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Abstract

This paper investigates the consensus tracking problem for a class of uncertain high-order nonlinear systems with parametric
uncertainties and event-triggered communication. Under a directed communication condition, a totally distributed adaptive
backstepping based control scheme is presented. Specifically, a decentralized triggering condition is adopted in this paper such
that continuous monitoring of neighboring states, as required in some existing results, can be avoided. Besides, to handle the
non-differentiability problem of virtual controllers, which arises from the utilization of neighboring states collected only at the
triggering instants, the virtual controllers in each recursive step are firstly designed with continuous communication. Then,
the partial derivatives of these designed virtual controllers are adopted to construct distributed adaptive consensus controllers
for the event based communication case. It is shown that with the presented distributed adaptive consensus control scheme
and even-triggered communication mechanism, all the closed-loop signals are uniformly bounded and the output consensus
tracking errors will converge to a compact set. Besides, the tracking performance in the mean square sense can be improved
by appropriately adjusting design parameters.
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1 Introduction

Distributed consensus control of multi-agent system-
s has received huge attention in resent years, due to its
wide potential applications in various fields such as mo-
bile robot networks, intelligent transportation manage-
ment, surveillance and monitoring. However, currently
available control algorithms are mostly developed based
on continuous communication among connected sub-
systems. Unavoidably, such communication mechanism
will consume considerable communication resources. To
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Zhou), jshuang@cqu.edu.cn (Jiangshuai Huang),
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solve this issue, event-based consensus becomes a signif-
icant and hot research topic in recent years. A plenty of
representative works in this area have been reported; see
Dimarogonas, Frazzoli & Johansson (2012); Seyboth,
Dimarogonas & Johansson (2013); Xing, Wen, Guo, Liu
& Su (2017); Zhu, Jiang & Feng (2014) for instance.

Note that the aforementioned results are mainly
established for linear multi-agent systems. However,
physical systems are usually nonlinear with system un-
certainties in practice. As we know, adaptive control
has been proven as an effective approach to handle the
system uncertainties (Krstic, Kanellakopoulos & Koko-
tovic, 1995). Recently, several adaptive event-triggered
consensus control schemes have been proposed for first-
order nonlinear systems (Wang, Wen, Huang & Zhou,
2020; Zhan, Hu & Li, 2019) and second-order nonlinear
systems (Li, Yan, Yu & Qiu, 2020; Yang, Li, Yue & Yue,
2020). For uncertain high-order nonlinear multi-agent
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systems, various adaptive backstepping based consensus
control algorithms are developed based on continuous
communication. Interested readers may refer to Chen,
Wen, Liu & Liu (2015); Long, Wang, Huang, Zhou &
Liu (2019); Shen & Shi (2015); Wang, Wen & Huang
(2017) and the references therein. However, to the best
of our knowledge, the event-triggered results are still
limited. Under an undirected communication graph, a
fuzzy adaptive event-triggered leader-following consen-
sus control algorithm is presented in Li, Yang & Tong
(2018), where continuous monitoring of neighboring
states is required to implement the designed trigger-
ing condition. In Wang & Li (2020), an observer-based
event-triggered adaptive fuzzy control scheme is pro-
posed from the output feedback viewpoint. A triggering
condition is elaborately designed to update each sub-
system’ controller. However, the communication among
connected subsystems is still continuous.

Motivated by the above limitations, we shall in-
vestigate the distributed adaptive consensus tracking
problem for a class of uncertain high-order nonlinear
systems with directed communication topology and
event-triggered communication. For each subsystem, a
group of event triggering conditions to broadcast its s-
tate information are designed, which are only dependent
on its local state changing rate. Hence each subsystem
needs no longer monitor its neighbors’ states continu-
ously as required in some existing results. Then a totally
distributed consensus tracking control scheme based
on backstepping technique (Krstic, Kanellakopoulos &
Kokotovic, 1995) is proposed. The main challenge is
that the virtual controllers designed in each subsystem
will contain piecewise continuous state signal received
from its neighbors, since event based communication
mechanism is adopted. And the non-differentiable vir-
tual control signals make the recursive design steps
of backstepping difficult to proceed. To overcome this
obstacle, distributed adaptive backtepping based con-
sensus controllers are firstly designed with continuous
communication among the subsystems. For the event
based communication case, a constructive method is
adopted to design the distributed adaptive controller-
s, where the partial derivatives in previously designed
virtual controllers and the neighboring states collected
at the triggering instants are utilized. It is shown that
uniform boundedness of all the closed-loop signalscan
be ensured, while Zeno behavior is ruled out. Besides, it
is worth emphasizing that the consensus tracking per-
formance in the mean square sense can be improved by
properly adjusting the design parameters.

The rest of this paper is organized as follows. In
Section 2, the considered multi-agent system model,
communication topology condition and event-based
broadcast mechanism are introduced. Distributed adap-
tive consensus controllers for continuous and event-
triggered communication cases are designed in Section
3 and 4, respectively. The closed-loop system stability
is analyzed in Section 5 followed by simulation results
in Section 6. Finally, a conclusion is drawn in Section 7.

2 Problem formulation

2.1 System model

In this paper, we consider a group of nth-order non-
linear subsystems modeled as follows.

ẋi,q = xi,q+1, q = 1, 2, . . . , n− 1

ẋi,n = ui + ψi(xi) + ϕi(xi)
T θi

yi = xi,1, i = 1, 2, . . . , N (1)

where xi = [xi,1, xi,2, . . . , xi,n]T ∈ <n, yi ∈ < and
ui ∈ < are the state vector, output and input of the ith
subsystem, respectively. θi ∈ <pi is a vector of unknown
constants. ψi(xi) ∈ < and ϕi(xi) : <n → <pi are column
vectors of known continuous nonlinear functions.

2.2 Communication condition among theN subsystems

Suppose that the communication among the N sub-
systems can be represented by a fixed directed graph
G , (V, E) where V = {1, . . . , N} denotes the set of
indexes (or vertices) corresponding to each subsystem,
E ⊆ V×V is the set of edges between two distinct subsys-
tems. An edge (i, j) ∈ E indicates that subsystem j can
obtain information from subsystem i, but not necessari-
ly vice versa (Ren & Cao, 2010). In this case, subsystem
i is called a in-neighbor of subsystem j and in turn sub-
system j is a out-neighbor of subsystem i. We denote the
set of neighbors for subsystem i as Ni. Self edges (i, i)
is not allowed in this paper, thus (i, i) /∈ E and i /∈ Ni.
The connectivity matrix A = [aij ] ∈ <N×N is defined
such that aij = 1 if (j, i) ∈ E and aij = 0 if (j, i) /∈ E .
Clearly, the diagonal elements aii = 0. We introduce an
in-degree matrix 4 such that 4 = diag(4i) ∈ <N×N
with 4i =

∑
j∈Ni

aij being the ith row sum of A. Then,

the Laplacian matrix of G is defined as L = 4−A.

2.3 Control objective

The desired trajectory for all subsystem outputs is
characterized by a bounded time varying function y0(t).
We now use µi = 1 to indicate the case that y0(t) is ac-
cessible directly to subsystem i; otherwise, µi = 0.

The control objective in this paper is to determine
appropriate triggering condition and effective distribut-
ed adaptive controllers ui(t) for each subsystem by u-
tilizing continuous local states (xi(t)) and the discrete-

time neighboring states (xj,q(t
j
q,k), if aij = 1) such that

i) all closed-loop signals are uniformly bounded;
ii) all subsystem outputs can track the desired trajecto-
ry y0(t) as closely as possible.

To achieve the objective, the following assumptions
are imposed.
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Assumption 1 The directed graph G is balanced and
weakly connected. The full knowledge of y0(t) is directly

accessible by at least one subsystem, i.e.
N∑
i=1

µi > 0.

Assumption 2 The first nth-order derivatives y0(t)(n)

of y0(t) are bounded, piecewise continuous, and directly
known by subsystem i with µi = 1, that is, |y0(t)(n)| < Fi
where Fi is an unknown positive constant.

The following lemmas are introduced, which will be
useful in our design and analysis of distributed adaptive
controllers.

Lemma 1 (Ren & Cao, 2010) LetB be a diagonal matrix
B = diag{µ1, . . . , µN} and define Q = (L + B) + (L +
B)T . Based on Assumption 1, the matrix Q is symmetric
positive definite.

3 Preliminary design of distributed adaptive
controllers with continuous communications

In this section, a backstepping (Krstic et al., 1995)
based distributed adaptive consensus control scheme will
be presented. In each subsystem with µi = 0, we in-
troduce ŷi,0(t) ∈ < to estimate the unknown reference
function y0(t). The following error variables are defined.

zi,1 = yi − µiy0 − (1− µi)ŷi,0 (2)

= δi + (1− µi)ỹi,0
zi,q = xi,q − αi,q−1, q = 2, . . . , n (3)

ei =

N∑
j=1

aij(yi − yj) + µi(yi − y0) (4)

where δi = yi−y0 is the tracking error for each subsystem
i. ỹi,0 = y0 − ŷi,0 is the estimation error for µi = 0.

The virtual control signals αi,q for q = 1, . . . , n and
the actual controller ui are designed as follows.

αi,1 =−ci,1zi,1 − kei + µiẏ0 + (1− µi) ˙̂yi,0 (5)

αi,q =−ci,qzi,q − zi,q−1 +

q−1∑
k=1

∂αi,q−1

∂xi,k
xi,k+1

+

N∑
j=1

aij

q−1∑
k=1

∂αi,q−1

∂xj,k
xj,k+1 + µi

q∑
k=1

∂αi,q−1

∂y
(k−1)
0

y
(k)
0

+(1− µi)
∂αi,q−1

∂ŷi,0
˙̂yi,0, q = 2, . . . , n (6)

ui = αi,n − ψi − ϕTi θ̂i (7)

where ci,1, ci,q and k are positive design parameters, θ̂i
is the estimate of unknown system parameter θi.

The parameter update laws ŷi,0 and θ̂i are designed

as

˙̂yi,0 =−γyi0ei − γyi0κyi0 (ŷi,0 − yi,0) (8)

˙̂
θi = Γθiϕizi,n − Γθiκθi

(
θ̂i − θi,0

)
(9)

where γyi0 , Γθi , κyi0 , κθi , yi,0 and θi,0 are positive con-
stants with suitable dimension.

The main results in this section can be formally stat-
ed in the following theorem.

Theorem 1 Consider a group of N uncertain subsys-
tems as modeled in (1) with a desired trajectory y0(t) un-
der Assumptions 1-2. By designing the distributed adap-
tive controllers as (7) with parameter update laws (8) and
(9), the following results can be guaranteed.
1) All closed-loop signals are uniformly bounded.
2) The tracking error signals δ = [δ1, δ2, ..., δN ]T will
converge to a compact set.

3) The upper bound of ‖δ(t)‖2[0,T ] = 1
T

∫ T
0
‖δ(t)‖2dt can

be decreased by choosing suitable design parameters.

Proof. Define a Lyapunov function candidate V1 as V1 =
N∑
i=1

[
1
2z

2
i,1 + k(1−µi)

2γyi0
ỹ2
i,0

]
, where ỹi,0 = y0 − ŷi,0. Let δ =

[δ1, . . . , δN ]T . From (2), (5) and (8), the derivative of V1

is computed as

V̇1 ≤−
k

2
δTQδ +

N∑
i=1

(
−ci,1z2

i,1 + zi,1zi,2
)

−
N∑
i=1

k(1− µi)κyi0
2

ỹ2
i,0 +

N∑
i=1

k(1− µi)
γyi0

|ỹi,0|F1

+

N∑
i=1

k(1− µi)κyi0
2

(y0 − yi,0)2

≤−k
2
λmin(Q)‖δ‖2 +

N∑
i=1

(
−1

2
ci,1z

2
i,1 + zi,1zi,2

)

−
N∑
i=1

k(1− µi)κyi0
4

ỹ2
i,0 +M1 (10)

where M1 =
N∑
i=1

k(1−µi)
γ2
yi0

κyi0
F 2

1 +
N∑
i=1

k(1−µi)κyi0
2 (y0 − yi,0)2.

The Lyapunov function candidate Vn for the over-

all system is defined as Vn = V1 +
N∑
i=1

n−1∑
q=2

1
2z

2
i,q +

N∑
i=1

1
2 θ̃
T
i Γ−1

θi
θ̃i. From (2)-(9) and (10), the derivative of

Vn can be computed as

V̇n ≤−
k

2
λmin(Q)‖δ‖2 +

N∑
i=1

(
−1

2
ci,1z

2
i,1 −

n∑
q=2

ci,qz
2
i,q

)
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−
N∑
i=1

k(1− µi)κyi0
4

ỹ2
i,0 −

N∑
i=1

κθi‖θ̃i‖2

2
+Mn

≤−k
2
λmin(Q)‖δ‖2 − σVn +Mn (11)

where σ = min{ci,1, 2ci,2, . . . , 2ci,n,
γyi0κyi0

2 ,
κθi

λmax(Γ−1
θi

)
},

Mn =
N∑
i=1

k(1−µi)
γ2
yi0

κyi0
F 2

1 +
N∑
i=1

k(1−µi)κyi0
2 (y0 − yi,0)2 +

N∑
i=1

κθi‖θi−θi,0‖
2

2 .

We now establish the results in Theorem 1 one by
one.

1) From (11), it yields V̇n ≤ −σVn + Mn. By direct
integrations of this inequality, we have

Vn(t) ≤ Vn(0)e−σt +
Mn

σ

(
1− e−σt

)
≤ Vn(0) +

Mn

σ
(12)

which shows that V is uniformly bounded. Thus the
error signals zi,q for 1 ≤ q ≤ n, θ̃i and ỹi,0 are bounded.
From (2), δi is bounded. Since ỹi,0 = y0 − ŷi,0 and y0 is
bounded, thus ŷi,0 is bounded. From (2), (5) and (6),
xi,q and αi,q are bounded. From (7), the boundedness of
ui is also ensured. Therefore all the closed-loop signals
are uniformly bounded.

2) From (2), the definitions of V1 and Vn, we

have ‖δ‖2 ≤
N∑
i=1

[
1
2z

2
i,1 + 1−µi

2 ỹ2
i,0

]
≤ ξVn, where

ξ = max{1, γy10

k , . . . ,
γyN0

k }. With (12), it further fol-

lows that ‖δ(t)‖2 ≤ ξ
[
Vn(0)e−σt + Mn

σ (1− e−σt)
]
. This

implies that the tracking errors in Euclidean norm will
converge to a compact set Er = {δ|‖δ‖2 ≤ ξ(Mn+ς)/σ}
for t ≥ (1/σ) ln(|Vn(0)σ −Mn|/ς) with ς an arbitrarily
small positive constant.

3) From (11), we have V̇n ≤ −k2λmin(Q)‖δ‖2 + Mn.
Integrating both sides of this inequality yields that

‖δ(t)‖2[0,T ] =
1

T

∫ T

0

‖δ(t)‖2dt

≤ 2

kλmin(Q)

[
Vn(0)− Vn(T )

T
+Mn

]
≤ 2

kλmin(Q)

[
Vn(0)

T
+Mn

]
(13)

From the definition of V1, Vn, M1, Mn, it follows that
the upper bound of the overall tracking errors in the
mean square sense can be decreased by decreasing κθi ,
κyi0 and increasing k, ci,q for q = 1, . . . , n, Γθi , γyi0 . 2

4 Design of distributed adaptive controllers
with event-triggered communications

In this section, an event-based distributed adaptive
control scheme will be presented to achieve the control

objective. In addition to Assumptions 1 and 2, the fol-
lowing assumptions are also imposed.

Assumption 3 ‖ϕi(xi)‖ ≤ Li,1‖xi‖+ Li,0, where
‖ · ‖ denotes Euclidean norm, Li,1 and Li,0 are unknown
positive constants.

Assumption 4 The unknown parameter vector θi ∈
<pi is within a compact convex set Cθi with ‖θi‖ ≤ Lθi .
The value of Lθi is only known by subsystem i.

4.1 Design of event triggering condition

Notations tjq,0, t
j
q,1, . . . , t

j
q,k, . . .with 0 = tjq,0 < tjq,1 <

tjq,2 < . . . < tjq,k < tjq,k+1 < . . . < ∞, k ∈ Z+, j ∈ V,
q = 1, . . . , n are adopted to denote the sequence of even-
t times for subsystem j to broadcast the information of
its qth state to subsystem i, if aij = 1. tjq,0 is the initial
time instant when agent j starts up. For each subsys-
tem i, the instantaneous information of the qth state for
its neighboring subsystems is updated only at the time
instants tjq,k for j ∈ Ni. This indicates that for time

t ∈ [tjq,k, t
j
q,k+1), the neighbour’s qth states available for

subsystem i are kept unchanged as x̄j,q(t) = xj,q(t
j
q,k),

j ∈ Ni.
The triggering condition is chosen as

tjq,k+1 = inf{t > tjq,k, |xj,q(t)− x̄j,q(t)| > mj
q} (14)

where j ∈ {0,V}, x̄j,q(t) = xj,q(t
j
q,k) and mj

q is a posi-

tive constant to be designed. It is noted from (14) that
the designed triggering condition for each subsystem is
dependent only on its local state changing rates. Hence,
continuous monitoring of neighbors’ states as required
in Dimarogonas et al. (2012),Zhu et al. (2014), You et al.
(2017), Li et al. (2018) and Yang et al. (2020) can be
avoided.

4.2 Design of distributed adaptive controllers

The following error variables are defined

z̄i,1 = yi − µiy0 − (1− µi)ˆ̄yi,0 (15)

= δi + (1− µi)˜̄yi,0
z̄i,q = xi,q − ᾱi,q−1, q = 2, . . . , n (16)

εi =

N∑
j=1

aij(yi − ȳj) + µi(yi − y0) (17)

where δi = yi − y0 is the tracking error for each sub-
system i and ˜̄yi,0 = y0 − ˆ̄yi,0 is the estimation error.
ˆ̄yi,0 is the estimate of y0 introduced in subsystem i with
µi = 0. Note that the estimator ŷi,0 in (8) cannot be
implemented for the case with event-based communica-
tions, as the error variable ei in (4) is unavailable. Defin-

ing that x̄j,q(t) = xj,q(t
j
q,k), j ∈ {0,V}, t ∈ [tjq,k, t

j
q,k+1).
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ȳj(t) = x̄j,1(t).
In this case, the virtual control inputs and the actual

control input are designed as

ᾱi,1 =−ci,1z̄i,1 − kεi + µiẏ0 + (1− µi) ˙̄̂yi,0 (18)

ᾱi,q =−ci,q z̄i,q − z̄i,q−1 +

q−1∑
k=1

∂αi,q−1

∂xi,k
xi,k+1

+

N∑
j=1

aij

q−1∑
k=1

∂αi,q−1

∂xj,k
x̄j,k+1 + µi

q∑
k=1

∂αi,q−1

∂y
(k−1)
0

y
(k)
0

+(1− µi)
∂αi,q−1

∂ŷi,0
˙̄̂yi,0, q = 2, . . . , n (19)

ui = ᾱi,n − ψi − ϕTi ˆ̄θi (20)

where ci,1, k and ci,q are positive design parameters. ˆ̄θi is

the estimate of unknown system parameter θi.
∂αi,q−1

∂xi,k
,

∂αi,q−1

∂xj,k
,
∂αi,q−1

∂y
(k−1)
0

and
∂αi,q−1

∂ŷi,0
are the partial derivatives

adopted in previously designed αi,q in (6).

The estimator ˆ̄yi,0 and parameter update law for ˆ̄θi
are designed as

˙̄̂yi,0 =−γyi0εi − γyi0κyi0(ˆ̄yi,0 − yi,0) (21)

˙̄̂
θi = Proj{τi} (22)

where τi = Γθ̄iϕiz̄i,n, Proj{·} is the projector operator
originated from Krstic et al. (1995). γyi0 , κyi0 , yi,0 and
Γθ̄i are positive constants with appropriate dimension.

The following lemma is useful in the system stability
analysis.

Lemma 2 By applying the projector operator Proj{·}
in Krstic et al. (1995), the property − ˜̄θTi Γ−1

θ̄i
Proj{τi} ≤

− ˜̄θTi Γ−1
θ̄i
τi,∀ ˆ̄θi ∈ Cθi , θi ∈ Cθi exists, where ˜̄θi = θi − ˆ̄θi

and ˆ̄θi is the estimate of unknown parameter θi. Γθ̄i is a
positive constant matrix with appropriate dimension.

Remark 1 By comparing (18)-(19) and (5)-(6), it can
be seen that ᾱi,q is designed in a similar form as αi,q.
The only difference is that all the continuous neighboring
states xj,q(t) involved in αi,q are replaced with piecewise
continuous states x̄j,q(t). The effects due to such replace-
ment will be rigorously analyzed in subsequent section.
On the other hand, the partial derivatives terms adopted

in αi,q (i.e.
∂αi,q−1

∂xi,k
,
∂αi,q−1

∂xj,k
,
∂αi,q−1

∂y
(k−1)
0

and
∂αi,q−1

∂ŷi,0
) are kep-

t unchanged to construct ᾱi,q. More detailed discussions
will be presented in Remark 3 and Remark 5.

5 System stability and consensus analysis

Lemma 3 The errors between zi,q in (3) and z̄i,q in (16),
αi,q in (6) and ᾱi,q in (19) are bounded. Thus

|zi,q − z̄i,q| ≤∆zi,q (23)

|αi,q − ᾱi,q| ≤∆αi,q (24)

where ∆zi,q and ∆αi,q are positive constants related to
topology parameters ∆i, µi, individual design parameters
k, ci,q, γyi0 , κyi0 , mi

q and neighboring design parameters

cj,q, γyj0 , κyj0 , mj
q for aij = 1 and q = 1, . . . , n.

Proof. The proof is provided in Appendix A. 2

Remark 2 It is observed from the Proof of Lemma 3
that the partial derivative terms in (6) are all constants
depending on topology parameters ∆i, µi, individual de-
sign parameters k, ci,q, γyi0 , κyi0 , mi

q and neighboring

design parameters cj,q, γyj0 , κyj0 , mj
q for aij = 1. This

important property enables the utilization of the partial
derivatives in designing ᾱi,q in (19).

Lemma 4 Define z̄1 = [z̄1,1, z̄2,1, . . . , z̄N,1]T , zq =

[z1,q, z2,q, . . . , zN,q]
T for 2 ≤ q ≤ n, ˜̄θ = [˜̄θT1 , . . . ,

˜̄θTN ]T

and ˜̄y0 as the vector of ˜̄yi,0 = y0− ˆ̄yi,0 for all subsystems

with µi = 0 and ˜̄θi = θi− ˆ̄θi. The states xi for 1 ≤ i ≤ N
satisfy the following inequality

‖xi‖ ≤ Lxi
∥∥∥(z̄T1 , z

T
2 , . . . , z

T
n , ˜̄yT0 ,

˜̄θT )T
∥∥∥+Bxi , (25)

where Lxi and Bxi are positive constants related to topol-
ogy parameters and design parameters as stated in Lem-
ma 3.

Proof. The proof is provided in Appendix B. 2

The main results in this section are formally stated
in the following theorem.

Theorem 2 Consider a group of N uncertain subsys-
tems as modeled in (1) with a desired trajectory y0(t) un-
der Assumptions 1-4. By designing the event-triggering
communication rules as (14) and the distributed adaptive
controllers as (20), distributed estimators (21), parame-
ter update laws (22), the following results can be guaran-
teed.
1) All closed-loop signals are uniformly bounded.
2) The tracking error signals δ = [δ1, δ2, ..., δN ]T will
converge to a compact set.

3) The upper bound of ‖δ(t)‖2[0,T ] = 1
T

∫ T
0
‖δ(t)‖2dt can

be decreased by choosing suitable design parameters.
4) Zeno behavior is excluded.
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Proof. Define a Lyapunov function as V1 =
N∑
i=1

[
1
2 z̄

2
i,1

+k(1−µi)
2γyi0

˜̄y2
i,0

]
. From (15), (18) and (21), the derivative

of V1 is computed as

V̇1 =

N∑
i=1

[
−ci,1z̄2

i,1 − kz̄i,1(ei + εi − ei) + z̄i,1z̄i,2
]

+

N∑
i=1

k(1− µi)
γyi0

˜̄yi,0

(
ẏ0 − ˙̄̂yi,0

)
≤

N∑
i=1

−ci,1z̄2
i,1 −

N∑
i=1

k [δi + (1− µi)˜̄yi,0] ei

+

N∑
i=1

[
k|z̄i,1|∆im+ z̄i,1z̄i,2 +

k(1− µi)
γyi0

|˜̄yi,0|F1

]

−
N∑
i=1

k(1− µi)
γyi0

˜̄yi,0
˙̄̂yi,0

≤−k
2
λmin(Q)‖δ‖2 +

N∑
i=1

(
−1

2
ci,1z̄

2
i,1 + z̄i,1z̄i,2

)

−
N∑
i=1

k(1− µi)κyi0
4

˜̄y2
i,0 + M̄1 (26)

where m = max{m1
q, . . . ,m

N
q } and M̄1 =

N∑
i=1

k2∆2
im

2

2ci,1
+

N∑
i=1

k(1−µi)
γ2
yi0

κyi0
(γyi0∆im+ F1)

2
+

N∑
i=1

k(1−µi)κyi0
2 (y0−yi,0)2.

Define a Lyapunov function candidate V2 as V2 =

V1 +
N∑
i=1

1
2z

2
i,2. From (3) and (6), the derivative of V2 is

computed as

V̇2 ≤−
k

2
λmin(Q)‖δ‖2 +

N∑
i=1

(
−1

2
ci,1z̄

2
i,1 + z̄i,1z̄i,2

)

+

N∑
i=1

−k(1− µi)κyi0
4

˜̄y2
i,0 + M̄1

+

N∑
i=1

(
−ci,2z2

i,2 − zi,1zi,2 + zi,2zi,3
)

(27)

Since z̄i,1z̄i,2−zi,1zi,2 = (z̄i,1−zi,1)zi,2+z̄i,1(z̄i,2−zi,2) ≤
|zi,2|∆zi,1 + |z̄i,1|∆zi,2 , V̇2 can be further derived as

V̇2 ≤−
k

2
λmin(Q)‖δ‖2 +

N∑
i=1

(
−1

4
ci,1z̄

2
i,1 −

1

2
ci,2z

2
i,2

−k(1− µi)κyi0
4

˜̄y2
i,0 + zi,2zi,3

)
+ M̄2 (28)

where M̄2 = M̄1 +
N∑
i=1

(
1
ci,1

∆2
zi,2 + 1

2ci,2
∆2
zi,1

)
.

The Lyapunov function for the entire closed-loop sys-

tem is chosen as Vn = V2 +
N∑
i=1

(
n∑
i=3

1
2z

2
i,q + 1

2
˜̄θTi Γ−1

θi
˜̄θi

)
From (3), (6), (20), (22) and Lemma 2, the derivative of
Vn is computed as

V̇n ≤ −
k

2
λmin(Q)‖δ‖2 +

N∑
i=1

(
−1

4
ci,1z̄

2
i,1 −

1

2
ci,2z

2
i,2

−
n−1∑
q=3

ci,qz
2
i,q −

1

2
ci,nz

2
i,n −

k(1− µi)κyi0
4

˜̄y2
i,0

)

−
N∑
i=1

‖ ˜̄θi‖2

2
+

N∑
i=1

‖ ˜̄θi‖‖ϕi‖∆zi,n

+M̄2 +

N∑
i=1

∆2
αi,n

2ci,n
+

N∑
i=1

‖ ˜̄θi‖2

2
(29)

According to Assumption 3, Assumption 4 and Lemma

4, the term ‖ ˜̄θi‖‖ϕi‖∆zi,n can be directly derived as

‖ ˜̄θi‖‖ϕi‖∆zi,n

≤Lθi(Li,1‖xi‖+ Li,0)∆zi,n

≤LθiLi,1∆zi,n

(
Lxi

∥∥∥(z̄T1 , z
T
2 , . . . , z

T
n , ˜̄yT0 ,

˜̄θT )T
∥∥∥+Bxi

)
+LθiLi,0∆zi,n

,
c

2N

∥∥∥(z̄T1 , z
T
2 , . . . , z

T
n , ˜̄yT0 ,

˜̄θT )T
∥∥∥2

+ M̄i3 (30)

where c = min
{

1
4ci,1,

1
2ci,2, ci,q,

k(1−µi)κyi0
2 , 1

2

}
for q =

3, . . . , n − 1 and µi = 0. M̄i3 =
N(LθiLi,1∆zi,n

Lxi )
2

2c +
LθiLi,1∆zi,nBxi + LθiLi,0∆zi,n .

Substituting (30) into (29) yields that

V̇n ≤−
k

2
λmin(Q)‖δ‖2 − c

∥∥∥(z̄T1 , z
T
2 , . . . , z

T
n , ˜̄yT0 ,

˜̄θT )T
∥∥∥2

+
c

2

∥∥∥(z̄T1 , z
T
2 , . . . , z

T
n , ˜̄yT0 ,

˜̄θT )T
∥∥∥2

+M̄2 +

N∑
i=1

(
∆2
αi,n

2ci,n
+ M̄i3

)
+

N∑
i=1

‖ ˜̄θi‖2

2

≤−k
2
λmin(Q)‖δ‖2 − c

2

∥∥∥(z̄T1 , z
T
2 , . . . , z

T
n , ˜̄yT0 ,

˜̄θT )T
∥∥∥2

+M∗

≤−k
2
λmin(Q)‖δ‖2 − σVn +M∗ (31)

where M∗ = M̄2 +
N∑
i=1

(
∆2
αi,n

2ci,n
+Mi3

)
+

N∑
i=1

‖ ˜̄θi‖2
2 and

σ = min

{
c,

cκyi0
k(1−µi) ,

c
λmax(Γ−1

θ̄i
)

}
.
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By following the similar analysis in the proof of The-
orem 1, the conclusions 1), 2) and 3) can be drawn. To
avoid repetition, the details are omitted here.

To show the exclusion of Zeno behavior, we shall
show that the inter-execution intervals (tjq,k+1 − tjq,k)

for j ∈ V, ∀k ∈ Z+ are lower-bounded by a pos-
itive constant. Define ηjq,k(t) = xj,q(t) − x̄j,q(t) for

t ∈ [tjq,k, t
j
q,k+1), whose derivative is computed as

d|ηjq,k|
dt =

d(ηj
q,k
×ηj

q,k
)

1
2

dt = sgn(ηjq,k)η̇jq,k ≤
∣∣∣η̇jq,k∣∣∣. Since

x̄j,q(t) keeps unchanged for t ∈ [tjq,k, t
j
q,k+1), we have∣∣∣η̇jq,k(t)

∣∣∣= |xj,q+1| , q = 2, . . . , n− 1 (32)∣∣∣η̇jn,k(t)
∣∣∣= ∣∣uj + ψj + ϕTj θj

∣∣ , for j ∈ V (33)

From the boundedness of xj,q, uj , ϕj , it is concluded that

there exist a positive constant ιq,j such that
∣∣∣η̇jq,k(t)

∣∣∣ ≤ ιjq
for j ∈ V̄. Then the inter-execution intervals must satisfy
that tjq,k+1−t

j
q,k ≥ mj

q/ι
j
q, i.e. Zeno behavior is excluded.

2

Remark 3 Different from Theorem 1, the coupling ter-

m ‖ ˜̄θi‖‖ϕi‖∆zi,n in (29) arises in the derivative of Vn,
which is the Lyapunov function defined for the entire
closed-loop system in event-based communication case.
To effectively handle this term, two additional assump-
tions, i.e. Assumption 3 and Assumption 4 are imposed
in this section. Besides, the projector operator Proj{·}
in Krstic et al. (1995) is used to ensure the boundedness

of parameter estimate ˆ̄θi and the corresponding estima-

tion error ˜̄θi, i.e. ‖ ˜̄θi‖ ≤ Lθi .

Remark 4 As observed from (11), (13) and (31), the
tracking performance of all subsystem outputs in the
mean square error sense is mainly determined by state
initials, design parameters and the size of M∗. Besides,
it can be seen from M̄1, M̄2 and M∗ that event trigger-
ing thresholds mj

q have huge impact on the size of M∗.

Clearly, if mj
q is increased, the triggering times for com-

munication among subsystems can effectively be reduced.
However, the upper bound of ‖δ‖2[0,T ] will be increased

with a larger mj
q. Therefore, determining the values

of mj
q is a tradeoff between the cost of communication

resources and consensus tracking performance.

Remark 5 The main challenge to design backstepping
based distributed adaptive consensus controllers for high-
order nonlinear systems with event-based communica-
tions lies in the fact that traditional backstepping tech-
nique (Krstic et al., 1995) requires differentiating virtual
control inputs recursively. If the virtual control input de-
signed in one step involves piecewise continuous signals,
computing its derivatives is impossible, thus the subse-
quent design step is difficult to proceed. To overcome this

difficulty, backstepping technique is not adopted directly
in designing the virtual controllers and final control law
for event-based communication case. Instead, we design
the backstepping based distributed adaptive controllers for
all subsystems with continuous communications firstly.
Thus all the chosen virtual controllers (i.e. αi,q) are d-
ifferentiable. For the case with event triggered commu-

nications, the partial derivative terms
∂αi,q−1

∂xi,k
,
∂αi,q−1

∂xj,k
,

∂αi,q−1

∂y
(k−1)
0

and
∂αi,q−1

∂ŷi,0
, which are shown to be constants, are

utilized to construct the virtual control ᾱi,q in (19).

Remark 6 Different from some existing distributed
adaptive backstepping based results with continuous
communication among connected subsystems as in Chen
et al. (2015); Long et al. (2019); Shen & Shi (2015);
Wang & Li (2020); Wang et al. (2017), the communica-
tion in our results is decided by a predesigned triggering
condition. Compared with Li et al. (2018) with undirected
graph, the considered directed communication topology
in this paper is more general and continuous monitoring
of neighbors’ states is not required. Besides, the obtained
results formulate a backstepping based controller design
and stability analysis framework for the chained nonlin-
ear systems to solve the non-differentiability problem of
virtual controllers. It can be applied to solve other relat-
ed issues, like quantized communication and denial-of-
services attacks (DoS) on the communication channels.

6 Simulation studies

In this section, we consider a group of 4 pendulum
systems (Zhou et al., 2019) modeled with the following
dynamics

miliϑ̈i +mig sin(ϑi) + kiliϑ̇i = ui (34)

where ϑi denotes the angle of pendulum, mi and li are
the mass [kg] and length of the robe [m], g denotes the
acceleration due to the gravity, ki is an unknown friction
coefficient, ui represents an input torque provided by a
DC motor. System parameters are chosen the same as
these in Zhou et al. (2019) i.e. mi = 1kg, li = 1m and
g = 9.8m/s2. The friction coefficients are set as k1 =
0.2, k2 = 0.2, k3 = 0.1 and k4 = 0.1, respectively. The
objective is to design distributed adaptive controllers
ui for all subsystems such that ϑi can track a common
desired trajectory ϑ0(t) = 2 cos(0.1t) for 1 ≤ i ≤ 4. The
communication condition among the 4 subsystems and
ϑ0(t) is represented by the directed graph in Fig. 1.

Defining the state variables xi,1 = ϑi and xi,2 = ϑ̇i
for i = 1, . . . , 4, then (34) can be rewritten as the same
form as in (1).

ẋi,1 = xi,2;

ẋi,2 =
1

mili
ui −

g

li
sin (xi,1)− ki

mi
xi,2 (35)
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Fig. 1. Information transmission graph for the 4 subsystems.

Clearly, the parameter ki/mi is unknown. The trigger-
ing condition for inter-subsystem communication, dis-
tributed adaptive controllers and parameter estimators
are designed as in (14), (20)-(22).

In simulation, the state initials including ϑi(0), ϑ̇i(0),
ˆ̄θi(0), ˆ̄yi,0(0) are set as zeros for i ∈ {1, 2, 3, 4}. The de-
sign parameters are chosen as follows. k = 0.1, ci,1 =
ci,2 = 3, γϑi = 20, Γθ̄i = 0.3, κϑi = 0.005, ϑi0 = 0.01,

mi
1 = 0.05, mi

2 = 0.05 for i = 1, . . . , 4. The tracking per-
formance of all subsystems’ outputs ϑi with comparison
to ϑ0, the tracking errors δi and states ϑ̇i for i = 1, 2, 3, 4
are shown in Fig. 2-Fig. 5 respectively. Fig. 5-Fig. 6 ex-
hibit the control inputs and the triggering time of all
subsystems, respectively. The triggering count and min-
imum inter-event times are provided in Table 1. It can
be seen that desired tracking performance for all sub-
systems’ outputs can be achieved, while all the observed
signals are bounded. Moreover, Zeno behavior in each
pendulum does not exist. In order to show the effects of
triggering thresholds on the tracking performance, mi

1
is changed to mi

1 = 0.2 while keeping all the remaining
design parameters unchanged. From Fig. 7-Fig. 8, it can
be observed that the tracking performance can be im-
proved by reducing the triggering threshold mi

1 at the
cost of increasing the triggering frequency.
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Fig. 2. The outputs ϑi, i = 1, . . . , 4.

7 Conclusion

In this paper, the consensus tracking control problem
for uncertain high-order nonlinear systems is investigat-
ed. Under directed communication condition, two totally
distributed adaptive control schemes are proposed with
or without event-triggered communication. For event-
triggered case, the continuous monitoring problem of
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Fig. 3. Tracking errors δi = ϑi − ϑ0, i = 1, . . . , 4.
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Fig. 5. Control inputs ui, i = 1, . . . , 4.
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neighboring states has been removed. The boundedness
of all closed-loop signals and the tracking performance
have been analysed. Finally, the simulation results show
the effectiveness of our proposed control scheme.

8



Table 1
Event count and minimum inter-event times for the states
in each agent.

Count Inter-event times (s)

Pendulum 1
ϑ1 278 0.0203

ϑ̇1 122 0.0025

Pendulum 2
ϑ2 270 0.0209

ϑ̇2 981 0.0037

Pendulum 3
ϑ3 261 0.0215

ϑ̇3 1084 0.0042

Pendulum 4
ϑ4 257 0.0224

ϑ̇4 1038 0.0049
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Appendix

A Proof of Lemma 3

Proof. Define syi0 = ˆ̄yi,0 − ŷi,0. From (8) and
(21), there is ṡyi0 = −γyi0κyi0syi0 + γyi0(ei − εi) =

−γyi0κyi0syi0 + γyi0

[∑N
j=1 aij (ȳj − yj)

]
. The solution

of this differential equation is computed to satisfy that
|syi0 | ≤ |syi0(0)|e−γyi0κyi0 t + ∆im

κyi0
(1− e−γyi0κyi0 t) ≤

|syi0(0)|+∆im
κyi0

, ∆yi0 , wherem = max{m1
1, . . . ,m

N
1 , . . . ,

m1
n, . . . ,m

N
n }. From (2) and (15), it further results in

|zi,1 − z̄i,1| = (1 − µi)
∣∣ˆ̄yi,0 − ŷi,0∣∣ ≤ (1 − µi)|syi0 | ≤

(1 − µi)∆yi0 , ∆zi,1 . With (4) and (17), we have∣∣∣ ˙̂yi,0 − ˙̄̂yi,0

∣∣∣ ≤ γyi0 |εi − ei|+ γyi0κyi0 |syi0 | ≤ γyi0(∆im+

κyi0∆yi0). From (5) and (18), there is |αi,1 − ᾱi,1 =∣∣∣−ci,1(zi,1 − z̄i,1)− k(ei − εi) + (1− µi)
(

˙̂yi,0 − ˙̄̂yi,0

)∣∣∣ ≤
ci,1∆zi,1 +k∆im+(1−µi)γyi0(∆im+κyi0∆yi0) , ∆αi,1 .

Note that αi,1 is the function of xi,1, xj,1 if aij = 1,
y0, ẏ0 if µi = 1, ŷi,0 if µi = 0. It will be shown that all
the partial derivatives of αi,1 are constants which are as-
sociated with the design parameters and the triggering
threshold.

∂ei
∂xi,1

= ∆i + µi,
∂ei
∂xj,1

= −aij ,
∂ei
∂y0

= −µi (A.1)

∂αi,1
∂xi,1

=−ci,1 − k
∂ei
∂xi,1

+ (1− µi)(−γyi0)
∂ei
∂xi,1

=−ci,1 − (∆i + µi)[k + γyi0(1− µi)] (A.2)

∂αi,1
∂xj,1

=−k ∂ei
∂xj,1

+ (1− µi)(−γyi0)
∂ei
∂xj,1

= aij [k + γyi0(1− µi)] (A.3)

∂αi,1
∂y0

=−ci,1(−µi)− k
∂ei
∂y0

+ (1− µi)(γyi0)
∂ei
∂y0

= (ci,1 + k)µi − (1− µi)γyi0µi (A.4)

∂αi,1
∂ẏ0

= µi (A.5)

∂αi,1
∂ŷi,0

= ci,1(1− µi) + (1− µi)(−γyi0κyi0)

= (1− µi)(ci,1 − γyi0κyi0) (A.6)

Therefore, by some straightforward manipulation, we
can directly get |zi,2−z̄i,2| ≤ |ᾱi,1−αi,1| ≤ ∆αi,1 , ∆zi,2

and |αi,2 − ᾱi,2| ≤ ci,2∆zi,2 + ∆zi,1 +
N∑
j=1

aij

∣∣∣∂αi,1∂xj,1

∣∣∣m+

(1− µi)
∣∣∣∂αi,1∂ŷi,0

∣∣∣ γyi0(∆im+ κyi0∆yi0) , ∆αi,2 .

Following the same procedure based on zi,q in (3),
αi,q in (6), z̄i,q in (16), ᾱi,q in (19), we have |zi,q −
z̄i,q| ≤ |ᾱi,q−1 − αi,q−1| ≤ ∆αi,q−1

, ∆zi,q and |αi,q −

ᾱi,q| ≤ ci,q∆zi,q +∆zi,q−1
+

N∑
j=1

aij
q−1∑
k=1

∣∣∣∂αi,q−1

∂xj,k

∣∣∣m+(1−

µi)
∣∣∣αi,q−1

∂ŷi,0

∣∣∣ γyi0 (∆im+ κyi0∆yi,0

)
, ∆αi,q 2

B Proof of Lemma 4

Proof. Note that for the subsystems with µi = 0,
we have |ŷi0| = |ˆ̄yi,0 − syi0 | ≤ |y0| + |˜̄yi,0| + |syi0 | ≤
|˜̄yi,0|+Byi0 , where Byi0 = F0 +∆yi0 and F0 is the upper
bound of |y0|.

From (2), we have |xi,1| ≤
√

2‖(z̄i,1, ˜̄yi,0)T ‖+Byi0 +

∆zi,1 , Lxi1‖(z̄i,1, ˜̄yi,0)T ‖+Bxi1 , where Lxi1 =
√

2 and
Bxi,1 = Byi0 + ∆zi,1 . From (5) and (8), there is |αi,1| ≤√

3 max{ci,1, k + γyi0 , γyi0κyi0}‖(z̄i,1, ei, ˜̄yi,0)T ‖ +

ci,1∆zi,1+µiF1 + (1 − µi)γyi0κyi0(yi,0 + Byi0) ,
Lαi1‖(z̄i,1, ei, ˜̄yi,0)T ‖+Bαi1 , whereLαi1 =

√
3 max{ci,1, k

+γyi0 , γyi0κyi0} and Bαi1 = ci,1∆zi,1 + µiF1 + (1 −
µi)γyi0κyi0(yi,0 +Byi0).

From (3), there is |xi,2| ≤ (1+Lαi1)‖(z̄i,1, zi,2, ei, ˜̄yi,0)T ‖
+Bαi1 , Lxi2‖(z̄i,1, zi,2, ei, ˜̄yi,0)T ‖+Bxi2 , where Lxi2 =
1 + Lαi1 and Bxi2 = Bαi1 . From (6), we have |αi,2| ≤
ci,2|zi,2|+ |zi,1|+

∣∣∣∂αi,1∂xi,1

∣∣∣ |xi,2|+∑N
j=1 aij

∣∣∣∂αi,1∂xj,1

∣∣∣ |xj,2|+
µi
∑2
k=1

∣∣∣∣ ∂αi,1

∂y
(k−1)
0

∣∣∣∣ ∣∣∣y(k)
0

∣∣∣ + (1 − µi)
∣∣∣∂αi,1∂ŷi,0

∣∣∣ [γyi0 |ei| +

γyi0κyi0(|ŷi,0| + yi,0)] ≤ Lαi2‖(z̄i,1, zi,2, ei, ˜̄yi,0)T ‖ +

Bαi2 +
∑N
j=1 aijLαij2‖(z̄j,1, zj,2, ej , ˜̄yj,0)T ‖, where

Lαi2 , ci,2 + 1 +
∣∣∣∂αi,1∂xi,1

∣∣∣Lxi2 + (1 − µi)
∣∣∣∂αi,1∂ŷi,0

∣∣∣ γyi0 +∣∣∣∂αi,1∂ŷi,0

∣∣∣ γyi0κyi0 , Bαi2 , ∆zi,1 +
∣∣∣∂αi,1∂xi,1

∣∣∣Bxi2 + µi
2∑
k=1∣∣∣∣ ∂αi,1

∂y
(k−1)
0

∣∣∣∣Fk + (1 − µi)
∣∣∣∂αi,1∂ŷi,0

∣∣∣ γyi0κyi0(Byi0 + yi,0) +

N∑
j=1

aij

∣∣∣∂αi,1∂xj,1

∣∣∣Bxj2 , Lαij2 ,
∣∣∣∂αi,1∂xj,1

∣∣∣Lxj2.

By following similar analysis, it can be shown

that |xi,q| ≤
N∑
i=1

Lxiq‖(z̄i,1, zi,2, . . . , zi,q, ei, ˜̄yi,0)T ‖ +

Bxiq ≤
(
N∑
i=1

Lxiq

)
‖(z̄T1 , zT2 , . . . , zTq , eT , ˜̄yT0 )T ‖ + Bxiq ,
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where e = [e1, . . . , eN ]T . From (4), we have |ei| ≤
N∑
j=1

aij(|xi,1| + |xj,1|) + µi(|xi,1| + |y0|) ≤ (2
√

2N +

√
2)‖(z̄T1 , ˜̄yT0 )T ‖ + ∆ei , Lei‖(z̄T1 , ˜̄yT0 )T ‖ + ∆ei ,

where Lei = 2
√

2N +
√

2 and ∆ei = Bxi,1 +∑N
j=1 aij(Bxi,1 + Bxj,1). Thus, ‖e‖ ≤ |e1|+ |e2|+ . . .+

|en| ≤ NLei‖(z̄T1 , ˜̄yT0 )T ‖ + N∆ei ≤ NLei‖(z̄T1 , zT2 , . . . ,

zTn , ˜̄yT0 )T ‖+N∆ei . Using

(
N∑
i=1

Lxiq

)
‖(z̄T1 , zT2 , . . . , zTq , eT ,

˜̄yT0 )T ‖ + Bxiq , we can further get |xi,q| ≤
(
N∑
i=1

Lxiq

)
×[‖(z̄T1 , zT2 , . . . , zTq , ˜̄yT0 )T ‖ + ‖e‖] + Bxiq ≤

(
N∑
i=1

Lxiq

)
×[(1+NLei)‖(z̄T1 , zT2 , . . . , zTn , ˜̄yT0 )T ‖]+

(
N∑
i=1

Lxiq

)
N∆ei

+Bxiq . Thus,

‖xi‖ ≤ |xi,1|+ |xi,2|+ . . .+ |xi,n|

≤
n∑
q=1

N∑
i=1

Lxiq [(1 +NLei)‖(z̄T1 , zT2 , . . . , zTn , ˜̄yT0 )T ‖]

+

n∑
q=1

(
N∑
i=1

LxiqN∆ei +Bxiq

)
,Lxi‖(z̄T1 , zT2 , . . . , zTn , ˜̄yT0 )T ‖+Bxi

≤Lxi‖(z̄T1 , zT2 , . . . , zTn , ˜̄yT0 ,
˜̄θT )T ‖+Bxi (B.1)

where Lxi =
∑n
q=1

∑N
i=1 Lxiq (1 + NLei) and Bxi =∑n

q=1

(∑N
i=1 LxiqN∆ei +Bxiq

)
. 2
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