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A Paradigm Shift from an Experimental-Based to
a Simulation-Based Framework Using Motion-
Capture Driven MIMO Radar Data Synthesis
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Abstract— The development of radar-based classifiers driven by
empirical data can be highly demanding and expensive due to
the unavailability of radar data. In this paper, we introduce an
innovative simulation-based approach that addresses the data
scarcity problem, particularly for our multiple-input multiple-
output (MIMO) radar-based direction-independent human activity
recognition (HAR) system. To simulate realistic MIMO radar sig-
natures, we first synthesize human motion and generate corre-
sponding spatial trajectories. From these trajectories, a received
radio frequency (RF) signal is synthesized using our MIMO chan-
nel model, which considers the non-stationary behavior of human motion and the multipath components originating from
the scatterers on human body segments. Subsequently, the synthesized RF signals are processed to simulate MIMO radar
signatures for various human activities. The proposed simulation-based direction-independent HAR system achieves a
classification accuracy of 97.83% when tested with real MIMO radar data. A significant advantage of our simulation-based
framework lies in its ability to facilitate multi-stage data augmentation techniques at the motion-layer, physical-layer, and
signal-layer syntheses. This capability significantly reduces the training workload for radar-based classifiers. Importantly,
our simulation-based proof-of-concept is applicable to single-input single-output and MIMO radars in monostatic, bistatic,
and multistatic configurations, making it a versatile solution for realizing other radar-based classifiers, such as gesture
classifiers.

Index Terms— Aspect angle, data augmentation, data synthesis, deep learning, distributed MIMO radar simulation, human
activity recognition (HAR), micro-Doppler analysis, motion capture, motion synthesis, multiclass classification, virtual
reality.

I. INTRODUCTION

A. Background

THE generation of area-specific synthetic data has been
an important topic of interest among researchers [1], [2].

Device-specific or sensor-tailored simulation models help gen-
erate realistic sensory data and have been used to realize real-
world solutions [3], [4]. Given the increasing prevalence of
machine learning and artificial intelligence methodologies and
applications today, the importance of the concept of device-
specific synthetic data generation, as well as the significance
of sensor modeling, cannot be overstated. For many sensing
modalities such as magnetometer, infrared, light detection and
ranging (LiDAR), sonar, and radar, data scarcity often hinders
the realization of machine learning-based solutions [5], [6].
Sensor-tailored simulation models mitigate the data scarcity
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problem by providing clean and labeled synthetic datasets
for various real-world conditions. Such synthetic datasets are
important to develop machine learning-based applications,
e.g., medical imaging [7].

Human activity recognition (HAR) [8]–[13] remains an
important and active research area facing the challenge of
data scarcity, especially when using radio frequency (RF)
sensors such as Wi-Fi [14] and radar [15]–[17]. Further-
more, for multiple-input multiple-output (MIMO) radar sys-
tems with user-defined (required) operating parameters and
antenna configurations, readily-available HAR datasets are
almost non-existent. Optimal radar operating conditions and
antenna configurations are often not known in advance for
different environmental conditions and applications. Synthetic
data generation is therefore a pragmatic and promising ap-
proach to realizing radar-based classifiers, offering tremendous
design control and system flexibility in a cost-effective manner.
Realizing HAR systems through a simulation-based approach
poses two main challenges: (a) how to synthesize human
activities, and (b) how to simulate single-input single-output
(SISO) and MIMO radar signatures for the synthesized human
activities. Before going into further details of synthetic data
generation and our proposed simulation-based approach, we
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first provide an overview of the relevant research in the
following subsection.

B. Related Work
The ongoing miniaturization and commercialization of radar

sensors, as well as many Internet of Things (IoT) sensors,
have encouraged the development of human-centric appli-
cations, including HAR. Small-scale radar systems are in-
creasingly preferred by researchers for the development of
HAR systems [18], [19], gesture [20], [21] and sign lan-
guage [22] recognition systems. Realizing empirical-data-
driven (experimental-based) HAR systems is often very chal-
lenging due to the low availability of recorded radar datasets.
Among other challenging and monotonous tasks, the de-
velopment of experimental-based HAR systems requires the
involvement of human subjects, an actual SISO or MIMO
radar system, and the manual labeling of the recorded data.
The authors of [23] used manually labeled point cloud data to
train the HAR system, which was built upon a long short-term
memory (LSTM) network. By utilizing the measured features
of a millimeter wave (mm-wave) radar, the authors in [24]
tackled the issue of HAR in multi-view settings.

Recent studies have shown that, to some extent, data aug-
mentation techniques can reduce the scarcity of empirical data
for HAR systems. For instance, a rotation-shift technique was
utilized in [25] to expand the three-dimensional (3D) point
cloud dataset. A generative adversarial network (GAN)-based
data augmentation technique was adopted in [26] to create
varied radar signatures of human activities. The use of the few-
shot learning method was suggested by the authors of [27],
which offers a unique way of augmenting the capabilities
of pre-trained and pre-existing HAR systems. According to
a recent study [28], a two-stage domain adaptation approach
can be used to alleviate the data scarcity issue as well. With
this approach, the simulated micro-Doppler signatures can
be translated into measurement-like micro-Doppler signatures
by using small real datasets. Note that even with such data
augmentation methods, time-consuming and tedious data col-
lection cannot be avoided.

Radar-based classifiers may face unique challenges in dif-
ferent situations and application areas, which may necessitate
the adaptation of radar antenna configurations and operating
conditions. This exacerbates the problem of data scarcity in
radar systems because the training dataset recorded from a
radar system in one scenario, may not be applicable and useful
in another. Therefore, the synthetic data generation is the way
to realize radar-based HAR systems. To date, only a few
studies have been conducted in the context of RF sensing
that deal with synthetic data generation for HAR. In this
regard, the utilization of motion capture (MoCap) systems [29]
is an effective means of modeling and reanimating complex
human motion for further motion synthesis. For passive Wi-
Fi radar (PWR), the authors of [30] devised a system, namely
SimHumalator, to generate target returns. In [31], a simulation
tool was created to evaluate the radar cross-section of a
walking individual in close proximity. However, this technique
is inadequate for reproducing detailed and complex human
movements.

C. Our Approach

In this paper, we present a proof-of-concept that overcomes
the problems related to radar data scarcity, offers significant
design control and flexibility of the radar system, and allows
the simulation of unbounded, clean and labeled radar datasets.
We emulate a 2× 2 MIMO radar system with the help of our
proposed simulation-based framework to realize a simulation-
based direction-independent HAR system. First, we devise an
activity simulation module that synthesizes multiple types of
human activities in a virtual environment by using the 3D
animation tools from the Unity [32] and MotionBuilder [33]
software. An appropriate avatar or a humanoid character,
equipped with multiple simulated point scatterers on its body
segments, is used to reanimate MoCap data in these programs
(see Sect. III). Subsequently, we generate spatial trajectories
corresponding to all simulated point scatterers or body seg-
ments of the avatar, which effectively characterize the overall
humanoid motion.

The spatial trajectories of the body segments are processed
by our channel model, which simulates the received RF signal
from a frequency-modulated continuous wave (FMCW) radar
system for software-defined antenna positions. While simulat-
ing the raw in-phase and quadrature (IQ) components of a re-
ceived baseband signal, our channel model takes into account
the multipath components originating from the non-stationary
simulated (real) point scatterers with distinct time-variant (TV)
propagation delays (see Sect. IV). In the proposed channel
model, the long- and short-time stationarity characteristics of
the scatterers are considered in an indoor wireless propagation
environment. Additionally, to train the 2 × 2 MIMO radar-
based direction-independent HAR system (see Sect. VII), we
simulated five types of multi-directional human activities by
rotating the transmitter and receiver antennas of the emulated
MIMO radar system (see Sect. V).

Unlike conventional or experimental-based designs of
HAR systems, the proposed simulation-based approach
is highly versatile and offers numerous advantages. Our
simulation-based approach is capable of simulating di-
verse training datasets to meet various radar-based appli-
cations and a wide range of operational requirements. For
monostatic/bistatic/multistatic SISO/MIMO radar systems, the
scatterer-level modeling of moving objects in our simulation-
based framework opens up new research opportunities to
further fine-tune the simulated radar signatures, such as TV
micro-Doppler signatures (TV radial velocity distributions)
and TV range distributions (see Sect. IV and Sect. VI). For
example, the TV path gains of the scatterers (simulated point
scatterers) can be adjusted or optimized to improve and aug-
ment the simulated radar signatures. Moreover, the simulation-
based framework provides multi-stage data augmentation tech-
niques (see Sect. V), which allow us to generate diverse and
high-quality SISO/MIMO radar datasets in a flexible and cost-
effective manner. For instance, at the motion-layer synthesis
data augmentation stage, various animation parameters and
avatar characteristics, e.g., speed and height, can be arbitrarily
varied to simulate a range of human motions. Most im-
portantly, the proposed simulation-based framework radically
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reduces the workload and resources for classifier training. As
our simulation-based approach is versatile, it can be easily
extended to implement many other SISO/MIMO radar-based
classifiers, such as air-writing gesture classification [34].

D. Contributions

The key findings and contributions of this study can be
delineated as follows:

1) This research proposes a simulation-based framework
to significantly minimize the data collection workload
required for devising real-world radar-based HAR sys-
tems. The simulation-based framework is capable of
synthesizing realistic, diverse, and clean datasets for
MIMO radar systems, regardless of their configura-
tion: monostatic, bistatic, or multistatic. Although this
study focuses on a 2× 2 MIMO radar-based direction-
independent HAR system, the utility of the simulation-
based framework extends beyond the HAR application,
making it also valuable for other radar-based applica-
tions, e.g., sign language detection.

2) We have developed a MoCap-data-driven activity sim-
ulation module that enables the synthesis of multiple
types of human activities in a virtual environment. For
a total of 21 simulated point scatterers placed on body
segments of an avatar, the activity simulation module
generates 3D trajectories that essentially characterize the
overall human motion. Our activity simulation module
can integrate motion data from diverse sources, includ-
ing biomechanical, wearable, and optical MoCap sys-
tems (see Sect. III). Additionally, the activity simulation
module can generate arbitrary software-defined motion
data.

3) We formulate a MIMO channel model that simulates
realistic RF data or raw IQ data by using the spatial
trajectory data from non-stationary simulated point scat-
terers. In this channel model, we study and simulate the
TV propagation delays corresponding to the multipath
components emanating from the non-stationary simu-
lated point scatterers on the avatar’s body segments.
The proposed MIMO channel model helps generate
unlimited radar datasets and provides extensive design
control and versatility.

4) We present multi-stage data augmentation techniques
for motion-layer synthesis, physical-layer synthesis, and
signal-layer synthesis. For example, in the proposed
simulation-based framework, we first diversified the
target motion data in the motion-layer synthesis using
the activity simulation module. And subsequently in
the physical-layer synthesis, we augmented the radar
data by varying physical layer parameters such as radar
orientation. Lastly, we further augmented the radar data
by using multiple sets of simulated point scatterers’
weights (TV path gains) at the signal-layer synthesis of
the proposed simulation-based framework. The multi-
stage, simulation-based data augmentation techniques
allowed us to vary target motion characteristics and
antenna configurations, simulate multiple radar sensors,

and transform uni-directional motion data to multi-
directional motion data.

5) For the simulated human activities, we generated high-
quality MIMO radar signatures, such as TV radial veloc-
ity distribution and mean radial velocity, which closely
resemble the actual MIMO radar signatures of actual
human activities. This demonstrates the efficacy of the
proposed simulation-based framework, which is highly
versatile as it can be effortlessly extended to simulate
radar signatures for various other moving objects such
as cars, drones, and aircraft.

6) By employing our simulation-based framework, we gen-
erated a unique simulated dataset to train/realize clas-
sifiers based on (deep) machine learning. The training
dataset for HAR incorporates simulated radar patterns,
derived from software-defined avatar movements. This
approach proves highly advantageous and practical as
the training data is developed entirely from scratch,
eliminating the need for real individuals and an actual
MIMO radar system.

7) For the 2 × 2 MIMO radar framework, we realized
a simulation-based HAR system by employing a deep
convolutional neural network (DCNN). The system em-
ployed multiperspective simulated radar signatures as
input features. To showcase the practical applicability
of our simulation-driven HAR system, we evaluated
its performance using actual mm-wave radar data col-
lected from actual individuals. Our simulation-based
multiperspective HAR system achieved an impressive
classification accuracy of 97.83%, providing compelling
evidence for its effectiveness.

E. Paper Organization
The article is divided into eight sections. Section II deals

with the system design and the general structures of the con-
ventional and the proposed approaches. Human motion capture
and synthesis techniques are presented in Section III. Sec-
tion IV details channel modeling and simulation. Multi-stage
data augmentation approaches are elucidated in Section V.
Section VI discusses the generation of MIMO radar signatures.
Section VII presents the design, training, and testing phases
of our simulation-based direction-independent HAR system.
Finally, we conclude our research in Section VIII.

II. SYSTEM DESIGN

In this section, we discuss a conventional experimental-
based design of a HAR system and the proposed simulation-
based realization of a HAR system. We also discuss problems
of conventional HAR systems and how the proposed end-
to-end simulation framework resolves them. Note that SISO
radar-based HAR systems struggle to classify multi-directional
human activities [35], [36]. To classify different types of multi-
directional human activities, we need multiple radar subsys-
tems illuminating the environment from different perspectives.
Therefore, in the following subsections, we consider multi-
directional human activities recorded by a multiperspective
distributed MIMO radar system.
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A. Conventional Experimental-Based Designs of HAR
Systems

In radar sensing, state-of-the-art experimental-based HAR
systems [9], [13]–[15], [17]–[19], [23], [24], [36] generally
face challenges, such as data scarcity and their adaptability
to environmental conditions. As an example of state-of-the-
art experimental-based designs, we considered a direction-
independent HAR system implemented with a mm-wave 2×2
MIMO radar system, as shown in Fig. 1(a). In Fig. 1(a), Radari
represents the ith radar subsystem of the distributed MIMO
radar system, ATx

i is the ith transmitter antenna, and ARx
i is

the ith receiver antenna for i = 1, 2. Note that the two horn
antennas, namely ATx

i and ARx
i , are arranged in a monostatic

configuration for Radari. In the conventional experimental-
based HAR system of Fig. 1(a), six human subjects performed
the following types of multi-directional activities: falling on a
mattress, walking, standing up from a chair, sitting down on
a chair, and picking up an object from the floor.

The distributed MIMO radar system simultaneously illumi-
nates the human subject from two aspect angles and generates
the corresponding raw IQ data, as shown in Fig. 1(a). Then, the
radar signal processing block (see Sect. VI) generates the TV
micro-Doppler signatures or, equivalently, the TV radial veloc-
ity distributions for Radar1 and Radar2. These recorded radar
signatures (TV radial velocity distributions) are accumulated
to create a real radar dataset. In conventional experimental
HAR systems, the real radar data set is usually divided into a
training subset and a testing subset to train and test these HAR
systems, respectively. However, for this research, we only use
the experimentally obtained radar dataset to test our proposed
simulation-based HAR system (see Fig. 2).

Similar to any multiclass classifier, radar-based HAR sys-
tems require extensive amounts of recorded data for their
training. However, unlike other sensing modalities such as
cameras, radar systems often suffer from data scarcity. To
experimentally design a HAR system, real human subjects
must perform various types of activities in front of the MIMO
radar system in multiple directions. These requirements make
data collection time-consuming and costly. Additionally, the
recorded radar training dataset usually cannot be reused for
different antenna configurations and operating conditions. For
instance, changing the position of a transmitter or a receiver
antenna of the MIMO radar system can invalidate the entire
recorded training dataset.

B. A Simulation-Based Design of HAR Systems
In this paper, we propose a feasible alternative to over-

come the aforementioned limitations of radar-based classifiers,
particularly with regard to the scarcity of radar data. To de-
velop real-world HAR systems, we propose a comprehensive
simulation-based framework that utilizes MoCap systems to
synthesize realistic MIMO radar data, as depicted in Fig. 1(b).
The objective is to generate a simulated MIMO radar-based
training dataset by seamlessly simulating a large number of
realistic MIMO radar signatures without real human subjects
and a physical radar system.

The block diagram in Fig. 1(b) provides a general overview
of the proposed end-to-end simulation framework for HAR

systems. In Fig. 1(b), the activity simulation module synthe-
sizes the five types of human activities in the 3D space from
motion data collected by the MoCap systems (see Sect. III).
The activity simulation module simulates 3D trajectories cor-
responding to different body segments of an avatar, e.g., head,
neck, torso, and upper and lower extremities. To simulate the
human activities in multiple directions as shown in Fig. 1(b),
we rotate the positions of the transmitter antenna ATx

i and
receiver antenna ARx

i in our simulation-based framework for
i = 1, 2 (see Sect. V-B). For a desired antenna configuration
of the MIMO radar system, our channel simulation module
first transforms the 3D trajectories into TV propagation delays.
Then, the channel simulation module generates realistic RF
or raw IQ data for the simulated TV propagation delays
and a set of scatterer weights. Eventually, the radar signal
processor arranges the simulated raw IQ data in the fast- and
slow-time domain and processes it to simulate realistic radar
signatures, i.e., range distribution, radial velocity distribution
(micro-Doppler signature), and mean velocity (mean Doppler
shift).

We synthesize numerous examples of the five types of
human activities, simulate the corresponding radial velocity
distributions (micro-Doppler signatures), and store them in our
simulated radar dataset, as shown in Fig. 1(b). The proposed
simulation-based framework has no limits on the generation
of simulation data. The simulated radar dataset is used to train
the simulation-based HAR system, which is based on a DCNN
architecture. To demonstrate the practical importance and the
generalizability of this simulation-based framework, we need
to evaluate its performance in a real scenario. Therefore, the
proposed simulation-based HAR system is evaluated on a
previously unseen real radar dataset acquired with a mm-wave
distributed MIMO radar system and real human subjects, as
shown in the testing phase of Fig. 2. Note that we used an
identical radar signal processing block in Fig. 1 because the
simulated and real RF signals are structurally indistinguish-
able. More details on each block of the simulation-based HAR
system are provided in the following sections.

III. HUMAN MOTION CAPTURE AND SYNTHESIS

This section explores several ways of capturing and syn-
thesizing human motion. First, biomechanical modeling and
its limitations will be briefly discussed. Second, wearable
sensors as a means of MoCap systems are briefly mentioned.
Third, we discuss optical motion capture systems such as Mix-
amo [37] and Qualisys [38]. It is important to highlight that
the proposed simulation-based framework allows incorporating
synthesized or recorded motion data from diverse sources
such as biomechanical, wearable, and optical MoCap systems.
Lastly, we explain the process of generating 3D trajectories
of human body segments using software such as Unity [32]
and Autodesk’s MotionBuilder [33]. These software programs
(3D animation tools) help us augment the motion data at the
motion-layer synthesis.

A. Biomechanical Modeling of Human Body Segments

The utility of biomechanical modeling [39] for human body
segments is undeniable, yet its complexity is inherently high,
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Fig. 1: (a) Design of conventional (experimental-based) direction-independent HAR systems that require human subjects and
a MIMO radar system for their training. (b) Design of the proposed simulation-based HAR system that requires the simulated
radar signatures for its training.
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Fig. 2: The testing phase of both experimental and simulation-based direction-independent HAR systems. In the testing phase,
the performance of the simulation-based HAR system is evaluated against unseen real radar signatures.

primarily due to the intricate nature of the human body. Also,
it is difficult to develop generalizable biomechanical models
because individuals differ in physiology, anatomy, and motor
function. Moreover, the interaction between the human body
and the environment can further increase the complexity of a
biomechanical model.

Obtaining high-fidelity motion data of human body seg-
ments can be more feasible and accessible through MoCap
repositories and systems such as Mixamo and Qualisys. In
addition, the Unity and MotionBuilder software provide a cost-
effective and pragmatic alternative to biomechanical modeling,
enabling the seamless and dynamic simulation of new motion
data in a virtual environment. Therefore, we use MoCap
systems to capture the human motion and employ 3D ani-
mation tools from MotionBuilder and Unity to synthesize and
subsequently augment human motion.

B. Wearable Motion Capture Systems

Wearable MoCap systems offer a versatile and cost-effective
solution for capturing human movement data. The sensors, typ-
ically accelerometers and gyroscopes, are often integrated into

garments to capture data on the orientation and acceleration
of body segments. In this area, Rokoko Smartsuit Pro [40]
is a viable choice with multiple inertial sensors for real-time
tracking of an individual’s skeletal movements. It facilitates
seamless transfer of motion data to various applications such
as sports, biomechanical analysis, and virtual reality. Com-
pared to optical MoCap systems, wearable MoCap systems
have limitations in terms of accuracy. Additionally, wearable
MoCap systems can suffer from magnetic interference, which
can affect the precision of the MoCap data.

C. Optical Motion Capture Systems

We used Mixamo and Qualisys optical MoCap systems to
capture motion data for human activities. Mixamo is an online
platform that offers an extensive selection of readily available
MoCap data captured from real performers [41]. Our Qualisys
MoCap system was based on six Miqus M3 cameras connected
in a daisy chain, capable of tracking passive reflective markers
placed on a subject at 340 frames per second (fps). The
Qualisys MoCap system includes proprietary Qualisys track
manager (QTM) software that provides an interface for tasks
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such as camera configuration and calibration, session setup
and organization, marker-set definition, and MoCap measure-
ments. Furthermore, QTM offers a suite of tools for marker
labeling, data processing, analysis, and the export of MoCap
data, thereby enabling seamless integration with third-party
software. The camera system was calibrated according to the
QTM guidelines to ensure accurate tracking of the markers
and capturing their position and orientation in 3D space. Next,
41 passive reflective markers were attached to a full body
suit. The participant wore the suit, and we recorded a MoCap
trial to generate an automatic identification of markers (AIMs)
model. This model applies computer vision, localization, and
motion estimation techniques to detect and track markers,
facilitating an automated workflow for identifying and labeling
markers. Once the AIM model was created, the skeleton solver
function of QTM was used to calibrate the skeleton based
on the marker positions. Next, a person’s motion data was
recorded for four activities: normal walking, standing up from
a chair, sitting down onto a chair from a standing position, and
picking up a small object from the floor. The recorded skeleton
data was then exported in the Filmbox (FBX) file format and
further processed in the MotionBuilder software. Note that
for the falling activity, the MoCap data was relatively difficult
to collect due to markers attached to the body. Therefore, we
obtained MoCap data of the falling activity from Mixamo [37],
a freely-accessible online platform. In the next step, we import
the acquired MoCap data into specialized software such as
Unity or MotionBuilder, which are equipped with powerful
tools that allow for the creation of comprehensive, meticulous
and lifelike 3D animations.

D. 3D Trajectories of Human Body Segments

By using the basic MoCap data and the 3D animation tools,
we synthesized, augmented and visualized five human activ-
ities: falling on the floor, walking in an indoor environment,
standing up from and sitting down on a chair, and picking
up an object from the floor. Initially, the human activities
were simulated and varied in a single direction or at an
aspect angle of zero degrees with the help of 3D animation
tools, as shown in Fig. 1(b). However, we also needed to
synthesize multi-directional human activities to realize a sim-
ulated MIMO radar-based direction-independent HAR system.
Instead of using 3D animation tools, we simulated multi-
directional human activities more conveniently and efficiently
by spatially rotating the transmitter and receiver antennas of
the radar subsystem, Radari (see Sect. V-B).

Following the synthesis of the human movement, we extract
the spatial trajectories corresponding to each body segment of
the avatar. To track the different body segments, 21 simu-
lated point scatterers were placed on the avatar (see Fig. 3),
these model the actual body scatterers that backscatter the
transmitted RF signal to the receiver antennas of the 2 × 2
distributed MIMO radar system. We recorded the TV positions
(trajectories) of the simulated point scatterers in the 3D space
for the simulated human activities. For example, the 3D
trajectories of the simulated point scatterers for a simulated
walking activity are shown in Fig. 3.

At the outset, only 34 MoCap files were recorded, each
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Fig. 3: Virtual 3D propagation environment comprising a non-
stationary avatar with 21 simulated point scatterers on its body
segments and a simulated 2×2 multiperspective MIMO radar
system.

representing one of the five distinct types of human activities.
We visualized these activities using the Unity and Motion-
Builder 3D animation tools, and computed the corresponding
3D trajectories. To expand the total number of synthesized
human activities to 84, we applied data augmentation at the
motion-layer synthesis using the Unity and MotionBuilder
software (see Sect. V-A). Subsequently, we processed the 3D
trajectories in MATLAB for further data augmentation at the
physical- and signal-layer syntheses. Although data augmenta-
tion at the motion-layer synthesis may require some attention
to motion details, the physical-layer synthesis and signal-layer
synthesis data augmentation stages in the proposed simulation-
based framework are fairly automated. With the help of such
multi-stage data augmentation techniques, we generated 2826
micro-Doppler signatures (TV radial velocity distributions) for
each radar subsystem of the MIMO radar system. Section V
provides more details on the multi-stage data augmentation
techniques furnished by the proposed simulation-based frame-
work.

IV. CHANNEL MODELING AND SIMULATION

In this section, we first present a geometrical 3D indoor
channel that models an indoor propagation scenario using the
proposed simulation-based framework (see Fig. 3). Second, we
investigate the multipath components caused by non-stationary
simulated (real) point scatterers on avatar (human) body seg-
ments and simulate the corresponding TV propagation delays
for a human activity. Lastly, we explain how the simulated
propagation delays can be used to synthesize a received RF
signal, specifically for an FMCW 2× 2 MIMO radar system.

A. Geometrical Channel Model
We model and simulate a 3D channel for an indoor envi-

ronment, which consists of a 2 × 2 distributed MIMO radar
system, a moving person, and stationary miscellaneous items
such as furniture and electronics, as illustrated in Fig. 1(a).
Recall that Radari represents the ith radar subsystem of the
distributed MIMO radar system, ATx

i is the ith transmitter
antenna, and ARx

i is the ith receiver antenna for i = 1, 2. Let
[·]⊤ denote the vector transpose operation. Then, the position
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of the ith transmit (receive) antenna ATx
i (ARx

i ) of the 2× 2
MIMO radar system is represented by CTx

i = [xTx
i , yTx

i , zTx
i ]⊤

(CRx
i = [xRx

i , yRx
i , zRx

i ]⊤), as illustrated in Fig. 3.
A virtual propagation environment that resembles a real geo-

metrical 3D indoor channel is depicted in Fig. 3. In a real prop-
agation environment, a moving human subject has countless
non-stationary scatterers. For this research, we model these
non-stationary bodily scatterers with L = 21 non-stationary
simulated point scatterers on a moving avatar, as shown in
Fig. 3. Moreover, in Fig. 3, Cl(t) = [xl(t), yl(t), zl(t)]

⊤

denotes the TV spatial trajectory of the lth marker S(l),
dTx

l,i (t) (dRx

l,i (t)) represents TV Euclidean distance between
the lth marker S(l) and the ith transmit antenna ATx

i (receive
antenna ARx

i ), where i = 1, 2 and l = 1, 2, . . . ,L.
For the lth marker S(l) and the ith radar subsystem Radari,

the TV radial distance dl,i(t) is equal to one-half of the overall
propagation distance, i.e., dl,i(t) = (dTx

l,i (t)+dRx

l,i (t))/2. Fig. 3
shows that the antenna configuration {CTx

i , CRx
i } of the ith

radar subsystem, Radari, follows a monostatic configuration,
where CTx

i = CRx
i for i = 1, 2. This leads to the following

simplification: dl,i(t) = dTx

l,i (t) = dRx

l,i (t). The obtained TV
radial distances dl,i(t) of the L non-stationary simulated point
scatterers play an important role in simulating the TV propa-
gation delays τ (l)i (t), as explained in the following subsection.

B. Modeling of Multipath Components Caused by
Human Body Segments

RF signals generally experience multipath propagation, par-
ticularly in indoor environments with numerous stationary and
non-stationary reflective objects. In Fig. 3, the transmitted
RF signal takes on multiple propagation paths, traveling from
the transmitter antenna to the receiver antenna via multiple
real (simulated) point scatterers on the human (avatar) body
segments. Recall that in our simulation-based framework, the
21 simulated point scatterers on the avatar’s body segments
basically model the actual bodily scatterers that scatter the
transmitted RF signal back to the receiver antennas of the 2×2
distributed MIMO radar system. For this study, by virtue of
the cross-channel interference mitigation technique [16], we
assume that the two radar subsystems, Radar1 and Radar2, of
Ancortek’s mm-wave radar system do not interfere with each
other.

In the proposed simulation-based framework, we only con-
sider multipath components originating from the L = 21 non-
stationary dominant and non-dominant scatterers located on
various body segments of the avatar, as shown in Fig. 3. The
multipath components originating from stationary dominant
scatterers, such as walls, furniture, and floor, are excluded from
the analysis because they are easily filtered out through signal
preprocessing. Moreover, the bistatic components of the 2× 2
distributed MIMO radar systems are not considered for this
study. However, if required, the bistatic components of the
2× 2 distributed MIMO radar system can be easily simulated
in the proposed simulation-based framework.

The receiver antennas receive the multipath components, or
multiple copies of the transmitted RF signal, with distinct TV
propagation delays τ (l)i (t). For Radari, the lth TV propagation

delay τ
(l)
i (t) is related to the lth TV radial distances dl,i(t)

according to the relation τ
(l)
i (t) = 2dl,i(t)/c0, where c0 is

the speed of light. Within the framework of radar sensing,
the synthesized motion is completely characterized by the
simulated TV propagation delays τ

(l)
i (t), as explained in the

subsequent section.
For the five distinct types of simulated human activities

and Radar1, Fig. 4 shows the simulated TV propagation
delays τ

(l)
1 (t) of the L = 21 simulated point scatterers.

The lth TV propagation delay τ
(l)
i (t) depends solely on the

spatial trajectory of the lth marker. Therefore, when a person
suddenly falls, the abrupt change in the spatial positions of
the upper-body segment is reflected in the corresponding TV
propagation delays τ

(l)
1 (t), as illustrated in Fig. 4. In Fig. 4,

the TV propagation delays τ
(l)
1 (t) demonstrate the repetitive

nature of the walking activity. By analyzing the TV propa-
gation delays τ

(l)
1 (t), it is evident that the simulated walking

activity comprised four steps towards Radar1. In contrast, the
TV propagation delays τ

(l)
1 (t) in Fig. 4 for the other three

types of simulated human activities in place, namely sitting,
standing up and picking up an object, show smaller variations
corresponding to the mobility of the simulated point scatterers.

C. Channel Modelling for Radio-Frequency Sensing
This section elucidates the simulation of a composite RF

signal or equivalently, raw IQ data in fast time t′ and slow
time t, corresponding to a specific motion. To simulate the
composite RF signal of Radari, we need user-defined scatterer
weights, a user-defined antenna configuration {CTx

i , CRx
i }, and

the simulated TV propagation delays τ
(l)
i (t) corresponding

to the spatial trajectories of the simulated point scatterers
for a specific motion or a human activity (see Fig. 1(b) and
Fig. 4). For this study, we consider the L bodily scatterers to
be long-time non-stationary over the slow time t, and short-
time stationary over a limited chirp duration Tsw [42]. In
the following, for the FMCW 2 × 2 distributed MIMO radar
system placed in the indoor wireless channel, we synthesize
the complex baseband signal called the composite beat sig-
nal sb,i(t

′, t) [43], where i = 1, 2. Additionally, we discuss
an interpolation procedure that is integral to our channel-
simulation module of Fig. 1(b), as it mitigates the issues of
aliasing in the Doppler domain.

FMCW radar systems operate by repetitively emitting a
chirp waveform c(t′) [44], which is scattered back to the
receiver antenna by multiple stationary and non-stationary
scatterers present on the human body segments and other
objects in the environment. A quadrature mixture element
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Fig. 4: The simulated TV propagation delays τ
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simulated point scatterers for the five distinct human activities
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integrated into the receiver chain of the FMCW 2 × 2 dis-
tributed MIMO radar system is responsible for transforming
the incoming passband RF signal into complex baseband
(composite beat) signal sb,i(t′, t). The received complex base-
band signal sb,i(t

′, t) is sampled in the fast-time domain by
the analog to digital converter (ADC) module of the receiver
with the discrete sampling interval Ts in the fast-time domain.
Subsequently, for the coherent processing interval (CPI) of
the ith radar subsystem, Radari, the discrete samples of the
received complex baseband signal sb,i(t′, t) are organized in
fast- and slow-time domains. During the CPI, the phase of
Radari is preserved. This organization or rearrangement of the
discrete fast- and slow-time samples results in the radar’s raw
IQ data matrix Di [42], which can be expressed as

Di =


sb,i(0, 0) sb,i(Ts, 0) . . .

sb,i(0, Tsw) sb,i(Ts, Tsw) . . .
...

...
...

sb,i(0, (Nc − 1)Tsw) sb,i(Ts, (Nc − 1)Tsw) . . .

sb,i(Tsw − Ts, 0)
sb,i(Tsw − Ts, Tsw)

...
sb,i(Tsw − Ts, (Nc − 1)Tsw)


(1)

where Nc represents the number of chirps present within the
CPI of the FMCW radar system.

We want to synthesize the actual received complex baseband
signal sb,i(t′, t) of the FMCW 2× 2 distributed MIMO radar
system, so that we can simulate the radar’s raw IQ data
matrices Di for i = 1, 2. The received complex baseband sig-
nal sb,i(t′, t) of Radari can be synthesized by adding up the L
distinct beat signals s(l)b,i(t

′, t) [42], [43], each corresponding to
the lth multipath component originating from the lth simulated
point scatterer, i.e.,

sb,i(t
′, t) =

L∑
l=1

s
(l)
b,i(t

′, t). (2)

For Radari, the lth beat signal s(l)b,i(t
′, t) or the lth multipath

component can be simulated by using the expression [42]

s
(l)
b,i(t

′, t) =

∞∑
n=0

a
(l)
i (t) exp

[
j
(
2πf

(l)
b,i (t)t

′ + ϕ
(l)
i (t)

)]
×

δ(t− τ
(l)
i (t)− Tn)

(3)

where a(l)i (t), f (l)
b,i (t), and ϕ

(l)
i (t) denote the TV path gain, beat

frequency, and phase of the lth beat signal s(l)b,i(t
′, t), respec-

tively, and δ(·) denotes the Dirac delta function. The symbol
Tn in (3) represents the nth discrete slow-time instance, which
is determined by the chirp duration Tsw, such that Tn = nTsw,
where n is a non-negative integer. Let γ represent the slope
of the chirp signal. Then, the lth TV beat frequency f

(l)
b,i (t) of

Radari in (3) is given by f
(l)
b,i (t) = τ

(l)
i (t)γ. The ith and lth TV

phase ϕ
(l)
i (t) component is determined by the TV propagation

delay τ
(l)
i (t) according to ϕ

(l)
i (t) = 2πf0τ

(l)
i (t), where f0 is

the carrier frequency.
The TV path gain a

(l)
i (t) in (3) models the strength of the

lth marker in the received signal. For Radari and L simulated
point scatterers, we use time-invariant path gains a

(l)
i in (3) to

avoid unnecessary complexity. Therefore, we have a
(l)
i (t) =

a
(l)
i . In this study, for the five types of synthesized human

activities, the values of the time-invariant path gains a
(l)
i

are adjusted by investigating the actual TV radial velocity
distributions pi(v, t) (see Sect. VI) and the body surface
area [45]. It is worth noting that by using different sets of
time-invariant path gains, we can augment the radar data at
the signal-layer synthesis for a synthesized human activity (see
Sect. V-C).

We consider the L bodily scatterers to be long-time non-
stationary over the slow time t, and short-time stationary over
the fast time t′ for a limited chirp duration Tsw [42]. Thus,
the TV propagation delays τ

(l)
i (t), beat frequencies f

(l)
b,i (t),

and phases ϕ(l)
i (t) of the L simulated point scatterers are only

a function of the slow time t. For Radari and the kth slow-
time instant tk (kth row of the raw IQ data matrix Di in (1)),
the short-time stationarity assumption simplifies the synthesis
of the discrete complex baseband signal sb,i(t

′, tk) for a
synthesized human activity. At the slow-time instant tk, the IQ
components of the complex baseband signal sb,i(t′, tk) can be
digitally simulated as a sum of tone signals, i.e., sb,i(t′, tk) =∑L

l=1 s
(l)
b,i(t

′, tk), where the lth tone signal s
(l)
b,i(t

′, tk) has
the constant (time-invariant) beat frequency f

(l)
b,i (tk) and

phase ϕ
(l)
i (tk).

Within the framework of radar sensing, the synthesized
motion can be completely characterized by the simulated TV
propagation delays τ

(l)
i (t) of the L simulated (real) point

scatterers. The L TV propagation delays τ
(l)
i (t) are computed

from the TV spatial trajectories Cl(t) of the L simulated point
scatterers, which are animated with a fixed frame interval de-
noted by Tf . Therefore, the frame interval Tf is the slow-time
sampling interval of the simulated TV spatial trajectories Cl(t)
and the propagation delays τ

(l)
i (t). In actual radar systems,

the slow-time sampling interval is equal to the radar’s pulse
repetition interval (PRI), which is smaller (better) than the
frame interval Tf . Concretely, for the actual (simulated) raw
IQ data matrix Di in (1), the slow-time sampling interval Tsw

is equal to the radar’s PRI (frame interval Tf ). Thus, to ensure
that the simulated frame interval Tf is equal to the radar’s
PRI, we interpolate the spatial trajectories or the simulated TV
propagation delays τ (l)i (t) in our simulation framework. This is
necessary because the upper limit of the actual (synthesizable)
radial velocity, denoted by vmax (v′max), is determined by the
radar’s PRI (animation’s frame interval Tf ). Let λ denote the
wavelength, then we have vmax = λ/(4 · PRI), and v′max =
λ/(4Tf ).

V. MULTI-STAGE DATA AUGMENTATION

In this section, we explore multi-stage data augmentation
techniques (see Fig. 5) provided by the proposed simulation-
based framework that allow us to simulate large quantities
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Fig. 5: The proposed multi-stage data augmentation techniques offered by our simulation-based framework.

of quality radar signatures. First, we discuss a motion-layer
data augmentation technique, where various animation param-
eters and avatar characteristics, e.g., size and speed, can be
randomly varied to synthesize a variety of human motions.
We then explain data augmentation of the physical layer that
allows us to vary numerous physical-layer configurations and
the radar’s operating parameters, e.g., number of antennas and
their setup and PRI. Lastly, we delve into a data augmentation
technique at the signal-layer synthesis.

A. Motion-Layer Synthesis
For the five types of distinct human activities, we acquired

a small and basic MoCap dataset from the Mixamo platform
and the Qualisys MoCap system. A person with a height
of about 1.74 m performed the activities several times in
a room equipped with the Qualisys MoCap system. The
MoCap dataset we acquired comprised only 34 MoCap files,
each representing one of the five types of activities. The 3D
animation tools from both Unity and MotionBuilder software
were used to visualize the basic MoCap data for the human
activities. We complemented the basic MoCap data with the
3D animation tools to render realistic and diverse motion data.

In this study, one of our objectives is to synthesize a
large amount of data representing real human motions at the
motion-layer synthesis of our simulation-based framework. To
this end, we first adjusted the height of the avatar in the
MotionBuilder software by reducing it to 1.52 m (5 ft) and
increasing it to 1.83 m (6 ft). We then aligned the MoCap data
to the avatars with different sizes to account for the effects
of avatar dimensions and extended the data on the motion-
layer synthesis. Therefore, in the Unity and MotionBuilder
software, the total number of synthesized human activities
were increased to 84 by applying data augmentation at the
motion-layer synthesis stage, as indicated by Fig. 5. Note that
we can synthesize complex, varied, and entirely new sequences
of human movements by using the blend tree animation tool in
the Unity software that facilitates seamless transitions between
multiple humanoid animations. For the augmented human-
motion data (synthesized human activities), we computed TV
spatial trajectories (see Sect. III-D) and imported them into
MATLAB for further data augmentation at the physical- and
signal-layer syntheses (see Fig. 5).

B. Physical-Layer Synthesis
The simulation-based framework allows the adjustment

of the radar operating parameters and physical layer con-
figurations, e.g. PRI, carrier frequency fc, bandwidth Bw,

and antenna configuration {CTx
i , CRx

i }. Through these ad-
justments it is possible to both extend the simulated radar
data and simulate specific scenarios. At the physical-layer
synthesis data augmentation stage, appropriate antenna con-
figurations {CTx

i , CRx
i } were chosen to simulate the two radar

subsystems, Radar1 and Radar2, as shown in Fig. 6. To
maintain consistency with the actual 2× 2 distributed MIMO
radar system depicted in Fig. 1(a), the emulated radar system’s
operating parameters, such as PRI, carrier frequency fc, and
bandwidth Bw, were kept the same.

We first simulated different positions of the radar sub-
systems, Radar1 and Radar2, by using the rotation ma-
trix Ry(θRi), which can be expressed as [46]

Ry(θRi) =

 cos θRi 0 sin θRi

0 1 0
− sin θRi 0 cosθRi

 (4)

where θRi denotes the clockwise angular rotation along the
y-axis for Radari and i = 1, 2. Initially, the simulated radar
subsystems, Radar1 and Radar2, were placed at θR1 = 0◦

(CTx
1 ≈ CRx

1 ≈ [3, 1.1, 0]⊤) and θR2 = −90◦ (CTx
2 ≈

CRx
2 ≈ [0, 1.1, 3]⊤), respectively, i.e., CTx

2 = Ry(−90◦)CTx
1

and CRx
2 = Ry(−90◦)CRx

1 . In other words, Radar2 can be
simulated by simply rotating Radar1 counterclockwise by 90
degrees along the y-axis, as illustrated in Fig. 6. Using this
method, we emulated a 2×2 distributed MIMO radar system,
similar to the actual radar system in Fig. 1(a), to simulate the
MIMO radar signatures. Note that, with the use of the rotation
matrix Ry(θRi), any number of radar subsystems, sensors, or
nodes can be simulated at the physical-layer synthesis data
augmentation stage.

Recall that the human activities were initially simulated
with 3D animation tools in a single direction or at an aspect
angle of zero degrees. However, to develop a simulated MIMO
radar-based direction-independent HAR system, we required
multi-directional human activities. Compared to the motion-
layer synthesis, the required multi-directional human activities
can be simulated more easily and efficiently at the physical-
layer synthesis data augmentation stage. The multi-directional
human activities are simulated by spatially rotating the trans-
mitter and receiver antennas of the radar subsystem Radari,
for i = 1, 2. The angular difference between the two radar
subsystems is always kept at 90 degrees, i.e., θR1−θR2 = 90◦,
as depicted in Fig. 6. The different rotations of Radar1 and
Radar2 (θR1, θR2) correspond to the different directions of
the human activities, where (θR1, θR2) ∈ [−180◦, 180◦). We
simulated 18 different directions of the human activities at the
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Fig. 6: Simulation of a multiperspective 2 × 2 MIMO radar
system and multi-directional human activities.

physical-layer synthesis data augmentation stage, namely Di-
rection 1 to Direction 18, as illustrated in Fig. 6. For instance,
for a human activity, Direction 11 in Fig. 6 corresponds to the
scenario, where (θR1, θR2) = (−160◦, 110◦).

To summarize, at the physical-layer synthesis, we first simu-
lated the two radar subsystems, Radar1 and Radar2, to emulate
the 2× 2 distributed MIMO radar system. Secondly, by using
the rotation method, we simulated the multi-directional human
activities by simultaneously rotating the two radar subsystems,
as illustrated in Fig. 6. Thus, our proposed simulation-based
framework includes a physical-layer synthesis data augmenta-
tion stage, which efficiently and conveniently transforms and
augments uni-directional motion data into multi-directional
motion data and single radar data into multiple radar data.

C. Signal-Layer Synthesis

The signal-layer synthesis data augmentation stage of the
proposed simulation-based framework allows to simulate re-
alistic and diverse TV radial velocity distributions pi(v, t)
(micro-Doppler signatures) for a single human activity. Using
(3), we can simulate numerous multipath components corre-
sponding to the stationary and non-stationary scatterers in the
received complex baseband signal sb,i(t′, t) (see (2)). In this
research, multipath components originating from stationary
scatterers, such as walls and furniture, are not considered, as
they can be effectively filtered out during the signal prepro-
cessing stage. However, if necessary, the signal-layer synthesis
can simulate numerous complex propagation scenarios, e.g.,
those with or without radar clutter, by adjusting the path
gains a

(l)
i (t), beat frequencies f

(l)
b,i (t), and phases ϕ

(l)
i (t) of

the lth beat signal s(l)b,i(t
′, t) for Radari.

For the five types of synthesized human activities, we first
adjusted the values of the time-invariant path gains a

(l)
i by

looking into the actual radar signatures (TV radial velocity
distributions pi(v, t) (see Sect. VI)) and the body surface
area [45]. Subsequently, we augmented the simulated radar
signatures by varying the power levels (time-invariant path
gains a

(l)
i ) of the individual multipath component. Therefore,

at the signal-layer synthesis of the proposed simulation-based
framework, we augmented the radar data by using different

sets of time-invariant path gains a
(l)
i for the five types of

synthesized human activities.
In this section, we discussed three data augmentation

techniques implemented at multiple layers of the pro-
posed simulation-based framework: the motion-layer syn-
thesis, physical-layer synthesis, and signal-layer synthesis.
By applying these multi-stage data augmentation techniques,
we simulated 2826 TV radial velocity distributions pi(v, t)
(micro-Doppler signatures) for each radar subsystem of the
2× 2 MIMO radar system. In other words, for the two radar
subsystems, Radar1 and Radar2, a total of 5652 TV radial
velocity distributions pi(v, t) were simulated. To conclude,
the multi-stage data augmentation methods in the proposed
simulation-based framework are quite useful and they allowed
for increased variability, realism, and diversity in the simulated
radar dataset. With these methods, we were able to transform
and augment the basic motion data (34 MoCap files) into 5652
radar signatures, which indicates the utility of the proposed
simulation-based approach for realizing radar-based classifiers.

VI. MIMO RADAR SIGNATURES

In this section, we delineate the radar signal processing
module of Fig. 1 that generates the MIMO radar signatures:
range distribution, TV radial velocity distribution pi(v, t)
(micro-Doppler signature), and mean velocity (mean Doppler
shift). For i = 1, 2, the radar signal processing mod-
ule transforms the actual and the simulated complex base-
band signals sb,i(t

′, t) into the TV radial velocity distribu-
tions pi(v, t). The first step is to compute the beat frequency
function Sb,i(fb, t) as [47]

Sb,i(fb, t) =

Tsw∫
0

sb,i(t
′, t)e−j2πfbt

′
dt′ (5)

where fb refers to the beat frequency.
Let f and fb,max denote the Doppler frequency and max-

imum beat frequency, respectively. Then, the micro-Doppler
signatures Si(f, t) are obtained from the beat frequency func-
tion Sb,i(fb, t) according to the relation [35]

Si(f, t) =
∣∣∣ fb,max∫

0

∞∫
−∞

Sb,i(fb, t
′′)Wr(t

′′ − t)e−j2πft′′dt′′dfb

∣∣∣2
(6)

where t′′ denotes the running time, and Wr(·) denotes a
rectangular window function that spans over 64 chirp intervals.
According to [43], the TV radial velocity distribution pi(v, t)
can be obtained as

pi(v, t) =
Si

(
2f0
c0

v, t
)

∫∞
−∞ Si

(
2f0
c0

v, t
)
dv

(7)

where v denotes the radial velocity. From the TV radial
velocity distribution pi(v, t) in (7), we can compute the TV
mean radial velocity v̄i(t) as [43]

v̄i(t) =

∞∫
−∞

vpi(v, t)dv. (8)
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For Radari, the TV beat-frequency signatures S′
i(fb, t) can

be computed as

S′
i(fb, t) =

∣∣∣ PRF∫
0

∞∫
−∞

Sb,i(fb, t
′′)Wr(t

′′ − t)e−j2πft′′dt′′df
∣∣∣2
(9)

where PRF is the pulse repetition frequency of the radar
system, and i = 1, 2. Finally, for the 2×2 MIMO radar system,
the TV range distribution p′i(r, t) can be obtained as [42]

p′i(r, t) =
S′
i

(
2γ
c0
r, t

)
∫∞
−∞ S′

i

(
2γ
c0
r, t

)
dr

. (10)

Recall that the real (simulated) point scatterers on the human
(avatar) body segments, each with unique TV radial velocity
components, scatter the transmitted RF signal back to the
receiver antennas of the 2×2 distributed MIMO radar system.
For Radari and the L distinct non-stationary real (simulated)
point scatterers, the TV radial velocity distribution pi(v, t) in
(7) indicates the strengths of the radial velocity components
over the slow time t (see Fig. 7). The TV mean radial
velocity v̄i(t) in (8), obtained from the TV radial velocity
distribution pi(v, t), shows the weighted average of the veloc-
ity components of all L real (simulated) bodily scatterers over
the slow time t (see Fig. 8). Moreover, the strengths of the TV
radial distances of all L non-stationary real (simulated) point
scatterers over the slow time t are provided by the TV range
distributions p′i(r, t). Due to the current practical limitations
of radar systems, the TV range distributions p′i(r, t) are not
usually used to realize HAR systems, so their simulation
results are omitted for brevity. However, for completeness and
possible future applications, we have included the expression
in (10) to simulate the TV range distribution p′i(r, t).

In Section V, we saw that multi-directional human activities
can be simulated by simultaneously rotating the two radar
subsystems, Radar1 and Radar2, as shown in Fig. 6. For
some of the 18 directions and all five types of simulated
(actual) human activities, the simulated (actual) TV radial
velocity distributions, p1(v, t) and p2(v, t), are shown in
Fig. 7(a) (Fig. 7(b)). The images of the simulated (actual)
TV radial velocity distributions, p1(v, t) and p2(v, t), were
used to train (test) the proposed 2 × 2 MIMO radar-based
direction-independent HAR system. In the subsequent section,
the two colored images of the TV radial velocity distributions,
p1(v, t) and p2(v, t), will serve as input feature maps to
the HAR system. Moreover, for the five types of human
activities and the two radar subsystems, Radar1 and Radar2,
the simulated and actual TV mean radial velocities v̄i(t) are
depicted in Fig. 8. The utility and effectiveness of the proposed
simulation-based framework is evident from the high-fidelity
simulated radar signatures, which are quite similar to the actual
radar signatures, as exemplified by Figs. 7 and 8.

To quantitatively assess the similarity between simulated
and real radar signatures, we employ the dynamic time warp-
ing (DTW) algorithm [48]. Table I presents the normalized
DTW distances between the real and simulated TV mean
radial velocities v̄i(t) from Fig. 8 across five human activities.

Fall Walk Stand up Sit down Pick

Direction 1 Direction 10 Direction 4 Direction 5 Direction 5

(a)

Fall Walk Stand up Sit down Pick

Direction 1 Direction 10 Direction 4 Direction 5 Direction 5

(b)

Fig. 7: (a) Simulated TV radial velocity distributions, p1(v, t)
and p2(v, t), for the emulated multi-directional human activ-
ities. (b) Real TV radial velocity distributions, p1(v, t) and
p2(v, t), for the real multi-directional human activities.
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Fig. 8: Simulated and measured TV mean radial veloci-
ties v̄1(t) and v̄2(t) of Radar1 (—) and Radar2 (· · · ), respec-
tively.

TABLE I: The DTW distance metric is calculated for the
simulated and real (actual) TV mean radial velocities v̄i(t)
of Fig. 8.

Activity type Real
fall walk stand sit pick

Si
m

ul
at

ed

fall 0.03 0.30 0.14 0.21 0.14

walk 0.28 0.01 0.36 0.03 0.22

stand 0.06 0.24 0.03 0.11 0.05

sit 0.17 0.05 0.17 0.01 0.08

pick 0.09 0.13 0.08 0.04 0.02

Remarkably, the DTW distance metric is minimized for each
activity, indicating close resemblance between the simulated
and real radar signatures. For example, for the sitting activity,
a DTW distance of 0.01 between the simulated and real TV
mean radial velocities v̄i(t) demonstrates precise replication of
this pattern. This consistent trend across all activities confirms
the accuracy of our approach in simulating realistic radar data.

VII. SIMULATION-BASED HAR SYSTEM

This section elucidates the training and testing phases of our
simulation-based direction-independent HAR system that was
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realized by using a DCNN-based multiclass classifier. First, we
look into the design of the HAR classifier and its training with
the simulated radar dataset. Then, to demonstrate the practical
importance and the generalizability of our proposed simulation
framework in real-world scenarios, we used a real 2×2 MIMO
radar dataset to evaluate the classification performance of the
trained simulation-based direction-independent HAR system.

A. Design of the Simulation-Based HAR System

To develop a simulation-based HAR system, we first created
a large labeled dataset of simulated radar signatures. For
Radari (i = 1, 2) of the 2 × 2 MIMO radar system and
the five types of humanoid activities, we simulated 2826 TV
radial velocity distributions pi(v, t) by using the proposed
multi-stage data augmentation techniques of our simulation-
based framework (see Sect. V). Thus, the simulated radar
dataset consisted of a total of 5652 simulated TV radial
velocity distributions pi(v, t), which were used to train the
proposed simulation-based direction-independent (multiper-
spective) HAR classifier.

The simulation-based direction-independent HAR system
comprises two feature extraction networks (FENs) and a multi-
layer perceptron (MLP) network. Fig. 9(a) illustrates the FEN
that computes relevant features from the simulated (actual)
TV radial velocity distributions pi(v, t) during the training
(testing) phase for the ith radar subsystem, Radari. It consists
of four convolutional layers, containing 64, 72, 80, and 96 two-
dimensional (2D) trainable kernels with dimension kd either
equal to 4 × 4 pixels or 3 × 3 pixels. Each 2D kernel uses
the rectified linear unit (ReLU) activation function to avoid
the problem of vanishing gradients [49]. The max-pool layers
were employed to reduce redundancies in the feature maps.
To avoid overfitting the training data, we used dropout layers
with the dropout rates of 10% and 15% for the FEN and
MLP, respectively. The flatten layer of our FEN rearranges
the extracted features into a vector of order 18816 × 1, as
shown in Fig. 9(a).

The two FENs in the DCNN-based multiperspective HAR
system are identical, as shown in Fig. 9(b). As Radar1
and Radar2 illuminate the indoor environment from multiple
perspectives, the extracted features from the two TV radial
velocity distributions, p1(v, t) and p2(v, t), are merged by the
multiperspective feature fusion block, as shown in Fig. 9(b).
Subsequently, based on the received multiperspective features,
the MLP network is trained to detect the type of the human
activity. The multiperspective feature fusion block enables the
HAR classifier to recognize the human activities regardless
of their directions. Note that the design of this multiperspec-
tive deep neural network closely resembles the architecture
reported in [35]. To train the parameters of our DCNN-based
multiperspective HAR classifier, we used the adaptive moment
estimation (Adam) optimizer [50] and the simulated radar
signatures of multi-directional human activities. The training
dataset, comprising 2826 pairs of simulated TV radial velocity
distributions pi(v, t), was further divided into training and
validation subsets in an 80 : 20 ratio. During the training phase,
our DCNN-based multiperspective HAR classifier showed no
signs of overfitting, as demonstrated by the training and
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Fig. 9: (a) Feature extraction network, FEN, based on convolu-
tional filters. (b) The proposed DCNN-based multiperspective
HAR classifier that is trained (tested) using the simulated (real)
HAR dataset.

validation curves in Fig. 10.

B. Testing of the Simulation-Based HAR System
To evaluate the performance of the trained 2 × 2 MIMO

radar-based multiperspective HAR classifier in a real-world
setting, we used a real radar dataset recorded by Ancortek
SDR-KIT 2400T2R4, as shown in Fig. 2. The operating
parameters and antenna configurations of the real and the
simulated 2 × 2 MIMO radar systems were kept similar for
consistency. Specifically, we set the PRI, carrier frequency fc,
and bandwidth Bw of the real and simulated MIMO radar
systems to 0.5 ms, 24.125 GHz, and 250 MHz, respectively.
For Radar1 and Radar2, the antennas were placed at CTx

1 ≈
CRx
1 ≈ [3, 1.1, 0]⊤ and CTx

2 ≈ CRx
2 ≈ [0, 1.1, 3]⊤, respectively.

A total of 875 multi-directional human activities were
recorded with the 2 × 2 MIMO radar system from six hu-
man subjects, including a female participant. Thus, the real
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Fig. 10: Training history of our simulation-based direction-
independent HAR system.
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radar dataset consisted of 1750 TV radial velocity distribu-
tions pi(v, t) (micro-Doppler signatures) for the two radar
subsystems, Radar1 and Radar2. As a direct result of this ex-
tensive measurement campaign, the simulation–real (training–
testing) data ratio approximately came out to be 76: 24. Our
simulation-based framework enabled the realization of the
simulation-based direction-independent HAR system, which
exhibited remarkable performance and efficacy in the real
world, as demonstrated by the confusion matrix in Fig. 11. For
each of the five types of multi-directional human activities,
the number of correct classifications is represented by the
first five diagonal entries of the confusion matrix. The green
colored entries in the last row and column exhibit the precision
and recall [51] in Fig. 11. Finally, the white colored entry of
the confusion matrix shows the overall classification accuracy
of our simulation-based direction-independent HAR system,
which is 97.83%. As our test dataset was sufficiently balanced,
the macro average F1-score [52] came out to be approximately
97.6%, which is close to the overall classification accuracy.

For RF-based HAR systems, asserting the superiority of
one method proves challenging, given their tailored design
to address diverse research challenges. Nonetheless, Table II
presents the performance of various contemporary HAR sys-
tems, utilizing classification accuracy for comparison. Notably,
the measurement-based HAR methods and those partially
utilizing measurement data demonstrate strong classification
accuracies. The Vid2Doppler [53] method, which translates
video to radar data, achieves an accuracy of 81.4%, while our
simulation-based approach, converting MoCap data to radar
data, achieves a higher accuracy of 97.8%, both utilizing
entirely simulated training data.

This section demonstrated the utility and efficacy of the
simulation-based framework in the real world. The classifica-
tion accuracy of the simulation-based direction-independent
HAR system is comparable to the current HAR sys-
tems [18], [59], with the additional consideration of the multi-
directional human activity recognition problem. Moreover, our
simulation-based framework is unique in its ability to generate
realistic, diverse, and unlimited labeled MIMO radar datasets
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Fig. 11: Confusion matrix of our simulation-based multi-
perspective HAR classifier with a classification accuracy of
97.83%.

TABLE II: Comparing the classification performance of state-
of-the-art RF-based HAR approaches.

Approach Training data type & brief description Accuracy
Wi-Sense [14] Involves measurement data; Obtaining

fingerprints from the Wi-Fi channel
state information (CSI)

97.8%

Convolutional
neural network
(CNN)-LSTM [54]

Involves measurement data;
Unsupervised learning and data
fusion using LSTM

92%

Few-shot
adversarial domain
adaptation
(FS-ADA) [55]

Involves measurement data;
Discovering shared feature spaces in
training datasets

91.6%

CNN-recurrent
neural network
(RNN) [56]

Involves measurement data;
Extracting patterns over space and
time

90.8%

Joint domain and
semantic transfer
learning
(JDS-TL) [12]

Involves measurement data; Utilizing
10% labeled radar data for domain
adaptation

87.6%

Wasserstein refined
generative
adversarial network
with gradient
penalty
(WRGAN-GP) [57]

Synthesizing data with GANs
utilizing limited measurements;
Employing a refinement model to
synthesize high-fidelity spectrograms

94.9%

Multibranch
generative
adversarial network
(MBGAN) [58]

GAN-centered data generation using
limited real data; Physics-informed
method improving GANs for accurate
micro-Doppler synthesis

89.2%

Vid2Doppler [53] Simulation-based training; Converting
video data into Doppler data

81.4%

Our simulation-
based approach

Simulation-based training; Converting
motion data into radar signatures

97.8%

with software-defined operating parameters and configura-
tions. Therefore, the proposed simulation-based framework in
Fig. 1(b) can be readily used to develop other SISO and MIMO
radar-based classifiers, e.g., for sign language detection.

VIII. CONCLUSION

The progression of SISO and MIMO radar-based classifiers
is primarily impeded by the unavailability of large labeled
training datasets. Therefore, as a proof-of-concept, we have
presented in this work a simulation-based approach to address
the concern of data scarcity for monostatic, bistatic, and
multistatic SISO and MIMO radar systems. Although our
focus was on realizing a 2 × 2 MIMO radar-based direction-
independent HAR system, the utility of our simulation-based
framework extends beyond HAR applications.

The proposed simulation-based framework provides the
flexibility to synthesize software-defined human movements
using MoCap data-driven activity simulation. We proposed a
MIMO channel model to convert simulated 3D trajectories
into received RF signals, while considering a user-defined
antenna configuration of a distributed MIMO radar system and
the multipath components emanating from the non-stationary
simulated point scatterers. The synthesized RF signals were
further processed to simulate the multiperspective MIMO radar
signatures used to implement our simulation-based direction-
independent HAR system.

To generate a diverse training dataset for radar-based HAR
systems, we introduced multi-stage data augmentation tech-
niques at the motion-layer synthesis, physical-layer synthesis,
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and signal-layer synthesis within our simulation-based frame-
work. The multi-stage data augmentation techniques helped
to gain absolute control over various factors, such as avatar
size, location, velocity, acceleration, PRI, and radar antenna
configuration. By using these techniques, we augmented the
basic MoCap data to 5652 micro-Doppler signatures, dras-
tically minimizing the overall training workload and demon-
strating the effectiveness of our simulation-based approach for
realizing radar-based classifiers. Our MIMO radar-based HAR
system trained on the simulated micro-Doppler signatures
achieved classification accuracy of 97.83% when tested with
actual radar data. As our study eliminates the need for direct
involvement of human participants and an actual radar system,
we believe that the proposed proof-of-concept will be of
great importance for training future SISO/MIMO radar-based
classifiers.

Our MIMO channel model opens up new research per-
spectives for modelling received RF signals at the scatterer
level. For example, future studies can explore the optimiza-
tion of scatterer-level parameters, such as the simulated TV
path gains. A limitation of this research is that the methods
discussed are not directly applicable to the moving clutter
scenario where the radar antennas are non-stationary. This
research gap is beyond the scope of this work and can be
addressed in future studies.
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