
Implementation of Reinforcement
learning to solve Job-shop Schedul-
ing Problem

RESHMA MAHARJAN

SUPERVISORS
Per-Arne Andersen and Lei Jiao

University of Agder, 2024
Faculty of Engineering and Science
Department of Information and Communication Technology

Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer for
bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og hvilke
konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at vår besvarelse er vårt eget arbeid, og at vi ikke har
brukt andre kilder eller har mottatt annen hjelp enn det som er nevnt i
besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdeling/univer-
sitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd på ovennevnte er å betrakte som fusk og kan med-
føre annullering av eksamen og utestengelse fra universiteter og høgskoler i
Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og Forskrift om ek-
samen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja
5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor det

forligger mistanke om fusk etter høgskolens retningslinjer for behandling av
saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og referanser
på biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merkbart
forskjellig og ønsker dermed å vurderes individuelt. Ordinært vurderes alle
deltakere i prosjektet samlet.

Nei

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant
annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven tilgjengelig
for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Per-Arne Andersen, and co-
supervisor, Lei Jiao, for their guidance and support throughout this research journey. Their
expertise and wisdom have been invaluable in shaping my understanding of the Job Shop
Scheduling Problem and Reinforcement Learning.

I am deeply grateful to my family and friends for their unwavering support and love. Their
sacrifices and patience have enabled me to pursue my academic goals, and I am forever
grateful.

I would like to thank my colleagues and friends at the University of Agder for creating a
stimulating and supportive environment that fostered my growth and learning.

This thesis would not have been possible without the collective efforts of these individuals,
and I am grateful for their contributions.

Additionally, I want to acknowledge the invaluable assistance provided by ChatGPT, whose
insightful suggestions and contributions have enriched this thesis.

Reshma Maharjan,
May 24, 2024,
Grimstad

ii

Abstract

The Job Shop Scheduling Problem (JSSP) consists of allocating various tasks to distinct
machines, each of which has a different sequence of operations. This thesis investigates the
application of Reinforcement Learning (RL) algorithms in addressing the JSSP, focusing
primarily on instances from the Lawrence, Dermikol, and Taillard datasets. Particularly,
the study evaluates popular RL algorithms, including Proximal Policy Optimization (PPO),
Policy Gradient (PG), Advantage Actor-Critic (A2C), and Asynchronous Advantage Actor-
Critic (A3C), against traditional dispatching rules and other state-of-the-art methods. The
findings highlight the superior performance of the PPO approach, which consistently out-
performs alternative RL algorithms and dispatching rules across various instance sizes. PPO
demonstrates robustness and adaptability in navigating dynamic job-shop scheduling land-
scapes, positioning it as a versatile and potent solution for learning complex scheduling
strategies. Insights from the training dynamics of RL agents underscore their ability to
improve performance over time by learning from the environment. The increasing reward
values and decreasing makespan observed across all datasets signify the adaptive nature of RL
agents in optimizing scheduling policies. Remarkably, the PPO-based approach demonstrates
a 6-9 times lower optimality gap compared to traditional scheduling algorithms and achieves
a 2-3 times lower optimality gap than state-of-the-art approaches in all three datasets, high-
lighting its superiority in addressing the JSSP. This thesis contributes to the understanding
of the efficacy of RL algorithms in scheduling optimization, suggesting their potential to
significantly enhance operational efficiency across diverse industrial sectors.

iii

Contents

Acknowledgements ii

Abstract iii

List of Figures vii

List of Tables ix

List of Acronyms xi

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 1
1.3 Goals and Research Questions . 3
1.4 Contributions . 3
1.5 Thesis structure . 4

2 Background Theory 5
2.1 Related Work . 5

2.1.1 Heuristic Approaches . 5
2.1.2 Metaheuristic Techniques . 5
2.1.3 Genetic Programming-based Hyperheuristic 6
2.1.4 Reinforcement Learning for Combinatorial Problems 6

2.2 Related Theory . 7
2.2.1 Reinforcement learning . 7
2.2.2 Element of Reinforcement Learning 7
2.2.3 Value Function . 9
2.2.4 Markov Decision Processes . 10
2.2.5 Features of Reinforcement Learning 10
2.2.6 Reinforcement Learning algorithms 11
2.2.7 Deep Reinforcement Learning . 14
2.2.8 Multilayer Perceptron (MLP) . 14

3 Methodology 16
3.1 Job-Shop Scheduling Environment . 17

3.1.1 Environment . 17
3.1.2 Reduction Search-Space . 17
3.1.3 Reward . 18
3.1.4 State Space . 19
3.1.5 Action Selection . 20

3.2 Datasets . 21
3.2.1 Lawrence Datatset . 21
3.2.2 Dermikol Dataset . 21

iv

3.2.3 Taillard Dataset . 21
3.3 Ray . 22
3.4 Weights & Biases . 22
3.5 Implementation . 23

4 Experiments and Results 24
4.1 Introduction . 24
4.2 Experimental Configurations . 24
4.3 Baseline . 25
4.4 Performance Analysis . 26

4.4.1 Performance Matrix . 26
4.4.2 Performance Analysis on Lawrence’s Dataset 27
4.4.3 Performance Analysis on Dermikol Dataset 30
4.4.4 Performance Analysis on Taillard Dataset 34

5 Discussion 41
5.1 Strengths and Effectiveness of PPO . 41
5.2 Training Dynamics and Learning Efficiency 41
5.3 Comparative Performance . 41
5.4 Weaknesses and Limitations . 42
5.5 Implications for Research Questions and Hypotheses 42

6 Conclusion and Future Work 43
6.1 Conclusion . 43
6.2 Future Work . 44

Bibliography 45

List of Figures

2.1 Typical Reinforcement Learning scenario framing. 7

3.1 A solution for a small instance composed of three jobs and three machines [31]. 16
3.2 Illustration of the environment’s status, indicating the current time-step, job

allocations, available options, and future time-steps [31]. 17

4.1 Makespan of the Lawrence’s dataset of PPO. 28
4.2 Makespan of the Lawrence’s instances of PG. 28
4.3 Makespan of the Lawrence’s instances of A2C. 28
4.4 Reward of the Lawrence’s dataset of PPO. 30
4.5 Reward of the Lawrence’s instances of PG. 30
4.6 Reward of the Lawrence’s instances of A2C. 30
4.7 Makespan of the Dermikol’s instances of PPO. 31
4.8 Makespan of the Dermikol’s instances of PG. 31
4.9 Makespan of the Dermikol’s instances of A2C. 32
4.10 Reward of the Dermikol’s dataset of PPO. 33
4.11 Reward of the Dermikol’s instances of PG. 34
4.12 Reward of the Dermikol’s instances of A2C. 34
4.13 Makespan of the Taillard’s instances of PPO. 35
4.14 Makespan of the Taillard’s instances “ta71” of PPO. 36
4.15 Makespan of the Taillard’s instances “ta71” of PG. 36
4.16 Makespan of the Taillard’s instances “ta71” of A2C. 37
4.17 Reward of the Taillard’s instances of PPO. 38
4.18 Reward of the Taillard’s instances “ta71” of PPO. 39
4.19 Reward of the Taillard’s instances “ta71” of PG. 39
4.20 Reward of the Taillard’s instances “ta71” of A2C. 40

vii

.

List of Tables

3.1 Instances of Lawrence’s Datasets . 21
3.2 Instances of Demirkol’s Datasets . 21
3.3 Instances of Taillard’s Datasets . 22

4.1 Make-span of Lawrence’s instances by different approach. 27
4.2 The comparison results on Lawrence’s instances with different benchmarks. . 29
4.3 The optimality gap Lawrence’s instances with different benchmarks. 29
4.4 Make-span of Demirkol’s instances by different approach. 32
4.5 The comparison results on Demirkol’s instances with different benchmarks. . 33
4.6 The optimality gap on Demirkol’s instances with different benchmarks. . . . 33
4.7 Make-span of Taillard’s instances by different approach. 35
4.8 The comparison of makespan on Taillard’s instances with different benchmarks. 37
4.9 The optimality gap on Taillard’s instances and different benchmarks. 38

ix

.

List of Acronyms
A2C Advantage Actor-Critic

AI Artificial Intelligence

A3C Asynchronous Advantage Actor-Critic

COP Combinatorial Optimization Problem

CP Constraint Programming

DL Deep Learning

DRL Deep Reinforcement Learning

EU European Union

GP Genetic Programming

GPHH Genetic Programming-based Hyperheuristic

JSSP Job Shop Scheduling Problem

LP Linear Programming

LSTM Long short-term memory

ML Machine Learning

MDP Markov Decision Process

MLP Multilayer Perceptron

PG Policy Gradient

PDRs Priority Dispatch Rules

PPO Proximal Policy Optimization

RLib Ray library

ReLU Rectified Linear Unit

RL Reinforcement Learning

SPT Shortest Processing Time

TSP Traveling Salesman Problem

WandB Weights & Biases

xi

Chapter 1

Introduction

1.1 Introduction

The Job Shop Scheduling Problem (JSSP) is a well-known optimization problem in the
fields of production management and operations research, with significance in manufactur-
ing, healthcare, supply chain management, and many other applications [1]. One of the
most important tasks in the industrial sector is scheduling. Planning the length of the task
or procedure and how it will handle the equipment or resources is crucial. This planning
exercise determines how long tasks will take to complete and how the various work activities
relate to one another. Stable planning and production, real-time production feedback, and
capability control are the advantages of job shop scheduling. In particular, managers are
able to optimize the way they control their production plants. They can arrange their staff,
machinery, materials, and resources in accordance with this timetable.

Optimization of job shop scheduling offers a number of benefits, including faster delivery
times, lower completion times and makespan, fewer resources at bottlenecks, and less idle
time. When taken as a whole, these advantages improve customer happiness and opera-
tional effectiveness across a variety of businesses. The benefits of job shop scheduling are
not limited to specific industries, they also affect important performance indicators in larger
business disciplines. Increased customer satisfaction and operational effectiveness in a variety
of business contexts can be attributed to faster delivery times, shorter completion durations,
less makespan, and more efficient resource allocation during bottlenecks. Organizations can
achieve a competitive advantage in dynamic market settings by optimizing resource use, min-
imizing idle time, and preserving flexible production processes through the implementation
of effective scheduling techniques. But in order to properly take use of these advantages,
it is necessary to deal with the computational difficulties and intrinsic complexity of the
JSSP, opening the door for creative fixes and cutting-edge optimization strategies suited to
a variety of industrial backgrounds.

1.2 Motivation

The motivation for this study stems from the ambitious objectives of the European Union’s
Horizon 2020 project, known as the “Rhinoceros” project, which focuses on optimizing the
entire lifecycle of lithium batteries, from production to end-of-life [32]. A crucial compo-
nent of the Rhinoceros project is a dedicated work package aimed at automating the sorting
and dismantling processes of car batteries. This initiative seeks to significantly enhance and
streamline the disassembly process, ensuring alignment with the United Nations’ Sustain-
able Development Goals. The ultimate goal is to foster environmental sustainability and
improve resource efficiency on a global scale. By advancing the automation of these pro-
cesses, the Rhinoceros project aims to minimize the environmental impact of battery waste

1

and contribute to a more sustainable future.
To optimize the disassembly process of car batteries, which is crucial for recycling and
reusing valuable components, it is essential to break down the process into several distinct
tasks. Each task represents a specific operation necessary to dismantle the battery safely
and efficiently. These tasks include removing the casing, disconnecting electrical compo-
nents, segregating recyclable materials, etc. This disassembling problem can be in general
modeled as a JSSP, which is the focus of this study.

As mentioned earlier, the JSSP, a variant of optimal job scheduling, poses one of the most
formidable challenges in combinatorial optimization within computer science and operations
research [37]. In this problem, a set of jobs, each comprising multiple operations, needs to
be processed on a range of heterogeneous machines. Each operation is assigned to a specific
machine, with the known duration required for its completion. The primary objective is to
determine the optimal sequence for scheduling these operations to minimize the makespan,
which is the total time for all jobs to be completed.

Despite its practical importance, the JSSP falls under the category of NP-hard problems,
meaning that solving it optimally is not feasible in polynomial time, at least at this stage.
Quick solutions are not possible with methods like constraint programming or integer pro-
gramming because of their high processing cost. Thus, in order to effectively obtain ap-
proximations of answers, hand-engineered heuristics are frequently employed in practice.
Nevertheless, creating such heuristic principles is a difficult undertaking that needs an in-
depth understanding of the issue.Priority Dispatch Rules(PDRs) are a series of practical
heuristics that are quick to compute and simple to apply when solving scheduling difficul-
ties in the context of the JSP. However, it’s unclear how to apply these guidelines to other
situations [11].

In view of the above-mentioned drawbacks of heuristics based approaches, the focus of cur-
rent research has been on applying Reinforcement Learning (RL) to automatically create
domain-specific heuristics. There are various benefits when RL is applied to JSSP. Com-
pared to conventional priority dispatching rule heuristics, whose performance might differ
greatly from instance to instance, it is, first of all, more adaptable. In contrast to traditional
Combinatorial Optimization Problem (COP) techniques like constraint programming (CP)
and linear Programming (LP), RL environments are able to replicate stochastic decision-
making situations that are encountered by actual scheduling systems. Second, by taking
into account the influence of a schedule for known jobs on the new ones, RL offers the
opportunity to incrementally arrange the incoming jobs as they come in the queue, in con-
trast to traditional scheduling approaches that concentrate exclusively on the provided set
of works. The idea of lifelong learning, which allows an agent to reuse its prior learning from
JSS instances in addition to optimizing a single instance, is the most promising application
of RL [37].

The majority of JSSP research so far has concentrated on tackling small-scale situations,
frequently finding it difficult to function well with larger ones. The purpose of this thesis
is to minimize this gap by creating RL-based techniques that are specially made to manage
larger JSSP instances efficiently. This work aims to push the limits of what is possible in
JSSP optimization by giving priority to increased scheduling efficiency and scalability across
various problem sizes. In addition, for the application area of our EU project, the job scale
and the machine number are usually large. To this end, as part of this study, first, the
experiments are recreated from [31] to validate the methodology and replicate the findings
in a given environment. This allows to establish a foundation for this research and ensures
the reliability of the results. Then, the performance of different RL algorithms is compared
across various datasets and instance sizes to determine the most effective approach for solving

2

the JSSP.

1.3 Goals and Research Questions

This thesis aims to tackle the JSSP as a single-agent RL problem by utilizing Deep Reinforce-
ment Learning (DRL) techniques. The primary goals are to enhance scheduling efficiency
in industrial settings and reduce the overall makespan by teaching a dispatcher agent to
choose jobs for processing sequentially. This goal encompasses several key aspects, which
are articulated as the following research questions:

• RQ1: How can DRL models be effectively implemented to solve the JSSP as a single-
agent RL problem?

• RQ2: How do different RL algorithms, including Proximal Policy Optimization (PPO),
Policy Gradient (PG), Advantage Actor-Critic (A2C), and Asynchronous Advantage
Actor-Critic (A3C), perform in solving the JSSP across various datasets and instance
sizes, particularly in terms of scheduling efficiency and reducing overall makespan?

To this end, a set of hypotheses has been formulated to address each of these questions
respectively:

• H1: The PPO algorithm can be effectively implemented to solve the JSSP as a single-
agent RL problem, achieving a lower makespan compared to other RL algorithms (PG,
A2C, A3C).

• H2: The implementation of PPO will result in a consistent increase in rewards during
the training process, indicating effective learning and adaptation to the scheduling
environment.

• H3: The PPO algorithm will achieve lower makespan values compared to traditional
dispatching rules (FIFO, MWKR, SPT) and state-of-the-art DRL approaches in the
literature.

• H4: The PPO algorithm will demonstrate a lower optimality gap compared to tradi-
tional dispatching rules and state-of-the-art approaches, indicating that the solutions
are closer to the optimal or best-known solutions.

1.4 Contributions

The following is a summary of this thesis’s main contributions:

1. Implement a DRL Model: This thesis particularizes a deep learning model, in order
to solve the JSSP as a single-agent RL problem. Specifically, the actor-critic Proximal
Policy Optimization algorithm is used to learn a policy that maps a state to an action
probability distribution.

2. Comparative analysis of different RL algorithms: This study, in addition to the imple-
mentation of a particular RL strategy, also evaluates the applicability of several RL
algorithms by conducting a comparative study of them in order to solve JSSP.

3. Numerous experiments on hyperparameter sensitivity are carried out to optimize the
solution.

3

1.5 Thesis structure

The thesis begins with an introduction delineating the motivation, goals, research questions,
contributions, and overall structure. Following this, Chapter 2 delves into background theory,
encompassing related work and theoretical foundations of RL algorithms. Chapter 3 outlines
a RL approach to address the JSSP, covering environment setup, action selection, reward
function design, state representation, dataset overview, and implementation details using the
Ray library (RLib). Chapter 4 delves into the empirical analysis of RL algorithms applied
to the JSSP, showcasing detailed comparisons of performance metrics such as makespan and
optimality gap across diverse datasets and instance sizes. The chapter also provides insights
into the training dynamics of these algorithms, illustrating their learning capabilities and
improvements over iterations, thereby offering valuable guidance for algorithm selection and
future research directions in scheduling optimization. Chapter 5 discusses the effectiveness
of RL algorithms, particularly PPO, in addressing the JSSP, highlighting PPO’s superiority
in minimizing makespan and learning efficiency, while acknowledging its limitations and the
importance of algorithm selection. Finally, Chapter 6 provides a comprehensive conclusion
to the thesis, summarizing key findings, discussing their implications, and proposing future
research directions to enhance scheduling performance and address scalability issues

4

Chapter 2

Background Theory

This Chapter explores background theory, including relevant literature and the conceptual
foundations of RL algorithms.

2.1 Related Work

Many scheduling approaches have been developed in the literature over the last few decades
with the goal of solving the Job Shop Scheduling Problem. These methodologies cover a
broad spectrum of approaches, including heuristic, reinforcement learning techniques, as
well as mathematical programming. DRL has gained popularity recently as a comprehen-
sive method for solving COPs. The number of DRL applications is rapidly rising, ranging
from the Traveling Salesman Problem (TSP) via Graph Optimization to the Satisfiability
problem. Nevertheless, DRL’s use in scheduling issues is more recent and restricted.

2.1.1 Heuristic Approaches

In part due to the curse of dimensionality and the inability to be modified in real-time,
mathematical programming optimization techniques like mixed integer programming [24]
and integer linear programming [19] are not practical for large-scale or dynamic scheduling
problems. However, they can find the best solutions for small-scale problems. Approximate
solution optimization techniques, which seek to identify nearly optimal solutions, have been
used to solve the dynamic job-shop scheduling problem since exact optimization methods are
unable to solve it well. DJSP is frequently solved using heuristic dispatching rules, which can
produce workable but maybe suboptimal solutions in a brief amount of time [35]. Effective
dispatching rules must be manually designed through a process of trial and error that takes
a lot of time, code, and domain expertise [5]. The Shortest Processing Time (SPT) is a
simple PDR that is simple to implement and low in time complexity. However, instance-
related factors like shop configuration, operating conditions, and objective functions have a
significant impact on the performance of PDR scheduling methods.

2.1.2 Metaheuristic Techniques

Random search factors are introduced to improve the exploration ability and higher qual-
ity solutions can be provided in a reasonable amount of computational time using tabu
search [8], simulated annealing [36], and genetic algorithms [21]. Because the techniques
mentioned above are meant to identify all scheduling assignments for a given initial condi-
tion, and because fine-tuning the parameters of these methods is particularly challenging,
they are not easily applied to dynamic scheduling issues, where the conditions of the prob-
lem change continuously. According to the paper [2], these approaches should therefore be

5

used again anytime the scheduling problem’s conditions change. However, because they de-
mand a significant amount of calculation time, they are not practicable in real-world settings.

2.1.3 Genetic Programming-based Hyperheuristic

One of the most efficient ways to solve DJSP these days is to use hyper-heuristic approaches,
including Genetic Programming-based Hyperheuristic (GPHH) [25]. GPHH seeks to auto-
matically build dispatching rules in the heuristic space rather than the solution space [5].
Nonetheless, the rules produced by GPHH are frequently extremely big, complex, and chal-
lenging to understand. In GPHH, numerous feature selection techniques are used to shorten
the length of generated dispatching rules [37]. Unfortunately, the Genetic Programming
(GP) approach is too time-consuming and impractical because the existing feature selection
methods typically modify offline selection processes to acquire a promising subset of termi-
nals, which necessitates extra simulation runs.

2.1.4 Reinforcement Learning for Combinatorial Problems

The reinforcement learning approach, one of the most exciting areas of machine learning,
is frequently used for operations and production management issues, particularly those in-
volving decisions in dynamic contexts. The application of deep reinforcement learning to
find end-to-end solutions for combinatorial problems was originally shown in the paper [3].
The Traveling Salesman Problem was addressed by the authors using the Pointer Network
inside an actor-critic architecture. With RL and a customized critic for effective learning, the
work [7] expands the neural combinatorial optimization framework for the TSP without the
need for Long short-term memor (LSTM). In contrast to pointer networks, this study [12]
suggests an attention-based model trained with RL for combinatorial optimization heuristic
learning. All of these research, nevertheless, rely on sequence-to-sequence models, which
makes extensive sampling and search methods necessary for inference in order to enhance
results.

Considering every machine as an agent is a traditional method of solving model scheduling
issues. This work [33] demonstrates the successful application of RL with a Deep Q-Nework
(DQN) agent for production scheduling. After only two training days, expert-level answers
were achieved, matching established heuristics without the need for human intervention.
With actor and critic networks, the paper [18] leverages deep reinforcement learning to effec-
tively manage sequential decision-making without the need for hand-crafted features in the
dynamic realm of job shop scheduling. The two previously mentioned publications highlight
flexibility and suggest scenarios in which machines break down randomly.

Furthermore, an extensive number of scheduling examples can be found in various applica-
tion domains including distributed computing [20] and manufacturing [17]. Many of these
approaches, despite their best efforts, do not match traditional heuristics, and their scalabil-
ity across a wide range of problem sizes is hampered in some studies by state representations
that are limited by variables such as job size or a number of processes. Using DRL with
graph neural networks, this research [37] suggests an automatic technique to train PDRs for
the Job-shop scheduling problem. Even on larger instances that have not yet been seen, the
method achieves great performance against PDRs and can be generalized to large-scale in-
stances. Similarly, this research [9] proposes an adaptive scheduling framework for job shop
scheduling utilizing DRL that makes use of disjunctive graphs in conjunction with dueling
networks, double DQN, and prioritized experience replay. The scheduling states are repre-
sented as multi-channel images, which are then turned into a sequential decision problem

6

Figure 2.1: Typical Reinforcement Learning scenario framing.

using topological sorting. Nevertheless, it can be challenging to solve big examples with
thousands of operations since the induced graph representations have a lot of nodes and
edges that indicate all conceivable ordering of the operations in an instance.

2.2 Related Theory

This section delves into the foundational concepts that underpin RL, a paradigm facilitating
autonomous agents’ interaction with their environment to achieve optimal decision-making.
Exploring these fundamental principles paves the way for a deeper understanding of RL
methodologies and their applications in various domains.

2.2.1 Reinforcement learning

An agent interacts with an environment in RL, where the agent’s actions modify the state
of the environment. The goal of RL is to create a framework in which an agent, lacking
any prior information, learns optimal behavior in the environment via trial and error. A
reward function measures how well the agent’s actions correspond with the intended result,
capturing this optimal behavior. The agent’s goal is to discover a strategy that maximizes
rewards for particular states by investigating the environment and learning how to maximize
this reward function. The typical framing of the RL scenario is shown in Figure 2.1.

2.2.2 Element of Reinforcement Learning

The goal of reinforcement learning is to determine how to make choices that maximize reward.
Feedback about the agent’s performance at each time step is the reward (R). At every stage,
the reward and the environment-descriptive state (S) determine the agent’s behavior (A).
The policy (P) directs the agent’s behavior by mapping states to actions. Furthermore, the
value function (V) assesses each state’s quality; in contrast to instant rewards, it indicates
a state’s long-term desirability. The key elements of reinforcement learning as listed below:

Agent

An intelligent system that learns and makes decisions within an environment, aiming to
maximize its cumulative rewards over time. The agent’s primary goal is to learn the optimal
policy that maps states to actions to maximize rewards. Also, the agent can be a human,
robot, or software program and is responsible for making decisions in the environment.

7

Environment

The external system that the agent is operating in, gives it feedback and affects its decisions
with its dynamic. The environment can be a physical or virtual system, such as a game, a
robot, or a simulation. The environment’s state is the agent’s input, and the agent’s actions
influence the environment’s state. Since the agent’s actions are based on the environment’s
state, the agent’s decisions are influenced by the environment.

Action

The decisions taken by the agent impact the ensuing state transitions and are based on the
observable states of the environment. The agent’s actions are determined by the policy,
which is a mapping from states to actions. The agent’s goal is to learn the optimal policy
that maximizes rewards by taking actions in the environment.

State

A representation of the setup of the current environment that includes crucial data for the
agent to make decisions. The agent’s actions are based on the environment’s state, which is
the input to the agent’s decision-making process. The agent’s goal is to learn the optimal
policy that maximizes rewards by taking actions in the environment.

Reward

After each action, the environment provides feedback to the agent about the quality of the
agent’s behavior in a certain state. The agent’s goal is to maximize the cumulative reward
over time by learning the optimal policy. The reward is a scalar value that indicates how
well the agent is performing in the environment.

Policy

Policy is Rule or tactic that specify how the agent maps states to actions in order to accom-
plish its goals and control its behavior. The agent’s behavior function, or policy, instructs
the agent on what to do in various states. It is a mapping, which might be stochastic or
deterministic, from state s to action a. The policy can be deterministic or stochastic, and
it is the agent’s strategy for selecting actions in the environment. The policy is a mapping
from states to actions that guide the agent’s behavior.

• Deterministic:π(s) = a,

• Stochastic: π(a|s) = Pπ[A = a|S = s].

Episode

A complete series of interactions that go from a starting condition to a terminal one and
offer distinct learning chances in episodic real-life environments. An episode is a sequence
of interactions between the agent and the environment that begins with the agent’s initial
state and ends with a terminal state. The agent’s goal is to maximize the cumulative reward
over time by learning the optimal policy.

Discount factor γ

It determines the extent to which future rewards are taken into return. γ has a value between
0 and 1. In the extreme, an agent that values γ = 0 is only interested in rewards that come
in the near future, whereas an agent that values γ = 1 looks at all rewards that come in the
future.

8

Q-value

A Q-learning and related algorithms estimate of the predicted cumulative future reward that
an agent can choose to get by selecting a particular action in a particular state. The Q-value
is a measure of the quality of an action in a given state, and it is used to determine the
best action to take in a given state. The Q-value is the expected cumulative reward that an
agent can receive by taking a particular action in a particular state. The Q-value is used to
determine the best action to take in a given state.

Exploration and Exploitation

The process of trying out new behaviors to find out more about the environment and perhaps
better behaviors is called “exploration”. On the other hand, exploitation comprises choosing
actions that are known to yield large rewards based on the agent’s existing understanding.
To learn effectively, one must find the perfect balance between exploitation and exploration.
While excessive research can lead to inefficiency, excessive exploitation could hinder the
agent from discovering more productive paths of action. Finding the best trade-off in re-
inforcement learning to maximize cumulative rewards and guarantee effective learning is a
major challenge.

2.2.3 Value Function

Value functions use future reward predictions to evaluate how excellent a situation or action
is, or how rewarding it is. The total of all future reduced rewards is the future reward,
sometimes referred to as the return. The return Gt is calculated as below Eq. (2.1) and
future rewards are penalized by the discounting factor γ ∈ [0, 1].

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γk Rt+k+1. (2.1)

The state-value function is the expected return starting from s following policy π and is
represented as:

Vπ(s) = Eπ[Gt|St = s]. (2.2)

The action-value function indicates how helpful it is to perform a specific action in a specific
state and is represented as:

Qπ(s, a) = Eπ[Gt|St = s, At = a]. (2.3)

The difference between action-value and state-value is the action advantage function and
represented as:

Aπ(s, a) = Qπ(s, a)− Vπ(s). (2.4)

The optimal value function produces the maximum return:

V∗(s) = max
π

Vπ(s) , Q∗(s, a) = max
π

Qπ(s, a). (2.5)

The optimal policy achieves optimal value functions:

π∗ = argmax
π

Vπ(s) , π∗ = argmax
π

Qπ(s, a). (2.6)

9

2.2.4 Markov Decision Processes

In the area of RL, a Markov Decision Process (MDP) is a mathematical framework used
to model decision-making issues. An agent engages with the environment in an MDP over
a number of distinct time steps. At each time step, the agent evaluates the state of the
environment before selecting a course of action. The environment responds by altering into
a new condition and rewarding the agent. Both the transition to the new state and the
reward are influenced by the agent’s actions and the present state.

The agent and environment interact at each of a number of discrete time steps, t = 0, 1, 2, 3,
At each time step t, the agent receives a representation of the environment’s state, St ∈ S,
and chooses an action, At ∈ A(s). The agent chooses a new state, St+1, and is rewarded,
Rt+1 ∈ R ⊂ R, after one time step. Consequently, the combination of the MDP [29] and
agent produces a trajectory or sequence that starts as:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (2.7)

Within a finite MDP, each of the sets of states, actions, and rewards (S,A, and R) has
a finite number of components. In this case, the discrete probability distributions for the
random variables Rt and St are well-defined and exclusively reliant on the state and activity
of the past. That is, for certain values of these random variables, s

′ ∈ S and r ∈ R, there is
a probability that these values will occur at time t given specific values of the previous state
and action: (2.8)

p(s′, r|s, a) = Pr{St = s
′
, Rt = r|St−1 = s, At−1 = a}, (2.8)

for all s′, s ∈ S, r ∈ R and a ∈ A(s). Here, the function p defines the dynamics of the MDP.

2.2.5 Features of Reinforcement Learning

In general, there are two types of RL problems: model-based and model-free. Model-based
RL allows the agent to plan and simulate future actions by generating a comprehensive
representation of the environment. This technique has the benefit of allowing for forward
planning and logical decision-making, but it requires proper environmental modeling. Con-
versely, model-free reinforcement learning gains knowledge through interactions with the
environment rather than relying on a predetermined framework. Because it concentrates on
predicting the value or policy directly from observed experiences, it is more adaptable; yet,
learning necessitates more interactions. The complexity of the environment and the trade-
off between sampling efficiency and planning skills have an impact on the choice between
model-based and model-free reinforcement learning.

RL environments fall into one of two categories: deterministic or stochastic. In a determin-
istic setting, results are repeatable and predictable since the subsequent state and reward
simply depend on the current state and action. In stochastic situations, where randomness
and uncertainty are introduced, the same action taken in the same state may yield various
consequences. Both the reward obtained and the change to the next state are determined
by a probability distribution. By making the environment as deterministic as is practical,
convergence will be enhanced. Providing the agent with additional information will help
achieve this.

Environments in RL can be classified as discrete or continuous depending on the properties
of their state and action spaces. Discrete environments have a finite or countable number
of different states and actions, whereas continuous environments have real-valued variables
that represent continuous and infinite state and action spaces. Understanding the differ-
ences between discrete and continuous environments is essential because it influences the

10

algorithms and techniques that real-time agents select to use. Discrete environments can be
easily handled with tabular approaches, but continuous settings sometimes require the em-
ployment of function approximation techniques in order to manage the endless possibilities.

Mathematically defining an environment for RL requires careful attention to detail. Agents
can exploit any gaps in the environment’s description, especially in open-world or simulation-
based environments. Rewards and penalties should only be earned by the desired actions.
For example, in a video game, if there is a reward for reaching a checkpoint, it should be
deleted after an agent passes through it once to prevent exploitation. By doing this, it is en-
sured that the agent is focused on accomplishing the intended goals rather than attempting
to maximize rewards by repeatedly crossing the checkpoint.

Both on-policy and off-policy algorithms are used in RL. On-policy algorithms learn from
and improve the present policy by applying the knowledge they have acquired from its
implementation. The agent uses the same policy to explore and interact with its environment
while simultaneously updating it. Off-policy algorithms, on the other hand, use information
from a separate policy or behavior to improve and modify the policy. Both exploratory data
and data collected by following an alternate policy can be used by the agent to learn new
things.

2.2.6 Reinforcement Learning algorithms

An RL training algorithm’s objective is to maximize the predicted cumulative reward over
time by learning a policy, or a mapping from states to actions. This policy directs the
agent’s choices, enabling it to make decisions that, in the current environment, result in
greater rewards. The algorithm modifies the policy iteratively to improve the behavior of
the agent and reach optimal performance through learning from encounters. For a state s0,
we can calculate the value Vπ of a policy π by using the following equation:

V π(s0) = Eπ
[+∞∑
t=0

γt R(st, at

]
, (2.9)

where γ, discount rate, is a hyper-parameter that regulates how far the agent looks into
the future and Eπ is the expectation over the distribution of the acceptable trajectories
s0, a0, r0, s1, r1, a1 derived by sampling the actions from the policy.

Estimating the state-value function, which estimates the total expected reward from a spe-
cific condition, is the primary objective of value-based algorithms. After obtaining this
function, the action that leads to the state with the highest expected value is selected as
the policy. underlined this approach, which focuses on appreciating states to guide decision-
making [23]. On the other hand, policy-based algorithms attempt to discover the policy that
maximizes cumulative reward through direct learning. These strategies function by raising
the likelihood of choosing courses of action that have historically produced large rewards.
This method places greater emphasis on the behavior of the agent and the direct optimization
of incentives [29]. In modern reinforcement learning, a combination of these two approaches
has emerged in the form of actor-critic methods, as discussed in paper [22]. Actor-critic ap-
proaches make use of both a policy network, called the “actor”, and a value function network
called the “critic”. Based on the existing policy, the actor recommends courses of action, and
the critic assesses them by calculating their predicted values. The combination of policy-
based decision-making and value-based estimates enables effective learning and enhanced
performance in complicated situations.

11

Policy Gradients Methods

Reinforcement learning algorithms that learn a policy directly are known as policy gradi-
ent methods. Typically, a neural network is used to represent the policy parameters. The
expected cumulative payoff is to be maximized. To accomplish this, gradients of expected
rewards with respect to the policy parameters are computed and updated, usually via gra-
dient ascent.

Policy gradient [15] methods use entropy regularization to prevent premature convergence
to suboptimal policies. This regularization term promotes the exploration of a varied action
space and is proportional to the negative entropy of the policy distribution. By encouraging
a balance between exploitation and exploration, it aids in preventing the policy from being
mired in local optima.

The goal of the policy gradient approach is to directly model and optimize the policy. Typ-
ically, a parameterized function with regard to θ, πθ(at|st) is used to model the policy. This
policy determines the value of the reward (objective) function, and various algorithms can
then be used to optimize for the optimal reward.

In discrete space, the objective function is as below:

J(θ) = Vπθ(S1) = Eπ[V1],

where S1 is the initial starting state.

In continuous space, the objective function is as below:

J(θ) =
∑
s∈S

dπ(s) V π(s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a),

where dπ(s) is the stationary distribution of of Markov chain for πθ.

The gradient of the reward function is calculated with respect to the policy parameters and
used this information to identify the necessary changes to the policy to raise the predicted
reward. The policy updating process is guided toward activities that are more likely to result
in higher rewards by this gradient. The gradient of J(πθ) is:

∇θJ(πθ) = Eτ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)Aπθ(st, at)

]
,

where τ is a trajectory and Aπθ is the advantage function for the current policy.
The policy gradient algorithm works by updating policy parameters via stochastic gradient
ascent on policy performance:

θk+1 = θk + α∇θJ(πθk).

Algorithms that optimize the policy in such a way are known as policy gradient algorithms.
The gradient of policy performance is denoted by ∇θJ(πθ).

Proximal Policy Optimization

Proximal Policy Optimization [15] is an actor-critic model that combines elements of both
value-based and policy-based reinforcement learning approaches. Actor-critic models consist
of two primary parts:

12

• Actor: The actor’s role is to learn a policy that associates states with actions. Its
objective is to directly modify the policy settings to maximize the projected cumulative
benefit.

• Critic: The critic evaluates the morality of the actions chosen by the actor. It estimates
the value function, which represents the expected cumulative reward if the policy is
followed starting from a certain condition.

In PPO, the actor represents the “policy” component, which learns to choose actions in states
based on the parameterized policy given by θ. The advantage function, used to calculate
the worth of actions and guide policy adjustments, is analogous to the “value function” part.
Similarly to how actor-critic approaches update policy parameters based on advantages de-
termined by a critic, PPO uses the advantage function to compute policy gradients and
update the policy parameters..

PPO is a policy gradient method for reinforcement learning. By limiting the size of pol-
icy updates, the PPO reinforcement learning method improves training stability. This is
achieved by introducing a clipped objective function, which imposes a constraint on how far
the new policy can diverge from the old one. PPO aims to maintain consistency in learning
progress by limiting the magnitude of policy changes, thus promoting more dependable con-
vergence to an optimal policy.

PPO-clip updated policies via:

θk+1 = argmax
θ

E︸︷︷︸
s,a∼πθk

[L(s, a, θk, θ],

typically taking multiple steps of (usually minibatch) SGD to maximize the objective and
the loss (surrogate objective) function, L, is written as:

L(s, a, θk, θ) = min
(πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ, Aπθk (s, a))
)
,

where

g(ϵ, A) =

{
(1 + ϵ)A, A ≥ 0,
(1− ϵ)A, A < 0.

Here θand θk are the parameters of the new and the old policy respectively.

Asynchronous Advantage Actor-Critic

Asynchronous Advantage Actor Critic is a RL policy gradient algorithm that upholds a pol-
icy π(at|st; θ) and a value function estimate V (st, θv). It updates the policy and the value
function simultaneously while operating in the forward view and employing a combination
of n-step returns [22]. The policy and the value function are updated after every tmax action
or when a terminal state is reached. In A3C, critics learn the value function while multiple
actors receive parallel instruction while they synchronize with global parameters. Similar to
parallelized stochastic gradient descent, the gradients are gathered as part of the stability
training process.

The title of the algorithm comes from two key concepts that A3C expands upon. Initially, by
acquiring an estimate V̂ϕ of the value function, A3C indirectly learns an estimate Âϕ of the
advantage function. Secondly, A3C presents the idea of employing several concurrent actors
to engage with the surroundings in order to maintain training stability. Policy gradients are

13

sampled by the algorithm [15]

∇̂θ =
1

|D|
∑
s,a∈D

Âϕ(s, a)∇θln πθ(a|s),

where D is a batch transition collected by the actors.

Advantage Actor-Critic

The A2C algorithm [15], is a synchronous version of the A3C method, in which each actor
interacts synchronously with their own copy of the environment. By interacting with the
environment, each actor gains experience, which it subsequently uses to adjust the global
neural network’s settings. Like A3C, A2C makes use of the advantage function to eval-
uate the actor’s action quality and directs policy changes appropriately. Policy gradients
are calculated using batches of transitions—state-action-reward-next state tuples—that are
gathered by the actors. A2C provides stability and predictability in training by ensuring
that changes are synchronized and averaged over all actors by delaying global parameter
modifications until each actor has finished their experience segment. About effective rein-
forcement learning, A2C offers a deterministic and synchronous substitute for A3C while
preserving the benefits of the actor-critic architecture.

2.2.7 Deep Reinforcement Learning

Deep reinforcement learning [28] is a subfield of machine learning that combines deep learning
with reinforcement learning. DRL algorithms use deep neural networks to approximate the
value function or policy function in reinforcement learning problems. By leveraging the power
of deep learning, DRL algorithms can handle complex, high-dimensional input data, such as
images or text, and learn more sophisticated representations of the environment. DRL has
been successfully applied to a wide range of tasks, including playing video games, controlling
robots, and optimizing resource allocation. DRL algorithms have achieved impressive results
in many domains, outperforming traditional reinforcement learning methods and human
experts in some cases.

2.2.8 Multilayer Perceptron (MLP)

A Multilayer Perceptron (MLP) [28] is a type of artificial neural network that consists of
multiple layers of nodes, each of which is connected to the next layer. The nodes in the input
layer receive input data, which is then passed through the network to the output layer. Each
node in the hidden layers performs a weighted sum of the inputs and applies an activation
function to produce an output. The weights and biases of the network are adjusted during
training to minimize the error between the predicted output and the actual output. MLPs
are commonly used for supervised learning tasks, such as classification and regression, and
can be trained using backpropagation. MLPs are versatile and can be used for a wide range
of tasks, including image recognition, natural language processing, and time series forecast-
ing.

An advanced kind of artificial neural network made up of several layers of nodes—also known
as neurons—is called a Multilayer Perceptron (MLP) [28]. The input layer, hidden layers,
and output layer are the three primary categories for these layers. The initial data must be
received by the input layer, where each node represents a distinct feature of the input data.
Each node in an image recognition task, for instance, might be associated with a particular
picture pixel value. One or more hidden layers follow the input layer; they are called "hid-
den" because the input or output does not explicitly display their values. The nodes in these
hidden layers apply an activation function after performing a weighted sum of the inputs

14

from the preceding layer. The model gains non-linearity from this activation function, which
helps it recognize intricate patterns in the data. Rectified Linear Unit (ReLU), hyperbolic
tangent (tanh), and sigmoid are examples of common activation functions. The output layer,
which is the last layer, is responsible for producing the network’s predictions. Whereas in
regression tasks, every node in the output layer may represent a continuous value, in classi-
fication tasks, every node might represent a class label.

Learnable parameters called weights define the connections between the nodes in these lev-
els. Furthermore, biases are applied to every node prior to the activation function being
applied. During the training phase, these weights and biases are changed to reduce the error
between the target values and the anticipated outputs of the network. Backpropagation, an
optimization technique that uses the chain rule to determine the gradient of the loss function
with respect to each weight, is commonly used in the training of multiple linear polynomials.
As a result, the weights can be updated by the model to lower the loss. To improve the
effectiveness of this training procedure, gradient descent optimization techniques like Adam
and stochastic gradient descent are frequently employed. For supervised learning tasks like
regression and classification, MLP are frequently utilized. They are flexible tools in machine
learning because they can process and learn from a variety of data kinds. For example,
machine learning algorithms are used in image recognition to detect and categorize objects
in photographs, and in natural language processing to evaluate and interpret textual input
for tasks like sentiment analysis and language translation. Time series forecasting, which
predicts future values based on historical data, is another valuable use for MLP. Examples
of this type of forecasting include weather forecasts and financial market analysis.

15

Chapter 3

Methodology

This chapter describes how to solve the JSSP using RL. It covers how to set up the environ-
ment, choose an action, design the reward function, represent the state, provide an overview
of the dataset, and implement the solution using RLlib.

In JSSP, a fnite set of n machines {Mk}nk=1 are used to process a finite set of m jobs {Ji}mi=1.
Every task Ji is composed of n operations (Oi,1 → Oi,2 → ... → Oi,n) that need to be
completed in a specific order. The machine Mk is assigned for a specific processing time Di,j

for each operation, Oi,j. The objective is to ascertain which processes should be scheduled in
what order to minimize the makespan or overall execution time. There are several constraints
for the job shop problem:

• A machine can only work on one task at a time: This implies that a single operation can
be handled by each machine at a time. A machine cannot go on to another task until
it has finished the one it is now processing. This limitation makes sure that machines
don’t take on too many jobs at once.

• No task for a job can be started until the previous task for that job is completed: A
job’s sequence of operations dictates that one activity cannot start until the other is
completed. This constraint guarantees the proper sequence of operations within each
task, for instance, if operation Oi,1 must be finished before operation Oi,2 may begin.

• A task, once started, must run to completion: This limitation guards against errors or
inefficiencies in the production process by guaranteeing that once operations commence
on a machine, they continue uninterrupted.

Figure 3.1 is a sample solution for a small instance with three machines and three jobs.
Every job is tracked by a single machine, and each operation takes a different amount of
time [31].

Figure 3.1: A solution for a small instance composed of three jobs and three machines [31].

16

Figure 3.2: Illustration of the environment’s status, indicating the current time-step, job allocations,
available options, and future time-steps [31].

3.1 Job-Shop Scheduling Environment

3.1.1 Environment

The environment is intended for RL applications, where a dispatcher, or agent, makes judg-
ments about distributing work to machines over time in order to improve scheduling. The
JSSP is modeled as a single-agent problem in this environment. The list of available actions
includes an additional action called No Operation, which is signified “by No-op”, to move on
to the next time-step without scheduling any specific operation. As a result, the discrete
jobs represented by the formula A = {J0, J1, ..., J|J |−1, No−Op} comprise the action space.
“No-Op” basically denotes the choice to remain inactive and not carry out any particular
duty, enabling the agent to advance to the subsequent time-step without carrying out any
specific action. It is not always possible to assign a task at every stage of the process due to a
number of constraints. The machine being used, the machine that already has work assigned
to it, or the accomplishment of all job procedures could be examples of these constraints.
To handle these limitations, the environment indicates which actions are allowed using a
Boolean vector. The agent places a task in the order of allocation onto a stack for the next
time-step it will visit after it is allocated. Afterward, if it reaches a time-step where no more
jobs can be allotted or if we decide to carry out a “No-Op” action, iteratively moves to the
next time-step until a machine becomes available for job allocation once again [31].

Figure 3.2 provides an overview of the current state of the environment, specifically focusing
on scheduling tasks on machines. The vertical red line serves as a marker indicating the
current time-step within the scheduling process. This temporal reference point is crucial for
decision-making. There are two potential actions based on the current environment status.
Firstly, job J2, highlighted in yellow, can be allocated to machine M0; however, the specific
machine is not explicitly provided. Alternatively, as there’s only one legal action available,
advancing to the next time-step, T8, is an option. This progression allows machine M1 to
become available, facilitating the allocation of job J0 to it.

3.1.2 Reduction Search-Space

It is vital to guide our agents away from investigating less-than-ideal solutions in order to
achieve high performance effectively. This is particularly crucial in situations where time
is of the essence. Solutions that are not ideal can waste resources, cause inefficiencies, and
impair overall performance. To increase efficiency and provide better results faster, the agent
is directed to prioritize actions and make well-informed decisions that result in the best pos-
sible outcomes.

In order to ensure the effective use of machine resources, non-final prioritization is a tech-
nique in job scheduling that gives preference to jobs that are not at their last execution. Jobs

17

that are not at their end operation are given priority using this method. Stated differently,
when two jobs are being considered, J2 is given priority for machine allocation if J1 is at its
end operation and J2 is not. By doing this, the machine stays active and productive after
finishing final processes and avoids idle time. Instead of dedicating time to work that are
almost finished, this tactic seeks to maximize resource utilization by keeping the machine
busy with jobs that require further operations.

The “No-Op” action in job scheduling requires careful consideration due to its complexity
and potential for worse results compared to greedy policies [31]. If the agent is not properly
organized, it might completely quit using No-Op and develop excessive greed. To address
this, the first rule designates jobs as illegal for No-Op if they can be assigned in a way that
ensures effective time management. Each machine calculates the minimal duration (D) of
legitimate jobs it can schedule in order to further restrict No-Op. To avoid unnecessary
waiting, No-Op is forbidden if a new job will arrive in fewer than D time-units. Additionally,
it would be pointless to wait for a job that is in its final operation when the next job is ready
for allocation. These guidelines help the agent use No-Op wisely, resulting in effective work
scheduling and resource optimization. The action is prohibited if there are four or more
machines with an open job or five or more jobs that can be allocated, in order to prevent
improper usage of “No-Op” and save time. If the agent continues to select No-Op, it looks
for new employment in succeeding time-steps until one becomes available.

3.1.3 Reward

One common statistic in the JSSP is the minimum makespan, which represents the overall
time required to complete the task. However using this metric alone as the RL reward func-
tion can result in sparse feedback, where the agent only gets input at the conclusion of each
episode. The agent’s capacity to understand the immediate effects of its actions is hampered
by this limited feedback. For example, the consequences of the agent idling a machine early
on when it could be working might not become apparent until the end of the episode. The
agent’s ability to learn and improve its scheduling technique is hampered by this feedback
latency.

An advanced reward function centered on the scheduled area is designed to overcome the
above problem. After every action, the discrepancy between the duration of assigned oper-
ations and any “holes” (idle time) created on a machine is measured. The scheduled area in
the context of the JSSP is the interval of time that machines are actively processing jobs.
Any idle time that machines spend not in use is not included in this category. For instance,
the scheduled area in a JSSP scenario with numerous jobs and machines would be made up
of the time slots where the jobs’ operations are delegated to the machines. A machine is not
in the scheduled area if it is not in use or not operating at all during a given period of time.
The reward is represent as:

R(s, a) = paj −
∑
m∈M

emptym

(
s, s

′
)
. (3.1)

In Eq. (3.1), s represents the current state and s′ the next state resulting from taking
action a. The action a denotes the jth operation pa,j of job Ja with a processing time pa,j
scheduled. The function emptym(s, s

′) returns the duration of idle time for machine m while
transitioning from state s to s′. The reward R(s, a) is computed by subtracting the sum of
idle times on all the machines from the processing time of the operation pa,j.

18

3.1.4 State Space

The state representation in RL is the way the environment is currently represented to the RL
agent. It is an important idea since the RL agent makes decisions about what to do based
on this representation. All of the necessary information that the agent requires to choose the
right course of action is represented by the state. In essence, it’s a moment-in-time snapshot
of the surroundings that gives the agent the information they need to make judgments. In
the JSSP, the state representation is organized as a (JX7) matrix, where J is the number
of jobs. Seven properties are present in each row of the matrix, which represents a job. The
state representation attributes are as follows [31]:

Boolean (a1): Job Allocation

• It indicates if the work is assignable or not.

• The RL agent needs this feature in order to determine whether to assign a task or to
wait for the next time step. The job can be assigned if “True” (1) is returned; if “False”
(0) is returned, the job cannot be allocated at this time step.

Remaining Time for the Present Process (a2)

• It indicates the amount of time left to complete the task at hand.

• This property shows the remaining time for the current operation of the job to finish.
The representation is standardized by scaling this number by the longest operation
time in the schedule, which enables the RL agent to compare progress across various
workloads and schedules.

The percentage of completed operations (a3)

• It shows how the work’s operations are going.

• The RL agent can learn how much of the job’s operations have been finished according
to this attribute. It facilitates knowledge of the work’s advancement toward completion.

Remaining Time for Complete Finishing (a4)

• It represents the amount of time left before the task is finished in its entirety.

• This property shows how much work remains until the full job is finished, much like
(a2). The representation is made uniform for comparison across various work durations
by scaling according to the longest overall completion time.

Time Until the Next Machine Is Ready (a5):

• It indicates how long it will take for the machine required for the performance of the
following project to be available.

• This property notifies the RL agent how long it will be until the machine needed for
the subsequent operation is available. It aids in determining when the work can go on
to the following procedure.

19

IDLE Duration Since Last Operation (a6)

• shows the IDLE time elapsed since the last operation.

• IDLE time shows how long a job has been waiting without any work being done on
it. The RL agent can make scheduling decisions based on this characteristic, which
provides information about how long the job has been waiting since its last execution.

Cumulative IDLE Time (a7)

• indicates the total IDLE time allocated to the task in the schedule.

• The amount of time the work has spent IDLE overall during the schedule can be seen
by looking at the cumulative IDLE time. It is the total of all IDLE periods since the
task’s start. By scaling this value, the RL agent may determine how much IDLE time
there is in relation to the total amount of time spent on every operation.

The characteristics described in the state representation offer a thorough understanding of
the environment surrounding the JSSP. These characteristics have the potential to recon-
struct the schedule’s present state and provide information on the status, progress, and
machine availability of each work. The accuracy with which the agent understands the dy-
namics of the system at any given time is guaranteed by this representation. Furthermore, it
is consistent with RL’s Markov requirement, which holds that all relevant data from previous
states is contained in the current state. Because of its adherence to the Markov property,
the RL agent may make efficient scheduling decisions by projecting future states exclusively
from the present state.

3.1.5 Action Selection

In RL, action selection describes the process through which an agent decides what to do in a
particular situation. It includes choosing the optimal path of action to maximize the agent’s
long-term reward and is a basic component of RL algorithms. A tabular matrix is used
in the environment to represent the status. In order to simplify the process of calculating
action distributions and state-value estimations, this matrix is converted into a vector and
supplied to the agent’s MLPs. In addition to the traditional MDP model, the environment
includes a mask that shows the possible legal actions the agent can take in each state. This
implies that the agent sets restrictions on the options accessible by knowing which activities
are permitted or allowed in the current state. With the aid of this additional information,
the agent’s decision-making process proceeds toward legal and feasible alternatives given the
circumstances of the issue.

When an agent engages in illegal activity, one popular strategy is to penalize them, with the
hope that they would learn to identify and stay away from such behavior. Nevertheless, this
approach frequently results in poor results. The agent must concurrently distinguish between
good and harmful acts, which complicates the learning process. Alternatively, the method
entails masking the neural network’s output. The values associated with unlawful activity
are changed by this mask into a tiny negative number, such as the smallest representable
number. This method significantly reduces the chance of illegal acts to almost zero when the
softmax function is then applied to compute action probabilities. Previous studies [10] on
this strategy have yielded encouraging results. This strategy improves performance in the
Job Shop Scheduling environment by assisting the agent in concentrating on understanding
the best course of action while keeping legal activities in check.

20

Table 3.1: Instances of Lawrence’s Datasets

Dataset Jobs Machine Lower
bound

Upper
bound

la20 10 10 902 902
la25 15 10 977 977
la30 20 10 1355 1355
la35 30 10 1888 1888
la40 15 15 1222 1222

Table 3.2: Instances of Demirkol’s Datasets

Dataset Jobs Machine Lower
bound

Upper
bound

dmu16 30 20 3734 3751
dmu21 40 15 4280 4380
dmu26 40 20 4647 4647
dmu31 50 15 5640 5640
dmu36 50 20 5621 5621

3.2 Datasets

For the comparative analysis, this thesis considers three different benchmark datasets:

3.2.1 Lawrence Datatset

A popular benchmark dataset for the JSSP is the Lawrence dataset [13], which was first
presented by Stephen Lawrence in 1984. This dataset, which consists of 40 cases that are
further classified as small, medium, and large, offers a wide range of problem sizes and
complexities, with 10 to 30 jobs and 10 to 15 machines. Every instance offers a thorough
depiction of actual production settings by specifying a range of tasks, equipment, processing
times for operations, and constraints. For the purpose of this experiment, a subset of five
instances is selected, representing different problem sizes, to evaluate the performance of the
proposed approach which is listed in Table 3.1.

3.2.2 Dermikol Dataset

The Demirkol dataset [6], introduced by Demirkol in 1998, is another widely-used benchmark
dataset for the JSSP. Consisting of 120 instances, this dataset provides a diverse range of
problem sizes and complexities, with 10 to 100 jobs and 5 to 20 machines. For the purpose of
this experiment, a subset of five instances is selected, representing high complexity problem
sizes, to evaluate the performance of the proposed approach which is listed in Table 3.2.

3.2.3 Taillard Dataset

The Taillard dataset [30], introduced by Éric Taillard in 1993, is a widely-used benchmark
dataset for the JSSP. Consisting of 80 instances, this dataset provides a diverse range of prob-
lem sizes and complexities, with 15 to 100 jobs and 5 to 20 machines. The Taillard dataset
is known for its challenging instances, which have been used to evaluate the performance of
various JSSP algorithms and heuristics. Table 3.3 contains instances from Taillard’s dataset.
To assess the efficacy of the suggested method, a subset of 13 cases that show a good level
of instance size complexity are chosen for this experiment.

21

Table 3.3: Instances of Taillard’s Datasets

Dataset Jobs Machine Lower
bound

Upper
bound

ta40 30 15 1651 1669
ta41 30 20 1606 2005
ta42 30 20 1884 1937
ta50 30 20 1833 1923
ta51 50 15 2760 2760
ta52 50 15 2756 2756
ta60 50 15 2723 2723
ta61 50 20 2868 2868
ta62 50 20 2869 2869
ta70 50 20 2995 2995
ta71 100 20 5464 5464
ta72 100 20 5181 5181
ta80 100 20 5183 5183

3.3 Ray

An open-source framework called Ray [16] was created to grow Python and AI applications
effectively, especially for jobs like machine learning. It eliminates the need for in-depth
knowledge of distributed systems and accelerates parallel processing. With scalable frame-
works for operations like data preprocessing, distributed training, hyperparameter tuning,
RL, and model serving, Ray reduces the complexity of managing distributed machine learn-
ing processes. Ray provides an efficient solution for the whole machine learning lifecycle,
regardless of whether you’re training models, adjusting hyperparameters, or deploying mod-
els at scale.

Ray’s core components include Ray Core, which provides a distributed execution framework,
and Ray Tune, which offers hyperparameter tuning. Ray Core is a distributed execution
framework that allows you to run Python functions concurrently on multiple cores or ma-
chines. Ray Tune is a scalable hyperparameter tuning library that can be used with any
machine learning framework. Ray Tune provides a simple interface for tuning hyperparam-
eters and supports various search algorithms, including random search, grid search, and
Bayesian optimization. Ray Tune also integrates with popular machine learning libraries
like TensorFlow, PyTorch, and Scikit-learn.

3.4 Weights & Biases

Weights & Biases (WandB) [4] stands as a comprehensive platform tailored to enhance
machine learning experimentation. Its suite of tools and services empowers researchers and
practitioners by streamlining the process of logging and visualizing crucial metrics, including
hyperparameters and outputs. The platform prioritizes experiment monitoring, providing
users with a comprehensive understanding of their model’s performance dynamics. WandB’s
effectiveness extends to hyperparameter optimization, offering a range of techniques such as
random search, grid search, and Bayesian optimization. This breadth of options allows users
to fine-tune their models efficiently, optimizing performance for diverse tasks.

Additionally, WandB facilitates smooth teamwork by offering capabilities that make code
sharing and result distribution easier. Its interfaces with well-known deep learning frame-

22

works, such as PyTorch and TensorFlow, facilitate easy workflow integration and guarantee
tool compatibility. WandB carefully records experiment details and code versions in order to
prioritize experiment reproducibility above and beyond facilitating cooperation. Proactive
alerts and real-time monitoring provide crucial information during model training, allowing
for timely modifications and optimizations. WandB is a vital tool in the constantly changing
field of machine learning research, enabling researchers to push the limits of creativity and
innovation with tasks ranging from model comparison and hyperparameter tuning to result
display.

3.5 Implementation

The open-source RL library (RLlib) supports highly distributed, production-level RL work-
loads while preserving uniform and straightforward APIs for a wide range of industry appli-
cations. In this thesis, RLlib and Tenserflow are implemented on the JSSP environment [11].
WandB [4] Bayesian optimization is employed to conduct hyperparameter searches and also
logs all the resulting data. The agent is trained using four well-known RL algorithms: PG,
PPO, A2C, and A3C. The training is conducted on a single NVIDIA H100 Tensor Core
Graphics Processing Unit(GPU), ensuring efficient computation. The makespan metric is
used to evaluate the performance of the trained models. The results from the different al-
gorithms are compared to determine the best-performing approach for the JSSP. This com-
prehensive setup, integrating powerful tools and methodologies, aims to provide a thorough
analysis of RL algorithms’ effectiveness in solving complex scheduling problems.

23

Chapter 4

Experiments and Results

4.1 Introduction

This chapter presents a comprehensive analysis of experiments conducted to evaluate the
performance of different RL algorithms in solving the JSSP. The experiments aim to address
the research questions and test the hypotheses outlined in Section 1.3. The chapter is
structured as follows:

1. Experimental Configurations: The settings and parameters used in training the RL
models, including datasets, network architectures, and hyperparameters, are detailed.
This section addresses RQ1 by explaining the implementation of DRL models for JSSP.

2. Baseline Comparison: The performance of RL algorithms is benchmarked against
traditional dispatching rules and state-of-the-art methods. This comparison addresses
RQ2 and validates H3 and H4.

3. Performance Analysis: The results are analyzed across three datasets: Lawrence’s,
Demirkol’s, and Taillard’s. Each dataset is evaluated to demonstrate how RL models
perform on varying problem sizes and complexities. This analysis addresses RQ2 and
tests H1, H2, H3, and H4.

4. Performance Metrics: Makespan and reward metrics are used to evaluate the effi-
ciency of RL algorithms, crucial for testing H1 and H2.

5. Comparative Analysis: Optimality gaps and makespan values are compared across
different RL algorithms and benchmarks, identifying the most effective approaches and
testing H3 and H4.

This chapter systematically organizes the results and provides in-depth analyses to offer a
clear understanding of the experiments and the performance of various RL algorithms in
solving the JSSP. The insights gained will contribute to answering the research questions
and validating the hypotheses, advancing the development of efficient scheduling algorithms.

4.2 Experimental Configurations

The model is trained on scheduling instances of the sizes used on Taillard’s [30], Demirkol’s [6],
and Lawrence’s [13] datasets. The examples are written as JSSP m×n, where m is the num-
ber of jobs and n is the number of machines. Standard benchmark instances ranging in size
from 10 × 10 to 100 × 20 are used for static experiments to evaluate the method’s perfor-
mance; these examples are included in Table 3.3, Table 3.2 and Table 3.1.

For PPO, the approach used in this thesis involves constructing distinct Multi-Layer Percep-
tron architectures for the state-value prediction network and the action selection network.

24

These networks utilize ReLU as an activation function and consist of two hidden layers with
a size of 256 neurons on each. Additionally, to maintain the unique functionality of these
networks, the layers are not shared between them. Throughout the training, PPO-specific
parameters are carefully adjusted, including the clipping parameters of 0.5, the number of
epochs 10 for network updates, and the coefficients controlling policy loss and value func-
tion of 0.5 and 0.8 respectively. A linear decay scheduler is applied, gradually reducing
the learning rate from 6.6 × 10−4 to 7.8 × 10−5 and the entropy coefficient from 2.0 ×
10−3 to 2.5 × 10−4 over the training period. For both the actor and the critic networks,
the Adam optimizer is employed with the discount factor γ to 1. The hyperparameters like
the batch size and the dimension of the actor network’s hidden layers are all carefully chosen.

The experimental configuration for PG, A2C, and A3C is similar to that of PPO; it consists
of distinct MLP architectures with two hidden layers of size 256 each for action selection net-
works and state-value prediction networks with ReLU activation functions. The networks’
distinct functions are preserved by their refusal to share layers. Linear decay scheduling
is used to optimize common hyperparameters such as learning rate, discount factor γ, and
entropy coefficient. The Adam optimizer is used for both actor and critic networks. Unlike
PPO, these algorithms do not require specific parameters such as clipping or loss coefficients.
However, Optimizing performance across all methods requires careful consideration of actor-
network dimensionality and batch size selection.

For PPO, Lawrence’s instances, being of small sizes, are run for 20 iterations. Demirkol’s
and Taillard’s instances are run for 60 iterations, except for the 100×20 instances. However,
the 100×20 size instances are run for 200 iterations due to their complexity. For PG, 30
iterations are run for Taillard’s instances, 40 iterations for Lawrence’s instances, and 60
iterations for Demirkol’s instances. A2C is run for 60 iterations for all instances, and A3C
is run for 460 iterations for all instances.

4.3 Baseline

The agent is compared to three well-known dispatching rules from the literature to ensure
that it is capable of learning difficult dispatching strategies. These dispatching rules are
typically effective because they demonstrate greediness and balance the distribution of jobs.
First In First Out (FIFO) implies that each machine processes the job that entered the
system first. Most Work Remaining (MWKR) selects the job with the highest remaining
processing time for prioritization. Shortest Processing Time (SPT), commonly used to min-
imize job completion time, prioritizes jobs based on their shortest processing time. These
rules serve as benchmarks to evaluate the agent’s ability to handle complex scheduling sce-
narios and learn effective dispatching strategies.

The four benchmarks from the literature are selected respectively by Zhang et al. [37], Park
et al. [26], Han et al. [9], and Wu et al. [34], and they evaluate their approaches on the same
instances as those used in this thesis. In paper [37], the authors used DRL with graph neural
networks and suggested an automatic technique to train Priority Dispatching Rules for the
Job-shop scheduling problem. An RL-based real-time scheduler, ScheduleNet, was proposed
in work [26] which solved the various types of multiagent scheduling problems. In work [9],
the researcher proposed an adaptive scheduling framework for job shop scheduling utilizing
DRL that used disjunctive graphs in conjunction with dueling networks, double DQN, and
prioritized experience replay. The authors in paper [34] proposed a DRL approach utilizing
Proximal Policy Optimization with hybrid prioritized experience replay for the Dynamic Job-
Shop Scheduling Problem. To approximate the optimal solution and estimate the optimality
gap of all algorithms, the constraint programming solver of Google OR-Tools CP-SAT [27]

25

is utilized.

4.4 Performance Analysis

In this work, the different RL algorithms are implemented on three different datasets: Tail-
lard [30], Dermikol [6], and Lawrence [13]. These results are curious because they highlight
an important finding: the performance outcomes of the three datasets show notable simi-
larities even when the same hyperparameters as those used for Taillard’s instances are used,
and Demirkol’s and Lawrence’s instances are not included in the hyperparameter search
process. This observation is especially significant in considering the problem size similarities
between Taillard’s, Demirkol’s, and Lawrence’s situations, particularly about the number of
procedures that need to be planned.

This result implies that this method demonstrates a high degree of generalizability. The ap-
proach performs consistently even when faced with examples from different datasets, proving
its ability to adapt and flexibility in a range of problem scenarios. This ability to main-
tain similar performance levels on many datasets highlights the approach’s effectiveness and
adaptability to a range of optimization problems. The comparative analysis of results on
each of these datasets is detailed next.

4.4.1 Performance Matrix

When evaluating the performance of RL algorithms in JSSP, two primary metrics are com-
monly considered: makespan and reward. The makespan, sometimes referred to as the
completion time, shows how long it took to finish every task on the timetable. The goal
of JSSP is to reduce the makespan, which measures how well the scheduling algorithm per-
forms in finishing all jobs in the least amount of time. Therefore, when the agent learns
to discover the best scheduling options that reduce completion time, the makespan should
ideally decrease as the training iterations go on. To evaluate algorithms performance, the
average optimality gap (optgap) [14] is also calculated using Eq. (4.1)

optgap =
makespan−makespan∗

makespan∗ × 100, (4.1)

where “makespan” is the makespan obtained from different algorithms, and “makespan∗”
is either optimal or the best-known solution. The optimal solutions are derived using Or-
Tools [27]. The optimality gap is a useful metric for evaluating how well an algorithm finds
approximate optimal solutions to scheduling problems. While a bigger optimality gap can
suggest that the algorithm’s performance could be enhanced, a lower optimality gap shows
that the solutions produced by the algorithm are closer to the optimal or best-known solu-
tions.

In addition to the makespan, reward serves as another important performance metric in RL-
based approaches. The agent is intended to be guided toward actions that result in desired
results via the reward function. A more cumulative reward in the context of JSSP suggests
that the agent is taking in information from its surroundings and making choices that improve
scheduling results. The agent modifies its policy to maximize cumulative reward as it gets
feedback from the environment through rewards, which eventually improves performance in
terms of reduces makespan and increases overall scheduling efficiency.

26

Table 4.1: Make-span of Lawrence’s instances by different approach.

Dataset PPO PG A2C A3C
la20 912 947 1024 1052
la25 1022 1113 1206 1343
la30 1356 1567 1630 1759
la35 1895 2043 2113 2216
la40 1323 1457 1519 1614

4.4.2 Performance Analysis on Lawrence’s Dataset

Table 4.1 and Table 4.2 present the makespan of Lawrence’s examples using different meth-
ods. A particular instance is represented by each row, which is distinguished by prefixes like
“la20”, “la25”, and so forth. For comparison, the columns show various dispatching rules, RL
algorithms, and other cutting-edge techniques. The tables show the makespan that each al-
gorithm or method achieves for each instance. The values that are bolded signify the optimal
makespan that was attained for that specific algorithm. These tables provide a thorough
analysis of how various approaches performed in distinct Lawrence cases, shedding light on
the relative merits of various strategies for resolving scheduling problems.

Comparison of RL Algorithms Based on Makespan

The baselines for PPO, PG, A2C, and A3C RL algorithms on Lawrence’s dataset are com-
pared in Tabel 4.1. Lawrence instances of various sizes, listed in Table 3.1, were used for the
investigation. Lower makespan values indicate better performance, as they represent shorter
total processing times for the scheduling instances. A clear trend emerges from the compar-
ison: as the instance size increases, so does the makespan, suggesting that larger instances
are more challenging to solve. Among the RL algorithms, PPO consistently outperforms the
others, demonstrating its superior performance. PG follows closely behind PPO, while A2C
and A3C trail behind.

It is shown in Fig. 4.1, Fig. 4.2, and Fig. 4.3 that the makespan of Lawrence’s instances of
RL algorithms: PPO, PG, and A2C, respectively. Each figure displays the makespan on the
y-axis and the number of iterations on the x-axis. The plots demonstrate the learning pro-
cess of the agent, where the makespan decreases as the number of iterations increases. This
downward trend indicates that the agent is learning and improving its scheduling strategy,
resulting in reduced makespans. However, as the instance sizes are increased, the makespan
also increases, indicating that larger instances are more challenging to solve. Notably, PPO
exhibits superior performance compared to PG, A2C, and A3C, which is why we focus on
PPO for further comparison and analysis.

PPO performs better than other methods because it can effectively explore the action space
and learn a more precise policy. The clipped surrogate objective function in PPO aids in
preventing significant policy modifications, which occasionally have negative consequences.
PPO may learn a more stable and dependable policy because to this clipping process, which
improves performance in challenging scheduling issues like the ones in Lawrence’s dataset.
PPO performs better still because of its trust region optimization technique, which also
strengthens the policy updates’ robustness. On the other hand, as PG, A2C, and A3C
algorithms are more prone to exhibiting unstable behavior or becoming stuck in local optima,
they might have trouble with bigger instance sizes.

27

Figure 4.1: Makespan of the Lawrence’s dataset of PPO.

Figure 4.2: Makespan of the Lawrence’s instances of PG.

Figure 4.3: Makespan of the Lawrence’s instances of A2C.

Comparison of Baselines based on Makespan

It is presented in Table 4.2 a comparative analysis of various approaches described in Sec. 4.3
on the Lawrence dataset, showcasing their performance in terms of makespan. Comparing
different RL approaches is challenging because they often have different goals, settings, and
algorithms. These variations can make it difficult to assess their performance accurately
and meaningfully. But stated in paper [9], the agent was trained using the same benchmark
instances, allowing for a more direct comparison, their comparison provides an improved

28

Table 4.2: The comparison results on Lawrence’s instances with different benchmarks.

Dataset PPO FIFO MWKR SPT Park et al.
(2021)

Han et al.
(2020)

Or
Tool

la20 912 1272 1059 1262 - - 902
la25 1022 1283 1203 1253 1117 1067 980
la30 1356 1648 1533 1775 1490 1417 1355
la35 1865 2138 2073 2464 1969 1941 1800
la40 1323 1435 1450 1481 1350 1336 1222

Table 4.3: The optimality gap Lawrence’s instances with different benchmarks.

Dataset PPO FIFO MWKR SPT Park et al.
(2021)

Han et al.
(2020)

la20 1.10 41.02 17.41 39.91 - -
la25 4.29 30.92 22.76 27.86 19.98 8.88
la30 0.07 21.62 13.14 31 9.96 4.58
la35 3.61 18.78 15.17 36.78 9.39 7.83
la40 8.27 17.43 18.66 21.19 10.47 9.33
Average 3.47 25.95 17.42 31.35 10.95 7.65

evaluation.

The results demonstrate that the proposed PPO-based tool outperforms the traditional
scheduling algorithms, including FIFO, MWKR, and SPT, across all instance sizes. No-
tably, PPO achieves the lowest makespan values in most cases, highlighting its effectiveness
in solving complex scheduling problems. In comparison to the state-of-the-art approaches,
PPO demonstrates superior performance, outdoing [26] and [9] in most instances.

The optimality gap of Lawrence instances for PPO and other techniques detailed in Sec. 4.3
is displayed in Table 4.3 and calculated using Eq. (4.1). The average optimality gap is
calculated for the comparisons of the algorithms and from Table 4.3, PPO has a lower average
optimality gap than other approaches means PPO is closer to the optimal or best-known
solutions. The PPO-based approach significantly outperforms the traditional scheduling
algorithms, FIFO, MWKR, and SPT, with an average optimality gap of 3.47, compared
to 25.95, 17.42, and 31.35, respectively. Notably, the PPO-based approach achieves a 6-9
times lower optimality gap than the traditional algorithms. In comparison to the state-
of-the-art approaches, the PPO-based approach significantly outperforms [26] and [9], with
an average optimality gap of 3.47, compared to 10.95 and 7.65, respectively. Remarkably,
the PPO-based approach achieves a 2-3 times lower optimality gap than the state-of-the-art
approaches.

Reward of Lawrence dataset

It is depicted in Fig. 4.4, Fig. 4.5, and Fig. 4.6 that the reward of all Lawrence’s instances
during the training of the agent using PPO, PG, and A2C algorithms, respectively. Each
figure displays the reward on the y-axis and the number of iterations on the x-axis. Initially,
the reward is very low, with some instances even exhibiting negative rewards, but as the agent
is trained more, the reward increases, indicating that the agent is learning the environment.
It is evident from the figures that as the training iterations increase, the reward also increases,
as clearly shown in all figures. Moreover, the PPO algorithm consistently achieves higher
rewards compared to PG and A2C, demonstrating its superiority in finding optimal solutions.

29

Figure 4.4: Reward of the Lawrence’s dataset of PPO.

Figure 4.5: Reward of the Lawrence’s instances of PG.

Figure 4.6: Reward of the Lawrence’s instances of A2C.

4.4.3 Performance Analysis on Dermikol Dataset

Table 4.4 and Table 4.5 showcase the makespan of Dermikol’s instances employing various
approaches. Each row corresponds to a specific instance, identified with prefixes such as

30

“dmu16”, “dmu21”, and so on. The columns represent different RL algorithms, dispatching
rules, and other state-of-the-art methods for comparison purposes. The tables show the
makespan that each algorithm or method achieves for each instance. The values that are
bolded signify the optimal makespan that was attained for that specific algorithm. These
tables provide a thorough analysis of how various strategies performed over different Dermikol
instances, shedding light on how well various techniques addressed scheduling issues.

Comparison of RL Algorithms Based on Makespan

Table 4.4 shows the comparison of the baseline for RL algorithms, specifically PPO, PG,
A2C, and A3C, on Demirkol’s dataset. The study was conducted using Dermikol instances
listed in Table 3.2, encompassing instances of all sizes. It is observed that the PPO algo-
rithm consistently outperforms the other algorithms in terms of makespan. As expected, the
makespan for all considered algorithms increases as the instance size increases. Notably, PG
and A2C emerge as tough competitors with only marginal differences, whereas A3C performs
the least among all algorithms. Since PPO performs better than other algorithms, it is used
as the reference algorithm for the remaining comparisons with other benchmarks.

Figure 4.7: Makespan of the Dermikol’s instances of PPO.

Figure 4.8: Makespan of the Dermikol’s instances of PG.

It is shown in Fig. 4.7, Fig. 4.8, and Fig. 4.9 that the makespan for the Dermikol instances for
PPO, PG, and A2C, respectively. Each figure displays the makespan on the y-axis and the
number of iterations on the x-axis. It is evident that as the number of iterations increases,
the average makespan of all instances decreases. This observation suggests that the agent is

31

Figure 4.9: Makespan of the Dermikol’s instances of A2C.

Table 4.4: Make-span of Demirkol’s instances by different approach.

Dataset PPO PG A2C A3C
dmu16 4203 4987 5065 5874
dmu21 4863 5598 5600 6363
dmu26 5835 6316 6235 7153
dmu31 6221 7189 7143 7729
dmu36 6693 7487 7482 8250

learning from the environment and improving its performance over time.

From the graphs, it’s apparent that the agent using PPO is learning, as evidenced by the
decreasing trend in makespan with increasing iterations. However, upon analyzing the graphs
for PG and A2C, it’s evident that the agent’s learning plateaus after 25 iterations, as the
makespan remains relatively constant thereafter. This observation suggests that these agents
may not benefit significantly from additional training beyond 25 iterations. Therefore, it
can be concluded that these agents may be effectively trained up to 25 iterations to achieve
optimal performance.

Comparison of Baselines based on Makespan

Table 4.5 presents a comparison between PPO, other approaches described in Sec. 4.3. Here,
PPO consistently outperforms dispatching rules except for one instance, dmu26, where the
dispatching rule MWKR performs well. PPO exceeded their findings in all but one of these
experiments. It’s crucial to remember that they used Dueling Double DQN, a separate
RL algorithm that uses various settings and functions on off-policy, value-based principles.
Despite these variations, this comparison provides insightful information on how well PPO
performs in relation to other RL algorithms on the same benchmark instances. FIFO and
SPT generally perform poorly compared to the other algorithms.

Table 4.6 displays the optimality gap of Dermikol’s instances for PPO and other strategies
described in Sec.4.2. The gap is computed by Eq. (4.1). PThe results highlight PPO’s
superior performance, with an average optimality gap of 12.13, significantly outperforming
traditional scheduling algorithms FIFO, MWKR, and SPT, which have average optimality
gaps of 25.39, 16.54, and 34.83, respectively. Meanwhile, [37] and [9] exhibit average opti-
mality gaps of 32.97 and 16.32, respectively. Overall, the table underscores PPO’s ability
to achieve near-optimal solutions, outperforming both traditional and state-of-the-art ap-

32

Table 4.5: The comparison results on Demirkol’s instances with different benchmarks.

Dataset PPO FIFO MWKR SPT Zhang et al.
(2020)

Han et al.
(2020)

Or-Tool

dmu16 4203 4934 4550 4990 5876 4414 3811
dmu21 4863 5674 5325 6378 5314 5255 4380
dmu26 5835 6125 5567 6725 6241 5695 4986
dmu31 6221 6817 6523 7666 6639 6588 5642
dmu36 6693 7422 6837 7577 7328 6859 5973

Table 4.6: The optimality gap on Demirkol’s instances with different benchmarks.

Dataset PPO FIFO MWKR SPT Zhang et al.
(2020)

Han et al.
(2020)

dmu16 10.29 29.47 19.39 30.94 54.19 15.82
dmu21 11.03 29.54 21.58 45.62 21.32 19.98
dmu26 17.03 22.84 11.65 34.88 25.17 14.22
dmu31 10.26 20.83 15.62 35.87 17.67 16.77
dmu36 12.05 24.26 14.47 26.85 46.52 14.83
Average 12.13 25.39 16.54 34.83 32.97 16.32

proaches. Notably, the PPO-based approach achieves a 2-3 times lower optimality gap than
the traditional algorithms and state-of-the-art approaches.

Reward of Dermikol Dataset

It is shown in Fig. 4.10 the reward of all instances during the training process for the PPO
algorithm. The figure displays the reward on the y-axis and the number of iterations on the
x-axis. From the graph, it can be observed that the reward value for each instance increases
with the number of training iterations. This trend suggests that the agent is learning from
the environment, as it is achieving higher rewards over time, indicating improvement in its
performance. Fig. 4.11 and Fig. 4.12 also depict that as the number of iterations increases,
the reward also increases for PG and A2C algorithms respectively.

Figure 4.10: Reward of the Dermikol’s dataset of PPO.

However, upon analyzing Fig. 4.11 for the PG algorithm and Fig. 4.12 for the A2C algorithm,
it is apparent that the reward stagnates after 25 iterations for both algorithms. This ob-

33

Figure 4.11: Reward of the Dermikol’s instances of PG.

Figure 4.12: Reward of the Dermikol’s instances of A2C.

servation implies that the agents may not derive significant benefit from continued training
beyond this point. Therefore, it can be inferred that these agents may be effectively trained
up to 25 iterations to achieve optimal performance.

4.4.4 Performance Analysis on Taillard Dataset

Table 4.7 and Table 4.8 display the makespan of Taillard’s instances using various methods.
Each row represents a specific instance, labeled with prefixes like “ta40”, “ta41”, etc. The
columns include different RL algorithms, dispatching rules, and state-of-the-art methods for
comparison. The best makespan for each instance is indicated by bold values. These tables
offer insights into effective scheduling approaches across Taillard instances.

Comparison of RL Algorithms Based on Makespan

Table 4.7 shows the comparison of the baseline for RL algorithms, specifically PPO, PG,
A2C, and A3C, on Tailllard’s dataset. The study was conducted using Taillard instances
listed in Table 3.3, encompassing instances of all sizes. Based on the data presented in Ta-
ble 4.7, it is evident that the PPO algorithm consistently demonstrates superior performance
in terms of makespan, similarly observed across the Dermikol instances. After PPO, both PG
and A2C exhibit comparable performance across various instances, with A2C demonstrat-
ing superior results specifically in the 100×20 instances compared to PG. A3C consistently
underperforms across all instances except for the 100x20 scenarios, where its performance

34

Table 4.7: Make-span of Taillard’s instances by different approach.

Dataset PPO PG A2C A3C
ta40 1830 2222 2243 2600
ta41 2115 2697 2711 3096
ta42 2146 2625 2631 3046
ta50 2178 2575 2599 2982
ta51 3066 3355 3454 3728
ta52 2957 3402 3425 3724
ta60 2997 3359 3370 3660
ta61 3456 3754 3779 4154
ta62 3485 3776 3821 4211
ta70 3428 3937 3854 4225
ta71 6134 6527 6441 6678
ta72 5860 6385 6082 6263
ta80 6009 6328 6247 6409

aligns with that of PG.

Overall, this analysis underscores the importance of algorithm selection in RL tasks. Differ-
ent algorithms may yield varying performance depending on the problem instance character-
istics. Hence, it’s crucial to explore multiple algorithms to identify the most suitable one for
a given problem domain. Additionally, gaining insights into the reasons behind algorithm
performance variations can inform future research and algorithm development endeavors.
Since PPO performs better than other algorithms, it is used as the reference algorithm for
the remaining comparisons with other benchmarks.

Figure 4.13: Makespan of the Taillard’s instances of PPO.

Using PPO, the agent is trained for 60 iterations across all instances of varying sizes. Fig. 4.13
illustrates the makespan of PPO for all instances with corresponding iterations. The figure
displays the makespan on the y-axis and the number of iterations on the x-axis. From the
figure, it is evident that the makespan decreases for all instances as the number of iterations
increases, except for the instance size 100×20, where the makespan remains constant across
all iterations. This suggests that the agent struggles to learn this complex environment with
only 60 iterations of training. Consequently, the agent undergoes training for 200 iterations,
resulting in improved learning, as depicted in Fig. 4.14. The makespan decreases as the
number of training iterations increases. Fig. 4.15 and Fig. 4.16 also illustrate that as the

35

Figure 4.14: Makespan of the Taillard’s instances “ta71” of PPO.

number of iterations increases, the makespan decreases for the PG and A2C algorithms,
respectively, for large-size instances.

It is distinctly illustrated in Fig. 4.14 that a trend where the makespan initially increases
after 60 iterations, followed by a subsequent decrease post the 100th iteration. This observa-
tion suggests that the agent requires further training beyond the 100th iteration to achieve
a reduced makespan. Consequently, a decision was made to train the agent for an additional
100 iterations, totaling 200 iterations in all. This extended training period aims to optimize
the agent’s performance and ultimately minimize the makespan, thus enhancing overall ef-
ficiency.

From Fig. 4.15, it is seen that for the agent using PG, the makespan is lowest at approxi-
mately 22 iterations and then slightly increases. This indicates that the agent’s performance
peaks early, and additional training beyond 22 iterations may not lead to further improve-
ments in minimizing the makespan. Similarly, from Fig. 4.16, it is observed that for the
agent using A2C, the makespan is lowest at approximately 55 iterations and then slightly
increases. This pattern indicates that the performance of the PG and A2C agents peaks
early, and additional training beyond these points may not lead to further improvements in
minimizing the makespan. This trend is particularly true for higher instance sizes.

Figure 4.15: Makespan of the Taillard’s instances “ta71” of PG.

36

Figure 4.16: Makespan of the Taillard’s instances “ta71” of A2C.

Table 4.8: The comparison of makespan on Taillard’s instances with different benchmarks.

Dataset PPO FIFO MWKR SPT Zhang et
al. (2020)

Han et al.
(2020)

Wu et al.
(2024)

OR
Tool

ta40 1830 2069 2093 2398 2140 - - 1752
ta41 2115 2543 2632 2826 2667 2450 2398 2096
ta42 2146 2578 2401 2783 2664 2351 2305 2020
ta50 2174 2531 2496 2712 2608 - - 1978
ta51 3066 3549 3585 3457 3599 3263 3155 2760
ta52 2957 3339 3451 3458 3341 3229 3056 2756
ta60 2997 3129 3103 3593 3352 - - 2726
ta61 3456 3625 3471 4030 3654 3367 - 2973
ta62 3485 3652 3489 4075 3722 3489 - 3042
ta70 3428 3784 3559 3959 3643 - - 3102
ta71 6134 6161 5948 6651 6452 5908 - 5790
ta72 5860 5610 5625 6506 5695 5746 - 5531
ta80 6009 5724 5519 6472 5892 - - 5609

Comparison of Baselines based on Makespan

Table 4.8 presents the makespan of all instances, including the makespan by the best PPO
than other RL algorithms and other approaches described in Sec. 4.3. The “-” symbol in
the table denotes cases where the performance value is not known or not reported in state-
of-art. As described in Sec. 4.4.2, comparing algorithms is challenging because their goals
differ. However, in the case of JSSP, the primary objective is to complete all tasks within the
minimum time. Therefore, we are comparing all the algorithms based on their makespan.
Among all the dispatching rules and state-of-art, PPO is outperforming for all the instances
except the instances of size 100×20.

In this scenario, PPO demonstrates clear superiority over other DRL-based methods and
dispatching rules across all instances, except for the 100×20 instance size. Notably, in
the “ta71” instance, the makespan reported in the paper by [9] is the lowest, indicating
noteworthy performance. Additionally, for instances “ta72”, the FIFO rule outperforms other
methods, whereas for “ta80”, MWKR is performing the best, suggesting its effectiveness in
those specific scenarios.
Table 4.9 shows the optimality gap of Taillard’s instances for PPO and other strategies
described in Sec. 4.3. For Taillard’s instances as well, the average optimality gap of PPO

37

Table 4.9: The optimality gap on Taillard’s instances and different benchmarks.

Dataset PPO FIFO MWKR SPT Zhang et
al. (2020)

Han et al.
(2020)

Wu et al.
(2024)

ta40 4.45 18.09 19.46 36.87 30.02 - -
ta41 0.91 21.33 25.57 34.83 27.24 16.89 14.41
ta42 6.23 27.62 18.86 37.77 31.88 16.39 14.11
ta50 10.11 27.96 26.19 37.11 31.85 - -
ta51 11.09 28.59 29.89 25.25 30.40 18.22 14.31
ta52 7.29 21.15 25.22 25.47 21.23 17.16 10.89
ta60 9.94 14.78 13.83 31.80 22.96 - -
ta61 16.24 21.93 16.75 35.55 22.91 13.25 -
ta62 14.56 20.05 14.96 33.96 22.35 14.69 -
ta70 10.51 21.99 14.73 27.63 17.44 - -
ta71 5.94 6.41 2.73 14.87 11.43 2.04 -
ta72 5.95 1.43 1.70 17.63 2.97 3.89 -
ta80 7.13 2.05 -1.60 15.39 5.05 - -
Average 8.49 17.95 16 28.78 21.36 12.82 13.34

is lower than other approaches, signifying that the results of PPO are close to the optimal
solution. The results highlight PPO’s superior performance, with an average optimality gap
of 8.49, significantly outperforming traditional scheduling algorithms FIFO, MWKR, and
SPT, which have average optimality gaps of 17.95, 16, and 28.78, respectively. Notably,
the PPO-based approach achieves a 2-3 times lower optimality gap than the traditional
algorithms. In comparison to the state-of-the-art approaches, the PPO-based approach
significantly outperforms [37], [9], and [34], with an average optimality gap of 8.49, compared
to 21.36, 12.82, and 13.34, respectively. Remarkably, the PPO-based approach achieves a
2-3 times lower optimality gap than the state-of-the-art approaches.

Figure 4.17: Reward of the Taillard’s instances of PPO.

Reward of Taillard dataset

Figure 4.17 shows the reward of all instances during the training process for the PPO al-
gorithm. The figure displays the reward on the y-axis and the number of iterations on the
x-axis. From the graph, it can be observed that the reward value for each instance increases
with the number of training iterations. This trend suggests that the agent is learning from
the environment, as it is achieving higher rewards over time, indicating improvement in its

38

performance except in the instances of size 100×20. So, those instances are trained for 200
iterations, and Fig. 4.18 depicts the graph for those instances, showing an increase in reward
as the number of iterations increases.

Figure 4.18: Reward of the Taillard’s instances “ta71” of PPO.

Figure 4.19: Reward of the Taillard’s instances “ta71” of PG.

Moreover, upon deeply analyzing Fig. 4.18, it is observed that initially, the reward increases,
but after 60 iterations, the reward starts decreasing. However, suddenly after 100 iterations,
the reward begins increasing again, indicating that the agent is learning, and after 200 it-
erations, the reward reaches its maximum. This suggests that for a complex environment,
the agent needs to be trained for more iterations. In contrast, for the agent trained using
PG, the reward starts decreasing after approximately 20 iterations, indicating that the agent
learns quickly.

Similarly, for the agent using A2C, the reward is maximized at 60 iterations, suggesting that
the agent needs to be trained for 60 iterations to achieve optimal performance. The reason
PPO requires more iterations is due to its reliance on policy optimization methods, which
generally involve more gradual updates to the policy. This approach can be more stable but
slower to converge, especially in complex environments where the agent needs more time to
explore and learn the optimal policy.

39

Figure 4.20: Reward of the Taillard’s instances “ta71” of A2C.

40

Chapter 5

Discussion

The findings of this study shed light on the effectiveness of RL algorithms, particularly PPO,
in addressing the JSSP. By comparing various RL algorithms with conventional dispatching
rules and state-of-the-art methods across Lawrence, Dermikol, and Taillard datasets, we
gained valuable insights into their performance in scheduling scenarios.

5.1 Strengths and Effectiveness of PPO

One notable observation is the consistent superiority of PPO over other RL algorithms and
dispatching rules in minimizing the makespan across different instance sizes. PPO’s robust-
ness and adaptability were evident, suggesting its potential for real-world applications in
complex scheduling environments. The ability of PPO to maintain lower makespan values
consistently across different problem sizes and datasets highlights its efficiency and gener-
alizability. This supports our hypothesis (H1) that PPO can be effectively implemented to
solve the JSSP as a single-agent RL problem, achieving a lower makespan compared to other
RL algorithms.

The optimality gap analysis further supported the effectiveness of PPO, particularly in Tail-
lard instances, where it demonstrated closeness to the optimal solution compared to other
approaches. This indicates that PPO is capable of producing solutions that are not only
effective but also near-optimal, which is crucial for practical applications. While larger in-
stance sizes showed minimal optimality gaps with MWKR, PPO still exhibited competitive
performance, emphasizing its reliability across various problem complexities. This validation
of H4 underscores PPO’s strength in delivering solutions close to the best-known or optimal
solutions.

5.2 Training Dynamics and Learning Efficiency

The training dynamics of RL agents also provided valuable insights into their learning capa-
bilities. The increasing rewards and decreasing makespan over training iterations highlighted
the agents’ ability to learn from the environment and improve their scheduling policies over
time. This supports our hypothesis (H2) that the implementation of PPO results in a
consistent increase in rewards during the training process, indicating effective learning and
adaptation.

5.3 Comparative Performance

In comparison to traditional dispatching rules and other state-of-the-art methods, PPO
consistently outperformed these benchmarks in most instances. For example, while FIFO,
MWKR, and SPT are well-established rules with specific strengths, they often fell short

41

when dealing with complex and varied scheduling scenarios. PPO’s ability to dynamically
adapt and optimize through continuous learning provides it with a significant advantage,
validating our hypothesis (H3).
However, it’s important to acknowledge that there were instances where specific dispatching
rules showed competitive performance. For instance, MWKR occasionally outperformed
PPO in certain large-sized instances, indicating the need for careful algorithm selection
based on problem characteristics. This suggests that while PPO is generally robust, the
nature of the problem instance can influence which algorithm performs best.

5.4 Weaknesses and Limitations

Despite its strengths, PPO has several limitations:

• Instance-Specific Performance: Certain dispatching rules like MWKR performed
better on specific larger instances, suggesting that PPO may not always be the best
choice for all problem types. This indicates that while PPO is robust, it is not univer-
sally optimal.

• Extended Training Requirements: Instances of size 100×20 required extended
training iterations to achieve improved performance, indicating potential scalability
issues. This is particularly relevant for large-scale industrial applications where time
and computational resources are limited.

• Computational Resources: The computational cost associated with training PPO,
especially on larger datasets, can be substantial. This limitation impacts the practical
applicability of PPO in real-world scenarios where computational resources may be
constrained. The need for extensive training to achieve optimal performance on larger
instances underscores this challenge.

5.5 Implications for Research Questions and Hypotheses

The results directly address our research questions and hypotheses:

• RQ1: The effective implementation of PPO for JSSP demonstrates how DRL models
can be used to tackle complex scheduling problems. The superior performance of PPO
across various datasets validates its implementation approach.

• RQ2: The comparative analysis of different RL algorithms shows that PPO consis-
tently outperforms others in minimizing makespan and achieving closer-to-optimal so-
lutions. This supports hypotheses H1, H3, and H4.

• H1: PPO’s consistent lower makespan values across different datasets validate its
effectiveness in solving JSSP as a single-agent RL problem.

• H2: The increasing rewards during training iterations confirm that PPO effectively
learns and adapts, validating its learning efficiency.

• H3: PPO’s performance compared to traditional dispatching rules and state-of-the-art
methods shows its superiority in most cases.

• H4: The optimality gap analysis confirms that PPO produces solutions closer to the
optimal, highlighting its effectiveness.

In summary, this discussion highlights the robustness, efficiency, and learning capabilities of
PPO in solving the JSSP, while also acknowledging its limitations and the need for careful
algorithm selection based on specific problem characteristics.

42

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis investigated the application of RL algorithms in solving the JSSP, with a specific
focus on instances from the Lawrence, Dermikol, and Taillard datasets. The primary aim
was to evaluate the performance of popular RL algorithms, namely PPO, PG, A2C, and
A3C, against traditional dispatching rules and state-of-the-art methods. The findings from
our comprehensive analysis highlight several key insights and contributions.

First, the superior performance of the PPO algorithm was consistently evident across various
instance sizes and datasets. This highlights PPO’s robustness and adaptability in effectively
addressing the complexities of job shop scheduling. PPO outperformed other RL algorithms
and traditional dispatching rules, demonstrating its potential as a versatile and powerful
solution for dynamic and complex scheduling environments.

Moreover, the training dynamics of RL agents underscored their ability to learn from the
environment and enhance their performance over time. The observed increase in reward
values and decrease in makespan across all datasets confirmed the agents’ capacity to adapt
and optimize their scheduling policies effectively. This adaptive learning process was par-
ticularly evident in PPO, which consistently achieved higher rewards and lower makespan
values compared to other RL algorithms.

The comparative assessment revealed that while certain dispatching rules, such as MWKR
and FIFO, showed competitive performance in specific instances, they lacked the generaliz-
ability and adaptability of PPO. This underscores the importance of selecting the appropriate
algorithm based on the specific characteristics of the scheduling problem at hand.

Furthermore, the optimality gap analysis validated the effectiveness of PPO in producing
solutions closer to the optimal or best-known solutions. Remarkably, the PPO-based ap-
proach demonstrates a 6-9 times lower optimality gap compared to traditional scheduling
algorithms and achieves a 2-3 times lower optimality gap than state-of-the-art approaches
in all three datasets, high-lighting its superiority in addressing the JSSP. The consistent
performance of PPO across diverse problem sizes and complexities highlights its reliability
and efficacy in real-world applications.

In summary, the research questions posed in this thesis were addressed as follows:

• RQ1: How can DRL models be effectively implemented to solve the JSSP as a single-
agent RL problem?

– Answer: PPO was effectively implemented to solve the JSSP as a single-agent
RL problem. The superior performance of PPO across various datasets validates

43

its implementation approach.

• RQ2: How do different RL algorithms, including PPO, PG, A2C, and A3C, perform
in solving the JSSP across various datasets and instance sizes, particularly in terms of
scheduling efficiency and reducing overall makespan?

– Answer: The comparative analysis of different RL algorithms demonstrated that
PPO consistently outperforms others in minimizing makespan and achieving closer-
to-optimal solutions. This supports hypotheses H1, H3, and H4.

Additionally, the hypotheses were validated as follows:

• H1: PPO’s consistent lower makespan values across different datasets validated its
effectiveness in solving the JSSP as a single-agent RL problem.

• H2: The increasing rewards during training iterations confirmed that PPO effectively
learns and adapts, validating its learning efficiency.

• H3: PPO’s performance compared to traditional dispatching rules and state-of-the-art
methods demonstrated its superiority in most cases.

• H4: The optimality gap analysis confirmed that PPO produces solutions closer to the
optimal, highlighting its effectiveness.

These findings underscore the robustness, efficiency, and learning capabilities of PPO in
solving the JSSP, while also acknowledging its limitations and the need for careful algorithm
selection based on specific problem characteristics.

6.2 Future Work

Future research could explore combining RL with domain-specific knowledge to enhance
scheduling performance. By integrating expertise from the scheduling domain with RL
algorithms like PPO, we can potentially develop more effective scheduling solutions. Ad-
ditionally, addressing scalability issues is crucial for handling larger datasets and complex
optimization tasks in real-world settings. Exploring methods such as parallel computing or
distributed frameworks could help improve scalability and efficiency. These future directions
aim to advance scheduling optimization, offering more effective and scalable solutions for
practical applications.

44

Bibliography

[1] Egon Balas. “An additive algorithm for solving linear programs with zero-one variables.” In:
Operations Research 13.4 (1965), pp. 517–546.

[2] Adil Baykasoğlu and Fatma S Karaslan. “Solving comprehensive dynamic job shop scheduling
problem by using a GRASP-based approach.” In: International Journal of Production Research
55.11 (2017), pp. 3308–3325.

[3] Irwan Bello et al. “Neural combinatorial optimization with reinforcement learning.” In: arXiv
preprint arXiv:1611.09940 (2016).

[4] Lukas Biewald et al. “Experiment tracking with weights and biases.” In: Software available
from wandb. com 2.5 (2020).

[5] Jürgen Branke et al. “Automated design of production scheduling heuristics: A review.” In:
IEEE Transactions on Evolutionary Computation 20.1 (2015), pp. 110–124.

[6] Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. “Benchmarks for shop scheduling problems.”
In: European Journal of Operational Research 109.1 (1998), pp. 137–141.

[7] Michel Deudon et al. “Learning heuristics for the tsp by policy gradient.” In: Integration
of Constraint Programming, Artificial Intelligence, and Operations Research: 15th Interna-
tional Conference, CPAIOR 2018, Delft, The Netherlands, June 26–29, 2018, Proceedings 15.
Springer. 2018, pp. 170–181.

[8] Christopher D Geiger, Karl G Kempf, and Reha Uzsoy. “A tabu search approach to scheduling
an automated wet etch station.” In: Journal of Manufacturing Systems 16.2 (1997), pp. 102–
116.

[9] Bao-An Han and Jian-Jun Yang. “Research on adaptive job shop scheduling problems based
on dueling double DQN.” In: Ieee Access 8 (2020), pp. 186474–186495.

[10] Shengyi Huang and Santiago Ontañón. “A closer look at invalid action masking in policy
gradient algorithms.” In: arXiv preprint arXiv:2006.14171 (2020).

[11] Zangir Iklassov et al. “On the study of curriculum learning for inferring dispatching policies on
the job shop scheduling.” In: Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, IJCAI. 2023, pp. 5350–5358.

[12] Wouter Kool, Herke Van Hoof, and Max Welling. “Attention, learn to solve routing problems!”
In: arXiv preprint arXiv:1803.08475 (2018).

[13] Stephen Lawrence. “Resouce constrained project scheduling: An experimental investigation of
heuristic scheduling techniques (Supplement).” In: Graduate School of Industrial Administra-
tion, Carnegie-Mellon University (1984).

[14] Jaejin Lee et al. “Attention-based Reinforcement Learning for Combinatorial Optimization:
Application to Job Shop Scheduling Problem.” In: arXiv preprint arXiv:2401.16580 (2024).

[15] Matthias Lehmann. “The Definitive Guide to Policy Gradients in Deep Reinforcement Learn-
ing: Theory, Algorithms and Implementations.” In: arXiv preprint arXiv:2401.13662 (2024).

[16] Eric Liang et al. “Ray rllib: A composable and scalable reinforcement learning library.” In:
arXiv preprint arXiv:1712.09381 85 (2017).

[17] Chun-Cheng Lin et al. “Smart manufacturing scheduling with edge computing using multiclass
deep Q network.” In: IEEE Transactions on Industrial Informatics 15.7 (2019), pp. 4276–4284.

45

[18] Chien-Liang Liu, Chuan-Chin Chang, and Chun-Jan Tseng. “Actor-critic deep reinforcement
learning for solving job shop scheduling problems.” In: Ieee Access 8 (2020), pp. 71752–71762.

[19] Alan S Manne. “On the job-shop scheduling problem.” In: Operations research 8.2 (1960),
pp. 219–223.

[20] Hongzi Mao et al. “Learning scheduling algorithms for data processing clusters.” In: Proceed-
ings of the ACM special interest group on data communication. 2019, pp. 270–288.

[21] Dirk C Mattfeld and Christian Bierwirth. “An efficient genetic algorithm for job shop schedul-
ing with tardiness objectives.” In: European journal of operational research 155.3 (2004),
pp. 616–630.

[22] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning.” In: Interna-
tional conference on machine learning. PMLR. 2016, pp. 1928–1937.

[23] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning.” In: arXiv preprint
arXiv:1312.5602 (2013).

[24] Eiji Morinaga et al. “An improved method of job shop scheduling using machine learning and
mathematical optimization.” In: Procedia Computer Science 217 (2023), pp. 1479–1486.

[25] Su Nguyen, Yi Mei, and Mengjie Zhang. “Genetic programming for production scheduling: a
survey with a unified framework.” In: Complex & Intelligent Systems 3 (2017), pp. 41–66.

[26] Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. “ScheduleNet: Learn to solve multi-
agent scheduling problems with reinforcement learning.” In: arXiv preprint arXiv:2106.03051
(2021).

[27] Laurent Perron and Vincent Furnon. “OR-Tools; 2019.” In: URL https://developers. google.
com/optimization 41 ().

[28] Mohit Sewak. Deep reinforcement learning. Springer, 2019.

[29] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[30] Eric Taillard. “Benchmarks for basic scheduling problems.” In: european journal of operational
research 64.2 (1993), pp. 278–285.

[31] Pierre Tassel, Martin Gebser, and Konstantin Schekotihin. “A reinforcement learning environ-
ment for job-shop scheduling.” In: arXiv preprint arXiv:2104.03760 (2021).

[32] European Union. Rhinoceros. https://www.rhinoceros- project.eu/. [Online; accessed
15-May-2024]. 2022.

[33] Bernd Waschneck et al. “Optimization of global production scheduling with deep reinforcement
learning.” In: Procedia Cirp 72 (2018), pp. 1264–1269.

[34] Xinquan Wu et al. “A deep reinforcement learning model for dynamic job-shop scheduling
problem with uncertain processing time.” In: Engineering Applications of Artificial Intelligence
131 (2024), p. 107790.

[35] Amel Yahyaoui, Nader Fnaiech, and Farhat Fnaiech. “A suitable initialization procedure for
speeding a neural network job-shop scheduling.” In: IEEE Transactions on industrial electron-
ics 58.3 (2010), pp. 1052–1060.

[36] Seong Jin Yim and Doo Yong Lee. “Scheduling cluster tools in wafer fabrication using candi-
date list and simulated annealing.” In: Journal of Intelligent Manufacturing 10 (1999), pp. 531–
540.

[37] Cong Zhang et al. “Learning to dispatch for job shop scheduling via deep reinforcement learn-
ing.” In: Advances in neural information processing systems 33 (2020), pp. 1621–1632.

46

https://www.rhinoceros-project.eu/

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Introduction
	Motivation
	Goals and Research Questions
	Contributions
	Thesis structure

	Background Theory
	Related Work
	Heuristic Approaches
	Metaheuristic Techniques
	Genetic Programming-based Hyperheuristic
	Reinforcement Learning for Combinatorial Problems

	Related Theory
	Reinforcement learning
	Element of Reinforcement Learning
	Value Function
	Markov Decision Processes
	Features of Reinforcement Learning
	rl algorithms
	Deep Reinforcement Learning
	mlp

	Methodology
	Job-Shop Scheduling Environment
	Environment
	Reduction Search-Space
	Reward
	State Space
	Action Selection

	Datasets
	Lawrence Datatset
	Dermikol Dataset
	Taillard Dataset

	Ray
	Weights & Biases
	Implementation

	Experiments and Results
	Introduction
	Experimental Configurations
	Baseline
	Performance Analysis
	Performance Matrix
	Performance Analysis on Lawrence's Dataset
	Performance Analysis on Dermikol Dataset
	Performance Analysis on Taillard Dataset

	Discussion
	Strengths and Effectiveness of ppo
	Training Dynamics and Learning Efficiency
	Comparative Performance
	Weaknesses and Limitations
	Implications for Research Questions and Hypotheses

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

