_speed_before_backward}, Current Speed: {current_speed}, ...

Duration: {duration}")
59 drone.move_backward(distance =150, units="cm", speed=...

current_speed)
60 time.sleep(duration)
61 angular_speed_after_backward = drone.get_x_accel ()
62 logging.info(f"Completed backward - Angular Speed: {...

angular_speed_after_backward}, Current Speed: {current_speed}, ...

Duration: {duration}")
63

64 drone.land()
65 drone.close()
66

67 if __name__ == "__main__":
68 ports = get_ports ()
69 print(ports)
70 if ports:
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71 drone_path(ports [0])

Listing B.2: Code for collecting the data for UAV velocity
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Appendix C

CNN

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from pathlib import Path
4 import os
5 from sklearn.model_selection import train_test_split
6 import tensorflow as tf
7 from tensorflow.keras import layers , models , optimizers , callbacks , ...

regularizers
8

9 class DataLoader:
10 def __init__(self , base_path , samples_to_take =1_000_000 , ...

sequence_length =256):
11 self.base_path = base_path
12 self.samples_to_take = samples_to_take
13 self.sequence_length = sequence_length
14 self.data_list = []
15 self.labels_list = []
16

17 def load_data(self):
18 for i in range(1, 5):
19 file_path = f"{self.base_path }{i}"
20 label = i - 1
21 file_data = np.fromfile(open(file_path , 'rb'), dtype=np....

complex64)
22 start_idx = len(file_data) // 2 - self.samples_to_take // 2
23 end_idx = start_idx + self.samples_to_take
24 real_part = self.normalize(file_data.real[start_idx:end_idx...

])
25 imag_part = self.normalize(file_data.imag[start_idx:end_idx...

])
26 abs_part = self.normalize(np.abs(file_data)[start_idx:...

end_idx ])
27 combined_data = np.column_stack ((real_part , imag_part , ...

abs_part))
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28 self.data_list.append(combined_data)
29 self.labels_list.extend ([label] * len(combined_data))
30 self.data = np.vstack(self.data_list)
31 self.labels = np.array(self.labels_list)
32 self.reshape_data ()
33

34 def normalize(self , data):
35 return (data - np.mean(data)) / np.std(data)
36

37 def reshape_data(self):
38 num_samples = self.data.shape [0] // self.sequence_length
39 self.data = self.data[: num_samples * self.sequence_length]
40 self.labels = self.labels [: num_samples * self.sequence_length]
41 self.data = self.data.reshape(num_samples , self.sequence_length ...

, 3)
42 self.labels = self.labels [:: self.sequence_length]
43

44 def get_train_test_split(self , test_size =0.2, random_state =42):
45 return train_test_split(self.data , self.labels , test_size=...

test_size , random_state=random_state)
46

47 class ResNetModel:
48 def __init__(self , input_shape , channels , num_classes =7):
49 self.input_shape = input_shape
50 self.channels = channels
51 self.num_classes = num_classes
52 self.model = self.build_model ()
53

54 def residual_block(self , x, filters , kernel_size =3, stride=1, ...

conv_shortcut=False):
55 shortcut = x
56 if conv_shortcut:
57 shortcut = layers.Conv1D(filters , 1, strides=stride , ...

kernel_regularizer=regularizers.l2 (0.001))(shortcut)
58 shortcut = layers.BatchNormalization ()(shortcut)
59 x = layers.Conv1D(filters , kernel_size , strides=stride , padding...

='same', kernel_regularizer=regularizers.l2 (0.001))(x)
60 x = layers.BatchNormalization ()(x)
61 x = layers.ReLU()(x)
62 x = layers.Conv1D(filters , kernel_size , padding='same', ...

kernel_regularizer=regularizers.l2 (0.001))(x)
63 x = layers.BatchNormalization ()(x)
64 x = layers.add([shortcut , x])
65 x = layers.ReLU()(x)
66 return x
67

68 def build_model(self):
69 input_layers = []
70 outputs = []
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71

72 for _ in range(self.channels):
73 inputs = layers.Input(shape=self.input_shape)
74 x = layers.Conv1D(8, 7, strides=2, padding='same', ...

kernel_regularizer=regularizers.l2 (0.001))(inputs)
75 x = layers.BatchNormalization ()(x)
76 x = layers.ReLU()(x)
77 x = layers.MaxPooling1D (3, strides=2, padding='same')(x)
78

79 x = self.residual_block(x, 8)
80 x = self.residual_block(x, 16, stride=2, conv_shortcut=True...

)
81 # x = self.residual_block(x, 16)
82 # x = self.residual_block(x, 32, stride=2, conv_shortcut=...

True)
83

84 x = layers.GlobalAveragePooling1D ()(x)
85 x = layers.Dropout (0.5)(x)
86 input_layers.append(inputs)
87 outputs.append(x)
88

89 merged = layers.concatenate(outputs)
90 output = layers.Dense(self.num_classes , activation='softmax ')(...

merged)
91 model = models.Model(inputs=input_layers , outputs=output)
92 return model
93

94 def compile_model(self , learning_rate =0.0001):
95 optimizer = optimizers.Adam(learning_rate=learning_rate)
96 self.model.compile(optimizer=optimizer , loss='...

sparse_categorical_crossentropy ', metrics =['accuracy '])
97 self.model.summary ()
98 tf.keras.utils.plot_model(self.model)
99

100 def train_model(self , X_train , y_train , X_test , y_test , batch_size...
=64, epochs =50):

101 class CustomCallback(callbacks.Callback):
102 def on_epoch_end(self , epoch , logs=None):
103 self.best_val_loss = min(self.best_val_loss , logs['...

val_loss '])
104

105 def on_train_begin(self , logs=None):
106 self.best_val_loss = float('inf')
107

108 custom_callback = CustomCallback ()
109

110 callbacks_list = [
111 custom_callback ,
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112 callbacks.EarlyStopping(monitor='val_loss ', patience =10, ...

restore_best_weights=True),
113 callbacks.ReduceLROnPlateau(monitor='val_loss ', factor =0.5,...

patience=5, min_lr =1e-7)
114 ]
115

116 history = self.model.fit(
117 X_train , y_train ,
118 validation_data =(X_test , y_test),
119 epochs=epochs ,
120 batch_size=batch_size ,
121 callbacks=callbacks_list ,
122 verbose =1
123 )
124

125 best_val_loss = custom_callback.best_val_loss
126 return history , best_val_loss
127

128 def save_model(self , file_path):
129 self.model.save(file_path)
130

131 class Plotter:
132 @staticmethod
133 def plot_history(history , best_val_loss , accuracy_path , loss_path):
134 plt.figure(figsize =(12, 4))
135 plt.subplot(1, 2, 1)
136 plt.plot(history.history['accuracy '], color='blue', linestyle='...

-', marker='x')
137 plt.plot(history.history['val_accuracy '], color='orange ', ...

linestyle='-', marker='o')
138 plt.title(f'Model Accuracy - Best Val Loss: {best_val_loss :.4f}...

')
139 plt.ylabel('Accuracy ')
140 plt.xlabel('Epoch')
141 plt.legend (['Train', 'Validation '], loc='upper left')
142 plt.savefig(accuracy_path)
143 plt.subplot(1, 2, 2)
144 plt.plot(history.history['loss'], color='blue', linestyle='-', ...

marker='x')
145 plt.plot(history.history['val_loss '], color='orange ', linestyle...

='-', marker='o')
146 plt.title(f'Model Loss - Best Val Loss: {best_val_loss :.4f}')
147 plt.ylabel('Loss')
148 plt.xlabel('Epoch')
149 plt.legend (['Train', 'Validation '], loc='upper left')
150 plt.savefig(loss_path)
151 plt.show()
152

153 def main():
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154 # Data loading and preprocessing
155 base_path = "../ data/Drone_Count_CSI_data_Big"
156 data_loader = DataLoader(base_path)
157 data_loader.load_data ()
158 X_train , X_test , y_train , y_test = data_loader.get_train_test_split...

()
159

160 # Separate the data into different features
161 sequence_length = 256
162 X_train_real = X_train[:, :, 0]. reshape(-1, sequence_length , 1)
163 X_train_imag = X_train[:, :, 1]. reshape(-1, sequence_length , 1)
164 X_train_abs = X_train[:, :, 2]. reshape(-1, sequence_length , 1)
165

166 X_test_real = X_test[:, :, 0]. reshape(-1, sequence_length , 1)
167 X_test_imag = X_test[:, :, 1]. reshape(-1, sequence_length , 1)
168 X_test_abs = X_test[:, :, 2]. reshape(-1, sequence_length , 1)
169

170 X_train_inputs = [X_train_real , X_train_imag , X_train_abs]
171 X_test_inputs = [X_test_real , X_test_imag , X_test_abs]
172

173 # Build , compile and train the model
174 input_shape = (sequence_length , 1)
175 channels = len(X_train_inputs)
176 resnet_model = ResNetModel(input_shape , channels)
177 resnet_model.compile_model ()
178

179 history , best_val_loss = resnet_model.train_model(X_train_inputs , ...

y_train , X_test_inputs , y_test)
180

181 # Save the model
182 model_file_path = f'../ models/resnet_model_val_loss_{best_val_loss...

:.4f}.keras '
183 resnet_model.save_model(model_file_path)
184

185 # Plot the training history
186 accuracy_plot_path = f'../ Img/resnet_accuracy_val_loss_{...

best_val_loss :.4f}.png'
187 loss_plot_path = f'../ Img/resnet_loss_val_loss_{best_val_loss :.4f}....

png'
188 Plotter.plot_history(history , best_val_loss , accuracy_plot_path , ...

loss_plot_path)
189

190 if __name__ == "__main__":
191 main()

Listing C.1: CNN model code
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