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8.1. Introduction

Mathematical modelling (MM) is a powerful tool used by scientists and engineers
to solve important problems for humankind. MM opens many possibilities for inquiry
and has been included in the PLATINUM project as one of the Intellectual Outputs,
IO5 (see Chapter 5 for the complete list). We consider MM an important part of the
teaching and learning process. We believe that helping to develop students’ modelling
competencies we equip them with a valuable understanding of practical and theoretical
concepts, prepare them for a life-long learning, and form them as critical citizens.

This chapter is organised as follows. In Section 8.2, we share our views on why
we teach MM, noting that our teaching practices are adapted differently to suit local
educational contexts (types of students, programs of study, institutional traditions,
constraints, etc.). We proceed with the discussion of what are the most important
to us characteristics of Inquiry-Based Mathematics Education (IBME) as a teaching
approach. To explain authors’ understanding of how the MM relates to IBME, the
concept of ‘active knowledge’ is introduced in Section 8.3. The key idea of this concept
is that in response to the use of IBME in the classroom students’ engagement with MM
activates previously acquired knowledge and facilitates its efficient use. In Section 8.4,
partners present examples of the use of MM within IBME practices and comment on
how students activate their mathematical knowledge. Each example shows multifac-
eted connections between MM and IBME. We reflect on the lessons learned from our
contributions to the Intellectual Output IO5 in Section 8.5.

8.2. Mathematical Modelling and Inquiry-Based Mathematics Education
in Our Teaching

Theoretical foundations of Inquiry-Based Mathematics Education (IBME) pre-
sented in Chapter 2 emphasise the importance of improving the balance between pro-
cedural and conceptual learning of mathematics through an inquiry approach that
offers students opportunities for deeper engagement with the subject. On the one
hand, inquiry-based tasks motivate and encourage students to get involved with the
subject more actively by posing questions and trying to answer them, and by explor-
ing processes and concepts. On the other hand, mathematical modelling (MM) tasks
motivate students’ engagement into activities that contribute to the development of
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their creativity and exploratory skills that are characteristic of professional mathe-
maticians, with the aim of developing students’ mathematical literacy and prepare
them for professional life. Therefore, the main ideas of the IBME are well suited for
the use in mathematical modelling and can be employed to motivate students to learn
actively in and outside the classroom through individual and collaborative problem
solving and project work. This is often achieved when students work with authentic
tasks and are provided with a timely strategic support.

8.2.1. Why Do We Use Mathematical Modelling in Our Teaching? In
their work on mathematical modelling and applications, Blum and Niss (1991) defined
a mathematical model as a triple (S, M , R) consisting of some real problem situation
S, some collection M of mathematical entities and some relation R by which objects
and relations of S are related to objects and relations of M. Then, MM is the entire
process leading from the real problem situation to a mathematical model. Whilst this
definition seems easy to understand, in practice MM activity is very complex and there
is a certain disagreement in the mathematics education community as to what exactly
counts as a model/modelling, what the aims of MM are, and how it can be taught
best (cf., Kaiser & Sriraman, 2006; Hernandez-Martinez et al., 2021).

It is therefore not surprising that the authors of this chapter have similarities and
differences in their views of MM. In order to elucidate where these similarities and
differences lie, we look at the perspectives on MM that Kaiser and Sriraman (2006)
elaborated, and the questionnaire that Treffert-Thomas et al. (2017) developed based
on those perspectives plus an additional one called “Enjoyment perspective.” The five
categories connected to goals of teaching modelling are:

(1) Realistic (or applied) perspective, which describes the aims of MM as prag-
matic or utilitarian, that is, to solve practical problems in the way that
applied mathematicians would do in their professional practice;

(2) Epistemological (or theoretical) perspective, which sees the aims of MM as
theory-oriented, that is, to develop theory without paying too much attention
to the realistic aspects of a problem;

(3) Socio-critical (or emancipatory) perspective, which characterises MM as aim-
ing to develop critical understandings of the world and the role that mathe-
matics plays in making important societal decisions;

(4) Contextual perspective, which characterises MM as a tool for psychological
development, that is, MM activity should elicit the invention, extension, and
refinement of mathematical (psychological) constructs;

(5) Educational perspective, which sees the aims of MM as pedagogical, that is,
MM should foster the understanding of mathematical concepts and structure
the learning processes.

Treffert-Thomas et al. (2017) complemented this categorisation with a sixth one (see
also, Rogovchenko et al., 2020):

(6) Enjoyment (or affective) perspective, in which the aim of MM is the intrinsic
satisfaction derived from engaging in MM activity.

The authors completed the questionnaire on MM and IBME, where part D is based
on the items used by Treffert-Thomas et al. (2017),1 and we next discuss the results
from those categories where the majority of the partners agreed or disagreed. We all
strongly agreed or agreed that MM should aim to develop skills in solving authentic

1https://bit.ly/32h3cy1

https://bit.ly/32h3cy1
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problems and that MM with real data leads to significant insights, both character-
istics related to a realistic perspective. MM team members also strongly agreed or
agreed that the aims of MM are to develop general problem-solving skills and de-
velop students’ critical thinking skills, which would correspond to the educational and
socio-critical perspectives, respectively. Finally, MM team members strongly agreed or
agreed that MM should be based on the theoretical understanding of the phenomenon
to be modelled, which corresponds to an epistemological perspective.

These similarities are reflected in how each of the authors views MM and how
s/he operationalises her/his views in their teaching as a local community of inquiry.
For example, partners at Brno University of Technology (BUT) believe that MM ac-
tivities should be based on or motivated by applications of mathematics to real life
problems (realistic perspective), but this does not exclude pure mathematics activities
(epistemological perspective). Partners at Borys Grinchenko Kyiv University (BGKU)
believe that the main purpose of using MM in the educational process is for students to
acquire the knowledge of new mathematical facts, master new mathematical methods
useful for studying different phenomena and processes, improve conceptual under-
standing of mathematics and advanced mathematical thinking, gain some experience
in applying mathematical knowledge, develop collaboration and communication skills,
deepen motivation for lifelong learning, and so on. That is, MM for partners at BGKU
is a tool for forming students’ mathematical competence, which mainly corresponds
to an educational perspective. Partners at the University of Agder (UiA) believe that
MM should allow students to reach a certain mathematical maturity, to have knowl-
edge of different areas of mathematics, to develop critical thinking and the ability
to collaborate and communicate efficiently, with all these components embedded in
traditional mathematics courses. They also believe that MM should stimulate joy
and excitement of MM in students, and bring about creativity and inspiration, par-
ticularly in the advanced educational levels. These views correspond to the realistic,
educational and enjoyment perspectives.

We should be aware that these views are mediated by a myriad of factors that
affect practice. For example, partners at UiA need to deal with the fact that there are
no dedicated courses where MM is taught, so they include this important aspect of
mathematics in mathematics courses they teach. Partners at BGKU are responsible for
teaching of students in mathematics and ICT undertaking a larger variety of courses,
including those aimed at real-life applications, and hence MM plays a more prominent
role in their pedagogical strategy. Partners at BUT are new to the use of MM in
teaching but have plenty of experience in using MM in professional settings, where
theory is valued. All these contexts and circumstances shape what we value in MM and
what role we ascribe to MM in teaching (Hernandez-Martinez et al., 2021). Therefore,
while we agree on several basic features of MM and the ways it should be taught, these
features might look quite different in each of the partners’ practices.

Finally, we discuss questionnaire items in part D where most of the partners dis-
agreed. Partners were split in their opinion that every student should learn modelling,
if the aim of creating a model is to obtain a solution or if solving word problems
constitutes MM. We hypothesise that these disagreements stem from the realities and
situations in which each partner operates. For example, for partners at BUT, word
problems would not constitute MM because they are inauthentic while for partners at
BGKU these types of problems might provide important tools to achieve their teach-
ing goals. For partners at UiA and BUT, the process would be more important than
the solution to a problem because it is through the process of MM that students be-
come interested, engaged or even creative. On the other hand, for partners at BGKU,
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correct and complete solutions to problems carry a great deal of value because for it
indicates if students have achieved the learning that the teachers desire them to do.
Hence, we see disagreements as part and parcel of the different circumstances in which
partners find themselves but not as a barrier for discussing MM.

The partners agree that a simplified four-step cycle (Understanding task—
Establishing model—Using mathematics—Explaining result) described by Blum and
Borromeo Ferri (2009) represents a convenient format for the work with modelling
tasks with students. We also agree that successful students’ work on modelling tasks
requires certain mathematical maturity, knowledge in different areas of mathemat-
ics, critical thinking and ability to collaborate and communicate efficiently; MM at a
higher professional level brings also creativity and inspiration which turn it into an
“art of MM” rather than a process. One important goal in teaching MM is to share
with students the excitement and joy of mathematical modelling (Rogovchenko et al.,
2020) which can be experienced in a mathematics classroom even with an entry or
intermediate level modelling projects and problems.

8.2.2. How Do We Use Inquiry in Our Teaching? The ideas of inquiry-
based mathematics Education (IBME) can be traced back at least to the work of
the American philosopher and educator John Dewey (1859-1952) who published two
cornerstone monographs “How we think: A restatement of reflective thinking to the ed-
ucative process” (1933) and “Logic: The theory of inquiry” (1938). In the latter book,
Dewey defined inquiry as “the controlled or directed transformation of an indetermi-
nate situation into one that is as determinate in its constituent distinctions and rela-
tions as to convert the elements of the original situation into a unified whole” (p. 108).
Nowadays, student inquiry is characterised as “an educational activity in which stu-
dents are placed in the position of scientists gathering knowledge about the world.
Students direct their own investigative activity, completing all the stages of scien-
tific investigation such as formulating hypotheses, designing experiments to test them,
collecting information, and drawing conclusions” (Keselman, 2003, p. 898). This defi-
nition emphasises active participation and learner’s responsibility for constructing this
knowledge (de Jong & van Joolingen, 1998). Modern views on inquiry-based education
develop further Dewey’s educational philosophy promoting learning through reflective
inquiry which combines inductive and deductive methods and emphasises pragmatic
efficiency of knowledge and connections to real-life situations and professional practice
(Artigue & Blomhøj, 2013). In line with Dewey’s educational philosophy, inquiry in
the mathematics classroom often starts with the discussion of realistically looking
situations which may naturally lead to modelling.

The starting points for mathematical inquiry are the multiple live issues that students
possess; mathematics becomes the set of tools from which they can choose to help carry
out their inquiries. In this type of mathematics class, the teacher becomes a skilled
guide who can help shape student inquiries, aiding in the construction of mathematical
models and the selection of appropriate mathematical tools of inquiry and in supervising
the evaluation of such activities. (Stemhagen & Smith, 2008, p. 34)

Pedaste et al. (2015) conducted a systematic literature review identifying the core
phases of IBME and their involvement in learning distinguishing five distinct general
inquiry phases, some also split into subphases. The list of phases includes Orientation,
understood as the process of stimulating curiosity and addressing a learning challenge
through a problem; Conceptualisation, the process of stating hypotheses or stating
theory-based questions, which splits into subphases of Questioning and Hypothesis
Generation; Investigation, the process of exploring, experimenting, planning, and col-
lecting and analysing data with the two subphases of (i) Exploration, Experimentation
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and Data Interpretation and (ii) Conclusion and Discussion, understood, respectively,
as the process of drawing conclusions from the data analysis and answering the hy-
pothesis or research questions and the process of presenting findings, communicat-
ing with others and engaging in reflection, with the subphases Communication and
Reflection. Inquiry activities are organised in cycles, which combine different phases.
This fits especially well the process of learning mathematical modelling because re-
cent research links modelling competency with the ability to successfully perform all
steps in a modelling cycle (Blomhøj & Højgaard Jensen, 2003; Blum & Borromeo
Ferri, 2009; Blum & Leiß, 2007; Blum & Niss, 1991). Different models of a mod-
elling cycle are used in mathematics education ranging from a seven-step model for
research and teaching (Blum & Leiß, 2007) to a simpler four step schema (Under-
standing task—Establishing model—Using mathematics—Explaining result) deemed
to be more appropriate for students’ work (Blum & Borromeo Ferri, 2009).

We explored partners’ views on IBME by asking them to respond to parts A-C of
the four-part questionnaire “Relevance of inquiry for mathematical modelling.”2

In part A, the respondents were asked to indicate their preferences to 34 key
inquiry activities listed by Pedaste et al. (2015) with the understanding that not all
activities may be equally well suited for the inquiry in a mathematics classroom; this is
clearly reflected in the answers. It turns out that partners did not indicate particular
interest in the three activities related to the first phase, Orientation. Partners viewed
the following five activities as very relevant or relevant for inquiry-based learning;3

phase names are written in italics in the parentheses; the items are ordered from the
highest ranked on the top of our list to the lowest ranked at the bottom):

(5) Determining what needs to be known, Define problem, Identifying the problem,
Identification of question or questions (Conceptualisation);

(11) Investigate, Observe, Observation, Collect my evidence, Conduct observation,
Explore, Exploration, Initial observation (Investigation);

(24) Construction, Reasoning with models, Problem solving and developing a course/
experiment (Conclusion);

(27) Evaluating success, Evaluate, Evaluation, Evaluate action, Evaluate inquiry,
Comparing new knowledge to prior knowledge, Test the explanations (Falling
between Conclusion and Discussion);

(28) Discuss, Debate, Share and discuss my inquiry, Discussing with others, Com-
municating new understandings, Elaborate, Communicating results, Argument,
Discussion and presentation of new content, Communication, Learner communi-
cates and justifies explanation, Present inquiry (Discussion).

On the list of inquiry activities where the partners’ views on relevance diverged
the most, we find three items: (14) Sign system exploration and (21) Transmediation
(both from the phase Investigation) and (23) Celebration (from the phase Conclusion).

Part B regards Essential Ingredients in inquiry-based mathematics education
(Artigue & Blomhøj, 2013). Summarising the results, we observe that the part-
ners valued most highly two items: Pose questions and Inquire—the 5 E’s: Engage,
Explore, Explain, Extend, Evaluate—both grouped into What Students Do, and that
the partners expressed differing views on the two items from the group Classroom
culture: Shared sense of purpose/justification, and Shared ownership. The views on
the ingredients of IBME collected under the umbrellas of Valued outcomes, Teacher
guidance and Type of questions were much less pronounced. This suggests that all

2The questionnaire and the summary of the answers of six team members can be found at the

following link: https://bit.ly/32h3cy1
3Activity numbers are from Pedaste et al. (2015).

https://bit.ly/32h3cy1
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partners indicate clear interest in using inquiry as the learning strategy and value mul-
tifaceted experiences that inquiry offers students. Not surprisingly, classroom culture
in the Czech Republic, Norway and Ukraine differ significantly which is reflected in
the answers.

Part C of our questionnaire is based on the list of Components of Inquiry Pro-
cess (Artigue & Blomhøj, 2013), indicate three favourites: New experience/question,
Plan and conduct investigation, and Interpret data. Much less agreement between the
partners was observed with regard to the remaining components: Possible explana-
tion, Existing idea, Alternative ideas, Bigger idea, Prediction, and Conclusion. This
again points towards partners’ prioritisation of the organisation of students learning
through inquiry emphasising questioning, analysis, and validation of results, all three
components critical for the proper structuring of the modelling activities. The final
part D of the questionnaire was based on the paper by Treffert-Thomas et al. (2017);
our answers to this part were already discussed in Section 8.2.1.

The sources of mathematical inquiry in IBME emerge not only from mathematical
objects themselves, but also from daily life problems, industrial and technical prob-
lems, processes, and phenomena in nature, and even from art and human artefacts.

In relation to IBME, the concept of modelling offers a systematic way of understanding
and working with the relationship between mathematics and problem situations or
phenomena in other disciplines and in extra-mathematical contexts in general. From a
learning perspective, modelling can thus be a bridge between the mathematical concepts
and ideas and real-life experiences. Through modelling activities, the learner can make
sense of the concepts as well as gain new insights into the problem situations modelled.
(Artigue & Blomhøj, 2013, p. 805)

Inquiry cycles and mathematical modelling cycles discussed in the research literature
exhibit striking similarity; therefore, the work with mathematical models leads to
“valuable understanding of inquiry as a more general process with different particular
realisations in different disciplines and contexts” (Artigue & Blomhøj, 2013, p. 805).

8.3. Active Knowledge: Connecting IBME and MM

Introducing the notion of mathematical modelling competence, Blomhøj and
Højgaard Jensen (2003) highlighted the following steps in the modelling process:

(a) Formulation of the task and identifying the characteristics of perceived real-
ity.

(b) Selection of the relevant objects and relations, use of idealisation.
(c) Translation to mathematics.
(d) Use of mathematical methods.
(e) Interpretation of results.
(f) Evaluation and validation of the model by comparison with data.

We believe that these steps require the following abilities from the students:

(a) Curiosity, motivation, exploring, engagement
(b) Exploring, engagement
(c) Engagement
(d) Engagement
(e) Evaluation
(f) Evaluation

Drawing on these ideas, we introduce the concept of active knowledge to explain how
the modelling process is related to inquiry-based learning and how this relationship
enhances the active knowledge formation. We want to distinguish active knowledge
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from passive knowledge in a following way: active knowledge is used on the regular
basis; passive knowledge is what we recognise when we encounter it but do not use
often. This can be compared with the use of languages: active and passive vocabulary.
Transformation from passive to active knowledge in MM can be seen as an activation
of the knowledge previously acquired by students during the modelling process in
response to the use of IBL in the classroom. On the other hand, active learning
describes the process of gaining knowledge based on learner’s activity and agency;
students acquire an important role of co-creators of new knowledge. We see the process
as follows: students use active learning to obtain knowledge; activate it during MM
(learn how to use it); and use active knowledge for theoretical and professional tasks on
the regular basis. The connection between the ways of gaining knowledge and different
areas of applying it within the active knowledge framework is shown in Figure 8.1;
we use the concept of active knowledge to explain the passage from “how to gain
knowledge” to “when to use it.” Students use active knowledge both during the study
process (solving realistic tasks with help of modelling, using modelling to develop
mathematical concepts) and as professional tool (creation of mathematical theory,
innovation activities, solving professional tasks).

Figure 8.1. Main components of active knowledge.

We believe that teachers can promote inquiry within mathematical modelling as
the form of active knowledge; this brings students closer to the atmosphere of math-
ematical discovery which is usually associated with the work of professional mathe-
maticians. Students are encouraged to reflect about new material in an explorative
manner, by asking and answering questions which help to understand mathematical
concepts, the reasoning in the proofs, logical chains of arguments in the solutions of
problems. When students understand that passiveness in the class does not help to
learn mathematics efficiently and accept the challenge of being challenged, the routine
work in the classroom turns into an exciting adventure into the Universe of mathemat-
ics. Ambiguity and confusion experienced on times by students should not discourage
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them as they lead to small but important discoveries and victories; uncertainty is
the feeling often experienced by research mathematicians and mathematical modellers
creating and applying new mathematics in their work. As Byers (2007, p. 78) pointed
out, “ambiguity can be the doorway to understanding, the doorway to creativity.”
By designing inquiry tasks, especially modelling problems, and including them in our
teaching, we provide opportunities for students’ learning and engagement in critical
reflection. On the other hand, mathematics teachers also engage in critical reflection
during the design, testing, and refining tasks; critical reflection is even more requested
when teaching-learning interactions occur in a context of genuine inquiry. Further-
more, existing students’ knowledge can be activated when teachers design tasks that
link students’ learning to an authentic inquiry, as it is done in academic and industrial
research. Finally, teachers also engage in critical reflection when they adjust their
thinking by discussing their practices with other teachers and researchers, as was the
case in PLATINUM. The three cycles of inquiry related to the active knowledge are
illustrated in Figure 8.2.

Figure 8.2. Active knowledge and mathematical modelling within
the three-layer model of inquiry.

The idea of active knowledge is reflected in the examples from the three partner
universities discussed in Section 8.4. First, we observe how Ukrainian mathematics
undergraduates create models for practical problems which lead to a rigorous formal
definition of a definite integral by using their previous experience of calculating areas of
elementary geometric shapes and the knowledge of the additive property of area. Then
we follow the process of the knowledge activation of Czech undergraduate students
who relate calculations of the volume and surface area for a sphere and a cylinder
in the final years of the high school, definition of the derivative of a function, its
basic properties and optimisation applications from a calculus course, and real-life
experience with the shapes of different beverage cans to design their own can that
is optimal from both mathematical and practical standpoints. Finally, Norwegian
master’s students activate the knowledge of physics laws, basic calculus, differential
equations, and computational skills to verify the applicability of the existence and
uniqueness theorem for a differential equation constructed to model a leaking bucket.
In all three examples, active knowledge featured multifaceted connections between
inquiry with mathematical modelling.
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8.4. Examples From Three PLATINUM Partners

In this section, we describe partners’ experience with the use of mathematical
modelling in their teaching and explore how the inquiry was organized by the lecturers
and perceived by students.

8.4.1. Borys Grinchenko Kyiv University. An important characteristic of
mathematical competence and, at the same time, a necessary condition for the effec-
tive application of mathematics for solving applied problems is the proper mastery of
mathematical concepts. Despite a large number of theoretical and empirical studies
on modelling and related mathematical activities, not many examples promote the use
of modelling as a teaching philosophy aimed, in the first place, at the formation of
students’ conceptual understanding. We agree with Gravemeijer (1999), who argued
that formal mathematics should be created by students themselves, and believe that
ideas of emergent modelling that encourage and stimulate the process of discovery
(construction) of mathematical theory by students themselves are useful. This is es-
pecially true for advanced mathematics because many key mathematical notions and
structures, like the concept of a limit of a function and related notions of derivative,
integral or the method of mathematical induction can be presented initially to students
as imperfect models introducing intuitive, non-rigorous ideas about mathematical con-
cepts and structures, or even as metacognitive models for the process of thinking about
them. Departing from authentic real or real-like situations originating usually in an
extra-mathematical domain, students construct the initial, naive understanding of a
new concept. The teacher’s task is to offer such stimulating problems. Then, through
the abstraction from the subject content of the specific problem, a mathematical model
of a rigorous mathematical concept is created on the basis of the preliminary intuitive
non-rigorous concept. During the shift from the real world back to abstraction, a
rigorous, formal concept gains a new quality, it carries with it an imprint of reality
becoming an efficient tool for its study, a “building block” for mathematical modelling.
Therefore, mathematical models and mathematical concepts develop simultaneously,
mutually stimulating each other’s development. Thus, we can view the formation of
the rigorous mathematical concepts and their consequent application as a cyclic triad
presented in Figure 8.3 where our views on MM and concept formation align with the
French tradition of Chevallard (1999), Brousseau (2002), and other authors (Garćıa
& Ruiz, 2006; Dorier, 2006) who consider all mathematical activity including problem
solving in pure mathematics as modelling.

Figure 8.3. The triad of formation and application of a mathemat-
ical concept.

The cyclic triad presented in Figure 8.3 is implemented at BGKU throughout the
entire study period. Depending on the year of study, discipline, and specialisation,
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teaching accents are shifted in accordance with the changes in learning objectives and
the course content. The IBME approach can be used effectively at every level of this
triad because its goal is not limited only to finding the right answer (which is often not
available in modelling tasks), but to find a good approach to the solution. Modelling
requires much more than a mere retrieval and use of the previously gained knowledge,
it requires a deep understanding of concepts, facts, processes, methods, and an ability
to apply them under new conditions working continuously on the border between the
known and the unknown.

During the first years of study, students at BGKU go through fundamental math-
ematical disciplines where the modelling is efficiently used to assist in the formation
of rigorous mathematical concepts and methods. Conceptual understanding of math-
ematics lays down good foundations for the study of advanced mathematical subjects,
including those oriented at the applications and solution of practical problems com-
ing from various branches of science, business, and engineering. At this stage, for
educational purposes students are mainly trained on “toy” problems designed for the
direct application of mathematical concepts, facts, and methods. The subject and
complexity of applied problems, both real and pseudo-real, eventually increase follow-
ing the developments in the study curriculum and relevant mathematics disciplines at
the bachelor level. The list of applied and interdisciplinary disciplines includes such
subjects as operations research and econometrics where the problems generally do not
require the use of the full mathematical modelling cycle or interaction with specialists.

In accordance with the methodological model presented in Figure 8.3, teaching
of “real” mathematical modelling for students majoring at BGKU in mathematics
starts only at master’s level within the programme “Mathematical Modelling.” The
purpose of the programme is to provide students with the solid training in mathematics
emphasising the-state-of-the-art theories and methods that have wide applications
in different fields of science and professional practice, including the basic methods
of mathematical modelling. The study curriculum includes the in-depth study of
the following disciplines: fundamentals of mathematical modelling, systems analysis,
forecasting, applied functional analysis, dynamic systems, applied mathematical and
computer modelling. Students must complete an undergraduate internship and write
a master’s thesis in which they develop a mathematical model for a particular field
(economics, finance, computer science, physics).

One of the possibilities to apply theoretical knowledge in mathematics and mathe-
matical modelling is a university business incubator (UBI) created to provide practice-
oriented applied learning and to increase students’ motivation for studying mathemat-
ics. The model of UBI uses existing successful practices in Poland, Israel, Norway, and
Estonia; it reflects both the market needs and peculiarities of higher education. The
UBI at BGKU provides a creative platform for the development of students’ innova-
tive projects in various fields of science including the development of mathematical
models for the solution of practical problems in business and industry; its structural
organisation is presented in Figure 8.4.

We present now an example illustrating the first level of the triad, namely the use of
mathematical modelling for the formation of the concept of the Riemann integral in the
Mathematical Analysis class for the first-year mathematics undergraduates at BGKU
taught by Dr. Mariia Astafieva. The purpose of the lecture was to form the concept
of a definite integral, make students understand what classes of applied problems can
be solved by using definite integral and practice modelling skills. The lecture was
conducted using an IBME approach, in particular, structured and guided inquiry.
Interactive teaching methods used in the classroom included brainstorming, small
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Figure 8.4. Organisation of the University Business Incubator at
Borys Grinchenko Kyiv University.

group discussions of the problems followed by the presentation of the outcomes to the
class, reflection, and the whole class discussion.

To involve students into cognitive and explorative activities, four applied tasks
were given where students had to find (1) the area of a curvilinear trapezoid, (2) the
mass of an inhomogeneous rod; (3) the distance travelled with a variable speed; and
(4) the volume of the output at variable productivity. To stimulate the student activity,
the work was initially organised in small groups (two groups of four students), each
group received identical figures cut out of paper (Figure 8.5), scissors and rulers.

Figure 8.5. Replacing the figure: with a trapezoid or rectangle.

Both groups had to suggest how to find the area of the given figure and deter-
mine it in just one minute. After a one-minute discussion, the group’s spokespersons
presented the solution idea and suggested an approximate value for the area. Group
No 1 noticed that the figure looked like a rectangular trapezoid. Therefore, their pro-
posal was to replace it with an ordinary trapezoid (i.e., to replace the curved “side”
with a line segment, see Figure 8.5) and use the formula for the area of the trapezoid.
Approximate value of the area: (11 + 7) ÷ 2× 12 = 108 cm2.

The idea of Group No 2 was to cut off the “hump” with scissors and fill the “hole”
with a piece that was cut off. That is, to replace the original figure with the rectangle
(see Figure 8.5). This group had as many as four different answers (108 cm2, 102 cm2,
99.6 cm2, and 105.6 cm2), because each student built “his/her own” rectangle.

To facilitate students’ formation of the concept of a definite integral, the teacher
encouraged them to think about the pros and cons of the proposed methods. In
a teacher-led discussion, students also suggested how to improve the procedure for
determining the approximate value of an area so that the calculation error is minimised.
In particular, they easily concluded that the methods proposed by both teams were
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not very successful. Their only advantage is simplicity. The biggest drawback is
that the obtained approximations are very rough. The productive idea of improving
the procedure in order to achieve better accuracy of the result came up with more
difficulty. However, the teacher was not in a hurry to readily suggest the idea using
instead a sequence of questions that eventually prompted the required idea to cut the
figure into vertical strips, which, like the whole figure, will be curvilinear trapezoids,
and then to add the areas of all the strips found by the approximation method of any
of the teams.

At the teacher’s suggestion to analyse the solution, the student S1 stated that
we did not solve the problem because our procedure gave an approximate but not
the exact value of the area, required in the problem. The problem identified by the
student is important in the context of constructing a definite integral. Thus, the
student correctly recognised the mathematical essence of the problem.

The identified problem encouraged a new search for correct answer illustrated in
the following excerpts (L=lecturer, S=student(s)).

Excerpt 1

L: Assume we cut the figure into one-centimetre-wide strips, calculated the approxi-
mate values of the area of each of them, added them up and got a value which (with
a certain error!) approximates the area of the whole figure. Is it possible to reduce
this error?

S: (chorus) Yes. It is necessary to cut the figure into narrower strips.
L: How wide? Half a centimetre? One millimetre?
S: (chorus) As narrow as possible.
S1,S2: The narrower the strips, the more accurately will the area be calculated.
L: Right. So, can we now draw a conclusion about the exact value of the area?
S1: This will be the limiting value! We already did that when we were looking for the

value of the instantaneous velocity.

Describing in mathematical terms the sequence of actions required for the solution,
that is, creating a mathematical model of the definite integral, students answered
lecturer’s questions by making reasonable assumptions and determining the required
parameters, as illustrated in the following excerpt.

Excerpt 2

L: Is it important to divide the figure into the strips of equal width?
S2,S3: No, it is not. It is important that the strips are narrow. But when they are of

the same width, it is easier to calculate the area.
L: Shall we choose trapezoidal strips, as suggested by group No 1, or rectangular, as

suggested by group No 2?
S1,S4,S6: It also doesn’t matter because the strips are very narrow. But it is better to

choose rectangular form because the area of the rectangle is easier to calculate.
L: So, we will assume each narrow strip to be rectangular. And what is its height?
S5: Well, let’s take approximately about half of the measurement between the points

on a “hump” and in the “hole.”
S1: We can actually measure this height anywhere.
L: I also believe that there is no need to ”aim” at any specific point between the ”hump”

and the ”hole”. Since the width of the strips goes to zero, any perpendicular to the
base of the strip can be considered the height of the rectangle. Do you agree?

(. . .)
L: Finally, when we write down the expression for the area of a “stepped” figure made

of n rectangles, it is necessary to pass to the limit. What limit do we need?
S2,S7: When the number of strips n goes to infinity.
L: Does everyone agree?
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Pause. Nobody replies.
L: Why do we want to increase the number of stripes indefinitely? What is the purpose?
S3,S7,S8: To make the strips narrower.
L: Okay. And by increasing their number will we achieve this goal?
S1: No! Look (demonstrates, cutting a curved trapezoid into two strips of approximately

the same width, and then continuing to cut in half only one of the two parts), the
number of strips increases, but one strip remains wide.

S7: Okay. But if you cut into strips of the same width, then with an unlimited increase
in the number of strips, their width will approach zero. So maybe it’s better to
divide into strips of the same width?

L: No need. I think there is a way out of this situation. We will require that if the
width of the widest strip approaches zero, so do the widths of all remaining strips.

The lecturer projected Figure 8.6 on the screen, introduced necessary mathematical
notation (∆xk = xk − xk−1, ξk ∈ [xk−1, xk], k = 1, 2, . . . , n) and asked student S8 to
recall all solution steps writing them down on the blackboard up to the final result:

lim
λ→0

n∑
k=1

f(ξk)∆xk, where λ = max
k

{∆xk}. (8.1)

Figure 8.6. Replacement of a curvilinear trapezoid with a stepped
figure.

After that students worked all together finding the mass of a heterogeneous rod and
then, in small groups, they found the distance travelled by a particle at variable speed
and production volume presenting group solutions to the class. Comparing solutions
to all four problems, the students concluded that the mathematical model for these
problems is based on the use of the limit as in Formula 8.1, where the function f defines,
respectively, the equation of a curve that limits the curvilinear trapezoid, linear rod
density, variable speed, and variable productivity; the same sequence of actions leads
to this mathematical model. It is worth mentioning one important observation made
by students: in all problems the required quantity A that they calculated (area, mass,
distance, volume of manufactured products), possesses the additive property:

A(ϕ1 + · · ·+ ϕn) = A(ϕ1) + · · ·+A(ϕn).

Students actively assisted the lecturer who introduced on the board the concept of a
definite integral of a function f(x) from a to b and explained the relevant notation.
Then they revisited all four problems, wrote solutions as definite integrals, and dis-
cussed the context in which the definite integrals were used: geometric (area), physical
(mass), mechanical (distance travelled), economic (production volume). In the end of
the class, students were asked for the feedback about the lecture. The lecture and stu-
dents’ feedback were discussed by the community of inquiry at BGKU. In particular,
the team members focused their attention on lecturer’s strategies and actions taken
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to achieve the educational goals set for the lecture and reflected whether these goals
were achieved, and if not, then why (see Table 8.1).

Goals set by the lecturer Strategy/Action to achieve the goals

Creating positive motivation Solution of applied problems in various fields

Involvement of students in

mathematics exploration

Use of IBME approach, in particular, structured inquiry

and guided inquiry. Students independently hypothesised,

discussed ideas, conducted their own explorations, and

drew conclusions. The lecturer encouraged students to be

critical of these ideas, to focus on solving the problem. In

fact, in students’ work, all stages of the 5E-model of in-

quiry were implemented (Bybee et al., 2006). Interactive

teaching methods: brainstorming was effectively used to

mobilize students to find productive ideas, discussion of

the problem in small groups, followed by presentation of

the results, group discussions.

Intuitive understanding of

the concept of a definite in-

tegral through the sequence

of steps needed for its con-

struction

Inductive approach and use of informal considerations. The

lecturer did not suggest the action plan to students, they

found it themselves. The lecturer set aside time for stu-

dents working in small groups to discuss ideas and find

solutions.

Conceptual understanding The lecturer did not rush and allowed enough time for dis-

cussions (setting the time limit of only one minute in the

beginning was an element of the game that created excite-

ment and the atmosphere of competition). She followed

closely discussions in the groups joining them unobtrusively

when needed becoming a peer participant (see, for exam-

ple, Excerpt 2). The lecturer supported students during the

discussions by providing constructive feedback. She did not

answer the questions directly encouraging students to look

for answers on their own. The lecturer patiently led stu-

dents from real situations to abstraction and construction

of a formal, rigorous definition.

Mastering mathematical

language

Using symbolic representation of the problems

Mathematical competence Using the existing knowledge in a new situation (solving

four different applied tasks)

Formation of active, inde-

pendent, creative thinking

IBME supported the curiosity of students and their de-

sire to be independent in the search for new knowledge;

it stimulated students to ask questions and look for an-

swers, which ultimately contributed to the improvement of

students’ knowledge, their ability to apply it in new situ-

ations, and an overall development of students’ advanced

mathematical thinking.

Table 8.1. The discussion of the lecture by the members of the
BGKU community of inquiry.
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The feedback from students signalled that the goals set by the lecturer were
achieved. It should be noted that students worked actively and with visible pleasure
throughout the lecture. This is what they were saying about the class:

We studied the definite integral at school. And, perhaps, the teacher told something
similar there. Maybe I forgot. But I only remember from school how to calculate, for

example,
∫ 3

1
x2 dx and in today’s lecture, I could not even think of a definite integral as

a limit. (. . . ) I also do not know where the formula for the calculation of the integral
came from (the one called Newton-Leibnitz formula). Most likely, the teacher just
wrote it down on the board and showed how to use it, but I remember it. But now I
am sure that in the following lectures we will find this out too. The teacher never tells
us to just remember, but tries to make us understand, and we often deduce this or that
formula ourselves, notice some fact, pattern. And I really like this kind of training.

From school I only remember how the area of a curvilinear trapezoid is found with a
definite integral. But only during today’s lecture I understood why this is so and how
do we come to this. (. . . ) Now I understand that in the same way as we were looking
for the area of a curved trapezoid, the mass of an inhomogeneous rod, the volume of
production, the path travelled at a variable speed, we can find other quantities. For
example, the length of a curve. It is necessary to break it into parts and replace each
part with a line segment. And then add the lengths of all the segments and look for a
limit. And it will be some kind of integral.

It’s hard for me to remember the definitions of concepts that are studied in mathemat-
ical analysis, such as limits. But the lecturer always introduces us to such concepts on
concrete examples. If it weren’t the specific examples, I would have never remembered
those “epsilon-deltas.” The same applies to the abstract and complex definition of a
definite integral. But after I cut the figure into narrower and narrower strips and looked
for the approximate value of the area, and then we attempted to find an exact one, we
obviously needed to pass to the limit when the width of the strips goes to zero and
then I understood how to construct a definite integral and what does it mean. Now I
think I can formulate the definition correctly and remember it.

The lecturer also commented on the chosen strategy and the effectiveness of lecture:

During the lecture a new concept was introduced. The most important task was to form
its conceptual understanding because it creates the basis for active knowledge, lays the
foundation for the conscious construction of its generalisations (multiple, curvilinear
and surface integrals). The definite integral, like many other concepts of mathematical
analysis, is not a model of certain objects but rather a model for the ways to study
objects and understand the ideas that underlie their construction. That’s why I chose
the IBME strategy: I tried to organise the classes so that students acted like profes-
sional mathematicians building their understanding of mathematical concepts (in this
case, the concept of a definite integral). In particular, they asked questions, hypothe-
sised, discussed and substantiated their own thinking, evaluated the thinking of other
students in a constructive and supportive environment. The creation of an adequate
mathematical model organically combines all the key areas and forms of mathematical
activity, launches all the necessary psychological mechanisms in their interaction. The
four “real” situations proposed for modelling were presented as inquiry-tasks. Clearly,
in a week or so none of mentioned tasks would have any inquiry potential for these
students. The tasks would become simple routines for training the skills in application
and calculation of the integral.

As for the efficiency of the lecture itself, it is difficult to analyse it right away as well
as the overall achievement of the goals. In particular, it takes time to assess students’
conceptual understanding of the notion of a definite integral, how well have they formed
this concept. Clearly, it takes much longer than just one lecture. Since the conceptual
knowledge becomes an instrument for the subsequent cognitive and practical work, it
should not only be acquired by own efforts and correspond to person’s natural curiosity,
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it must be well organised, reliably and optimally placed in the long-term memory, and
be ready for further use. For this purpose, the initial perception is not sufficient, one
needs a long practice of the knowledge application in different contexts.

There was an episode in the lecture when due to the nature of inquiry and questions
posed it was possible to reveal a gap in students’ understanding of the concept that they
studied earlier prompting that this concept did not develop into a component of active
knowledge. To find the area of a curvilinear trapezoid, Group No 2 proposed to replace
it with a rectangle (Figure 8.5). This prompted me to ask students impromptu an
inquiry question: “Is there a rectangle whose area is exactly (and not approximately!)
equal to the area of a curvilinear trapezoid?” It was suggested as a homework. And
guess what turned out? The next day, 4 students (out of 8) said that they think
(intuitively feel) that such a rectangle exists, but do not know how to prove it. Three
students answered the question in negative because “it is impossible to know exactly
what the height of the rectangle should be.” And only one student gave the affirmative
answer and substantiated it by “the property of a continuous function (in our case, it
was the area) to take on all intermediate values (Bolzano-Cauchy Theorem).”

So, most of the students didn’t notice that the area was a continuous function, or
couldn’t apply the property of a continuous function in different unexpected to them
context. The reason, obviously, is that the continuity of the function was studied a
long time ago, in the beginning of the first semester, and the students did not activate
the relevant knowledge due to its insufficiently frequent use or this knowledge was not
properly stored in the long-term memory and didn’t become active.

This example confirms once again the following:
• An indicator for the correct formation of active knowledge is the ability to apply

it for solving problems of practical and exploratory nature.
• The use of the IBME and its application in problems from various disciplines,

including mathematical modelling, are expedient for the formation of conceptual
understanding of mathematics and active knowledge.

8.4.2. Brno University of Technology. For partners at Brno University of
Technology (BUT), MM means activities motivated by applications of mathematics
to real life problems. We believe that MM should contain at least the formulation of
a concrete problem, development of an abstract model, and mathematical work with
the model (not only simulations, that is part of an engineer’s job!). As mentioned
in Section 8.2.1, we believe that the ‘mathematical work with the model’ part can
also include pure mathematics activities (e.g., ‘playing’ with model components and
studying consequences) that are not motivated by applications. Being mathematicians,
we practise such ‘playing with the model per se’ that we see as a ‘pure math’ component
of MM. Therefore, we do not see MM as a ‘proper subset’ of applied mathematics.

We acknowledge that teaching MM at a technical university like BUT, where the
faculty in the Mathematics Department mostly offers service courses, represents certain
challenge. Two major reasons for this are: (1) elevated number of topics ‘packed’ into
a few semesters of mathematics leaves little space for MM activities; (2) modelling
and work with the models are key topics in other specialised engineering subjects. We
believe that including more mathematical activities (e.g., analysis) into engineering
activities would provide students with a better insight into the modelled problem and
consequently contribute to a more efficient learning.

Taking a closer look at the concepts of IBME and MM, we realise that these
approaches are similar in many aspects and use similar means to achieve different goals.
It is not easy for us to unravel and analyse where an individual aspect belongs and what
it contributes to, IBME or MM. However, we feel that teaching MM without inquiry
is just a dry transfer of knowledge regardless of the needs of students and learning
MM without inquiry is unproductive and unnecessarily difficult. Taking into account
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the three-layer model of inquiry and MM described in Section 8.3 (see also Chapter 2)
and the challenges we see in teaching MM introduced in the preceding paragraph, we
realise that educational practices at BUT can, with some restrictions, accommodate
inquiry in the first two layers (inquiry into students’ learning mathematics and inquiry
into teaching mathematics).

Motivated by

• the positive experience of our colleagues at BGKU with MM as an educa-
tional approach,

• our own experience with IBME within the PLATINUM project,
• the revealed proximity of the two approaches, and
• the possibility of achieving better long-term learning outcomes,

we decided to incorporate a MM activity into the dense teaching schedule. Here we
exemplify our experience with a task that we believe to fall within the intersection of
IBME and MM.

The task has been tested in three lessons with groups of 6–12 first-year engineering
students, mostly male. Due to the COVID-19 outbreak, the teaching had to be realised
in a virtual environment, a combination of an MS Teams online meeting and a shared
virtual space substituting the whiteboard. The students were supposed to work in
groups in the virtual environment. The formulation of the task was brief: Given the
volume of 0.5 litre of a liquid, minimise the material needed to make a can that would
contain the liquid.

This task has been given to the students in a Calculus I course after they learned
the necessary prerequisites: derivatives, applications of the derivative to analyse a
graph of a function and to search for local and global extrema. The students were
familiar with the examples of applications leading to finding local extrema.

During the lessons, we were able to identify the following elements of the four-step
MM cycle:
1. Understanding task. In this introductory phase, an informal formulation of the task
has been made more precise. The students reflected about possible shapes of the can
and investigated real samples of half-litre cans.
2. Establishing the model. All groups succeeded in turning the task formulation into a
mathematical description. Students searched for expressions for the surface area and
the volume of a cylinder and a sphere and expressed them as functions dependent on
one unknown variable. They recognised that the function defining the surface area
must be minimised.
3. Using mathematics. In each group, there were students who suggested to solve the
optimisation task using derivatives. All students agreed to that and participated in
the solution process. The fact that the minimum value of the function which defines
the surface area is achieved at the stationary point has only been commented on, but
not verified mathematically.
4. Explaining the model. In the final phase, the students compared results for cylin-
drical and spherical cans and observed that, as expected, the spherical shape has a
smaller surface area. However, they also reasoned that making a spherical can would
be technically more complicated and thus more expensive and, last but not least, a
spherical can would be difficult to drink from. The relation between the optimal radius
and height has been discussed, as well as possible modifications of the task.

We were also able to identify the following phases of the inquiry process and ac-
tivities:
1. Orientation. In the beginning, students discussed possible can shapes and investi-
gated real samples.

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-2
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2. Conceptualisation. The students had to figure out that they need to know how to
calculate the volume of a solid and its surface area. They identified the problem as an
optimisation problem, and that the derivative might be a convenient tool.
3. Investigation. Students searched on the internet for formulas for the volume and
the surface area of a cylinder and a sphere, and they measured the dimensions of real
cans for comparison. They predicted that the sphere would have minimal surface area.
They investigated functions that define the surface area for extrema and claimed that
the extremum that has been found is the minimum.
4. Conclusion. The students identified that the sphere would have the minimal sur-
face. However, they used reasoning to conclude that cylindrical shape is more practical
for a real-life application.
5. Discussion. At the end of the lesson, students were asked for reflection and feed-
back on the lesson. They also discussed possible generalisations of the results they
obtained to volumes other than 0.5 litre and extensions of the problem to more realis-
tic conditions, e.g., when some free space inside the can is needed to open it without
spilling the content.

All three groups came to a solution within the given time. However, in all lessons
the student teams made some mistakes. The teacher did not warn the students about
that and let them find out themselves. This approach has been valued positively by
the students in the feedback. One of the students commented:

Well, I take it positively. I liked the moment when we calculated a wrong derivative
and you (the teacher) let us continue and we made further calculations with that, until
we got to the point when it was clear that something is wrong. For example, when I
work on a test and make such arithmetic mistake, I get to the point where we were not
taught what to do because what we are doing is wrong. Nobody taught us how to do
things wrongly, so it is difficult to get back and start again. Here (in the lesson) we
could get back and that was good.

Some teacher’s reflections after the activity:

• prior to the first lesson, there was some anxiety about the teamwork in a
virtual environment;

• the choice of an appropriate shared virtual space (whiteboard) was a chal-
lenge, but the work in Microsoft OneNote was satisfactory;

• all three lessons went well and brought a new experience both to students
and the teacher;

• the main disadvantage of the activity was the excessive time demand/consump-
tion caused by the virtual environment;

• it was good to acknowledge that students use the knowledge from other
subjects that may have a positive effect on the development of ideas and
reasoning;

• it would be interesting to try the activity in a physical classroom setting and
compare the outcomes.

In conclusion, note that we perceive the inclusion of the problem of mathematical
modelling with elements supporting interest in the standard course of mathematics
as fruitful and meaningful. According to our experience, the students were made to
think out of the boxes, which helped them not only in understanding the topic but
also in improving their problem-solving skills.

8.4.3. University of Agder. At the University of Agder (UiA), there are no
dedicated courses in which mathematical modelling (MM) is taught; but the study
curriculum assumes that mathematics and engineering students gain some knowledge
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of MM and methods of applied mathematics. Under these circumstances, efforts are
made to include modelling tasks in traditional mathematics courses in the form of small
group projects or individual assessments. Calculus, Linear Algebra and Differential
Equations courses at UiA are particularly suited for this purpose. For illustration, we
discuss an example of a modelling task introduced in a Differential Equations course
for the fourth-year engineering students who neither had taken dedicated modelling
courses nor had previous modelling experience, but all had some basic knowledge of
Calculus and Linear Algebra. The complete analysis of this activity and students’ work
from the commognitive perspective (Sfard, 2008) has been reported in Rogovchenko
(2021), where further details may be found.

The assessment involving multiple modelling tasks was suggested to students in
line with the process of modification of the course traditionally taught to master’s
students in Mechatronics at UiA. The course upgrade was motivated by the lecturer’s
intention to connect better the knowledge students gained in physics and mathemat-
ics courses by introducing several MM assignments rooted in engineering or physical
applications in the form of graded course projects. The lecturer set several peda-
gogical goals: to enrich students’ mathematical narratives about the nature of differ-
ential equations, promote students’ advanced mathematical thinking and the use of
mathematical language, contribute to the development of general modelling routines,
explain how known mathematical ideas and procedures can be combined and employed
to generate new ones, and motivate an explorative approach to MM as a particular
problem-solving strategy. In addition, organisation of students’ work in small groups
introduces important elements of collaborative learning to the classroom and enhances
students’ social skills.

Forty students in the course (38 males and 2 females, all in their twenties) worked
in small groups of two to three students on different sets of modelling problems for one
week, discussed their solutions to problems and produced individual written reports.
The selection of MM tasks was primarily linked to the subject area of engineering
studies, mechatronics, and the complexity level of the problems ranged from closed to
open-end problems. Students were asked to employ mathematical methods for finding
solutions and use mathematical software of their choice, Maple or MATLAB, to sup-
port their work. In addition, the analysis of the validity of the mathematical model
regarding its correspondence to the real-world experience or data was required. Stu-
dents audio-recorded group discussions themselves in the absence of the lecturer and
provided recordings at her request for research purposes. Afterwards, group solutions
to various problems were presented by each group in a whole-class session. Students’
individual written reports were graded as a part of the course work; the mark counted
towards the final grade.

A MM task presented below has been designed for the topic Existence and Unique-
ness Theorems (EUTs) for initial-value problems for differential equations. Contrary to
traditional teaching practices requiring merely formal verification of the conditions of
the theorems, students engaged this time with EUTs through modelling problems. An-
other interesting experience with the use of nonstandard problems for testing students
conceptual understanding of EUTs is described in the conference paper by Treffert-
Thomas et al. (2018).

Problem. Consider a cylindrical bucket of constant cross-sectional area A with a hole
of cross-sectional area a at the bottom of the bucket. The small hole is plugged, and
the bucket is filled to height h0. A clock is started as the plug is removed and the water
begins to leak out of the hole. Construct a DE model to determine the height h(t) (m)
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with respect to time t (s). Take g = 10 m/s2. Choose your values for A and a so that

the ratio A/a =
√
5.

(a) Explain all your steps while setting the model.
(b) Take t0 = 0, h0 = 4, set the IVP, explain its physical meaning.
(c) Solve the IVP and observe that the solution is defined for all t but after some time

it is no longer a realistic description of the height. What physical event occurs at
this moment?

(d) Build a realistic continuous solution to this problem and show that the solution
is valid for all times t. Is this solution continuously differentiable?

(e) Do these results contradict the Existence and Uniqueness Theorem? Explain your
reasoning in detail.

(f ) Plot the solutions found in subsquestons (c) and (d), and analyse the graphs.

Students suggested several physical descriptions of the problem, some of which
are illustrated below in Excerpt 3, and discussed corresponding mathematical mod-
els. Many students used diagrams to illustrate the translation from verbal description
to mathematical formulation and combined in the process of solution several familiar
routines. They set up and solved an IVP; this required several steps including the inte-
gration of a differential equation, identification of the general solution, and application
of initial conditions for finding a particular solution. The analysis of the mathematical
discourse presented in students’ written solutions suggests that they have developed
the ability “to express things in the language of mathematics” (Schoenfeld, 1992,
p. 337). In Excerpt 3 from the discussion in Group 1 one can clearly witness the
“repetitiveness, and thus patterns which is the source of communicational effective-
ness” (Sfard, 2008, p. 195). It was important for this group to agree on the common
solution method and to “indorse” the narrative, but not all groups came to an agree-
ment in the end; in such cases, students presented their individual, different versions
of solutions.

Excerpt 3

S11: I used the Bernoulli equation to set the differential equation.
S12: I did something similar, but I started from the Conservation of Energy Law to

find the velocity out. . .
S13: I also used the energy law, and worked with some constants and found a nice

equation. . .
S11: Yes, we can use different values for constants, but I chose to have the simplest. . .

Students in Group 2 used physics laws to derive the following initial value problem:

dh

dt
= −2

√
h, h(0) = 4.

Formal integration yields the exact solution h(t) = (2 − t)2 to the IVP which is
obviously valid for all times but due to the problem setting should be considered only
on the interval [0, 2] until the bucket empties completely. From the instant t = 2
and further on, the bucket is empty and the second ‘piece’ of the solution to the
problem on the half-axis [2,∞), h(t) = 0, can be obtained only by the reasoning in
context. Conditions of the Existence and Uniqueness Theorem are not satisfied when
the height h = 0; this occurs at the instant t = 2 and yields multiplicity of solutions
to the given initial value problem. During the discussion about ‘realistic’ solutions,
students also pointed out the existence of a formal mathematical solution for ‘negative
times’ obtained by reversing time and argued about the meaning of solution in physical
terms (“the water level will approach infinity”). Students’ explorations were facilitated
by the use of a computer algebra system (CAS); the relevant discussion illustrated in
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the following Excerpt 4 demonstrates the explorative character of the mathematical
discourse.

Excerpt 4

S21: The solution we got is a parabola. (. . . ) After t = 2 the solution is no longer
realistic. What physical event occurs at this moment? What occurs is that the
tank becomes empty and then some sort of refilling starts to happen at the tank,
which would not obviously happen with the real tank. . . It would be very practical
for my car (laughter), but unfortunately this is not the case.

S22: We agree that the solution is not realistic after this point, like the tank starts to
magically fill in again (laughter).

S21: The way I started to solve this is to make the solution a piecewise function and
say that it follows the original solution up to the point when the tank is empty
and the second part of the piecewise function is zero for all values of t larger or
equal than 2.

S23: Yes, we can use different values for constants, but I chose to have the simplest. . . I
also tried to fit the exponential function, like saying it is linearly independent,
but it did not fit very well so I ended up splitting the function.

The attempt of student S23 to fit an exponential function can be interpreted as
an explorative routine in the use of CAS. Other students in this group solved the
differential equation and plotted graphs manually; surprisingly, students did not solve
the differential equation analytically with CAS although they already knew how to
do this from other assignments. In Figure 8.7(a), the student plotted the formal
solution to the problem and then plotted a piecewise defined function corresponding
to the ‘realistic’ solution arguing: “As our solution is a parabola, the reasonable
thing to suspect is that after the level has decreased to its bottom value, it will start
increasing again. As we plot the graph, we can see that at t = 2 the container
is empty, and mathematically it starts filling again. So, the solution stops being a
realistic description of the height after the container becomes empty.” For the ‘realistic’
solution in Figure 8.7(b), the student defined a function h(t) by two expressions, (2−t)2

for 0 ≤ t ≤ 2 and 0 for t ≥ 2.

Figure 8.7. (a) Student’s graph of a formal solution; (b) Student’s
graph of the ‘realistic’ solution.

Not surprisingly, in the development of a theoretical mathematical discourse,
engineering students felt less confident with the use of rigorous mathematical con-
cepts of continuity and differentiability and often relied on geometric arguments in
explanations as illustrated, for instance, in Figure 8.8.
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Figure 8.8. Student’s reasoning regarding continuity and differen-
tiability of the solution.

The use of mathematical language in this fragment can be described as immature
and the explanation provided by the students sounds rather intuitive, but computer
simulation helped to develop the mathematical discourse and supported it. In fact,
similar sets of graphs are present in the student’s report twice: in the explanation
of the solution as shown in Figure 8.8 and in the answer to subquestion (f) of the
problem where the explanations to the graphs were explicitly requested.

The analysis of written reports shows that students relied on different representa-
tions (realisations) of the modelling task: mathematical description with the help of
a diagram (visual), mathematisation using an appropriate differential equation (sym-
bolic), graph plotting (visual), solution of the differential equation with the help of the
CAS (symbolic). Students’ written reports document striking differences in their abil-
ity to use CASs and demonstrate that technology was mainly used as a computational
and verification tool and, to some extent, as a helpful visualization tool, but, similarly
to the findings of Doerr and Zangor (2000), CASs did not become a transformational
tool, nor a data collection and analysis tool.

8.5. Conclusions

Theoretical and empirical research indicates that students’ success with MM tasks
requires “a well-developed repertoire of cognitive and metacognitive strategies as well
as a rich store of mathematical concepts, facts, procedures, and experiences; vicarious
general encyclopedic knowledge of the world and word meanings; and truly experien-
tial knowledge from personal experiences outside school or in more practical school
subjects” (Stillman, 2015, p. 796). Much of this description is included in some form
into the concept of active knowledge introduced in this chapter to relate MM to IBME.
MM is not easy to teach and one of the main difficulties is the dependence of learning
on the specific context; this requires that MM has to be learnt specifically (Blum &
Borromeo Ferri, 2009). None of the three examples presented by PLATINUM partners
were related to teaching MM per se but MM was embedded into different contexts.
The first example of discovery of the definition of the definite integral with a modelling
approach is close to the educational perspective of Realistic Mathematics Education
(RME) whose fundamental principle is guided reinvention (Freudenthal, 1991). As
pointed by Artigue and Blomhøj (2013), “in RME, modelling, and especially mathe-
matisation, plays an essential role as a vehicle for the conceptual knowledge aimed at
with no clear distinction being made between mathematisation of extra-mathematical
situations and mathematisation within mathematics” (p. 805). This describes the
approach used by the colleagues at BGKU to promote conceptual understanding of
the definite integral through modelling tasks. On the other hand, the PLATINUM



✐
✐

“output” — 2022/1/10 — 15:38 — page 169 — #185 ✐
✐

✐
✐

✐
✐

8.5. CONCLUSIONS 169

partners at BUT and UiA fostered students’ understanding of applications of mathe-
matics in Calculus and Differential Equations courses through modelling tasks which
in both cases required active knowledge to relate mathematics to not very complex but
realistic daily situations. All three examples confirmed recent research findings that
“working with modelling in mathematics and in other subjects can thereby lead to
valuable understanding of inquiry as a more general process with different particular
realisations in different disciplines and contexts” (Artigue & Blomhøj, 2013, p. 805).
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