
Evaluating and Enhancing
Custom AI Chat Services

Towards Increasing the Speed, Accuracy and Cost Efficiency of
Retrieval Augmented Generation Pipelines

ERIK DALE

SUPERVISORS
Morten Goodwin and Per-Arne Andersen

University of Agder, 2024
Faculty of Engineering and Science
Department of Information and Communication Technology

Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslin-
jer for bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar
og hvilke konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at vår besvarelse er vårt eget arbeid, og at vi ikke
har brukt andre kilder eller har mottatt annen hjelp enn det som er
nevnt i besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdeling/u-
niversitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd på ovennevnte er å betrakte som fusk og
kan medføre annullering av eksamen og utestengelse fra universiteter
og høgskoler i Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8
og Forskrift om eksamen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja
5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor

det forligger mistanke om fusk etter høgskolens retningslinjer for be-
handling av saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og refer-
anser på biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merk-
bart forskjellig og ønsker dermed å vurderes individuelt. Ordinært
vurderes alle deltakere i prosjektet samlet.

Nei

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det
betyr blant annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven
tilgjengelig for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei

Acknowledgements

This master’s thesis was conducted at the University of Agder (UiA) in Grim-
stad, Norway, by Erik Dale, completing the master’s program at the Depart-
ment of Information and Communication Technology (ICT). I want to first of
all give a big thank you to Egde and especially their CTO Øyvind Brekkhus
Sandåker, for letting me write this thesis in cooperation with them. EgdeAI
was a project that a group of students and I started working on as summer in-
terns at Egde in 2023, and I have loved working on it every step of the way. I of
course also want to give a big thank you to my supervisors at the University of
Agder: Morten Goodwin and Per-Arne Andersen. You guys are great. Lastly,
I would like to thank family and friends, and of course you Mariana: gracias
amor.

During the writing process of this thesis, I have used a few AI writing tools.
OpenAI’s ChatGPT and Grammarly are great tools that I have used for inspi-
ration and language cleaning. That being said, all the text in the thesis is my
own (except for some of the text in Appendices B, C, D, E and F due to the
nature of this thesis).

Grimstad,
May 24, 2024
Erik Dale

ii

Abstract

Custom AI chat services that utilize Retrieval Augmented Generation are be-
coming more and more common within different sectors and businesses. When
these types of services are used in professional settings like a workplace, they
have to be fast, cost-effective, and reliable. The Large Language Models that
these services use are often provided as a service with limited access to the
software itself, making fine-tuning downstream tasks a challenge. This thesis
introduces a Retrieval Augmented Generation pipeline designed to enhance the
time and cost efficiency, as well as the reliability, of AI chat services tailored to
specific user needs. These advancements have been realized without modifying
the underlying architecture of Large Language Models. Instead, they lever-
age prompt engineering strategies, including prompt compression and prompt
classification, to elevate performance and efficiency. Given the critical role of
embeddings in these services, this thesis has conducted an exploration of em-
bedding models to find the best one for maximum enhancement. This thesis
shows that the enhanced Retrieval Augmented Generation pipeline can achieve
a cost reduction of almost 69% compared to a standard Retrieval Augmented
Generation pipeline without using any of the proposed enhancements. It has
also been shown that utilizing an open-source embedding model can increase
efficiency by as much as 41% compared to similar OpenAI models. This ad-
vancement highlights the potential of this method to enhance custom AI chat
services.

iii

Contents

Acknowledgements ii

Abstract iii

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Motivation . 2
1.2 Field of Research . 2
1.3 Thesis Definition . 2

1.3.1 Research Questions and Hypotheses 3
1.4 Contributions . 3
1.5 Pre-project . 4
1.6 Thesis Outline . 4

2 Background 5
2.1 Theory . 5

2.1.1 Large Language Models 5
2.1.2 Similarity Measures . 5
2.1.3 Microsoft Prompt Flow 6
2.1.4 Prompt Engineering . 7
2.1.5 Explainability in Large Language Models 7
2.1.6 Langchain . 8
2.1.7 Hugging Face . 8
2.1.8 AI and Sustainability 9

2.2 Related Work . 9
2.2.1 Enhancing Custom AI Chat Services 10
2.2.2 Large Language Models 11
2.2.3 Prompt Engineering . 12
2.2.4 Explainability for Large Language Models 14
2.2.5 Embedding Models . 16

iv

3 Methods 17
3.1 The Retrieval Augmented Generation Pipeline 17
3.2 Evaluating Pipelines . 19
3.3 Classification of Prompts . 19

3.3.1 Finding the Best Classification Model 20
3.4 Exploration of Embedding Models 21
3.5 Explainability . 23

3.5.1 Explainability Using Prompt Engineering 23
3.5.2 Explainability Using Chain of Thoughts 24
3.5.3 Explainability Using Sources 25

3.6 Reducing Cost by Utilizing Prompt Engineering 26
3.6.1 Prompt Template Compression 26
3.6.2 Contextual Compression 27
3.6.3 Prompt Compression 28

4 Results and Discussion 29
4.1 Hardware . 29
4.2 Prompt Classification . 29

4.2.1 Finding the Best Classification Model 29
4.2.2 Reduction in Cost by Using Prompt Classification . . . 30

4.3 Comparison of Embedding Models 32
4.4 Explainability . 36
4.5 Prompt Engineering . 38

4.5.1 Prompt Template Compression 38
4.5.2 Contextual Compression 39
4.5.3 Prompt Compression 39
4.5.4 Overall Compression 41

4.6 The Whole Pipeline . 42
4.6.1 Cost Reduction . 42
4.6.2 Time Reduction . 45

4.7 Discussion . 45

5 Conclusions 47

A The Proposed Pipeline 49

B Explainability Results 51
B.1 Explainability Using Prompt Engineering 51
B.2 Explainability Using CoT . 54

C Prompts Used for Prompt Classification Testing 57

D Prompts Used for Embedding Comparison 59

E Contextual Compression Results 61

F Prompt Compression Results 63

Bibliography 66

List of Figures

2.1 This flow provides an LLM with contextual information obtained
from Wikipedia, in response to the prompts submitted. Each box
represents a node. 6

2.2 Example of a Sequential Chain that gets two inputs and outputs
one result [28]. 8

2.3 Prompt patterns and their categories [33]. 13
2.4 Framework of Jiang et al’s proposed approach LLMLingua [14] 14

3.1 How the prompt is classified to choose LLM model. 17
3.2 How the prompt is used to retrieve relevant context. 18
3.3 How explainability and prompt compression are achieved in the

RAG pipeline. 18
3.4 How OpenAI tokenizes the paragraph above using their open-

source tokenizer called tiktoken. 19
3.5 The two flows that are being compared in the paragraph above. 21

4.1 How the display of sources looks in a custom AI chat service like
EgdeAI. 38

A.1 The whole RAG pipeline proposed in this project. 50

vii

https://github.com/openai/tiktoken

.

List of Tables

2.1 How the various LLMs mentioned have performed in various
benchmarks. The HHME column contains the HHEM factual
consistency score. A higher value is better for all the columns.
Sources: [20, 13] . 12

3.1 Open-source Hugging Face and OpenAI models used [8]. The
prices are as of Feb. 12th 2024. 22

4.1 Accuracies and prices of the different OpenAI models tested.
These are the prices as of 30.01.2024. 30

4.2 Resulting prices obtained from the two different flows when using
"simple" and "complex" prompts as input. 32

4.3 Completion times of the two different flows. These completion
times were measured on System 2 from the Hardware section (4.1). 32

4.4 Results of embedding models on the twenty test prompts [8]. . 34

4.5 Result data from the contextual compression comparison. The
’Context Token Counts’ and ’Retrieval Time’ columns are in the
form uncompressed/compressed. The retrieval times were mea-
sured on System 2 from the Hardware section (4.1). 39

4.6 Result data from the prompt compression comparison. The
’Prompt Token Counts’ and ’Completion Time’ columns are in
the form uncompressed/compressed. The ’Cosine Similarity’
number is the textual similarity score between the compressed
and uncompressed answers using cosine similarity. The comple-
tion times were measured on System 1 from the Hardware section
(4.1). 40

4.7 Compression level achieved by each of the compression method-
ologies. 41

4.8 Cost reduction achieved by each of the different methodologies. 44

4.9 Completion time changes achieved by each of the different method-
ologies. 45

ix

https://huggingface.co/models?pipeline_tag=sentence-similarity&sort=downloads
https://openai.com/pricing
https://openai.com/pricing

4.10 Recommended methods to use according to what the most im-
portant feature is. Compression is set as optional for efficiency
and quality of answers as it does not really affect those in any
major way. It is of course recommended to use compression as
it will reduce cost. 46

C.1 40 test prompts and their "ground-truths" used to test the prompt
classification capabilities of the OpenAI LLMs. 58

x

.

Chapter 1

Introduction

Large Language Models (LLMs) like ChatGPT [23] are often provided as a
service, with limited or no access to model parameters. Fine-tuning them for
downstream tasks can therefore pose a challenge [32]. Retrieval Augmented Re-
trieval (RAG) has become a popular method for fine-tuning LLMs and custom
AI chat services, which allows for creating comprehensive, external knowledge
bases for LLMs through resources such as vector databases [25, 7]. Compa-
nies are now trying to utilize RAG pipelines with LLMs to streamline their
own productivity [8]. While this approach creates ample opportunities, it also
presents considerable challenges in terms of cost and time efficiency, accuracy,
and explainability [11]. Custom AI chat services used by large companies in
professional settings need to be effective both in terms of cost and speed. Such
services also have to be accurate and explainable, as more and more people in
professional settings put their trust in them to provide truthful information.
Achieving this in RAG pipelines is non-trivial, as it involves complex interac-
tions between the underlying model and the external knowledge bases [15, 5].
It involves navigating through an abundance of choices and trade-offs each with
its own implications for performance, efficiency, and cost.

We present a Retrieval Augmented Generation pipeline to enhance the effi-
ciency, cost-effectiveness, and reliability of AI chat services made for specific
user requirements. These improvements have been achieved without altering
the structure of Large Language Models. Instead, they leverage prompt engi-
neering strategies, such as prompt compression and prompt classification, to
boost both performance and efficiency. Recognizing the important role of em-
beddings in these services, we also explore various embedding models to identify
the most effective one for the best enhancement. The results, as described in
Section 4.6.1, demonstrate that the enhanced Retrieval Augmented Generation
pipeline reduce costs up to 69% compared to a traditional Retrieval Augmented
Generation pipeline without the suggested improvements. Furthermore, we

1

show that using an open-source embedding model can increase efficiency by as
much as 41% when compared to similar models from OpenAI. This progress
underscores the potential of this approach to enhance custom AI chat services,
as further detailed in Section 4.6.

1.1 Motivation

In the current landscape of LLMs there is a need for more advanced customiza-
tion and fine-tuning targeted for more specific, professional use cases. In set-
tings like these, reliability is key, and ensuring it is important. Reliability when
it comes to cost is also crucial for ensuring a good AI chat service, as a service
like this can get quite pricey in a big company. That is why this thesis ex-
plores techniques like prompt classification and prompt compression to reduce
cost and increase efficiency. There is also a need for a better understanding
of LLMs’ reasoning, and why they answer the way they do. These models are
known to lie and fabricate non-existent facts or inappropriate information also
known as hallucinations [35]. This becomes a problem when more and more
people put their trust in these models at work and in their daily lives. It is
important that they can be relied upon as sources of information. This thesis
looks into enabling explainability with things like sources and reasoning to solve
this issue. It enables the end users to fact-check and verify the answer.

1.2 Field of Research

This thesis focuses on custom LLMs made for professional use cases. One of
the many tasks in this domain is to increase the reliability and explainability
of such models. Due to commercial considerations and risks of misuse, these
models are mostly provided as a service, with no access to model parameters.
This makes it challenging to fine-tune LLMs for specific use cases and achieve
explainability. However, with the recent and rapid advances in mechanisms to
fine-tune LLM’s, we now have new avenues that needs further study. This thesis
will look into combining some of them like prompt engineering, CoT prompting,
and prompt classification to achieve an increase in cost-effectiveness, reliability,
and explainability of custom LLMs.

1.3 Thesis Definition

The main focus and goal of this thesis is to enhance custom AI chat services
that utilize RAG pipelines. To accomplish this, the project is broken down into
the following research questions and hypotheses.

2

1.3.1 Research Questions and Hypotheses

RQ1: To what extent can the reliability and cost-effectiveness of state-of-the-
art AI driven chat services be increased?

Different methodologies are used in order to answer this research question.
Prompt engineering and prompt compression are utilized to reduce cost and
increase reliability of answers. An exploration of prompt classification is con-
ducted to test if it is possible to use different LLMs for different prompts. A
comparison of embedding models will also be done to find the most accurate
and cost-effective one. The following hypotheses (H1 - H4) are attached to
RQ1:

• H1: It is possible to utilize prompt engineering to make custom AI chat
services faster, more cost-effective, and more accurate than without prompt
engineering.

• H2: Prompt classification can be used to reduce cost and completion time
in a RAG pipeline.

• H3: A reduction in cost and completion time is possible to achieve in a
RAG pipeline by using prompt compression.

• H4: Open-source embedding models are as good as OpenAI’s alternative,
and will therefore be possible to use to reduce cost and completion time.

RQ2: To what extent is it possible to achieve explainability for custom AI chat
services?

Prompt engineering will here be used to add reasoning, Chain of Thoughts
(CoT) and sources to the LLM’s answer. The following hypothesis is attached
to RQ2:

• H5: Prompt engineering, Chain-of-Thoughts, and sources can be used to
make LLMs like the GPT models more explainable.

1.4 Contributions

The work in this thesis proposes an advancement in reliability and explain-
ability when it comes to custom chatbots built on LLMs such as the GPT
models. The main contribution of the work is an enhanced RAG pipeline that
starts with the user sending a prompt and then getting the answer back from
an LLM. In this RAG pipeline, different techniques like prompt engineering,
prompt classification, and embedding enhancement have been used. Different

3

methodologies and frameworks for evaluating how these techniques increases
reliability, explainability, efficiency, and cost-effectiveness have also been intro-
duced and conducted.

1.5 Pre-project

This master thesis is a continuation of work done in a previous project titled
Optimizing and Evaluating EgdeAI - A Custom Chatbot for Employees of Egde
by Dale [8]. Work done here can be read more about in the Related Work
section (2.2.1) below.

1.6 Thesis Outline

The contents of this thesis report are divided into the five following chapters.
These should be read sequentially from chapter to chapter. The following is a
short description of the content of each chapter.

Chapter 1 - Introduction provides an overview of the thesis task, research
area, and motivation for commencing with the project work.

Chapter 2 - Background goes through the key terms and work done be-
fore related to LLMs, RAG pipelines, and methods used to enhance them.

Chapter 3 - Methods describes in detail the RAG pipeline itself, as well
as the different methodologies used to enhance it.

Chapter 4 - Results and discussion includes the results derived from the
enhanced RAG pipeline in the Methods chapter, as well as a discussion of them.

Chapter 5 - Conclusion is where the work is concluded and limitations
are specified. Potential future work is also included here.

4

Chapter 2

Background

This chapter is a walk-through of key terms and work done before related to
LLMs, RAG pipelines, and methods used to enhance them. The theory and
key terms can be found in Section 2.1, while Section 2.2 contains related work.

2.1 Theory

2.1.1 Large Language Models

Huge datasets are needed to train LLMs, often internet-scale ones. Recognition,
summarizing, translation, classification, and generating content are some of the
tasks they are capable of. LLMs are made up of something called transformer
models. Introduced in 2017 by Google, transformer models utilize something
called positional encodings and self-attention, which makes them perfect for
LLMs. Positional encodings take into consideration the order in which the input
occurs in a given sequence, which is why they are important when embedding
text. The self-attention on the other hand gives weight to each word in the
input, signifying the importance of each word in relation to the other ones.
Together with massive datasets, these two techniques have made it possible for
LLMs to generate human-like content [22].

2.1.2 Similarity Measures

When it comes to creating custom knowledge bases for LLMs, vector databases
are a solid and popular option [25] [7]. It is possible to query a vector database
with natural language, by doing something called a similarity search. Euclidean
Distance, Manhattan Distance, Jaccard Similarity, Minkowski Distance, and
Cosine Similarity are some of the most popular similarity search algorithms.
The last one of these, Cosine Similarity Search, is a metric of how similar two
vectors are irrespective of their size, as it measures the angle between them.
The dot product of the vectors is first calculated, before being divided by the
product of their magnitudes. Equation 2.1 below shows the operation of finding

5

the cosine similarity between a and b [10].

cossim(a, b) =
a · b

||a|| · ||b||
(2.1)

2.1.3 Microsoft Prompt Flow

Microsoft Prompt Flow (MSPF) is designed to make the development cycle of
LLMs a lot easier. The concept of MSPF is to take a prompt as input, before
leading it through various stages to create meaningful output at the end of the
flow. These different stages are called nodes and can be LLMs, prompts, vector
databases, python scripts, and various other tools. Figure 2.1 below shows four
nodes connected in a flow. MSPF also makes debugging, sharing, iterating, and
deploying AI applications easier.

Figure 2.1: This flow provides an LLM with contextual information obtained from Wikipedia,
in response to the prompts submitted. Each box represents a node.

6

2.1.4 Prompt Engineering

As LLMs are becoming increasingly popular in an increasing number of fields
and domains, it is crucial to have a way of customizing or programming them
to answer the best way possible. This is where prompt engineering comes
in. Through so-called prompt templates, prompt engineering can be used to
customize, enhance, and refine the capabilities of an LLM. Prompt engineering
is in other words the means by which LLMs are told how to behave in a variety
of different situations. A common way to use prompt engineering is to create
a persona for the LLM, and instruct it what its main objectives are [33]. This
might look something like this:

Your task as an AI assistant is to help computer engineering students
understand docker. I would like you to ask them questions about
their repositories. When you have enough information to create a
Dockerfile, do that for them, and then show them how to deploy it
[8].

Other common techniques include giving the LLM some example questions and
answers so that it knows what the general structure of its answer should be.
There might be times when an AI chat service is not what is needed, but rather
a classifier. The classifying task can then be stated in the prompt template,
and the LLM will output a classification result rather than an answer [33].

2.1.5 Explainability in Large Language Models

The ability to explain the decision-making of AI in a human-understandable
manner is referred to as explainability. When it comes to LLMs there are two
main reasons why explainability is crucial. For the end user, explainability
builds trust by providing reasoning in an understandable manner, without the
need to have technical expertise. It makes it easier for the user to understand
the capabilities, limitations, and potential flaws of the LLM. Explainability
does not only benefit the end user, however, but also researchers and develop-
ers. It provides them with insight into LLMs, which allows them to identify
biases, risks, and areas for performance improvement. The scale of LLMs in
terms of parameters and training data makes explainability both challenging
and exciting. Types of explainability include attribution-based explanation,
attention-based explanation, example-based explanation, and natural language
explanation. Attribution-based can, for example, measure the relevance of each
word, phrase, or text span. Attention looks more into meaningful correlations
between input, like words or phrases. Natural language explanation on the
other hand makes the LLM automatically generate its own explanations as to
why it answered the way it did. Chain of thought (CoT) explanation is a way

7

for the LLMs to create explanations themselves using natural language expla-
nation. This is done by steering its generation in a particular direction, by
giving it a sequence of prompts, and having it explain its reasoning [36].

2.1.6 Langchain

Langchain is an open-source software library to use when working with LLM
applications. It, among other things, offers a way to connect LLMs to sources
of context like vector databases. Other than that, Langchain also offers func-
tionality for creating prompts, memory, chains, and agents. Prompts are, as
mentioned in Section 2.2.3, a way to customize, enhance, and refine an LLM’s
capabilities. Langchain offers functionality for giving an LLM memory, which
is neat when wanting to have a longer conversation with an LLM. Maybe the
most important and unique feature of them all is chains. A chain allows for
chaining together prompts and LLMs, as well as chaining together chains with
each other. These are called sequential chains where the output of one chain
becomes the input of another, as illustrated below in Figure 2.2 [28].

Figure 2.2: Example of a Sequential Chain that gets two inputs and outputs one result [28].

Langchain also offers something called agents, which can be seen as flexible
chains. Agents have the ability to utilize tools that give the chain’s LLM more
functionality. A tool can for example be an API that lets the LLM perform
internet searches or a calculator that gives the LLM the ability to perform
better and more precise calculations [28].

2.1.7 Hugging Face

Hugging Face is a data science platform whose main goal is to enable the sharing
of knowledge and resources to accelerate the development of AI. As a platform,
it provides different tools for building, training, and deploying machine learning
models based on open-source technologies and code. They believe no one will
be able to ’solve AI’ on their own, so they provide a community Hub where the
goal is to democratize AI for all. On this Hub everyone can share and explore
AI models as well as datasets. Through the use of different libraries, mostly in
Python, users can download and use the pre-trained models and datasets from

8

the Hub themselves. These are divided into the main categories of Computer
Vision, Natural Language Processing (NLP), Audio, and Multimodal, which
are again divided into sub-categories. There is a collection of text sentence-
transformer models used to create contextualized word embeddings in a sub-
category called Sentence Similarity under the category of NLP [19].

2.1.8 AI and Sustainability

Critics of AI often point out that the usage and training of AI, requires a
substantial amount of energy to work as intended. This could be in direct
conflict with the United Nation’s sustainability goal 7: access of clean energy
to everyone. Stanford scientist Shana Lynch estimated that the total amount
of CO2 released both directly and indirectly when training the gpt-3 model
was 502 ton. Bloom, a similar models to those of the OpenAI models, is said
to use 0.003 KWh per user prompt. ChatGPT had almost 600 million users
just a month after release, and wit the same numbers as the Bloom model, it
can be estimated that the CO2 emissions amounted to 21 tons. AI can luckily,
in many cases, also be used to reduce emissions. Google DeepMind managed
to achieve great results when using AI to reduce the energy consumption of
Google data centers. They did this by using historical data collected from
thousands of sensors. Using this, they trained neural networks to recognize
and understand various patterns, which allowed them to optimize the energy
usage effectively. Methods like these can be used in various other industries
and industrial systems to increase efficiency [12].

2.2 Related Work

The following sections include related work in the field of AI chat services uti-
lizing RAG and the methodology that can be used to enhance them. These
are customized to be used in professional settings across various companies,
as stated in the introduction. The chapter starts in Section 2.2.1 with some
examples of such services and what has been done to enhance them. Then,
in Section 2.2.2, it takes a deep dive into the current state-of-the-art of Large
Language Models. The following sections, go more in-depth into previous en-
hancement methodologies used when it comes to AI chatbot services. Firstly,
it takes a closer look at Prompt Engineering in Section 2.2.3, which is a very
prominent enhancement methodology. Section 2.2.4 includes literature about
various ways to achieve explainability for Large Language models. Finally, Sec-
tion 2.2.5 contains research and comparisons of embedding models, which are
vital when doing Retrieval-Augmented Generation (RAG).

9

2.2.1 Enhancing Custom AI Chat Services

In a paper called Optimizing and Evaluating EgdeAI - A Custom Chatbot for
Employees of Egde Dale proposes ways of improving and enhancing a custom
AI chat service called EgdeAI. These include utilizing MSPF, a platform whose
goal is to make the development of AI applications easier. Given a prompt
as input, MSPF takes the input through various stages to create meaningful
input at the end of the flow. This allows for prompt classification and prompt
engineering, as well as testing and evaluating the flows. Through the use of
prompt engineering and prompt classification, cost is reduced and efficiency is
improved. To reduce cost Dale also takes a look at utilizing open-source sen-
tence embedding models. This proves to be a much faster and cheaper way
of embedding documents and prompts. Dale concludes by saying that future
work could be to try out different classification models for prompt classification.
Future work could also be to reduce the size of the prompt template or remove
it entirely, by exploring fine-tuning1 of OpenAI’s GPT models. Fine-tuning is a
way of pre-training a model to behave a certain way, similar to using a prompt
template. The last thing Dale proposes as future work is to remove the need
to send context with each prompt, by using OpenAI’s Assistants API 2. With
this, it is possible to pre-train a model on up to 20 files of max size 512MB,
which removes context input tokens altogether and greatly reduces cost [8].

The paper PipeRAG: Fast Retrieval-Augmented Generation via Algorithm-
System Co-design from Jiang et al discovered that retrievals from large databases
could take up a big portion of the generation time, especially when retrievals
are carried out at regular intervals to ensure the content retrieved is in sync
with the most recent states of generation. Therefore, they introduce PipeRAG,
a model designed to enhance the efficiency of RAG systems. This is done
by integrating pipeline parallelism to enable concurrent retrieval and genera-
tion processes, flexible retrieval intervals to maximize the efficiency of pipeline
parallelism, and dynamic adjustment of retrieval quality through performance
modeling. As database they use a RETRO database, which is a large database
consisting of chunks of documents that are vectorized. RETRO conducts re-
trievals periodically while generating a sequence of t tokens X = (x1, ..., xt). It
divides X into l segments (C1, ..., Cl), with each segment containing m tokens.
Combining this with the three aforementioned methods, their evaluation shows
that PipeRAG achieves up to 2.6x faster end-to-end generation while improv-
ing generation quality. These encouraging results demonstrate the success of
co-designing algorithms and underlying systems, setting the stage for the inte-

1https://platform.openai.com/docs/guides/fine-tuning
2https://platform.openai.com/docs/assistants/overview

10

https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/assistants/overview

gration of PipeRAG in upcoming RAG systems [15].

FrugalGPT: How to Use Large Language Models While Reducing Cost and
Improving Performance is a paper authored by Chen et al. They are moti-
vated by the fact that using LLMs on a large collection of queries and text
can be expensive, leading them to discuss how to reduce cost and increase
accuracy when using LLMs. To achieve this they propose three approaches:
prompt adaptation, LLM approximation and LLM cascade. Prompt adaptation
is a process where the size of the prompt is reduced, thereby also reducing the
cost. They use prompt selection, which is a type of prompt adaption, to limit
the amount of examples in a prompt, making it smaller and cheaper. Another
type of prompt adaptation called query concatenation involves sending multiple
queries to an LLM API at a time. LLM approximation involves, among other
things, storing LLM responses in a cache to limit LLM API calls. Finally, LLM
cascade is the process of sending different queries to different LLMs, as they
have their own strengths and weaknesses for different queries. This can reduce
cost and increase performance. Their proposed solution, called FrugalGPT can
match the best individual LLM (e.g. gpt-4) with up to 98% reduction in cost
or achieve 4% higher accuracy than the gpt-4 model at the same cost. Their
concepts and findings establish a basis for utilizing LLMs in a sustainable and
efficient manner [5].

2.2.2 Large Language Models

Since the release of ChatGPT in November 2022 [23], a lot of competitors have
emerged. In July 2023, Meta released a free-to-use, semi-open-source LLM
called Llama 2. Unlike the GPT models, the Llama 2 model is semi-open-
source, allowing for transparency and customization. Users can fine-tune it for
specific tasks, so as to achieve better results in niche areas [29]. Later that year
in December, Google released their new family of LLMs called Gemini [26].
One of the impressive features of these is that the model gemini-1.5-pro has a
token input limit of up to 1 million tokens. This equates to about 700,000 words
and means that the model can understand entire books or podcast series [6].
Quite recently in March 2024, Anthropic introduced Claude 3, a family of large
multimodal models [2]. The best of these models, Claude 3 Opus, outperforms
the gpt-4 model on various popular datasets like the HellaSwag and GSM8K.
The actual numbers can be seen below in Table 2.1. Mistral AI is another
company that has released open-source models, meaning they are free to use
and can be fine-tuned like the Llama 2 model. These models were released in
September 2023, but their newest models, Mistral Small, Medium, and Large

11

were released quite recently in February 2024 [1].

Various datasets have been made to evaluate how such LLMs perform on var-
ious tasks in various domains. Some datasets, like the HellaSwag, assess an
LLM’s ability to do common sense reasoning. Others, like the GSM8K, are
designed to evaluate a model’s ability to do multi-step mathematical reason-
ing [20]. Other methods include using other LLMs for evaluation. A com-
pany called Vectara has created a quite interesting open-source hallucination
evaluation model called HHEM [31]. The model that scores the best on the
HellaSwag and GSM8K is the Claude 3 Opus model, with scores of 95.4% and
95% respectively. This HellaSwag result is quite impressive as it requires a deep
understanding of the world and human behavior. In comparison, the average
human score on the dataset is 95.6%, only 0.2% above that of the Opus model
[13]. The model that best deals with hallucinations is the gpt-4 model, with a
score of 97%, indicating that the evaluated text is 97% factually consistent with
the source information [20]. These results, along with the rest of the LLM’s
performances can be seen in Table 2.1 below.

Model HellaSwag GSM8K HHEM Released
GPT-4 95.3 87.1 97 March 2023

Llama 2 70B 87.33 56.8 92.9 July 2023
Gemini Ultra 87.8 94.4 95.2 December 2023
Mistral Large 89.2 91.21 - February 2024
Claude 3 Opus 95.4 95 92.6 March 2024

Table 2.1: How the various LLMs mentioned have performed in various benchmarks. The
HHME column contains the HHEM factual consistency score. A higher value is better for
all the columns. Sources: [20, 13]

2.2.3 Prompt Engineering

A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT is
a paper by White et al. where they propose a plethora of prompt patterns that
offer reusable solutions to specific problems. As stated in Section 2.2.3, the
role of these prompt patterns is to enhance, refine, and customize the capabil-
ities of an LLM. The patterns are placed into different categories after what
main functionality they offer. Patterns whose main functionality is to constrain
what type, format, and structure the output has, are put into the Output Cus-
tomization category. The Prompt Improvement patterns on the other hand are
used to improve the quality of the input and the output. Within the Output
Customization category there are multiple patterns like the Persona and Tem-
plate pattern. The Persona pattern can be used if the output is wanted from

12

a certain point of view, like for example a security expert. An example of the
Persona pattern can be seen in Section 2.2.3 A precise output structure can be
achieved by using the Template pattern [33].

There are also quite a lot of interesting patterns whose role is to give better
answers from the LLM and give reasoning behind the answers. The Question
Refinement Pattern makes the LLM suggest potentially better or more refined
questions to the user, in order to arrive at a more accurate answer. To achieve
increased explainability for the LLM, the Reflection Pattern can be used. Its
goal is to enable the model to automatically explain its reasoning and rationale
behind the answers it provides to the user. The Fact Check List Pattern can
be used to create a list of facts that the LLM bases its answer on. This can be
useful if the user would want to perform due diligence on these facts to validate
their correctness. Another interesting pattern is the Refusal Breaker Pattern
whose goal it is to help the end user rephrase a question when the LLM is re-
luctant to give an answer. Caution is needed when using this pattern, however,
as it might lead the LLM to generate answers that violate its policy filters [33].
The rest of the patterns and their corresponding categories can be seen below
in Figure 2.3.

Figure 2.3: Prompt patterns and their categories [33].

Jiang et al. noticed that prompts fed to LLMs were becoming increasingly

13

lengthy, due to advancements in technologies like CoT and in-context learning
(ICL). In a paper called LLMLingua: Compressing Prompts for Accelerated
Inference of Large Language Models they therefore propose a solution to these
lengthy prompts. They present LLMLingua, a prompt compression method
that keeps the semantic integrity of prompts even under high compression lev-
els. An illustration of their approach can be seen below in Figure 2.4. The
motivation behind it is to reduce cost, increase context length and chat history,
as well as increase efficiency. In their results, they show that a prompt with a
lot of examples, consisting of 2366 tokens, was reduced to a prompt with one
example and 446 tokens. As an evaluation, they utilize Exact Match (EM), and
the compressed prompt actually gets a higher EM score than the bigger one.
This shows that even though the prompt is about 1/5 the size, it still keeps its
semantic integrity and the LLM is able to understand it [14].

Figure 2.4: Framework of Jiang et al’s proposed approach LLMLingua [14]

2.2.4 Explainability for Large Language Models

Therefore, understanding and explaining these models is crucial for elucidating
their behaviors, limitations, and social impacts [36] is stated in a paper called
Explainability for Large Language Models: A Survey by Zhao et al. This paper
gathers and describes state-of-the-art techniques for implementing explainabil-
ity when it comes it LLMs. They categorize the training of LLMs into two
paradigms: a traditional fine-tuning paradigm and a prompting paradigm. The
prompting paradigm is further divided into base models like GPT-3 and more

14

fine-tuned models with human-level abilities like GPT-4. To achieve explain-
ability for these they propose using natural language explanation, which makes
the LLM automatically generate its own explanations as to why it answered
the way it did. An extension of this is the Chain of Thought (CoT) explana-
tions, which includes giving it a sequence of prompts and having it explain its
reasoning [36].

In a paper called Plan-and-Solve Prompting: Improving Zero-shot Chain-of-
Thought Reasoning by Large Language Models Wang et al. propose Plan-and-
Solve (PS) Prompting, which is an improvement of Zero-shot-CoT prompting.
Zero-shot CoT is, in turn, an improvement to few-shot Cot because it eliminates
the need for manually crafted step-by-step reasoning demonstrations that the
latter requires. PS prompting consists of two components. The first compo-
nent includes creating a plan for subdividing the bigger tasks into smaller ones,
while the second one involves carrying out those subtasks. They also propose
something called PS+ prompting, which is an extension of PS prompting with
more detailed instructions. To evaluate their proposed prompting method they
test it on ten datasets across three different reasoning problems. Across all
datasets, their proposed prompting strategy outperforms Zero-shot-CoT. It is
comparable to or better than Zero-shot-Program-of-Thought Prompting, and
has comparable performance with 8-shot CoT prompting on the math reason-
ing problem [32].

Confidence elicitation is referred to as the task of enabling LLMs to accurately
articulate their confidence in the answers they give. This is a topic heavily ex-
plored in a paper called Can LLMs Express Their Uncertainty? An Empirical
Evaluation of Confidence Elicitation in LLMs by Xiong et al. They explore
confidence elicitation and how it can ensure an increase in an LLM’s reliability
and trustworthiness. This need arises as some of the best and most popular
LLMs are closed-source and non-logit-based approaches are needed. In the pa-
per, they introduce three categories of methods: verbalize-based, consistency-
based, and hybrid methods that utilize both. They found out that LLMs often
show overconfidence when verbalizing their confidence, but that it can be cali-
brated using CoT, Top-K, and Muti-step confidence. Consistency-based meth-
ods outperform the verbalized ones, while the hybrid approach delivers the best
performance [34].

15

2.2.5 Embedding Models

Muennighoff et al. have written a paper called MTEB: Massive Text Embedding
Benchmark covering the Massive Text Embedding Benchmark (MTEB). They
benchmark 33 different embedding models mostly found on Hugging Face3, but
also other models like OpenAI’s text-embedding-ada-002 model. MTEB covers
eight embedding tasks like classification and semantic textual similarity (STS)
spanning 58 datasets and 112 languages. Their results are presented in a big
leaderboard. A thing that can be derived from their results, is that a model’s
vector dimension size has little-to-no correlation with its performance. There
are some benefits of having fewer dimensions, however, as it requires a smaller
amount of computation. This makes for faster queries and less Random Access
Memory (RAM) usage [21].

RAGAS: Automated Evaluation of Retrieval Augmented Generation, a paper
written by Es et al., introduces a framework for the evaluation of RAG pipelines.
The implementation of RAG requires a great deal of tuning, as its performance
is dependent on a lot of different components, like the retrieval model, the con-
text itself, the LLM, prompt template, among others. A method to evaluate
the RAG pipeline when working with this tuning is therefore paramount. RAG
systems are often evaluated by their ability to tackle the LLM task itself by
measuring perplexity on some context. They consider a standard RAG setting,
where a question is used to fetch some external context before being used to
generate an answer. The evaluation focuses on three different quality aspects.
Faithfulness is a metric of how well the answer is grounded in the provided con-
text. Secondly, Answer Relevance refers to the fact that the generated answer
should address the actual question that was given. Finally, Context Relevance
focuses on how good the RAG pipeline is at retrieving only relevant context,
containing as little irrelevant information as possible [9].

3https://huggingface.co/

16

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/

Chapter 3

Methods

This chapter contains a walk-through of approaches used to create and test the
enhanced RAG pipeline that can be used in custom AI chat services. Three
smaller pipelines are introduced that can all be put together into a bigger one,
or used separately. The chapter is divided further into several sections each de-
scribing their own methodology. Section 3.1, labeled The Retrieval Augmented
Generation Pipeline, illustrates and explains the three different pipelines sepa-
rately, but also how they work together. In Section 3.3, labeled Classification of
Prompts, the prompt classification process is clarified, and why it is a solution to
the problem that not all prompts should cost the same. The following section,
labeled Exploration of Embedding Models (Section 3.4), compares and evalu-
ates OpenAI and open-source embedding models using various metrics. After
that, Section 3.5 labeled Explainability, goes through various ways of achieving
explainability in custom AI chat services using prompt engineering, CoT, and
sources. Finally, the section labeled Reducing Cost by Utilizing Prompt Engi-
neering (3.6), goes through the different prompt compression techniques used
and how they reduce cost.

3.1 The Retrieval Augmented Generation Pipeline

This thesis proposes a pipeline that starts with the user sending a prompt and
ends with an LLM creating an answer. In the following figures, a rectangle
represents a process, a parallelogram represents data, and the cylinder shapes
represent databases. Starting off, the prompt is sent for prompt classification
to decide which LLM model to use, as seen below in Figure 3.1.

Figure 3.1: How the prompt is classified to choose LLM model.

17

While that is underway, the prompt undergoes embedding before being used to
query a vector database for context retrieval. This process can be seen below
in Figure 3.2.

Figure 3.2: How the prompt is used to retrieve relevant context.

The context retrieved is compressed using contextual compression. Simultane-
ously, explainability instructions are added to the prompt template, and the
prompt template itself is compressed and joined with the compressed context.
When these two are joined they form the complete prompt that is to be sent
to the LLM. Together, however, they can be compressed even further by doing
prompt compression. This compressed version of the complete prompt is then
finally sent to the LLM model to be answered. The compression pipeline can be
seen below in Figure 3.3, and the pipeline as a whole can be seen in Appendix
A. The following sections will go through each of these processes as they appear
in the pipeline as a whole.

Figure 3.3: How explainability and prompt compression are achieved in the RAG pipeline.

18

3.2 Evaluating Pipelines

To be able to evaluate the different pipelines and methodologies introduced
throughout this chapter, a way to calculate cost and time efficiency is needed.
OpenAI calculates the cost of using their models by using something called
tokens, which can either be one word or pieces of words. How many characters
each token consists of can differ from language to language. In English, one
token consists of 4 characters on average, and they can contain trailing spaces
and sub-words [27]. An illustration of how a paragraph is tokenized can be seen
below in Figure 3.4. MSPF can give you the total number of tokens used in a
flow, and also by each LLM node. By looking at the OpenAI model pricing1,
it is possible to calculate the cost of each flow depending on which models are
used. MSPF also times each flow, which makes it easier to not only compare
the cost of them but also their completion times.

Figure 3.4: How OpenAI tokenizes the paragraph above using their open-source tokenizer
called tiktoken.

3.3 Classification of Prompts

Prompt classification is here done to see if it can reduce cost and completion
time of a RAG pipeline. There are various ways of classifying words, text, or
sentences. A new and popular method is that of using LLMs as classification
models. They have been shown to outperform conventional machine learning
approaches, especially when it comes to zero-shot and few-shot learning [4].
This project proposes a way of reducing the cost of custom AI chat services

1https://openai.com/pricing

19

https://github.com/openai/tiktoken
https://openai.com/pricing

by using MSPF and prompt classification. To enable an LLM to do prompt
classification, a certain type of prompt engineering has to be utilized. An
example of a prompt template that enables this can be seen below in Code
Listing 3.1. To do this in MSPF an LLM and Python node have to be created.
The Python node is used to provide the LLM node with classification examples
that relate to the task at hand, something known as few-shot learning. The
prompt template below first specifies the LLM’s task, then gives the LLM the
different class labels, and finally gives it the examples.

1 system:
2 Your task is to classify a given prompt into one of the following categories:
3 gpt-35 or gpt-4 based on the prompt text content.
4 The prompts classified as gpt-35 will be easier prompts and not very complex,
5 while the prompts classified as gpt-4 will be more complex.
6

7 user:
8 The selection range of the value of "category" must be within "gpt-35" or ...

"gpt-4".
9 Here are a few examples:

10 {% for ex in examples %}
11 Prompt content: {{ex.prompt}}
12 OUTPUT:
13 {{ex.category}}
14

15 {% endfor %}
16

17 Prompt content: {{prompt_content}}.
18 OUTPUT:

Listing 3.1: Example of a prompt template that can classify text using few-shot learning.

The example above can be used to reduce the cost of custom AI chat services,
as differently priced models could be used to answer prompts that differ in
difficulty. Some of the OpenAI models, for example, differ quite a lot in pricing
2, and correctly classifying prompts could potentially save both money and time.
Prompt difficulty classification is not the only thing this approach can solve.
Often when it comes to custom AI chat services, there are multiple knowledge
bases that the end-user wants to prompt. By classifying the user’s prompt, it
is possible to detect what knowledge base the user wants to prompt. This will
remove the need of having to manually select a knowledge base and could save
the user both effort and time.

3.3.1 Finding the Best Classification Model

It is important to find the correct classification model as a bad model can
potentially add unnecessary cost and completion time. An important thing
to note is that the use of an LLM for classification increases the total token
count of the flow. It is therefore important to find out which LLM model is

2https://openai.com/pricing

20

https://openai.com/pricing

sufficient for classification. If their most cost-effective model, gpt-3.5-turbo-
1106 3 is sufficient, it is most likely worth it because of the very reasonable
pricing. If not, utilizing prompt classification might not be more cost-effective.
Another factor to take into consideration is the percentage of prompts that are
simple and difficult. Two flows that make sense to compare here, are one that
uses the most expensive model (gpt-4) and one that sends simple prompts to
gpt-3.5-turbo-1106 and difficult prompts to gpt-4. The two flows mentioned
are illustrated below in Figure 3.5. Assume that 95 percent of prompts that
users send are classified as difficult. Then the second flow will save money on
only 5 percent of the prompts, while the 95 percent other will have increased
cost because of the additional classification cost. In a case like this, it might
be better to just use the first flow without classification.

Figure 3.5: The two flows that are being compared in the paragraph above.

3.4 Exploration of Embedding Models

In a RAG pipeline embeddings play a significant and crucial role. The choice
of embedding model can affect various factors like cost, accuracy and time effi-
ciency. It was mentioned in Section 2.1.7 that Hugging Face offers an abundance

3See Footnote 2

21

of open-source models. This collection of models also includes embedding mod-
els, that can all be utilized using the sentence_transformers library in Python.
The open-source embedding models that were chosen were six of the most pop-
ular and best-performing sentence similarity models on Hugging Face4. The
ones chosen, together with the latest OpenAI embedding models, can be seen
below in Table 3.1.

Model Vector Dimension Parameters Usage Price
text-embedding-3-large (OpenAI) 3072 unknown $0.00013/1K tokens
text-embedding-3-small (OpenAI) 1536 unknown $0.00002/1K tokens
text-embedding-ada-002 (OpenAI) 1536 350 million $0.00010/1K tokens

e5-large-v2 1024 335 million free
gte-large 1024 335 million free
ember-v1 1024 335 million free

all-mpnet-base-v2 768 133 million free
all-MiniLM-L6-v2 384 22.7 million free

e5-small-v2 384 33.4 million free

Table 3.1: Open-source Hugging Face and OpenAI models used [8]. The prices are as of Feb.
12th 2024.

In the case of custom AI chat services, embedding models like these are used
to create custom knowledge bases, often stored in a vector database. To fetch
data from a vector database something called a similarity measure has to be
performed. When comparing embedding models for custom AI chat services, it
then makes sense to compare them by performing similarity measures on their
embeddings.

A testing dataset was created in the form of a document as context, as well
as relevant example questions. It was then possible to use these example ques-
tions to see which embedding model best retrieves relevant context. Another
evaluation methodology that was used is the one mentioned in Section 2.2.5
from a paper called RAGAS: Automated Evaluation of Retrieval Augmented
Generation. This evaluation method requires a dataset similar to the one al-
ready mentioned, in addition to answers given by the RAG pipeline and their
respective ground truths. The RAGAS metrics that were used include context
precision, context recall, and context relevancy. Context precision evaluates
whether or not the most relevant text chunks are ranked higher or not when
fetching the top four most relevant text chunks. The more relevant text chunks
should be ranked at the top and given first to the LLM. Context recall is a
measure of how well the retrieved context aligns with the ground truth answer.
Finally, context relevancy is a measure of how relevant the retrieved context is

4https://huggingface.co/models?pipeline_tag=sentence-similarity&sort=downloads

22

https://huggingface.co/models?pipeline_tag=sentence-similarity&sort=downloads
https://openai.com/pricing
https://huggingface.co/models?pipeline_tag=sentence-similarity&sort=downloads

in accordance with the question. If this number is low, a lot of irrelevant con-
text has been retrieved, whilst a higher number means more relevant context.
A more in-depth description of experiments and results can be found below in
Section 4.3.

3.5 Explainability

To increase the accuracy of LLMs and RAG pipelines, explainability is essential.
It also serves as a powerful tool to combat LLM hallucinations, making it easier
for the users to verify and fact check the answers given. The following sections
look into how to implement explainability using prompt engineering, CoT and
sources respectively.

3.5.1 Explainability Using Prompt Engineering

Getting an LLM to reflect, provide verifiable facts and give its confidence are
all ways to achieve explainability. As mentioned in Section 2.1.5, one way to
achieve explainability for LLMs is to utilize natural language explanation. One
way to do this is through the use of prompt engineering. What comes to mind
then is using some of the relevant prompt patterns introduced in Section 2.2.3
[33]. The pattern that is most relevant here is the Reflection Pattern, as its job
is to provide reasoning with every answer. Adding this to one of the prompt
templates used in custom AI chat services would look something like this:

You are a custom AI chat service, an advanced chatbot developed
by <company> for <company> employees. Your job is to... When
you provide an answer, please explain the reasoning and assump-
tions. If possible, use specific examples or evidence associated with
your answer. Moreover, please address any potential ambiguities or
limitations in your answer, in order to provide a more complete and
accurate response [33].

The Persona Pattern is here first used to establish the LLM’s role and its main
job. This is followed by the Reflection Pattern that tells the LLM to explain
its reasoning and possibly show evidence of its answer. It is also important for
the LLM to specify the limitations of its answer if that is necessary. Another
pattern that can be useful to achieve explainability is the Fact Check List
Pattern, which lists out all the facts used in the LLM’s answer. This pattern
can be used by adding something like the following to the prompt template:

...when you generate an answer, create a set of facts that the answer
depends on that should be fact-checked and list this set of facts at
the end of your output [33].

23

In addition to this, explainability can be achieved by having the LLM assess
its confidence with the answer it has given. This approach was explained in
Section 2.2.4, and can be achieved by using the following prompt template:

Please answer this question and provide your confidence level. Note
that the confidence level indicates the degree of certainty you have
about your answer and is represented as a percentage. Answer and
Confidence (0-100): [34].

3.5.2 Explainability Using Chain of Thoughts

Enabling an LLM to share its thought process can greatly increase its explain-
ability. This is the primary function of CoT prompting. CoT can be achieved
using the Python and JavaScript framework Langchain mentioned in Section
2.1.6. Through its Software Development Kit (SDK), Langchain offers agents
whose main purpose is to give LLMs more functionality. This functionality can
be things like enabling it to perform web searches or giving it access to external
information sources like vector databases [16]. An LLM is used as a voice of
reason to determine which actions to take in what situation and in which order.
Langchain currently supports a Plan-and-execute agent based on the Plan-and-
Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large
Language Models [32] paper mentioned in Section 2.2.4. This agent is perfect
to use for achieving CoT because it first creates a plan to answer the query
with clear steps, before executing the plan using an action agent. To achieve
this it first uses an LLM as a planner with the following prompt template:

Let’s first understand the problem and devise a plan to solve the
problem. Please output the plan starting with the header ’Plan:’ and
then followed by a numbered list of steps. Please make the plan the
minimum number of steps required to accurately complete the task.
If the task is a question, the final step should almost always be ’Given
the above steps taken, please respond to the users original question’.
At the end of your plan, say ’<END_OF_PLAN>’ [32].

Then an LLM is used as executor to start working on the plan created by the
planner. If the executor had tools called Calculator and Search its prompt
template would look as follows:

Respond to the human as helpfully and accurately as possible. You
have access to the following tools:

Search: Useful for answering questions about current events, args:
{{’tool_input’: {{’type’: ’string’}}}}

24

Calculator: Useful for when you need to do math, args: {{’tool_input’:
{{’type’: ’string’}}}}

Use a json blob to specify a tool by providing an action key (tool
name) and an action_input key (tool input).

Valid "action" values: "Final Answer" or Search, Calculator

Provide only ONE action per $JSON_BLOB, as shown:

{{ "action": $TOOL_NAME, "action_input": $INPUT }}

Follow this format:
Question: input question to answer Thought: consider previous and
subsequent steps Action:

$JSON_BLOB

Observation: action result ... (repeat Thought/Action/Observation
N times) Thought: I know what to respond Action:

{{ "action": "Final Answer", "action_input": "Final response to hu-
man" }}

Begin! Reminder to ALWAYS respond with a valid json blob of a
single action. Use tools if necessary. Respond directly if appropriate.
Format is Action: $JSON_BLOB then Observation:.
Thought: [32].

3.5.3 Explainability Using Sources

A powerful method to achieve explainability for LLMs is by making the infor-
mation it provides verifiable. A simple yet effective way of doing this is with
the use of sources. Natural language in the form of prompts can actually be
used to incentivize the LLM to provide sources with its answers. This can be
done by using a prompt as such:

You are a custom AI chat service, an advanced chatbot developed
by <company> for <company> employees. Your job is to... Please
provide a source in markdown format if you feel that is needed with
"source:" prepended.

25

This will work for questions where the LLM uses its own knowledge base as a
source of information. For instances where it uses an external knowledge base,
metadata will have to be added to the knowledge base to enable the LLM to cite
its sources. This is yet another problem that can be solved using Langchain.
Langchain can be used to split up documents, embed them, and then upload
them to a vector database. In this process, Langchain enables the functionality
of adding metadata to documents that are uploaded, which can be seen below
in Algorithm 1.

Algorithm 1 Process of Adding Sources to PDFs
1: Initialize langchain pdf-loader
2: Load pages from pdf-loader
3: Initialize pinecone index with index name and namespace
4: for each page in pages do
5: Add file name and page number as metadata
6: Initialize text-splitter with chunk-size 1000 and chunk-overlap 200
7: Split page into texts using text-splitter
8: Initialize embeddings
9: for each text in texts do

10: Push embedded text to pinecone with metadata and embeddings
11: end for
12: end for

3.6 Reducing Cost by Utilizing Prompt Engineering

When it comes to the cost of using LLMs, it all comes down to the model used
and the number of input and output tokens. Therefore it is important to reduce
these as much as possible without affecting the quality of answers negatively.
Options for reducing output tokens are somewhat limited, as reducing this too
much would result in a decrease in answer quality. Prompt engineering can,
however, be used to affect both of these numbers. It can of course be used to
alter the number of input tokens by changing the prompt template, but it can
also affect the number of output tokens.

3.6.1 Prompt Template Compression

A prompt template is a static, textual template that is typically included with
each user prompt. It is therefore important that the template is as short as
possible without losing its meaning. To reduce the size of the prompt template,
this project proposes a quite simple solution. The proposed method is to first
write out the prompt with one’s own natural language, before giving it to an
LLM model like gpt-4, asking it to reduce the number of tokens in it. Doing
this achieves two things: it reduces the token count while still making sure the

26

model understands the prompt, as it was made by the model itself.

The prompt template can also be used to reduce the number of output tokens
used by a model. This prompt template would be inspired by the Template
and Persona patterns mentioned in Section 2.2.3. A fitting template could
then look something like the following:

You are EgdeAI, an advanced chatbot developed by Egde for Egde
employees. Your job is to... Please keep your answer short and concise
with clear and simple language.

These two approaches can both be used to reduce the static prompt template
and the LLM’s answer, but will not reduce the input of the user or the context
provided.

3.6.2 Contextual Compression

One of the major challenges when it comes to context retrieval is that a lot of
unnecessary data may be retrieved. Not only might this confuse the LLM, but
it will also unnecessarily increase the token count. Contextual compression is a
tool that can be used to solve this issue [17]. When a PDF document is used as
context to an LLM, it is usually split up into text chunks, and the text chunks
with the highest textual similarity to the user prompt are given as context.
There are two main problems that can arise here. First of all, there might be
very similar text chunks with basically the same information that gets sent as
context. Secondly, these text chunks often contain information not relevant to
the prompt. The first one can be solved by doing similarity measures between
the text chunks themselves. If two or more of the text chunks have a similarity
score higher than a certain threshold, all but one will be removed, being the one
with the highest similarity score with the prompt. The latter issue can be solved
by further splitting up the remaining text chunks and checking what parts
share the most textual similarity with the prompt. Doing this will filter out
the irrelevant parts of the text chunks, making the context only consist of the
most relevant information. To implement contextual compression, Langchain5

can be used, as seen below in Algorithm 2.

5https://python.langchain.com/docs/modules/data_connection/retrievers/contextual_
compression

27

https://python.langchain.com/docs/modules/data_connection/retrievers/contextual_compression
https://python.langchain.com/docs/modules/data_connection/retrievers/contextual_compression

Algorithm 2 Document Compression and Retrieval with Pinecone and Langchain
1: Initialize pinecone with api key
2: Fetch pinecone index with the index name
3: Fetch the correct pinecone namespace within the index
4: Initialize embedding model
5: Initialize text-splitter with chunk-size and chunk-overlap
6: Initialize redundant filter with embedding model and similarity threshold
7: Initialize relevant filter with embedding model and similarity threshold
8: Create document-compressor-pipeline with text-splitter, redundant-filter and relevant-

filter
9: Create contextual-compression-retriever

10: Retrieve relevant documents by using the contextual-compression-retriever and the
prompt

On lines 1-3 above in Algorithm 2, a Pinecone retriever is created, which is
used as a context provider. Then, from lines 5-7, the text-splitter and filters
are initialized. The text-splitter is used to further split the chunks into smaller
ones, while the filters remove unnecessary context. The redundant_filter is
there to remove very textually similar text chunks, meaning chunks that have
a higher similarity score than the threshold value. The relevant_filter goes
through the now smaller text chunks and removes any that share a similarity
score with the prompt that is smaller than the given threshold value. These
tools are then put in a document-compressor-pipeline that is again used in a
contextual-compression-retrieve.

3.6.3 Prompt Compression

The total prompt, including prompt template, context and the user prompt
itself, is often quite large. Compressing this even further can therefore reduce
cost quite a lot. In sections 3.6.1 and 3.6.2 methods to compress the prompt
template and the context were explained. In this section, a methodology for
compressing all the text being sent to an LLM will be gone through. This will
be the final compression step after the two other methods before the text is sent
to an LLM. To achieve this, LLMLingua will be used. It was also mentioned in
Section 2.2.3, and can be used for not only reducing the prompt template size
but also the user’s input and provided context. All this while still preserving
the essential information of the whole input. This is especially powerful in the
case of long user prompts and contexts, where the algorithm has been shown
to reduce the whole prompt down to as little as 1/20 of the original prompt.
This is with a minuscule amount of performance loss [14].

28

Chapter 4

Results and Discussion

This chapter contains the experiments that test all the hypotheses stated in
Section 1.3.1. The experiments were conducted using one of the two systems
specified in Section 4.1 below. If relevant, the system used is specified beneath
the corresponding experiment.

4.1 Hardware

• System 1: Machine with Ubuntu 22.04.3 LTS with a NVIDIA A100 80GB
GPU. The machine has an Intel(R) Xeon(R) CPU E5-2660 v4 2.00GHz
CPU with 2 sockets, 14 cores per socket, and 2 threads per core.

• System 2: Machine with Microsoft Windows 11 Home. The machine
has an AMD Ryzen 7 3700U with Radeon Vega Mobile Gfx, 2300 Mhz, 4
Core(s), 8 Logical Processor(s).

4.2 Prompt Classification

4.2.1 Finding the Best Classification Model

The following experiment is done to test H2, as described in Section 1.3.1.
To find out which OpenAI model suffices for prompt classification a prompt
flow in MSPF was created. The flow was a simple classification flow with one
Python node for preparing a few examples and one LLM node for doing the
actual classification. Three of OpenAI’s LLM models, gpt-35-turbo-1106, gpt-
4-1106 and gpt-4 were used for testing. Using Azure AI Machine Learning
Studio1, it was possible to perform batch runs with multiple inputs so as to
obtain accuracies for the different models. To test each model, 40 test prompts
were created with their respective ground truths. The test prompts can be seen
below in Table C.1 in Appendix C. Batch runs for each of the models were then

1https://ml.azure.com/home

29

https://ml.azure.com/home

run to find their accuracies. The results from the comparison can be seen below
in Table 4.1.

Model Accuracy Price (input/output)
gpt-35-turbo-1106 0.95 $0.0010/$0.0020

gpt-4-1106 0.97 $0.01/$0.03
gpt-4 1 $0.03/$0.06

Table 4.1: Accuracies and prices of the different OpenAI models tested. These are the prices
as of 30.01.2024.

A thing to keep in mind when looking at these results is that the two classes
simple prompt and difficult prompt have no clear boundaries. How difficult a
prompt is can be subjective, so the ground truth is not necessarily the absolute
truth. Some prompts are located somewhere in the middle between the two
classes. There is, however, room for a few "misclassifications". As long as
the vast majority of prompts are classified "correctly", it has the potential to
increase cost efficiency. Considering all of this, the model that is natural to
use for prompt classification is the gpt-35-turbo-1106 model. It is by far the
cheapest model (as of 30.01.2024) and it has an acceptable accuracy of 0.95. It
does have the lowest accuracy of all the models, but as previously discussed,
some "misclassifications" are tolerable.

4.2.2 Reduction in Cost by Using Prompt Classification

The experiment done in this section is conducted to test H2, as stated in Sec-
tion 1.3.1. Because an extra LLM node is needed, prompt classification in
MSPF leads to an increase in the total token count. A prompt template with a
token count of 254 (with few-shot examples), much like the one in Code Listing
3.1 was used for comparison. From the previous section, it was deduced that
the best model to use for classification was the gpt-35-turbo-1106 model. One
prompt, which was classified as "simple" (How many people live in Grimstad),
was used to compare the different flows. Since this is a "simple" prompt, it
allows for comparing a flow with two gpt-35-turbo-1106 LLMs and one with a
single gpt-4 LLM, as can be seen in Figure 3.5.

Looking at the first of these flows, flow one in Figure 3.5, the total number
of tokens can be obtained. The total number of input tokens for this flow was
679 (254 + 425), and 25 (5 + 20) output tokens. Using the OpenAI model
pricing2 for the gpt-3.5-turbo-1106 model, the total flow cost can be calculated
as following in Equation 4.1.

2https://openai.com/pricing

30

https://openai.com/pricing
https://openai.com/pricing

$0.0010 ∗ 679

1000
+ $0.0020 ∗ 25

1000
= $0.00073︸ ︷︷ ︸

cost per 1000 input tokens * input tokens/1000 + cost per 1000 output tokens * output tokens/1000 = $0.00073

(4.1)
The same prompt can then be used to test the second flow without prompt
difficulty classification. This flow only has one LLM node, which is the gpt-4
model. The answering models in both these flows share the exact same prompt
template, as well as a temperature of 0.4. Finding the total token count as
well as the correct pricing3 then allows for calculating the cost as seen below in
Equation 4.2.

$0.030 ∗ 425

1000
+ $0.060 ∗ 20

1000
= $0.01395︸ ︷︷ ︸

cost per 1000 input tokens * input tokens/1000 + cost per 1000 output tokens * output tokens/1000 = $0.01395

(4.2)
The pricing of the gpt-4 model is so much steeper than the pricing of gpt-3.5-
turbo-1106 that even with the extra 254 classification tokens, it is a lot cheaper.
In fact, the flow without classification is about 19 times more expensive than the
one with classification. Another comparison that has to be made is between the
flows if a prompt was classified as "complex". In this case, the cost will actually
increase a bit, as there will be additional tokens used for an "unnecessary"
prompt classification in flow one. A big question is if this increased cost will be
smaller than the decrease in the previous comparison. Assume that the prompt
used above is classified as "complex", to keep the token counts identical when
calculating the total cost of flow one in Equation 4.3.

($0.030 ∗ 425

1000
+ $0.060 ∗ 20

1000
) + ($0.0010 ∗ 254

1000
+ $0.0020 ∗ 5

1000
) = $0.014214︸ ︷︷ ︸

(gpt-4 input and output cost) + (gpt-3.5-turbo-1106 input and output cost) = $0.014214

(4.3)
From this calculation, it is apparent that the additional cost added by the LLM
classification node is minuscule. The additional cost is $0.014214−$0.01395 =
$0.000264. Comparatively, the decrease in cost when feeding a "simple" prompt
to the flow was $0.01395− $0.00073 = $0.01322, a 94.8% price reduction. As
shown, the decrease in the cost of using classification is a lot bigger than the
increase in using it. The relation between these is $0.01322/$0.000264 ≈ 50.
This means that if the user base of the custom AI chat service sends at least
one or more "simple" prompts for every 50 "complex" prompts, the flow with
classification is the most cost-effective. A summary of the price calculations

3https://openai.com/pricing

31

https://openai.com/pricing

between the two flows can be seen below in Table 4.2. These results can be
compared to those of Chen et al. in [5]. Their proposed solution, FrugalGPT
is able to reduce cost in the range of 50% to 98%, depending on dataset, by
using LLM Cascade. This similar approach uses various LLMs to respond to
prompts of differing complexity. A difference here is that they use a dataset
with ground-truth values to decide which LLMs to use. This is not possible
in the case of a custom AI chat service, as it is impossible to obtain a ground
truth dataset for all possible user prompts.

Flow Prompt Complexity Price
1 Simple $0.00073
1 Complex $0.014214
2 Simple $0.01395
2 Complex $0.01395

Table 4.2: Resulting prices obtained from the two different flows when using "simple" and
"complex" prompts as input.

Completion times are crucial in a custom AI chat service used in professional
settings. If the chat service is too slow in retrieving information, users might as
well find the answers on their own. Therefore, another factor to take into con-
sideration is the completion times of the two flows. Will adding a classification
LLM node increase the time it takes to finish?

Prompt Flow
1 2

What is the population of Grimstad? 5.62s 4.22s

What is 2+2? 5.78s 3.17s

What is the tallest mountain in Norway? 8.96s 5.48s

What is the biggest country in the world? 7.97s 4.49s

Table 4.3: Completion times of the two different flows. These completion times were mea-
sured on System 2 from the Hardware section (4.1).

From Table 4.3 it can be seen that the classification LLM does in fact add a
bit of completion time. For some prompts, it adds about a second, but for
others it almost doubles the completion time, averaging at an increase of 2.74s.
Considering this increase in completion time, it would be worth exploring the
relation between "simple" and "complex" prompts, so as to be sure there is a
possibility to reduce cost.

4.3 Comparison of Embedding Models

H4 states that: "Open-source embedding models are as good as Ope-
nAI’s alternative, and will therefore be possible to use to reduce cost

32

and completion time". This hypothesis is tested in the following section by
doing a comparison of accuracy, time efficiency, context precision, context re-
call and context relevancy on some of the best and most popular open-source
embedding models on Hugging Face4, as well as the three best OpenAI em-
bedding models5. To achieve this, the famous paper Attention is All you Need
[30], was used as a knowledge base. Twenty test prompts, which can all be seen
in Appendix D, were made to perform similarity measures against it. Some
examples of the prompts are listed below:

1. How do you add positional encodings to the input embeddings?

2. What were their results when it comes to machine translation?

3. What do they say in their conclusion?

To be able to use the paper as a knowledge base, it is first split up into text
chunks of 1000 characters each with a chunk overlap of 200 characters each. This
overlap is there to prevent sentences from being cut in half and context from
being lost. Before doing the embedding, the ground truths are found. These
are the text chunks that should be returned when doing a similarity measure
with each of the twenty prompts. All of the text chunks and all of the prompts
are then embedded using the current embedding model. A prompt’s top four
most similar text chunks are then found using a cosine similarity search. These
top four text chunks are then compared to the ground truths, and if one of the
text chunks matches, a score of one will be given. This procedure was repeated
for each of the twenty prompts found in Appendix D.

Another methodology used for comparing embedding models was the one men-
tioned in Section 2.2.5 from a paper called RAGAS: Automated Evaluation
of Retrieval Augmented Generation [9]. To utilize the RAGAS framework,
a dataset similar to the one used above has to be created. Firstly, example
questions have to be created, followed by the ground truth answers to these
questions. Then the context chunks retrieved by each embedding model for
each of the example questions have to be collected. Finally, the answer to each
of the questions when using each of the embedding models has to be found. As
example questions, the twenty test prompts were used. The ground truth an-
swers were generated by using OpenAI’s gpt-4 model and giving it the correct
context chunks manually. The context retrieved from each embedding model
was found by using cosine similarity as in the methodology above. Then finally

4https://huggingface.co/models?pipeline_tag=sentence-similarity&sort=downloads
5https://platform.openai.com/docs/guides/embeddings

33

https://huggingface.co/models?pipeline_tag=sentence-similarity&sort=downloads
https://platform.openai.com/docs/guides/embeddings

the answers derived when using each of the embedding models were found us-
ing the same gpt-4 model, with the same temperature (0.5), given the retrieved
context using the respective embedding model.

Accuracy is not the only relevant measure when it comes to embedding models.
Efficiency is also key when it comes to custom AI chat services and can vary
from model to model depending on its vector dimension and potential number
of parameters. The following experiment was done on System 1 specified in the
Hardware section (4.1), and was conducted by embedding the whole paper that
was used above and putting the embedded text chunks into a vector database.
After that, all the twenty test prompts from Appendix D were used to query
the database. This procedure was timed and repeated for all the embedding
models resulting in the numbers under Time in Table 4.4 below. The table also
includes experimental results from all the other embedding comparisons.

Metrics

Embedding Model

C
or

re
ct

A
cc

ur
ac

y

M
T

EB
sc

or
e

(S
T

S)
[2

1]

T
im

e

C
on

te
xt

Pr
ec

isi
on

C
on

te
xt

R
ec

al
l

C
on

te
xt

R
el

ev
an

cy

V3 large (OpenAI) 19/20 0.95 81.73 9.79s 0.9750 0.9750 0.0580

e5-small-v2 18/20 0.90 81.05 4.26s 0.8861 0.9300 0.0410

V3 small (OpenAI) 18/20 0.90 81.58 7.25s 0.9694 0.9875 0.0697

e5-large-v2 17/20 0.85 82.50 6.30s 0.9667 0.9900 0.0531

Ada v2 (OpenAI) 17/20 0.85 80.97 6.64s 0.9333 0.9375 0.0515

gte-large 16/20 0.80 83.35 6.37s 0.9097 0.9250 0.0376

all-mpnet-base-v2 15/20 0.75 80.28 4.84s 0.9403 0.8700 0.0340

ember-v1 15/20 0.75 83.34 6.40s 0.9153 0.9400 0.0403

all-MiniLM-L6-v2 14/20 0.70 78.90 3.89s 0.8750 0.9325 0.0292

Table 4.4: Results of embedding models on the twenty test prompts [8].

From these results, it is apparent that the OpenAI models fare quite well against
the open-source models. The OpenAI models, however, use more time to em-
bed the paper and then query it with all the test prompts. One reason for
this is quite clearly vector dimension. The results show that a higher vector
dimension leads to a slower embedding process. Another factor that should be

34

considered is that all the open-source embedding models are run locally, while
the OpenAI embeddings are retrieved from their API by sending the text there.
One of the fastest models was the e5-small-v2 and also one of the best in terms
of accuracy. V3 large from OpenAI obtained the best accuracy, but it was also
the slowest.

While the accuracy calculated above gives a good indication of how well the
embedding models do both when it comes to accuracy and efficiency for this
particular paper, the MTEB STS score and RAGAS metrics give a better indi-
cation of how well the models fare in general on all knowledge bases. Looking
at the RAGAS metrics, it is apparent that the smaller models in terms of vector
dimension and parameters, fare worse than their bigger counterparts. These
are the e5-small-v2, all-MiniLM-L6-v2 and all-mpnet-base-v2 models, which
averagely show among the lowest scores when it comes to context precision,
recall and relevancy. For the e5-small-v2 this comes as a bit of a surprise, as it
achieves quite good accuracy in the former experiment. It seems this model is
quite good at finding the right context, but also finds some irrelevant context
and does not rank the context ideally for all the test prompts.

Given these results, what should a company that is looking to create its own
custom AI chat service use as an embedding model? The most apparent answer
seems to be either the e5-small-v2 or the e5-large-v2 model. They are free to
use, among the fastest models of their respective sizes and they obtain accura-
cies just below that of the best model. One thing to keep in mind is that the
models are only "free" to use if they are in possession of the right hardware.
Consider the e5-small-v2 model as an example in the following experiment.
Given that the model is quite small, hardware as good as the one specified in
Section 4.1, is not really needed. However, the system should at least have a
CUDA-capable Graphical Processing Unit (GPU) [18].

Assume say for production, a company used an in-house machine like the one
specified in Section 4.1 under Testing embeddings. If not taking into account
the cost of the hardware and maintenance, the only cost remaining is that
of electricity. The following experiment was done on System 1 specified in
the Hardware section (4.1). Using the Eco2AI [3] Python library, it is pos-
sible to calculate the power consumption of using these embedding models.
This was used to compare the price of embedding one prompt (What is an
attention function?) and the text chunks from the Attention is All You Need

35

paper 1000 times. 1.144kWh of electricity was used to complete this proce-
dure. According to Statistisk sentralbyrå6, the average price of electricity in
Norway in the third quarter of 2023 was 0.1139 NOK/kWh. Considering this,
the whole procedure costs roughly 1.3NOK = $0.12 (As of Feb 12th, 2024).
Using the cheapest OpenAI model (V3 small) to do the same procedure costs
(949, 600, 000tokens/1000)∗$0.00002 = $18.99. These findings show that uti-
lizing an open-source embedding model is more cost-effective, particularly if
the necessary hardware is already readily available.

4.4 Explainability

In this section about explainability, H5 (as described in Section 1.3.1) is tested.
To test the three approaches, reflection, fact checklist, and confidence score,
introduced in Section 3.5.1, they were all put into one big prompt template:

When you provide an answer, please explain the reasoning and as-
sumptions. If possible, use specific examples or evidence associated
with your answer. Moreover, please address any potential ambiguities
or limitations of your answer. When you generate an answer, create
a set of facts that the answer depends on that should be fact-checked,
and list this set of facts at the end of your output. Please answer this
question and provide your confidence level. Note that the confidence
level indicates the degree of certainty you have about your answer
and is represented as a percentage. Answer and Confidence (0-100):
Please provide a source with "source:url", IMPORTANT: On a new
line and in the same language as the question. If there are multiple
sources, I want you to write each source in the same format on a new
line every time.

To test how well this prompt template works, three test prompts were made
and tested with the gpt-4 model from OpenAI with a temperature of 0.5. The
test prompts used were as follows:

• How tall is the Burj Khalifa?

• Who won World War 2?

• How many people live in the municipality of Grimstad?

Using this prompt template when answering the test prompt, resulted in the
answers found in Appendix B. From the answers, it can be seen that the LLM

6https://www.ssb.no/energi-og-industri/energi/statistikk/elektrisitetspriser

36

https://www.ssb.no/energi-og-industri/energi/statistikk/elektrisitetspriser

gives a much more thorough answer when using the explainability prompt tem-
plate compared to not using it. It also provides sources in the form of a Uniform
Resource Locator (URL) or multiple URLs. Some of the sources point to URLs
that do not exist anymore, as they likely existed when the model was trained,
but not as of 08.03.2024. Limitations, ambiguities, and assumptions are also
listed if necessary. For the first prompt, for example, it mentions one limitation
with the answer being that there are different ways of measuring the height
of a building. There are different rules when it comes to things like antennas,
spires, and flag poles. For the first two prompts, the LLM answered with a
confidence of 100%, as those prompts have a definite answer, making the model
quite sure of its ability to answer. The last prompt gets a confidence level of
85% as the model does not have access to real-time data, and therefore can not
give an accurate answer regarding population numbers.

To test if CoT prompting adds a layer of explainability the prompt How many
people live in the municipality of Grimstad? was used. Langchain’s Duck-
DuckGo Search7 was given to the agent as a tool. This allows the LLM to
use the DuckDuckGo search engine to retrieve necessary context. The results
when running this prompt can also be found below in Appendix B, Section B.2.
The results show that the planner first pinpoints the problem at hand before
arriving at a plan for how to solve it, which is to use the search tool to find the
relevant information. As can be seen from the executor output, it first finds
the population as of 2017. It then decides that this information is not current
enough, does one more search, and finds a more current population number.
To defend its source it states that it seems reliable because it also provides
other specific details about the municipality. The source also says that the
population has increased by 12.8%, so the executor uses the number from 2017
to compare and conclude by saying that the increase aligns with the current
population specified by the user.

Sources were also made possible when prompting an external knowledge-base,
through the addition of metadata to the external data. This makes it so that
when a user prompts their own documents, the source document and page
number are displayed, as seen in Figure 4.1. As seen in the figure, when a user
hovers above the information box, the source/sources appear.

7https://python.langchain.com/docs/integrations/tools/ddg

37

https://python.langchain.com/docs/integrations/tools/ddg

Figure 4.1: How the display of sources looks in a custom AI chat service like EgdeAI.

4.5 Prompt Engineering

4.5.1 Prompt Template Compression

In the following section, H3, as described in Section 1.3.1, is tested. This
project proposes a quite simple, but effective way of reducing the size of prompt
templates. This is done by feeding the prompt template to the LLM model in
question and instructing it to reduce the number of words, while still making
sure you understand it. Doing this procedure on Code Listing 3.1, results in
the prompt template seen below in Code Listing 4.1.

1 system:
2 Classify prompts into 'gpt-35' (simpler) or 'gpt-4' (complex) categories ...

based on their text content.
3

4 user:
5 Choose 'category' value from 'gpt-35' or 'gpt-4'.
6 Examples:
7 {% for ex in examples %}
8 Content: {{ex.prompt}},
9 OUTPUT:

10 {{ex.category}}
11 {% endfor %}
12

13 Content: {{prompt_content}}.
14 OUTPUT:

Listing 4.1: Result of doing prompt template compression on Code Listing 3.1.

38

This new, compressed prompt template has a token count of 93 compared to
131 of the original one. This leads to a reduction in the cost of about 30%
while obtaining the same accuracy as the bigger one. Additionally, it slightly
decreases the flow completion time, particularly for longer prompts.

4.5.2 Contextual Compression

One concern when doing prompt compression is that important parts of the
context are lost in the process. To test this assumption the five first prompts
from the twenty test prompts (Appendix D) were used. A comparison of token
count and answer quality was then conducted. The answer was given by Ope-
nAI’s gpt-4 with a temperature of 1, and the text-embedding-ada-002 was used
as the embedding model.

Prompt
No.

Context Token
Counts

Retrieval Time

1 805/275 0.48s/3.99s
2 878/365 0.51s/3.17s
3 1069/470 0.33s/2.26s
4 827/176 0.51s/2.15s
5 672/282 0.40s/2.16s

Table 4.5: Result data from the contextual compression comparison. The ’Context Token
Counts’ and ’Retrieval Time’ columns are in the form uncompressed/compressed. The re-
trieval times were measured on System 2 from the Hardware section (4.1).

From the results in Table 4.5, it is apparent that the token count reduction
is quite significant. At most (prompt 4) the token count was reduced by a
factor of almost 5. It is therefore apparent that contextual compression is able
to reduce the price of giving LLMs context. It does come at a price of a bit
longer retrieval time, however, but that is acceptable considering the improved
cost-effectiveness. A comparison of the answers to the first two prompts can be
found in Appendix E. They show that the answers are pretty much identical
with or without contextual compression. This means that even with a quite
hefty reduction in prompt tokens, the model is still able to answer the prompts
just fine.

4.5.3 Prompt Compression

LLMLingua can be used with MSPF, as seen in Code Listing 4.2, but not on any
device, as the models needed to run it are Compute Unified Device Architecture
(CUDA) dependable. To test how well LLMLingua works, a similar method-
ology to the one in the previous section (4.5.2) was used. Two prompts from
Appendix D were used to compare token count and answer quality between one
flow with and one without LLMLingua. Different compression rates were also

39

tested, so as to find the best one. Ideally, the compression rate should be as
high as possible without losing any important information from the prompt.
OpenAI’s gpt-4 with a temperature of 1 was used for the comparison, and the
text-embedding-ada-002 was used as the embedding model.

1 from promptflow import tool
2 from llmlingua import PromptCompressor
3 import tiktoken
4

5 @tool
6 def compress_prompt(prompt: str):
7 llm_lingua = PromptCompressor("TheBloke/Llama-2-7b-Chat-GPTQ", ...

model_config={"revision": "main"})
8 encoding = tiktoken.get_encoding("cl100k_base")
9 compression_rate = 0.8

10

11 prompt_tokens = len(encoding.encode(prompt))
12 compressed_prompt = llm_lingua.compress_prompt(prompt, instruction="", ...

question="", target_token=int(prompt_tokens*compression_rate))
13

14 return compressed_system_prompt["compressed_prompt"]

Listing 4.2: Example of how to use LLMLingua in MSPF.

In Code Listing 4.2, a prompt compressor is initialized on line 7. This uses
an open-source LLM based on Meta’s Llama 2 7B Chat. On line 11 the token
count of the prompt is counted using tiktoken. The target_token is then set to
be prompt_tokens*compression_rate. A compression_rate of 0.8 then equals
20% compression.

One of the big questions to ask when doing prompt compression is what the
compression rate should be. The compression rate should be as high as possible
without the loss of any important information from the prompt as a whole.

Prompt
No.

Prompt Token
Counts

Completion
Time

Compression
Rate

Cosine
Similarity

1 917/658 23.4s/25.7s 20% 85.3%
3 1182/750 30.1s/25.1s 20% 81.6%
3 1182/634 30.1s/24.5s 30% 70.6%
3 1182/561 30.1s/24.3s 40% 69.2%
3 1182/471 30.1s/22.6s 50% 65.8%

Table 4.6: Result data from the prompt compression comparison. The ’Prompt Token
Counts’ and ’Completion Time’ columns are in the form uncompressed/compressed. The
’Cosine Similarity’ number is the textual similarity score between the compressed and un-
compressed answers using cosine similarity. The completion times were measured on System
1 from the Hardware section (4.1).

40

Table 4.6 above shows the difference in prompt token counts and completion
times for different flows ran on different prompts with different compression
rates. It is shown that an increase in the compression rate leads to a decrease
in token counts and completion time. It is also apparent that it leads to a
decrease in cosine similarity with the uncompressed prompt answer. Now the
uncompressed prompt answer can not be seen as the "ground truth", but it
should be the most fleshed-out answer since it is given the longest prompt and
context. Using the cosine similarity score only, it can be quite hard to determine
what the best compression rate is. The answers given by the gpt-4 model, which
can be seen in Appendix F, are all quite impressive actually. They do become
shorter and details are left out the higher the compression rate number gets,
but they all manage to answer the question. It can be seen that the answer
when doing 50% prompt compression is a little lackluster, and it kind of tries
to guess what multi-head attention is. Which compression rate is the best kind
of comes down to how long and what level of detail is wanted in the answer.

4.5.4 Overall Compression

It has now been shown how three different compression techniques can reduce
token counts and how they affect completion times and LLM answers. An
interesting thing to look at now is how they work when put together. How
much is it possible to reduce the token count of a prompt and how will it affect
completion time and answer? Also, what are the best hyper-parameters to use?
It starts off with a prompt template of 181 tokens. As an external knowledge
base the Attention is All You Need paper is used with the prompt: What is
an attention function? This prompt together with the prompt template and
context adds up to 1005 tokens and a completion time of 21.6 seconds.

Method Total Token Reduction
Prompt Template Compression 1005 → 902

Contextual Compression 902 → 357
Prompt Compression 357 → 289

Overall Compression 1005 → 289
Overall Compression Completion Time 21.6s → 21.7s

Table 4.7: Compression level achieved by each of the compression methodologies.

Which level of compression each of the compression methodologies achieved can
be seen above in Table 4.7. The prompt template is the first to get compressed,
by using the method described in Section 3.6.1 (Prompt Template Compres-
sion). Using this method, the prompt template token count went from 181 to
78, decreasing the total token count from 1005 to 902. Next in the proposed
contextual pipeline is the contextual compression described in Section 3.6.2.
By using the exact methodology as described there, the contextual tokens were

41

reduced from 827 to 272, making the total token count decrease further from
902 to 357. The final step of the compression pipeline is the compression of
the whole prompt, as explained in Section 3.6.3. In this case, the compression
rate was set to 30%, as this was proved to be the highest compression rate that
also kept a lot of context. This method further reduces the token count from
357 to 289, and the whole flow from 1005 to 289. A prompt size that is almost
3.5 times smaller than the original, and that achieves a similar flow completion
time of 21.7 seconds. The answers, given by OpenAI’s gpt-4 model, from the
two flows, are also quite similar and both answer the question adequately:

• Uncompressed prompt answer: An attention function can be de-
scribed as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is
computed as a weighted sum of the values, where the weight assigned to
each value is computed by a compatibility function of the query with the
corresponding key.

• Compressed prompt answer: An attention function is a type of map-
ping that relates a query and a set of key-value pairs to an output. All
elements such as the query, keys, values, and output are vectors. It’s a
mechanism that enables the modeling of dependencies without considering
their distance in the input or output sequences. Therefore, this function
plays a crucial role in sequence modeling and transduction models in var-
ious tasks.

This shows that a 70% reduction in prompt size does not affect the LLM’s
ability to understand the textual and contextual meaning of the prompt to
answer the question.

4.6 The Whole Pipeline

The following sections test all the hypotheses (H1-H5) when they are put
together into one pipeline. It has been demonstrated how much costs and
completion times are affected by a variety of different methodologies in the
RAG pipeline. This section, however, looks at the pipeline as a whole. It
looks into how significant the cost reduction is, and if the methodologies affect
completion times positively or negatively.

4.6.1 Cost Reduction

To test and calculate the total cost reduction of an enhanced RAG pipeline
a realistic scenario has been created. Assume the users of an AI chat ser-
vice send an average of 10,000 prompts per day, with an average length of

42

20 tokens each. To retrieve context from an external source, the prompts
have to be embedded using an embedding model. The total token count of
these prompts amounts to 200,000. Assume also that there are uploaded 1000
documents on average each day, and that each document has an average of
100,000 tokens. This brings the total number of embedding tokens up to
200, 000 + 100, 000 ∗ 1000 = 120, 000, 000. Using the OpenAI V3 small em-
bedding model this would cost (120, 000, 000tokens/1000) ∗ $0.00002 = $2.4.
In Section 4.3, it is shown that using an open-source model like e5-small-v2
can reduce the cost by a factor of about 158. This would mean that using the
e5-small-v2 model instead could save $2.4− $0.015 = $2.385.

Of the 10000 prompts, 10% (1000) are classified as "simple" prompts. For
simplicity, assume each prompt amounts to an average of 500 input tokens to-
gether with their respective prompt template and context. They each use an
average of 20 output tokens, and the classification model (gpt-3.5-turbo-1106)
uses 250 tokens to classify the prompts. The calculations for the "simple"
prompts can be seen below in equations 4.4 and 4.5.

$0.0010 ∗ ((500 + 250) ∗ 1000)
1000

+ $0.0020 ∗ (20 ∗ 1000)
1000

= $0.79︸ ︷︷ ︸
input and output cost for the 1000 "simple" prompts with classification = $0.79

(4.4)

$0.030 ∗ (500 ∗ 1000)
1000

+ $0.060 ∗ (20 ∗ 1000)
1000

= $16.2︸ ︷︷ ︸
input and output cost for the 1000 "simple" prompts without classification = $16.2

(4.5)

With the 1000 "simple" prompts it is therefore possible to save $16.2−$0.79 =
$15.41. In Section 4.2.2, it is shown that when doing prompt classification and
the prompt is classified as "complex", the cost compared to a flow without
classification actually increases. This increase can be calculated as follows in
equations 4.6 and 4.7.

$0.030 ∗ (500 ∗ 9000)
1000

+ $0.060 ∗ (20 ∗ 9000)
1000

= $145.8︸ ︷︷ ︸
input and output cost for the 9000 "complex" prompts without classification = $145.8

(4.6)

$0.030 ∗ (500 ∗ 9000)
1000

+ $0.060 ∗ (20 ∗ 9000)
1000

+$0.0010 ∗ (250 ∗ 9000)
1000

+ $0.0020 ∗ (5 ∗ 9000)
1000

= $148.14︸ ︷︷ ︸
input and output cost for the 9000 "complex" prompts with classification = $148.14

(4.7)

43

It is here apparent that the increased cost of using classification, $148.14 −
$145.8 = $2.34, is smaller than the decrease from the "simple" prompts. Total
cost saved here is $15.41−$2.34 = $13.07, and total cost this far in the pipeline
amounts to $0.015 + $0.79 + $148.14 = $148.945. Without classification and
without using an open-source embedding model total cost would have been
$2.40+$16.2+$145.8 = $164.4. The more prompts are classified as "simple",
the more money there is to save by using the prompt classification.

The next step in the RAG pipeline is prompt compression. In Section 4.5.4
(Overall Compression), it is shown that a prompt with 1005 tokens including
prompt template and context, can be reduced to 289 tokens. This is a reduction
by a factor of 3.5, and using the example stated above it is possible to calculate
the cost saving. Assume that the 250 tokens the RAG pipeline uses for classifi-
cation remain the same, as the tokens here have already been reduced by doing
Prompt Template Compression. The input tokens, being 500 per prompt, can
then be reduced by a factor of 3.5 amounting to 500/3.5 ≈ 143. This token
count can then be used in the consecutive calculations in equations 4.8 and 4.9.

$0.0010 ∗ ((143 + 250) ∗ 1000)
1000

+ $0.0020 ∗ (20 ∗ 1000)
1000

= $0.433︸ ︷︷ ︸
input and output cost for the 1000 "simple" prompts with compression = $0.433

(4.8)

$0.030 ∗ (143 ∗ 9000)
1000

+ $0.060 ∗ (20 ∗ 9000)
1000

+$0.0010 ∗ (250 ∗ 9000)
1000

+ $0.0020 ∗ (5 ∗ 9000)
1000

= $51.75︸ ︷︷ ︸
input and output cost for the 9000 "complex" prompts with compression = $51.75

(4.9)

Prompt compression shows here a reduction in cost from $148.945 to $51.75,
making the total cost reduction $164.4 − $51.75 = $112.65. An overview of
the total cost reduction derived from the above calculations can be seen below
in Table 4.8.

Method Total Cost Reduction
Open-source Embedding Model $164.4 → $162.015

Prompt Classification $162.015 → $148.945
Overall Compression $148.945 → $51.75

Overall Cost Reduction $164.4 → $51.75

Table 4.8: Cost reduction achieved by each of the different methodologies.

44

4.6.2 Time Reduction

To test how much the different methodologies affect the completion time of the
RAG pipeline, the Attention is All You Need paper was used as an external
knowledge base together with the prompt: What is an attention function? The
total completion time of the RAG pipeline without using any of the proposed en-
hancements was 23.4s. This was done using the text-embedding-ada-002 model
from OpenAI. From the results in Section 4.3, it is shown that the e5-small-v2
model is 2.38s faster than the Ada model. It achieves similar results here being
2.45s faster than the Ada model coming in at 20.95s. Prompt classification, on
the other hand, does not decrease completion time. Section 4.2.2 shows that
prompt classification in the pipeline adds an average of 2.74 seconds. The com-
pletion time is therefore back to more than originally: 23.69s. In Section 4.5.4
(Overall Compression), it was shown that the completion time difference be-
tween a RAG pipeline with compression and one without is minuscule. Overall
this means that the total completion time of the RAG pipeline is increased by
a couple of milliseconds, as can be seen below in Table 4.9. From the table, it
is clear that the only thing decreasing completion time is using an open-source
embedding model.

Method Total Completion Time Change
Open-source Embedding Model 23.4s → 20.95s

Prompt Classification 20.95s → 23.69s
Overall Compression 23.69s → 23.69s

Overall Completion Time Change 23.4s → 23.69s

Table 4.9: Completion time changes achieved by each of the different methodologies.

4.7 Discussion

One question remaining now is what strategies a company looking to acquire its
own AI chat service should use. This really comes down to the company’s main
preferred features of such a service. Do they value, efficiency, cost-effectiveness,
or quality of answers the most?

45

Most Important Feature
Method / Model Efficiency Cost Effectiveness Quality of Answers

Prompt classification No Yes Yes

Embedding model e5-small-v2 e5-small-v2 V3 large / V3 small (OpenAI)

Compression Optional, but
encouraged Yes Optional, but

encouraged
Explainability No No Yes

Table 4.10: Recommended methods to use according to what the most important feature
is. Compression is set as optional for efficiency and quality of answers as it does not really
affect those in any major way. It is of course recommended to use compression as it will
reduce cost.

Table 4.10 above outlines the recommended methods and models for build-
ing an AI chat service, depending on whether the primary focus is efficiency,
cost-effectiveness, or answer quality. If efficiency is most important no prompt
classification should be done, the fastest embedding model (e5-small-v2) should
be used, compression is optional and explainability should not be enabled. Sim-
ilar recommendations are also given if a high level of cost-effectiveness or quality
of answer is wanted.

Section 2.2.2 (Large Language Models) shows that the landscape of LLMs
evolves fast, with frequent changes in both pricing and performance. Just
between the time that section was written and the finalization of this thesis,
OpenAI has released a new production-ready model called gpt-4-turbo-2024-04-
09. This model has not only a better performance than the gpt-4 model, but
also a better pricing8. Embedding models are also frequently being improved
and released, which could make some of the recommendations in this discussion
section obsolete [24].

8https://openai.com/pricing

46

https://openai.com/pricing

Chapter 5

Conclusions

This thesis proposes an enhanced RAG pipeline for custom AI chat services,
by investigating, implementing, and testing various state-of-the-art method-
ologies. The proposed pipeline reduces costs and completion times while en-
hancing the quality of answers and incorporating explainability. To achieve
this, prompt engineering, prompt classification, prompt compression, and em-
bedding optimization were used. Explainability was achieved by using natural
language in the form of a reflection prompt template, CoT prompting, and
sources. Classification of prompts was achieved by using LLMs in MSPF. A
compression pipeline was introduced that includes a prompt template com-
pression methodology, contextual compression using Langchain, and a prompt
compression using LLMLingua. Finally, embedding models were compared to
find the best and most cost-effective model. The project’s results show that
cost can be decreased quite drastically (69%) by using prompt classification,
prompt compression, and open-source embedding models in the RAG pipeline.
Prompt compression minimally affects completion times; however, open-source
embedding models have been shown to outperform the Embedding-as-a-Service
models offered by companies like OpenAI, achieving speeds up to 41% faster.

In the thesis, a lot of LLM answers have been shown as results, and a quite
subjective measure of their quality has been given. To acquire a more objec-
tive quality measure, a survey or user-test could have been conducted among
the users of such AI chat services. Doing this would result in an indication of
whether or not explainability increases answer quality or makes it more con-
fusing. It could also help decide if the different compression techniques make
the LLM give better or worse answers. When it comes to the prompt classifi-
cation testing that was done in this project, it would also be possible to test
more than only OpenAI models. An open-source model like bert-base-uncased1

could be pre-trained to do prompt difficulty classification. Although the price

1https://huggingface.co/google-bert/bert-base-uncased

47

https://huggingface.co/google-bert/bert-base-uncased

of classifying with the gpt-35-turbo-1106 is minuscule, this would eliminate
the classification cost altogether. In the thesis, RAGAS metrics were used to
compare the embedding model. This could also have been used for comparing
things like compression techniques. Since the start of this project a lot of LLM-
as-a-service products have been released like Google’s Gemini models [26] and
Anthropic’s Claude 3 models[2]. It would be interesting to test the proposed
RAG pipeline with other LLMs, not from OpenAI’s catalog of models.

48

Appendix A

The Proposed Pipeline

See Figure A.1 on next page ↓

49

Figure A.1: The whole RAG pipeline proposed in this project.

50

Appendix B

Explainability Results

B.1 Explainability Using Prompt Engineering

The following prompts were created by using OpenAI’s gpt-4 model1.

1. How tall is the Burj Khalifa?

• Non-explainability answer: The Burj Khalifa is approximately
828 meters tall.

• Explainability answer: The Burj Khalifa, located in Dubai, United
Arab Emirates, is approximately 828 meters (2,716.5 feet) tall. This
measurement includes all of its architectural elements.

The Burj Khalifa is currently the tallest structure and building in the
world. It was designed by the Chicago-based architectural firm Skid-
more, Owings & Merrill and was completed in 2010. The building’s
height was made possible by a number of technological innovations,
including high-strength concrete and a buttressed core structural sys-
tem.

However, it’s worth noting that buildings and structures are often
measured in different ways, and the definition of "tallest" can vary. For
example, some measurements include antennas or other non-architectural
features, while others do not. In the case of the Burj Khalifa, the
stated height includes all architectural elements but does not include
any broadcast antennas or other equipment.

Facts to be fact-checked:
1. The Burj Khalifa is approximately 828 meters tall.
2. The Burj Khalifa is the tallest structure and building in the world.
3. The Burj Khalifa was designed by Skidmore, Owings & Merrill.

1https://openai.com/research/gpt-4

51

https://openai.com/research/gpt-4

4. The Burj Khalifa was completed in 2010.

Confidence Level: 100%

Sources:
1. Burj Khalifa:
https://www.burjkhalifa.ae/en/the-tower/facts-figures/
2. Skidmore, Owings & Merrill:
https://www.som.com/projects/burj_khalifa

2. Who won World War 2?

• Non-explainability answer: World War II was won by the Allies,
which was a group of countries that included the United States, the
United Kingdom, the Soviet Union, China, and France, among others.

• Explainability answer: World War II was won by the Allied Pow-
ers, which included major nations such as the United States, the
United Kingdom, and the Soviet Union. These countries, along with
others, fought against the Axis Powers, which included Germany, Italy,
and Japan. The war officially ended in 1945 with the unconditional
surrender of the Axis Powers.

The victory of the Allies in World War II was not the result of a single
battle or event, but rather a series of victories in various theaters of
war around the globe. The Allies were successful due to a combination
of factors including superior numbers, better resources, and strategic
decisions. However, the war resulted in the loss of millions of lives and
widespread destruction.

There are some ambiguities and limitations to this answer. For in-
stance, the specific contribution of each Allied nation to the victory
is a topic of ongoing debate among historians. Furthermore, the af-
termath of the war led to significant geopolitical changes, including
the start of the Cold War between the United States and the Soviet
Union, and the decolonization of Africa and Asia.

Facts to be fact-checked:
1. World War II ended in 1945 with the unconditional surrender of
the Axis Powers.
2. The Allied Powers included the United States, the United King-

52

https://www.burjkhalifa.ae/en/the-tower/facts-figures/
https://www.som.com/projects/burj_khalifa

dom, and the Soviet Union.
3. The Axis Powers included Germany, Italy, and Japan.

Confidence Level: 100%

Sources:
1.

https://www.history.com/topics/world-war-ii/
world-war-ii-history

2. https://www.britannica.com/event/World-War-II

3. https://www.nationalww2museum.org/war/articles/
who-were-allies

4.
https://www.nationalww2museum.org/war/articles/
who-were-axis-powers

3. How many people live in the municipality of Grimstad?

• Non-explainability answer: As an AI, I don’t have real-time data.
As of my last update in October 2021, the population of Grimstad,
Norway, was approximately 23,000. For the most accurate and current
population count, I would recommend checking the latest statistics on
the official website of Statistics Norway (Statistisk sentralbyrå).

Please note that population numbers can fluctuate due to various
factors such as birth rates, death rates, and migration. Therefore, the
number provided might not be exact at the time of your query.

• Explainability answer: As an AI, I don’t have real-time data. How-
ever, according to the data from Statistics Norway as of January 1,
2021, the population of Grimstad, Norway, was approximately 23,862.

However, this number could have changed by now due to births,
deaths, and migration. For the most accurate and up-to-date popula-
tion count, you should refer to the latest data from official statistical
sources or the municipality itself.

Facts to be fact-checked:
1. The population of Grimstad, Norway, was approximately 23,862 as
of January 1, 2021.
2. This data was sourced from Statistics Norway.

Confidence level: 85% (This is based on the reliability of the source
and the fact that population counts can change over time.)

53

https://www.history.com/topics/world-war-ii/world-war-ii-history
https://www.history.com/topics/world-war-ii/world-war-ii-history
https://www.britannica.com/event/World-War-II
https://www.nationalww2museum.org/war/articles/who-were-allies
https://www.nationalww2museum.org/war/articles/who-were-allies
https://www.nationalww2museum.org/war/articles/who-were-axis-powers
https://www.nationalww2museum.org/war/articles/who-were-axis-powers

Sources:
Statistics Norway:
https://www.ssb.no/en/befolkning/statistikker/folkemengde/
aar-per-1-januar

B.2 Explainability Using CoT

The following prompts were created by using OpenAI’s gpt-4 model2.

Thought: I need to find the current population of the municipality of Grimstad.
I will use the search tool to find this information.

Action:
"action": "Search", "action_input": "Current population of the municipality
of Grimstad"

Observation: Arendal municipality in Agder, Norway Demographics Popula-
tion by years (2016 - 2020) By 1st January 2021, Norway’s population stood at
5 391 369. Population growth for 2020 came in at 23 800, making 2020 the year
with the slowest population growth since 2001. Article / 12 May 2020. Here
you will find weekly figures on the number of dead. Drammen is today the fifth
largest city in Norway, with a population of 111,000. It is also one of the fasted
growing urban regions in the country. ... Larvik municipality has a population
of around 48,000 and like the other communities we have passed through, is
today known as a popular summer spot for Norwegians. ... Grimstad munic-
ipality is ... Law enforcement and church services are provided at a national
level in Norway. Municipalities are undergoing continuous consolidation. In
1930, there were 747 municipalities in Norway. ... Population (2017) (2021 for
Oslo, Viken, Rogaland and Vestland) Area (km 2) ... Grimstad: Grimstad:
Agder: 22,692 303.58 Bokmål: Beate Skretting: H: 4203 ... Almost 13 percent
of the population live in Oslo, the biggest city of Norway and the country’s
capital. The most populated county is Viken which surrounds the capital Oslo.
Thought:The search results provided the population of Grimstad municipality
as of 2017, which was 22,692. However, the current population data is not
available. I will provide this information to the user.

Action:

2https://openai.com/research/gpt-4

54

https://www.ssb.no/en/befolkning/statistikker/folkemengde/aar-per-1-januar
https://www.ssb.no/en/befolkning/statistikker/folkemengde/aar-per-1-januar
https://openai.com/research/gpt-4

"action": "Final Answer", "action_input": "The population of Grimstad mu-
nicipality was 22,692 as of 2017. Unfortunately, I was unable to find the current
population data."

Action:

"action": "Search", "action_input": "Current population of Grimstad munic-
ipality"

Observation: Map of the United States with North Dakota highlighted. North
Dakota is a state located in the Midwestern United States.All incorporated
communities in North Dakota are considered cities, regardless of population;
there are no towns, villages, or hamlets in the state. There are 356 munici-
palities. Cities Larvik municipality has a population of around 48,000 and like
the other communities we have passed through, is today known as a popular
summer spot for Norwegians. ... Grimstad has been known for a long time,
but it was recognised as a harbour town in 1622. By 1747, Grimstad had a
sizeable sailing community and was a known place for smugglers. ... Arendal
municipality in Agder, Norway Demographics Population by years (2016 - 2020)
Map of municipalities (2020) Norway is divided into 15 administrative regions,
called counties (fylker in Norwegian, singular: fylke), and 357 municipalities
(kommuner/-ar, singular: kommune - cf. communes).The capital city Oslo is
considered both a county and a municipality.. Municipalities are the atomic
unit of local government in Norway and are responsible for primary education
(until ... The 304-square-kilometre (117 sq mi) municipality is the 264th largest
by area out of the 356 municipalities in Norway. Grimstad is the 51st most pop-
ulous municipality in Norway with a population of 24,017. The municipality’s
population density is 88.2 inhabitants per square kilometre (228/sq mi) and its
population has increased by 12.8% over ... Thought:The search results indicate
that the population of Grimstad municipality is 24,017. This information seems
reliable as it provides specific details about the municipality, including its size
and population density. It also mentions that the population has increased by
12.8% over an unspecified period, which aligns with the previous information
that the population was 22,692 in 2017. Therefore, I can conclude that the
current population of Grimstad municipality is 24,017.

Action:

"action": "Final Answer", "action_input": "The current population of Grim-
stad municipality is 24,017."

55

Thought: The user’s original question was about the current population of the
municipality of Grimstad. The most recent and reliable information found in-
dicates that the population is 24,017.

Action:

"action": "Final Answer", "action_input": "The current population of the
municipality of Grimstad is 24,017."

56

Appendix C

Prompts Used for Prompt Classification
Testing

Prompt Category
Write a joke about the Swede, the Dane, and the Nor-
wegian

gpt-35

What is 21 + 19? gpt-35
Who plays Jack Sparrow? gpt-35
How to make a hamburger? gpt-35
How old is Joe Biden? gpt-35
Who is the president of Russia? gpt-35
How many people live in India? gpt-35
Where is Grimstad located? gpt-35
What color do you get when you mix red and blue? gpt-35
What is communism? gpt-35
Hello gpt-35
Who wrote ’To Kill a Mockingbird’? gpt-35
What is Pi to 3 decimal places? gpt-35
What is the capital of Italy? gpt-35
Who won the World Series in 2020? gpt-35
How to make a simple pasta dish? gpt-35
Translate ’Hello, how are you?’ to Spanish gpt-35
What is the boiling point of water in Fahrenheit? gpt-35
Who is the current Prime Minister of the United King-
dom?

gpt-35

How many metres in a kilometre? gpt-35
Create a docker compose yaml file for me based on my
repository

gpt-4

How can one center a div? gpt-4
How do you write a tax return? gpt-4

57

What is the difference between react and angular? gpt-4
How to setup and use pnpm? gpt-4
Explain streaming in nextjs gpt-4
How do you sort this list in Python and then find the 4
highest numbers?

gpt-4

How to write an introduction to a technical report? gpt-4
How to connect two docker containers? gpt-4
Explain the concept of Higgs Boson particle in easy
terms

gpt-4

How to navigate by the stars? gpt-4
Describe the process of photosynthesis in detail gpt-4
What does Nietzsche mean by ’God is dead’? gpt-4
Explain the implications of the theory of relativity gpt-4
Analyze the main themes of ’To Kill a Mockingbird’ gpt-4
What were the geopolitical factors that led to World
War I?

gpt-4

Break down the process of DNA replication in cells gpt-4
How to apply the scientific method in a real-world sce-
nario?

gpt-4

Discuss the effects of climate change on the global econ-
omy

gpt-4

Explain the concept and implications of quantum en-
tanglement in quantum physics

gpt-4

Table C.1: 40 test prompts and their "ground-
truths" used to test the prompt classification ca-
pabilities of the OpenAI LLMs.

58

Appendix D

Prompts Used for Embedding
Comparison

• What is an attention function?

• What is Scaled Dot-Product Attention?

• What is Multi-Head Attention?

• How do you add positional encodings to the input embeddings?

• What is the difference between self-attention layers and recurrent and con-
volutional layers?

• What dataset did they train on?

• What hardware did they use?

• What kind of optimizer did they use?

• What were their results when it comes to machine translation?

• What do they say in their conclusion?

• What are dominant sequence transduction models?

• Summarize the abstract.

• What are state of the art approaches in sequence modeling?

• Explain end-to-end memory networks.

• What is their model architecture?

• What is the encoder composed of?

• What about their decoder?

• What are their applications of attention in their Model?

59

• Do they use position-wise feed-forward networks?

• How do they use embeddings and softmax?

60

Appendix E

Contextual Compression Results

The following prompts were created by using OpenAI’s gpt-4 model1.

1. Prompt 1:

• Uncompressed context answer: An attention function can be de-
scribed as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. It computes
the compatibility function using methods like a feed-forward network
with a single hidden layer, as in the case of additive attention, or a
dot-product for multiplicative attention.

• Compressed context answer: An attention function can be de-
scribed as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The out-
put is computed as a weighted sum of the values, where the weight
assigned to each value is computed by a compatibility function of the
query with the corresponding key.

2. Prompt 2:

• Uncompressed context answer: Scaled Dot-Product Attention is
a form of attention mechanism where the input consists of queries and
keys of dimension dk, and values of dimension dv. The function com-
putes the dot products of the query with all keys, each divided by the
square root of dk, and applies a softmax function to obtain weights on
the values. This mechanism computes the attention function on a set
of queries simultaneously, which are packed together into a matrix Q.
The keys and values are also packed together into matrices K and V.
The output matrix is computed as per a given formula. The mecha-
nism gets its name "Scaled Dot-Product Attention" because it scales
the dot products by 1 over the square root of dk, mainly to prevent

1https://openai.com/research/gpt-4

61

https://openai.com/research/gpt-4

the dot products from growing large in magnitude, which would result
in very small gradients in the softmax function.

• Compressed context answer: Scaled Dot-Product Attention is a
type of attention mechanism wherein inputs consist of queries and keys
of dimension d_k, and values of dimension d_v. The dot products of
the query with all keys are computed, divided by the square root of
d_k, and then a softmax function is applied to obtain the weights on
the values. In practice, the attention function is computed on a set
of queries simultaneously, packed together into a matrix Q. The keys
and values are also packed into matrices K and V. To counteract the
effect of large values of d_k, the dot products are scaled by 1 divided
by the square root of d_k. This mechanism is faster and more space-
efficient in practice, as it can be implemented using optimized matrix
multiplication code.

62

Appendix F

Prompt Compression Results

The following prompts were created by using OpenAI’s gpt-4 model1.

1. Prompt 1:

• Uncompressed prompt answer: An attention function is described
as a method that maps a query and a set of key-value pairs to an out-
put, where the query, keys, values, and the output are all vectors.
The output is computed as a weighted sum of the values, the weight
assigned to each value is computed by a compatibility function of the
query with the corresponding key.

• Compressed prompt answer: An attention function can be de-
scribed as mapping query and key to an output, where the query,
keys, and values are vectors. The output is computed as a sum of the
values where the weight is computed by a function of the query with
the keys.

2. Prompt 3:

• Uncompressed prompt answer: Multi-Head Attention is a method
employed in the Transformer model which allows the model to jointly
attend to information from different representation subspaces at differ-
ent positions. It consists of several attention layers running in parallel.
In this mechanism, the projections are parameter matrices WQi, WKi,
WVi and WO. The algorithm first linearly projects the queries, keys,
and values h times with different learned linear projections to dk, dk,
and dv dimensions, respectively. On each of these projected versions
of queries, keys, and values it then performs the attention function in
parallel, yielding dv-dimensional output values. These are then con-
catenated and once again projected, resulting in the final values. The
model uses multi-head attention in three different ways: In ëncoder-
decoder attention̈layers, the queries come from the previous decoder

1https://openai.com/research/gpt-4

63

https://openai.com/research/gpt-4

layer, and the memory keys and values come from the output of the
encoder. This allows every position in the decoder to attend over all
positions in the input sequence. The computational cost is similar to
that of single-head attention with full dimensionality.

• 20% compression rate prompt answer: Multi-Head Attention is
a method in which the model linearly projects the queries, keys, and
values h times with different, learned linear projections to dk, dk, and
dv dimensions. It employs parallel attention layers, or heads. Instead
of performing a single attention function with d model-dimensional
keys, values, and queries, this process finds it beneficial to linearly
project the queries, keys, and values h times with different, learned
linear projections. On each of these projected versions of values, at-
tention function is then performed in parallel, yielding d dimensional
output. These outputs are concatenated and once again projected,
resulting in final values. This allows the model to focus on different
regions of the input sequence, thereby improving its representational
power.

• 30% compression rate prompt answer: Multi-Head Attention
is a technique used in the attention mechanism framework. It essen-
tially allows the model to focus on different positions in the input
simultaneously, which is different from the traditional one-head at-
tention mechanism. In the given context, it is implemented with 8
layers of heads. This multidimensional model creates several learned
linear transformations of the input, with different projections for each
attention head. These linear transformations are computed using pa-
rameter matrices. The function given is MultiHead(Q, K, V), where
Q is the query, K is the key, and V is the value. The dot product
between Q and K establishes a sort of match, and this is then applied
to V to get the output.

• 40% compression rate prompt answer: According to the pro-
vided context, Multi-Head Attention is a function in the model in
which the queries and the keyed values are parameter matrices. This
function is designed to apply attention mechanisms multiple times
with different parameter matrices. The attention function operates
on a set of queries, packed together as a matrix. The weighted values
result in another matrix of outputs. This concept is employed using 8
layers or ’heads’, and the reduced size of each head helps manage the
computational cost.

• 50% compression rate prompt answer: The context doesn’t pro-
vide a complete and clear definition of Multi-Head Attention. How-

64

ever, it is apparent from the text that it is a type of attention mecha-
nism used in certain types of models. Multi-Head Attention employs
several attention layers and is used in scenarios with multiple queries.
It has some relation to dot products, queries, keys, and values, but
the exact interaction is not explained in the provided context. The
number of layers or ’heads’ can vary, as mentioned with h=8 and h=4
in two different instances.

65

Bibliography

[1] Mistral AI. Model Selection. url: https : / / docs . mistral . ai / guides / model -
selection/. (accessed: 27.03.2024).

[2] Anthropic. The Claude 3 Model Family: Opus, Sonnet, Haiku. url: https://www-
cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_
Claude_3.pdf. (accessed: 27.03.2024).

[3] Semen Andreevich Budennyy et al. “Eco2ai: carbon emissions tracking of machine
learning models as the first step towards sustainable ai.” In: Doklady Mathematics.
Vol. 106. Suppl 1. Springer. 2022, S118–S128. (accessed: 12.02.2024).

[4] Youngjin Chae and Thomas Davidson. Large Language Models for Text Classification:
From Zero-Shot Learning to Fine-Tuning. en. Aug. 2023. url: https://files.osf.
io/v1/resources/sthwk/providers/osfstorage/64e61d8f9dbc3f068f681622?
format=pdf&action=download&direct&version=2. (accessed: 29.01.2024).

[5] Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to Use Large Language
Models While Reducing Cost and Improving Performance. en. arXiv:2305.05176 [cs].
May 2023. url: http://arxiv.org/abs/2305.05176. (accessed: 05.02.2024).

[6] Gemini Community. Gemini Pro 1.5. url: https://www.gemini-ai.org/gemini-
pro-1-5/. (accessed: 24.04.2024).

[7] Jiaxi Cui et al. ChatLaw: Open-Source Legal Large Language Model with Integrated
External Knowledge Bases. en. arXiv:2306.16092 [cs]. June 2023. url: http://arxiv.
org/abs/2306.16092. (accessed: 05.01.2024).

[8] Erik Dale. “Optimizing and Evaluating EgdeAI - A Custom Chatbot for Employ-
ees of Egde.” en. In: (Nov. 2023). url: https : / / drive . google . com / file / d /
13oYGKUYBnYwbK9n7kLjurYsNe2oqJIE1/view?usp=sharing. (accessed: 05.01.2024).

[9] Shahul Es et al. RAGAS: Automated Evaluation of Retrieval Augmented Generation.
en. arXiv:2309.15217 [cs]. Sept. 2023. url: http://arxiv.org/abs/2309.15217
(visited on 02/26/2024). (accessed: 26.02.2024).

[10] Sahel Eskandar. “Exploring Common Distance Measures for Machine Learning and
Data Science: A Comparative Analysis.” In: (2023). https://medium.com/@eskandar.
sahel/exploring- common- distance- measures- for- machine- learning- and-
data-science-a-comparative-analysis-ea0216c93ba3. (accessed: 20.11.2023).

[11] Yunfan Gao et al. “Retrieval-augmented generation for large language models: A sur-
vey.” In: arXiv preprint arXiv:2312.10997 (2023). (accessed: 27.02.2024).

[12] Morten Goodwin. “Smarte algoritmer for en grønnere planet.” no. In: (Nov. 2023).
url: https://ny.ntva.no/innhold/artikler/kapittel-9-smarte-algoritmer-
for-en-gronnere-planet. (accessed: 29.04.2024).

[13] Stephen M. Walker II. “HellaSwag: Can a Machine Really Finish Your Sentence?” en.
In: (2024). url: https://klu.ai/glossary/hellaswag-eval. (accessed: 10.05.2024).

66

https://docs.mistral.ai/guides/model-selection/
https://docs.mistral.ai/guides/model-selection/
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://files.osf.io/v1/resources/sthwk/providers/osfstorage/64e61d8f9dbc3f068f681622?format=pdf&action=download&direct&version=2
https://files.osf.io/v1/resources/sthwk/providers/osfstorage/64e61d8f9dbc3f068f681622?format=pdf&action=download&direct&version=2
https://files.osf.io/v1/resources/sthwk/providers/osfstorage/64e61d8f9dbc3f068f681622?format=pdf&action=download&direct&version=2
http://arxiv.org/abs/2305.05176
https://www.gemini-ai.org/gemini-pro-1-5/
https://www.gemini-ai.org/gemini-pro-1-5/
http://arxiv.org/abs/2306.16092
http://arxiv.org/abs/2306.16092
https://drive.google.com/file/d/13oYGKUYBnYwbK9n7kLjurYsNe2oqJIE1/view?usp=sharing
https://drive.google.com/file/d/13oYGKUYBnYwbK9n7kLjurYsNe2oqJIE1/view?usp=sharing
http://arxiv.org/abs/2309.15217
https://medium.com/@eskandar.sahel/exploring-common-distance-measures-for-machine-learning-and-data-science-a-comparative-analysis-ea0216c93ba3
https://medium.com/@eskandar.sahel/exploring-common-distance-measures-for-machine-learning-and-data-science-a-comparative-analysis-ea0216c93ba3
https://medium.com/@eskandar.sahel/exploring-common-distance-measures-for-machine-learning-and-data-science-a-comparative-analysis-ea0216c93ba3
https://ny.ntva.no/innhold/artikler/kapittel-9-smarte-algoritmer-for-en-gronnere-planet
https://ny.ntva.no/innhold/artikler/kapittel-9-smarte-algoritmer-for-en-gronnere-planet
https://klu.ai/glossary/hellaswag-eval

[14] Huiqiang Jiang et al. LLMLingua: Compressing Prompts for Accelerated Inference of
Large Language Models. en. arXiv:2310.05736 [cs]. Dec. 2023. url: http://arxiv.
org/abs/2310.05736. (accessed: 22.01.2024).

[15] Wenqi Jiang et al. PipeRAG: Fast Retrieval-Augmented Generation via Algorithm-
System Co-design. en. arXiv:2403.05676 [cs]. Mar. 2024. url: http://arxiv.org/
abs/2403.05676. (accessed: 04.02.2024).

[16] Langchain. Agents. https://js.langchain.com/docs/modules/agents/. 2024.
(accessed: 24.09.2023).

[17] Langchain. “Contextual compression.” In: (2024). https://python.langchain.com/
docs/modules/data_connection/retrievers/contextual_compression. (accessed:
08.02.2024).

[18] Kelvin Lu. “Hosting A Text Embedding Model That is Better, Cheaper, and Faster
Than OpenAI’s Solution.” In: (2023). https : / / medium . com / @kelvin . lu . au /
hosting- a- text- embedding- model- that- is- better- cheaper- and- faster-
than-openais-solution-7675d8e7cab2. (accessed: 12.02.2024).

[19] Omer Mahmood. “What’s Hugging Face?” In: (2022). https://towardsdatascience.
com/whats-hugging-face-122f4e7eb11a. (accessed: 08.01.2024).

[20] Shervin Minaee et al. Large Language Models: A Survey. en. arXiv:2402.06196 [cs]. Feb.
2024. url: http://arxiv.org/abs/2402.06196 (visited on 03/28/2024). (accessed:
28.03.2024).

[21] Niklas Muennighoff et al. “MTEB: Massive Text Embedding Benchmark.” en. In: Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Com-
putational Linguistics. Dubrovnik, Croatia: Association for Computational Linguis-
tics, 2023, pp. 2014–2037. doi: 10.18653/v1/2023.eacl-main.148. url: https:
//aclanthology.org/2023.eacl-main.148. (accessed: 10.01.2024).

[22] Nvidia. “Large Language Models Explained.” In: (2023). https://www.nvidia.com/
en-us/glossary/data-science/large-language-models/. (accessed: 22.09.2023).

[23] OpenAI. Introducing ChatGPT. url: https://openai.com/blog/chatgpt#OpenAI.
(accessed: 05.01.2024).

[24] OpenAI. New embedding models and API updates. url: https://openai.com/blog/
new-embedding-models-and-api-updates. (accessed: 29.04.2024).

[25] Ruoling Peng et al. Embedding-based Retrieval with LLM for Effective Agriculture In-
formation Extracting from Unstructured Data. en. arXiv:2308.03107 [cs]. Aug. 2023.
url: http://arxiv.org/abs/2308.03107. (accessed: 05.01.2024).

[26] Sundar Pichai and Demis Hassabis. Introducing Gemini: our largest and most ca-
pable AI model. url: https://blog.google/technology/ai/google- gemini-
ai/#sundar-note. (accessed: 27.03.2024).

[27] Raf. “What are tokens and how to count them?” In: (2023). https://help.openai.
com/en/articles/4936856-what-are-tokens-and-how-to-count-them. (accessed:
29.01.2024).

[28] Oguzhan Topsakal and Tahir Cetin Akinci. “Creating Large Language Model Appli-
cations Utilizing LangChain: A Primer on Developing LLM Apps Fast.” en. In: In-
ternational Conference on Applied Engineering and Natural Sciences 1.1 (July 2023),
pp. 1050–1056. issn: 2980-3209. doi: 10.59287/icaens.1127. url: https://as-
proceeding.com/index.php/icaens/article/view/1127. (accessed: 16.01.2024).

67

http://arxiv.org/abs/2310.05736
http://arxiv.org/abs/2310.05736
http://arxiv.org/abs/2403.05676
http://arxiv.org/abs/2403.05676
https://js.langchain.com/docs/modules/agents/
https://python.langchain.com/docs/modules/data_connection/retrievers/contextual_compression
https://python.langchain.com/docs/modules/data_connection/retrievers/contextual_compression
https://medium.com/@kelvin.lu.au/hosting-a-text-embedding-model-that-is-better-cheaper-and-faster-than-openais-solution-7675d8e7cab2
https://medium.com/@kelvin.lu.au/hosting-a-text-embedding-model-that-is-better-cheaper-and-faster-than-openais-solution-7675d8e7cab2
https://medium.com/@kelvin.lu.au/hosting-a-text-embedding-model-that-is-better-cheaper-and-faster-than-openais-solution-7675d8e7cab2
https://towardsdatascience.com/whats-hugging-face-122f4e7eb11a
https://towardsdatascience.com/whats-hugging-face-122f4e7eb11a
http://arxiv.org/abs/2402.06196
https://doi.org/10.18653/v1/2023.eacl-main.148
https://aclanthology.org/2023.eacl-main.148
https://aclanthology.org/2023.eacl-main.148
https://www.nvidia.com/en-us/glossary/data-science/large-language-models/
https://www.nvidia.com/en-us/glossary/data-science/large-language-models/
https://openai.com/blog/chatgpt#OpenAI
https://openai.com/blog/new-embedding-models-and-api-updates
https://openai.com/blog/new-embedding-models-and-api-updates
http://arxiv.org/abs/2308.03107
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://doi.org/10.59287/icaens.1127
https://as-proceeding.com/index.php/icaens/article/view/1127
https://as-proceeding.com/index.php/icaens/article/view/1127

[29] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288
[cs]. July 2023. url: http://arxiv.org/abs/2307.09288. (accessed: 05.01.2024).

[30] Ashish Vaswani et al. “Attention is all you need.” In: Advances in neural information
processing systems 30 (2017). (accessed: 30.01.2024).

[31] Vectara. vectara/hallucinationevaluationmodel. url: https : / / huggingface . co /
vectara/hallucination_evaluation_model. (accessed: 28.03.2024).

[32] Lei Wang et al. Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought
Reasoning by Large Language Models. en. arXiv:2305.04091 [cs]. May 2023. url: http:
//arxiv.org/abs/2305.04091. (accessed: 22.01.2024).

[33] Jules White et al. A Prompt Pattern Catalog to Enhance Prompt Engineering with
ChatGPT. en. arXiv:2302.11382 [cs]. Feb. 2023. url: http://arxiv.org/abs/2302.
11382. (accessed: 10.01.2024).

[34] Miao Xiong et al. “Can LLMs Express Their Uncertainty? An Empirical Evaluation
of Confidence Elicitation in LLMs.” In: arXiv preprint arXiv:2306.13063 (2023). (ac-
cessed: 08.03.2024).

[35] Jia-Yu Yao et al. LLM Lies: Hallucinations are not Bugs, but Features as Adversarial
Examples. en. arXiv:2310.01469 [cs]. Oct. 2023. url: http://arxiv.org/abs/2310.
01469. (accessed: 24.01.2024).

[36] Haiyan Zhao et al. “Explainability for Large Language Models: A Survey.” en. In:
ACM Transactions on Intelligent Systems and Technology (Jan. 2024), p. 3639372.
issn: 2157-6904, 2157-6912. doi: 10.1145/3639372. url: https://dl.acm.org/doi/
10.1145/3639372. (accessed: 15.01.2024).

68

http://arxiv.org/abs/2307.09288
https://huggingface.co/vectara/hallucination_evaluation_model
https://huggingface.co/vectara/hallucination_evaluation_model
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2310.01469
http://arxiv.org/abs/2310.01469
https://doi.org/10.1145/3639372
https://dl.acm.org/doi/10.1145/3639372
https://dl.acm.org/doi/10.1145/3639372

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Field of Research
	Thesis Definition
	Research Questions and Hypotheses

	Contributions
	Pre-project
	Thesis Outline

	Background
	Theory
	Large Language Models
	Similarity Measures
	Microsoft Prompt Flow
	Prompt Engineering
	Explainability in Large Language Models
	Langchain
	Hugging Face
	AI and Sustainability

	Related Work
	Enhancing Custom AI Chat Services
	Large Language Models
	Prompt Engineering
	Explainability for Large Language Models
	Embedding Models

	Methods
	The Retrieval Augmented Generation Pipeline
	Evaluating Pipelines
	Classification of Prompts
	Finding the Best Classification Model

	Exploration of Embedding Models
	Explainability
	Explainability Using Prompt Engineering
	Explainability Using Chain of Thoughts
	Explainability Using Sources

	Reducing Cost by Utilizing Prompt Engineering
	Prompt Template Compression
	Contextual Compression
	Prompt Compression

	Results and Discussion
	Hardware
	Prompt Classification
	Finding the Best Classification Model
	Reduction in Cost by Using Prompt Classification

	Comparison of Embedding Models
	Explainability
	Prompt Engineering
	Prompt Template Compression
	Contextual Compression
	Prompt Compression
	Overall Compression

	The Whole Pipeline
	Cost Reduction
	Time Reduction

	Discussion

	Conclusions
	The Proposed Pipeline
	Explainability Results
	Explainability Using Prompt Engineering
	Explainability Using CoT

	Prompts Used for Prompt Classification Testing
	Prompts Used for Embedding Comparison
	Contextual Compression Results
	Prompt Compression Results
	Bibliography

