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Abstract—The integration of reconfigurable intelligent surface
(RIS) into millimeter wave (mmWave) vehicular communica-
tions offers the possibility to unleash the potential of future
proliferating vehicular applications. However, the high-mobility-
induced rapidly varying channel state information (CSI) has
been making it challenging to obtain the accurate instantaneous
CSI (I-CSI) and to cope with the incurable high signaling
overhead. The situation may become worse when the RIS with
a large number of passive reflecting elements is deployed. To
overcome this challenge, we investigate in this paper a robust
transmission scheme for the time-varying RIS-aided mmWave
vehicular communications, in which, specifically, a multi-antenna
base station (BS) serves vehicle user equipments (VUEs) with
the help of RIS at the mmWave frequency. The uplink average
achievable rate is maximized relying only upon the imperfect
knowledge of statistical CSI. Considering the time-varying char-
acteristics, we first propose an effective transmission protocol
by reasonably configuring the time-scale of CSI acquisition in
order to significantly relax the frequency of channel information
updates, which constitutes one of the most critical issues in RIS-
aided vehicular communications. Then, the formulated resource
allocation problem is discussed in the single- and multi-VUE case,
respectively. To be specific, for the single-VUE case, a closed-form
expression of the average rate is derived by extracting the sta-
tistical characteristics of mmWave channels, and an alternating
optimization (AO)-based algorithm is proposed. For the multi-
VUE case, we develop an efficient algorithm, called JAPMC, to
circumvent the unavailability of the closed-form of the objective
function and probabilistic constraint by constructing quadratic
surrogates of that. Simulation results confirm the effectiveness
and robustness of our proposed algorithms as compared to
benchmark schemes.

Index Terms—Reconfigurable intelligent surface, millimeter
wave, vehicular communications, statistical CSI, robust trans-
mission, non-convex stochastic optimization.

I. INTRODUCTION

Vehicular communications, also known as vehicle-to-
everything (V2X) communications, are the key enabler for
the autonomous driving, intelligent transportation systems, and
on-wheel infotainment services. Nowadays, the two key tech-
nologies that support V2X communications are IEEE 802.11p
and 3rd Generation Partnership Project (3GPP) Cellular-V2X
(C-V2X), which, nevertheless, fall short of satisfying the
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prospective extreme traffic demands (e.g., in terms of very high
throughput, ultra low latency, and ultra high reliability) of fu-
ture vehicular applications [1] [2]. In this connection, different
standardization activities are currently being facilitated by the
IEEE and the 3GPP, with the 802.11bd [3] and new radio (NR)
V2X [4] specifications, respectively, to surmount the limita-
tions of legacy technologies. Both standards aim at boosting
the wireless capacity by encompassing the possibility of using,
besides traditional sub-6 GHz frequencies, the lower part
of the millimeter-wave (mmWave) spectrum, which features
the availability of large chunks of untapped bandwidth. The
unique characteristics of mmWave signals, including channel
sparsity and high temporal time and angular resolution, can
be adopted for precise vehicle positioning, which is very
friendly to autonomous driving applications. However, V2X
communications at mmWave frequency band remain ongoing
challenges [5]: i) communication at mmWave suffers from se-
vere path and penetration losses, and is susceptible to blocking;
ii) in high mobility scenarios, the Doppler spread for signal
transmission over the mmWave bands tends to be much larger,
which becomes a major implementation bottleneck to realize
the promising vision of mmWave systems; iii) the exchange of
CSI needs to be timely enough to avoid the feedback of stale
information in scenarios with a highly varying channel, which,
nonetheless, incurs fairly heavy signaling overhead. Faced
with these challenges, although intensive research activities
are carried out in IEEE and 3GPP, there is still a lack of
adequate discussion to overcome such limitations.

Recently, benefitted from the development of advanced
radio frequency (RF) and micro-electro-mechanical sys-
tems (MEMS), a proposal to integrate reconfigurable intel-
ligent surface (RIS) into wireless communication systems
has been introduced [6] [7], especially in vehicular networks
[8] [9], which features possibility to customize the wireless
propagation environment. Furthermore, RIS can be fabricated
as artificial thin films attached to existing infrastructure, such
as the facades of buildings, buses and road signs, which
greatly reduces the implementation costs. When the line-of-
sight (LoS) links are blocked by obstacles, RIS can receive
and superimpose multi-path signals from the transmitter, and
independently reflect the incident signal by controlling the
amplitude and/or phase to achieve passive beamforming. Thus,
the resultant “virtual LoS links” can significantly alleviate
the blockage effects while improving the transmission perfor-
mance over mmWave bands. In addition, an RIS-aided MIMO
system can achieve the same performance gain as a massive
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MIMO system without RIS, but with significantly reduced
active antennas/RF chains [6]. This evinces that a large number
of antennas at the BS may not be a requisite anymore, which
enables the mmWave systems to be more cost-effective and
energy-efficient.

The main design and implementation challenges posed
by RIS-aided mmWave communication systems include the
requirement of estimating the CSI of associated channels
and thereafter the demand of appropriately configuring the
RIS reflection coefficients, since the system performance is
highly dependent on the accuracy of the obtained CSI and
the corresponding RIS configurations. As recently indicated
in [10], the overhead caused by the channel estimation and
configuration of RIS reflection coefficients may offset the
performance gains introduced by an RIS, provided that the
magnitude of reflecting elements number is large and/or an
inefficient protocol/algorithm is exploited. Furthermore, due to
the dynamic behavior of the mobile channel and the mobility
of VUEs, it is difficult to track the rapidly varying and easily
outdated instantaneous CSI (I-CSI), and frequent feedback of
the fast fading information of rapidly varying mobile channels
also incurs substantial signaling overhead [11]. An RIS, in this
instance, needs to have the capability of reconfiguring itself at
an appropriate time-scale that depends on the coherence time
of the channel, and the corresponding transmission protocol
should also be well-designed.

Motivated by these considerations, there is in general a
consensus that it is imperative to consider the increased
complexity of transmission strategy in RIS-aided mmWave
vehicular communication systems. One of the key factors to
be deliberated is the time-scale of CSI acquisition owing to
the unavailability of rapidly varying I-CSI. Compared with
the I-CSI, the statistical CSI (S-CSI), e.g., the angles of
arrival/departure (AoAs/AoDs), and the channel mean, varies
more slowly and can be comparatively easily and accurately
explored. For this reason, researches on the design of RIS-
aided systems by exploiting S-CSI have been investigated in
[12]–[15]. To be specific, in [12], an optimization algorithm
to effectively configure RISs is proposed, which is aimed at
maximizing the network sum-rate by exploiting only the sta-
tistical characterization of the environment. The power scaling
law analysis and phase shift optimization for an uplink RIS-
aided massive multiple-input-multiple-output (MIMO) system
based on the S-CSI is investigated in [13]. It is investigated in
[14] [15] that a novel two-timescale transmission protocol is
proposed for the RIS-aided wireless communication system,
where the precoding vector is designed based on the I-CSI
and the RIS phase shifts are optimized based on the S-CSI.
However, the common denominator of transmission schemes
and protocols in [12]–[15] is confined with the quasi-static
scenario, which are not suitable for the case of RIS-aided
vehicular communications, mainly due to the lack of consid-
eration of Doppler effect originating from the high mobility
of vehicles.

Besides the Doppler effect, the accuracy of CSI acquisition
is another important aspect to be considered, since the obtained
CSI tends to become quickly outdated due to, e.g., mobility.
The studies on the scenarios that do not necessarily rely

upon the perfect knowledge of the CSI in RIS-aided systems
are carried out in [16]–[19], including bounded CSI error
model [16] [17] and statistical error model [18] [19]. The
former aims to conservatively guarantee the worst case quality-
of-service (QoS) constraint while the latter characterizes the
practical channel estimation error that is unbounded [20].
Nonetheless, the works in [16]–[19] are still subject to the
static scenario, without considering the effects of outdated
CSI in time-varying dynamic environment. Distinct from RIS-
aided static systems, this property is non-negligible. Thus, the
transmission scheme in RIS-aided vehicular communications
ought to be robust to the dynamic behaviors of time-varying
channels. In a nutshell, we target these non-trivial challenges
in this paper to design a robust transmission strategy for the
time-varying RIS-aided mmWave vehicular communications.

Against this background, the main contributions of the
present work can be summarized as follows:

• We consider a time-varying RIS-aided mmWave vehicu-
lar communication system, in which a multi-antenna BS
serves uplink transmission with the help of RIS with a
plurality of programmable phase shifters. By exploiting
the property that AoA/AoDs usually vary much more
slowly than complex path gains over mobile channels [21]
[22], a novel transmission frame structure is proposed for
the time-varying RIS-aided mmWave vehicular commu-
nication system. Within a transmission frame composed
of a certain number of blocks, the AoA/AoDs of all links
are estimated once in the frame header, followed by the
complex gain estimation of VUE-related links in each
block. Owing to the outdated CSI and unavailability of
fast fading information, the transmission design relies
only on the imperfect knowledge of the obtained per-
block S-CSI.

• We formulate the problem to maximize the uplink average
achievable sum-rate by jointly designing active and pas-
sive beamforming in each block, subject to the constraints
of outage probability and unit-modulus of the RIS phase
shifts. This yields a non-convex stochastic optimization
problem, which, in particular, is discussed in the single-
and multi-VUE case, respectively, in order to draw useful
insights.

• For the single-VUE case, it is analyzed that the original
stochastic optimization problem can be transformed into
a deterministic non-convex optimization problem. By
leveraging alternating optimization (AO) approach, the
solutions of the multi-user detection (MUD) matrix and
the RIS phase shifts are glued together and updated in
an iteration manner. Next, a general multi-VUE case is
considered. Different from the single-VUE case, it is
difficult to derive closed-form expressions of achievable
ergodic rates of all VUEs. To circumvent this issue, an
effective algorithm, namely JAPMC, that jointly designs
active and passive beamforming is proposed under the
constrained stochastic successive convex approximation
(CSSCA) framework. Particularly, quadratic surrogates
of the functions without a closed form are constructed
based on certain appropriately generated channel realiza-
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tions/samples according to the properties of the consid-
ered system and the gradient information of the variables.
Hence, a convex surrogate problem is constituted and
solved in each iteration to approximate the asymptotic
optimal solution.

• Simulation results are presented to substantiate the con-
vergence, effectiveness, and robustness of the proposed
algorithms in single-VUE and multi-VUE cases, respec-
tively. Numerical results reveal that the increment of
the RIS reflecting elements, especially as the channel
conditions deteriorate, does not always give rise to the
performance improvement. The extremely high CSI un-
certainty will drastically degrade the performance of the
RIS-aided system. In addition, the proposed transmission
scheme is robust to the performance loss caused by
mobility-induced outdated CSI, and retains the average
sum-rate at a favorable level even in hostile CSI case.

The remainder of this paper is organized as follows. Sec-
tion II elaborates the system model and the problem formula-
tion. In Sections III and IV, we propose efficient algorithms to
solve the formulated non-convex stochastic optimization prob-
lems in the single-VUE and multi-VUE cases, respectively.
Simulation results are provided in Section V, and, finally,
Section VI concludes the paper.

Notation: The following notations and symbols are used
throughout this paper. Italic letters denote scalars. Boldface
lower- and upper-case letters denote vectors and matrices,
respectively. CM×N represents the complex space with M×N
dimension, and IN denotes an N × N identity matrix. {·}∗,
{·}T , and {·}H stand for the conjugate, transpose, and Hermi-
tian (conjugate transpose) operators, respectively. The symbols
| · |, ‖ · ‖, and ‖ · ‖F denote the absolute value of a scalar,
the `2-norm of a vector and the Frobenius norm of a matrix,
respectively. � and ⊗ indicate the Hadamard product and
Kronecker product, respectively. Tr (·), diag (·), rank (·) and
egi (·) represent trace, diagonalization, rank and eigenvalue
of a square matrix, respectively. vec (·) is the vectorization
operator for a matrix.  is the imaginary unit, i.e., 2 = −1.
<{·} and ={·} denote the real part and the imaginary part of
a complex value, respectively. The distribution of a circularly
symmetric complex Gaussian (CSCG) with zero mean and
variance Σ is denoted by CN (0,Σ). ∼ stands for “distributed
as”. E {·} represents the statistical expectation operator. χ2 (υ)
denotes a chi-square random variable with degree of freedom
υ. For two given sets A and B, A\B ∆

= {x|x ∈ A, x /∈ B}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Scenario

As shown in Fig. 1, we consider an RIS-aided uplink
multiple-input-single-output (MISO) mmWave vehicular com-
munication system, in which the BS is equipped with a K-
element uniform linear array (ULA) and the VUEs, the set
of which is denoted by M = {1, 2, ...,M}, are equipped
with a single antenna. The VUEs communicate with the BS
through vehicle-to-infrastructure (V2I) links. The RIS is a
uniform rectangular array (URA) composed of Nh horizon-
tally arranged and Nv vertically arranged passive reflecting
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Fig. 1. Reconfigurable intelligent surface aided vehicular communications.

elements. Thus the total number of RIS reflecting elements
is N=Nh ×Nv. In the considered system, the RIS reflection
coefficients are coordinated by the BS and then sent back to
the RIS controller via a separate backhaul link. For simplicity,
it is assumed that the amplitude reflection coefficients are set to
one for all reflecting elements to maximize the signal reflection
[16] [17], and denote the phase reflection coefficient of the nth
reflecting element by θn = eϕn , where ϕn ∈ [ 0, 2π) . More
practical RIS reflection coefficients such as low-resolution
discrete phases shifts are to be discussed and evaluated in
Sec. V. B later. Then, the RIS reflection-coefficient matrix is
defined as Θ = diag (θ1, ..., θN ), which is an N×N diagonal
matrix, also known as the passive beamforming matrix [14].

B. Time-varying mmWave Channel Model and Communica-
tion Protocol

The mmWave channel model is specified when the Doppler
effect is considered. Herein we adopt the time-varying 3D
Saleh-Valenzuela channel model [21] with Lm,b, Lm,r and
Lr,b propagation paths for the BS-VUE links, the RIS-VUE
links and the BS-RIS links, respectively. A transmission frame
composed of T blocks is considered in our model, where
T = {1, ..., T}. Accordingly, the channel gain from the mth
VUE to the BS and the channel gain from the mth VUE to
the RIS in the tth block are denoted by

hm,b [t] =

√
1

Lm,b

Lm,b∑
l=1

βtm,b,laL
(
ϑAoA
m,b,l

)
,∀m, t, (1)

hm,r [t] =

√
1

Lm,r

Lm,r∑
l=1

βtm,r,laP
(
ϑAoA
m,r,l, φ

AoA
m,r,l

)
,∀m, t. (2)

Since the BS and the RIS are placed in fixed positions, the
BS-RIS channel is quasi-static that can be denoted by

hr,b =

√
1

Lr,b

Lr,b∑
l=1

hr,b,laL
(
ϑAoA
r,b,l

)
aHP
(
ϑAoD
r,b,l , φ

AoD
r,b,l

)
. (3)

In (1)–(3), l = 1 denotes the LoS paths, and l ≥ 2 denotes the
non-line-of-sight (NLoS) paths. βtm,b,l = hm,b,le

2πfm,b,ltTs
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Fig. 2. The proposed transmission protocol.

and βtm,r,l = hm,r,le
2πfm,r,ltTs denote the time-varying com-

plex gains incorporating the Doppler shifts {fm,b,l, fm,r,l},
respectively, which vary independently from one block to an-
other in the considered transmission frame, and Ts represents
the system sampling period. The large-scale fading coefficients
are defined as h ∈ {hm,b,l, hm,r,l, hr,b,l}, following a com-
plex Gaussian distribution as h ∼ CN

(
0, 10−0.1PL

)
, where

PL (dB) = PL0 + 10α lg (D) + PLs, PL0 is the path loss at
the reference distance of one meter, D (in meters) represents
the individual link distance, α denotes the path-loss exponent,
and PLs ∼ CN

(
0, σ2

s

)
is the shadow fading following

complex Gaussian distribution with zero mean and variance
σ2
s . The steering vector of the ULA is denoted by aL (ϑ) =[
1, e2π

d
λ sinϑ, ..., e2π

d
λ (K−1) sinϑ

]T
, where ϑ stands for the

azimuth AoAs ϑAoA
m,b,l and ϑAoA

r,b,l , d is the antenna inter-spacing
, and λ is the carrier wavelength. The steering vector of the
URA can be expressed as aP (ϑ, φ) = aL (ϑ)⊗aL (φ), where
ϑ (φ) is the azimuth (elevation) AoD ϑAoD

r,b,l

(
φAoD
r,b,l

)
and the

AoA ϑAoA
m,r,l

(
φAoA
m,r,l

)
.

It is worthy mentioning that high mobility in a vehicular
environment precludes the collection of the accurate full I-CSI
at the BS. Frequent feedback of the fast fading information
leads to a mass of signaling overhead, which cannot be
realized by tracking I-CSI of rapidly varying mobile channels
in practice. Thus, we assume in this paper that the BS can
only access per-block statistical fading information (S-CSI)
of such channels instead of each realization of the I-CSI.
More explicitly, since the AoA/AoDs and complex gains vary
slowly in a high-mobility scenario, it is reasonable to make
the same assumption presented in [21] that the AoA/AoDs
ϑ (φ), which are typically determined by the locations of
vehicles, remain constant during the considered frame. Thus,
the time-varying channel model in the RIS-aided mmWave
system only concerns the effect of Doppler shifts subject to
the changes from one block to another. Fig. 2 illustrates our
proposed transmission protocol for the time-varying mmWave
vehicular communications. In particular, a frame with time
duration T frame consists of one phase of AoA/AoDs estimation,
followed by a certain amount blocks. In each block, the
acquisition and the utilization of the S-CSI is divided into
three phases. In the first phase, the RIS is in the sensing mode
and the channel statistical information between the RIS and

the BS/VUEs can be estimated by resorting to the dedicated
sensors at the RIS and leveraging the pilots and/or data
transmitted in both uplink and downlink. Since the channel
estimation is out of the scope of this paper, we do not expand
the discussion here. One can find from [20] [23] the research
studies on how to estimate the channels for RIS-aided systems.
In the second phase, based on the measured per-block S-CSI
of the BS-RIS-VUE links that fed by the RIS and that of the
BS-VUE link, the BS computes the active and the passive
beamforming matrices, and sends them to the RIS through
the dedicated backhaul link to enhance the transmission in the
third phase.

Let the MUD matrix (also known as the combining matrix)
be F = [f1, ..., fM ] ∈ CK×M , and fm ∈ CK×1 is the mth
column of the matrix F. The received signal at the BS from
the mth VUE at the tth block can be formulated as

ym [t] = fHm

(√
Pm (hr,bΘhm,r [t] + hm,b [t]) sm [t] + nm [t]

)
,

(4)
where sm [t] and Pm represent the transmitted information
symbol and the transmit power of the mth VUE, respectively.
The noise vector is denoted by nm [t] ∈ CK×1, and it is
assumed that nm [t] ∼ CN

(
0, σ2I

)
. The cascaded channel

from the mth VUE to the BS at the tth block is denoted by
hm[t] = diag (hm,r[t]) hHr,b ∈ CN×K . Let θ = [θ1, ..., θN ]

T ∈
CN×1 be the vector containing elements in diagonal matrix Θ.
Then, the uplink signal-to-interference-plus-noise ratio (SINR)
of the mth VUE at the tth block can be given by

SINRm [t] =
Pm
∣∣fHm (hHm [t]θ + hm,b [t]

)∣∣2∑
m′∈M\m

Pm′
∣∣fHm (hHm′ [t]θ + hm′,b [t]

)∣∣2 + σ2|fHm |
2
.

(5)

C. CSI Error Model

Due to the transmission and processing delay, the CSI may
be easily stale at the time when the RIS and the VUEs receive
the pilots/data from the BS, which results in an inevitable
performance loss once this outdated CSI is employed for
beamforming. In this case, the temporal correlation coefficient
ρ (Ts) is introduced to bridge the real CSI with the outdated
CSI according to the Jakes’ model [24] [25], i.e., ρ (Ts) =
J0 (2πfmaxTs), where J0 represents the zeroth-order Bessel
function of the first kind, and fmax denotes the maximum
Doppler shift. Thus, the evolution of the uncertain direct chan-
nel hm,b [t] over the time can be characterized approximately
by leveraging the first-order autoregressive model [22] [26],
which is given by

hm,b [t] = ρm,b (Ts) ĥm,b [t− Ts] + ∆hm,b [t] ,∀m, t, (6)

where ĥm,b [t− Ts] is the estimated CSI, and ∆hm,b
is the unknown residual error that follows ∆hm,b [t] ∼
CN

(
0,
(

1− ρm,b(Ts)2
)

Σd
m

)
,Σd

m � 0,∀m ∈ M, t ∈ T .
Along the same line, the evolution of the uncertain cascaded
channel hm [t] can be expressed by

hm [t] = ρm (Ts) ĥm [t− Ts] + ∆hm [t] ,∀m, t, (7)
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where ĥm [t− Ts] is the estimated cascaded CSI,
and the error term ∆hm [t] follows ∆hm [t] ∼
CN

(
0,
(

1− ρm(Ts)
2
)

Σc
m

)
,Σc

m � 0,∀m ∈ M, t ∈ T .
Σd
m ∈ CK×K and Σc

m ∈ CNK×NK are positive semidefinite
error covariance matrices. The superscript “d” means
“direct” and the superscript “c” signifies “cascaded”.
For the convenience of subsequent derivation, some
definitions are given: Σc

m = (ηcm)
2
I, vec (∆hm) = ηcmicm,

icm ∈ CNK×1 ∼ CN (0, I); Σd
m =

(
ηdm
)2

I, ∆hm,b = ηdmidm,
and idm ∈ CK×1 ∼ CN (0, I).

The CSI imperfection mainly stems from the channel es-
timation as the conventional minimum mean-squared error
(MMSE) method is generally employed to estimate the cas-
caded channel [27], which endows the uncertain residual
errors, e.g., ∆hm,b [t] and ∆hm [t], with stochastic nature to
follow complex Gaussian distributions. Thus, the error models
in (6) and (7) belong to the statistical CSI error model in
essence. Compared with the bounded error model that is usu-
ally employed to portray the channel quantization errors, the
temporal correlative error model captures the property of the
high-mobility-induced outdated CSI and is more practical in a
time-varying environment with abundant scatters. Thus, the to-
be-designed robust transmission is based on such a model with
statistical CSI error subject to the outage probability, which is
more suitable for our case to appropriately characterize the
outdated channel estimation error.

D. Problem Formulation

In this paper, we aim to maximize the uplink average
achievable sum-rate in each block by jointly optimizing the
transmit power P = {Pm,∀m}, the MUD matrix F at the
BS and the RIS reflection phase shifts θ, subject to the unit-
modulus and the outage probability constraints, i.e., ensuring
the probability that the per-block SINR of each VUE is
less than a threshold under the channel error realizations
being below a predetermined value. Thus, the optimization
problem of the robust transmission for the RIS-aided mmWave
vehicular communications can be formulated as follows

max
{P,θ,F}

E

[
1

T

∑
t∈T

∑
m∈M

log2 (1 + SINRm [t])

]
(8a)

s.t. Pr
(
SINRm [t] ≤ γth

)
≤ p0,∀m, t, (8b)

|θn| = 1,∀n, (8c)
0 ≤ Pm ≤ Pmax,∀m, (8d)

where (8b) ensures the probability that the per-block decoding
error of each VUE at a certain SINR, SINRm [t], is less than
the maximum tolerable outage probability p0, γth is the SINR
threshold, and (8d) confines the maximum transmit power of
each VUE.

Although the joint design of the active and passive beam-
forming is adjusted with the per-block CSI, the AoA/AoDs
of each channel are estimated and remain fixed in the
transmission frame of the interest, which avoids a mass of
pilot/training symbols compared with estimating the high-
dimension AoA/AoDs of hm,b [t] and hm,b [t] in each block.
Now, fewer pilots are needed to probe the low-dimension

Doppler shifts. To be specific, the number of channel coef-
ficients (AoA/AoDs) required in each frame can be reduced
compared with the case that the statistical information is not
exploited, from T (NK +K +N) to NK +K +N for each
VUE.

Problem (8) is challenging to solve mainly for the following
three reasons: i) the optimization variables, such as the MUD
matrix F and the RIS reflection phase shifts θ, are highly
coupled with each other; ii) there is no closed-form expression
for the objective function and the constraint in (8b), which
exacerbates the difficulty of solving problem (8); iii) it is a
non-convex stochastic problem even for M = 1. Furthermore,
there is no efficient method for solving the formulated non-
convex stochastic problem (8) optimally. In the next two
sections, we propose two effective algorithms to solve prob-
lem (8) sub-optimally in the single-VUE and multi-VUE cases,
respectively.

III. SINGLE-VUE CASE

This section mainly considers the single-VUE case, i.e.,
M = 1, where there is no interference from other VUEs.
Accordingly, problem (8) reduces to

max
{P,θ,F}

E

[
1

T

∑
t∈T

∑
m∈M

log2

(
1 +

Pm
∣∣fHm (hHm [t]θ + hm,b [t]

)∣∣2
σ2|fHm |

2

)]
(9a)

s.t. Pr

(
Pm
∣∣fHm (hHm [t]θ + hm,b [t]

)∣∣2
σ2|fHm |

2 ≤ γth

)
≤ p0,∀m, t,

(9b)
(8c), (8d). (9c)

For the problem at hand, there are no closed-form expressions
for (9a) and (9b). Hence, in the following, we first derive the
closed-form expression of the objective function in conformity
with the statistical characteristics of the time-varying mmWave
channel. Then, the outage constraint in (9b) is transformed
according to the Bernstein-type inequality to make it a de-
terministic optimization problem. The AO method is utilized
to obtain a near optimal solution in an iterative manner. For
the subsequent analysis, we focus on the per-block uplink
achievable rate and outage probability. Thus, the index “t”
denoting the tth block is omitted for simplicity.

A. Uplink Average Achievable Rate

For any given phase-shift vector θ, it is well-known that the
maximum-ratio combining (MRC) at the BS is optimal [28],
i.e.,

fopt
m =

ĥHmθ + ĥm,b∥∥∥ĥHmθ + ĥm,b

∥∥∥ . (10)

Based on the optimal MUD matrix, we have the following
proposition.

Proposition 1: In the single-VUE case, the average achiev-
able rate in (9) is upper-bounded by (11), where Am =
Lr,b∑
i=1

Lm,r∑
j=1

diag (Am,r,j) AH
r,b,i ∈ CN×K , Am,r,j =
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R̄ubm = log2

[
1 +

Pm
σ2

(
$m

∥∥∥ÂH
mθ
∥∥∥2

10−0.1(PLm,r+PLr,b) +$m,b

∥∥∥Âm,b

∥∥∥2

10−0.1PLm,b

+NK

((
ηcm
√

1− ρ2
m

)2

+
(
ηdm

√
1− ρ2

m,b

)2
))]

. (11)

Λm =


(
ηcm
√

1− ρ2
m

)2

(IK ⊗Θ) ηcmη
d
m

√
(1− ρ2

m)
(

1− ρ2
m,b

)
(IK ⊗ θ∗)

ηcmη
d
m

√
(1− ρ2

m)
(

1− ρ2
m,b

) (
IK ⊗ θT

) (
ηdm

√
1− ρ2

m,b

)2

IK

 .

aP
(
ϑAoA
m,r,j , φ

AoA
m,r,j

)
∈ CN×1,∀m, j, Ar,b,i = aL

(
ϑAoA
r,b,i

)
×

aHP

(
ϑAoD
r,b,l , φ

AoD
r,b,i

)
∈ CK×N ,∀i, Âm,b =

Lm,b∑
l=1

Âm,b,l ∈

CK×1, $m =
ρ2m

Lr,bLm,r

(
Lm,r∑
j=1

exp {2πfm,r,jtTs}

)2

, $m,b =

ρ2m,b
Lm,b

(
Lm,b∑
l=1

exp {2πfm,b,ltTs}

)2

, and Â is the estimation

of A.

Proof: See Appendix A. �

In somewhat simplistic, but plausible terms one could argue
that the derived upper bound is a tight approximation of the
average achievable rate for a single VUE. Due to the unit-
modulus constraints in (8c) and the finite matrix eigenvalues of

the quadratic form, i.e.,
∥∥∥ÂH

mθ
∥∥∥2

and
∥∥∥Âm,b

∥∥∥2

in (11), there
will be no unbounded situation even if maximizing the upper
bound of the average achievable rate, as verified in [14]. Based
on Proposition 1, the log2 (·) operator can be removed in the
logarithmic rate upper-bound function due to its monotonicity.
Some coefficients and constant terms can also be ignored.
Problem (9) can then be transformed to the following problem

max
{P,θ}

Pm

∥∥∥ÂH
mθ
∥∥∥2

(12a)

s.t. Pr
(
Pm
∥∥hHmθ + hm,b

∥∥2 ≤ σ2γth
)
≤ p0,∀m,

(12b)
(8c), (8d). (12c)

B. Outage Constrained CSI Error Model

The outage constrained robust transmission problem in
(12) is computationally intractable due to the fact that the
outage probability constraint (12b) has no simple closed-form
expressions. To tackle this issue, a safe approximation based
on Bernstein-type inequality [29, Lemma 1] [19] is employed.
First, let us reformulate the outage probability in (12b) by
using the following proposition.

Proposition 2: The outage probability constraint in (12b) can
be converted to

Pr
(
iHmΛmim + 2<

{
vHmim

}
+ vm ≥ 0

)
≥ 1− p0,∀m, (13)

where Λm is given at the top of this page, vm = ηcm
√

1− ρ2
mvec∗

(
θ
(
ρmθH ĥm + ρm,bĥ

H
m,b

))
ηdm

√
1− ρ2

m,b

(
ρmĥH

mθ + ρm,bĥm,b

) , and vm =(
ρmθ

H ĥm + ρm,bĥ
H
m,b

)(
ρmĥHmθ + ρm,bĥm,b

)
−σ2γth/Pm.

Proof: See Appendix B. �

According to Lemma 1 in [29], by introducing slack vari-
ables x̃ = [x̃1, ..., x̃M ]

T ∈ CM×1 and ỹ = [ỹ1, ..., ỹM ]
T ∈

CM×1, (13) can be converted into
Tr {Λm} −

√
2 ln (1/p0)x̃m + ln (p0) ỹm + vm ≥ 0√

‖Λm‖2F + 2‖vm‖2 ≤ x̃m
ỹmI + Λm � 0, ỹm ≥ 0

,

(14)
Then, some complex terms in (14) can be simplified as given
in (15) at the top of the next page, where (a) holds due to [30,
in P421]. Thus we obtain

ỹmIK + Λm � 0

⇒ỹmIK +

[(
ηcm
√

1− ρ2
m

)2

N +
(
ηdm

√
1− ρ2

m,b

)2
]

IK � 0.

(16)

Combined with the above analysis, problem (12) is approxi-
mated as the problem shown in (17) at the next page. Although
problem (17) is simplified to a certain extent compared to
problem (9), it is still non-convex and is difficult to solve,
dominantly resulting from the coupled variables P and θ.
In the following analysis, AO is employed to decouple such
variables. Specifically, for any given reflection phase shifts θ
at the RIS, the transmit power P can be optimized by solving
a convex problem. Then, for any given P, the RIS reflection
phase shifts θ can be efficiently designed by leveraging
the penalty CCP method due to the non-convexity of the
decomposed subproblem.

C. AO for Solving Problem (17)

1) Optimization of Transmit Power: For the fixed RIS
reflection phase shifts θ, the problem optimizing the transmit
power of each VUE can be formulated as follows

max
{P,x̃,ỹ}

Pm

∥∥∥ÂH
mθ
∥∥∥2

(18a)

s.t. (8d), (17c)− (17e). (18b)
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Tr {Λm} =Tr

{[
ηcm
√

1− ρ2
m (IK ⊗ θ∗)

ηdm

√
1− ρ2

m,bIK

]
·
[
ηcm
√

1− ρ2
m

(
IK ⊗ θT

)
ηdm

√
1− ρ2

m,bIK

]}

=Tr
{(

ηcm
√

1− ρ2
m

)2

(IK ⊗Θ) +
(
ηdm

√
1− ρ2

m,b

)2

IK

}
=
(
ηcm
√

1− ρ2
m

)2

NK +
(
ηdm

√
1− ρ2

m,b

)2

K, (15a)

‖Λm‖2F = Tr
{
ΛmΛH

m

}
=

[(
ηcm
√

1− ρ2
m

)2

N +
(
ηcm

√
1− ρ2

m,b

)2
]2

, (15b)

‖vm‖2 =
[
ηcm
√

1− ρ2
mvecT

(
θ
(
ρmθ

H ĥm + ρm,bĥm,b

))
ηdm

√
1− ρ2

m,b

(
ρmθ

H ĥm + ρm,bĥ
H
m,b

) ]
×

ηcm√1− ρ2
mvec∗

(
θ
(
ρmθ

H ĥm + ρm,bĥm,b

))
ηdm

√
1− ρ2

m,b

(
ρmĥHmθ + ρm,bĥm,b

)


=

[(
ηcm
√

1− ρ2
m

)2

N +
(
ηdm

√
1− ρ2

m,b

)2
] ∥∥∥ρmθH ĥm + ρm,bĥ

H
m,b

∥∥∥2

2
, (15c)

egi (Λm) = egi

{[
ηcm
√

1− ρ2
m (IK ⊗ θ∗)

ηdm

√
1− ρ2

m,bIK

]
·
[
ηcm
√

1− ρ2
m

(
IK ⊗ θT

)
ηdm

√
1− ρ2

m,bIK

]}
(a)
= egi

{((
ηcm
√

1− ρ2
m

)2

N +
(
ηdm

√
1− ρ2

m,b

)2
)

IK

}
, (15d)

max
{P,θ,x̃,ỹ}

Pm

∥∥∥ÂH
mθ
∥∥∥2

(17a)

s.t. (8c), (8d), (17b)(
ηcm
√

1− ρ2
m

)2

NK +
(
ηdm

√
1− ρ2

m,b

)2

K −
√

2 ln (1/p0)x̃m + ln (p0) ỹm + vm ≥ 0,∀m, (17c)

∥∥∥∥∥∥∥∥∥

((
ηcm
√

1− ρ2
m

)2

NK +
(
ηdm

√
1− ρ2

m,b

)2

K

)
vec (IK)√

2

((
ηcm
√

1− ρ2
m

)2

N +
(
ηdm

√
1− ρ2

m,b

)2
)(

ρmĥHmθ + ρm,bĥm,b

)
∥∥∥∥∥∥∥∥∥ ≤ x̃m,∀m, (17d)

ỹmIK +

[(
ηcm
√

1− ρ2
m

)2

N +
(
ηdm

√
1− ρ2

m,b

)2
]

IK � 0,∀m. (17e)

Problem (18) is convex and can be efficiently solved by the
existing solver, such as CVX [31].

2) Optimization of RIS Reflection Phase Shifts: For any
given transmit power P, the RIS reflection phase shifts can be
designed by solving the following problem

max
{θ,x̃,ỹ}

Pm

∥∥∥ÂH
mθ
∥∥∥2

(19a)

s.t. (8c), (17c)− (17e). (19b)

The non-concavity of the objective function and the non-
convex constraints (8c), (17c) endow this subproblem with
intractability. To solve problem (19) effectively and efficiently,
we resort to the penalty CCP [17] [32] method to deal
with the non-convex terms. Following the penalty CCP, the
objective function is lower bounded by its first order Tay-

lor expansion at the given point θ(q) in the qth iteration,
which is given by θHÂmÂH

mθ ≥ 2<
{(
θH
)(q)

ÂmÂH
mθ
}
−(

θH
)(q)

ÂmÂH
mθ

(q). The term θH ĥmĥHmθ involved in vm
leads to the non-convexity of (17c). Similarly, at the given
point θ(q) in the qth iteration, we have θH ĥmĥHmθ ≥
2<
{(
θH
)(q)

ĥmĥHmθ
}
−
(
θH
)(q)

ĥmĥHmθ
(q), which thus fol-

lows that

vlbm = 2<
{(
θH
)(q)

ĥmĥHmθ+ θH ĥmĥm,b

}
ρ2
m

−
(
θH
)(q)

ĥmĥHmθ
(q)ρ2

m − σ2γth/Pm. (20)

Furthermore, the unit-modulus constraint (8c) is equivalent to
|θn|2 ≤ 1 and |θn|2 ≥ 1. The non-convex parts of the resulting
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constraints are then linearized by∣∣∣θ(q)
n

∣∣∣2 − 2<
{

(θ∗n)
(q)
θn

}
≤ −1. (21)

Finally, the yielding convex subproblem of the RIS reflection
phase shifts θ is given by

max
{θ,x̃,ỹ,b}

Pm

[
2<
{(
θH
)(q)

ÂmÂH
mθ
}

−
(
θH
)(q)

ÂmÂH
mθ

(q)
]
− λ(q)

N+1∑
n=1

bn (22a)

s.t. ỹmIK +

[(
ηcm
√

1− ρ2
m

)2

N

+
(
ηdm

√
1− ρ2

m,b

)2
]

IK � 0,∀m, (22b)

|θn|2 ≤ 1,∀n, (22c)∣∣∣θ(q)
n

∣∣∣2 − 2<
{

(θ∗n)
(q)
θn

}
≤ bn+1 − 1,∀n, (22d)(

ηcm
√

1− ρ2
m

)2

NK +
(
ηdm

√
1− ρ2

m,b

)2

K

−
√

2 ln (1/p0)x̃m + ln (p0) ỹm + vlbm ≥ −b1,∀m,
(22e)

where b = [b1, ..., bN , bN+1]
T are the introduced slack

variables imposed over the associated constraints of the RIS
reflection phase shifts θ. ‖b‖1 is the penalty term of the
objective function, and is scaled by the penalty factor λ(q)

to control the feasibility of the constraints. Problem (22) is a
convex problem that can be solved by the off-the-shelf tool,
such as CVX [31] and MOSEK [33]. The steps of finding a
feasible θ to problem (19) are summarized in Algorithm 1.

Remark 1: Compared with the conventional semi-definite
relaxation (SDR) method to design the RIS reflection phase
shifts, the motivation of leveraging penalty CCP is that such an
approach is able to effectively cope with the constraints associ-
ated with θ that tend to induce the infeasibility of optimization
problem. Introducing slack variables can appropriately expand
the feasible region of the original problem. Accordingly,
the penalty for slack variables in the objective function can
effectively enforce such an “expansion”. Furthermore, the con-
straint (8c) in problem (19) can be ensured by the convergence
condition ‖b‖1 ≤ ε′′ when ε′′ is sufficiently small. In addition,
the maximum value λmax is imposed to avoid a numerical
problem. To be specific, a feasible solution satisfying ‖b‖1 ≤
ε′′ may not be found as λ(q) increases until the iteration
converges to the stopping criteria

∥∥θ(q) − θ(q−1)
∥∥

1
≤ ε′.

Thus the convergence of Algorithm 1 can be controlled by
the stopping criteria

∥∥θ(q) − θ(q−1)
∥∥

1
≤ ε′.

Finally, based on the AO framework, problem (17) can
be solved by solving two approximated subproblems (18)
and (22) in an iterative manner. Note that the given point
θ(q) in constraint (22) is updated iteratively in Algorithm 1,
which is the same as the penalty factor λ(q). While the fixed
point θ(r) in problem (18) is updated iteratively in the outer
AO framework. The proposed AO algorithm is elaborated in
Algorithm 2.

Algorithm 1 Penalty CCP-based Optimization for RIS Reflec-
tion Phase Shifts

1: Initialize: Initialize θ(0), $ > 1, and set q = 0.
2: repeat
3: if q < Qmax then
4: Solving problem (22) and denote the optimal solution

as θ(q+1).
5: Update λ(q+1) = min

{
$λ(q), λmax

}
.

6: q = q + 1.
7: else
8: Reinitialize with a new θ(0), and set up $ > 1 and

q = 0 again.
9: end if

10: until
∥∥θ(q) − θ(q−1)

∥∥
1
≤ ε′ and ‖b‖1 ≤ ε′′.

11: Output: θ(r+1) = θ(q).

D. Discussion

AO is actually a multi-stage iterative optimization
algorithm. The outer loop involves two subproblems
for optimizing P and θ, and each subproblem still
needs to be solved in an iterative update method. In
particular, the complexity of solving the RIS reflection
phase shifts based on the penalty CCP method mainly
derives from Step 4 of Algorithm 1. In Step 4,
solving problem (22) results in a complexity of oθ =

O
(

(MK + 2N)
1/2
n1

(
n1

2 + n1MK2 +K3 + n1N
))

by utilizing the interior point method [34, Lecture 6]
[29], where n1 = 2N + M + 1 denotes the number of
variables in problem (22). Let qmax be the maximum
number that allows Algorithm 1 to converge, and the
computational complexity of Algorithm 1 is qmaxoθ.
Similarly, the complexity of Step 3 in Algorithm 2 is oP =

O
(

(MK + 2M)1/2n2

(
n2

2 + n2MK2 +K3 + n2MK2(K + 1)2)),
where n2 = M . Hence, the overall computational complexity
of Algorithm 2 is thus equal to rmax (qmaxoθ + oP), where
rmax denotes the maximum number of iterations.

Next, the convergence of Algorithm 2 is analyzed as fol-
lows. In particular, denoting the objective value of prob-

lem (17) as Φ (P,θ) = Pm

∥∥∥ÂH
mθ
∥∥∥2

, it follows that

Φ
(
P(r),θ(r)

) (a)

≤ Φ
(
P(r+1),θ(r)

) (b)

≤ Φ
(
P(r+1),θ(r+1)

)
,

(23)
where (a) comes from the fact that with the given θ(r),
problem (18) is solved optimally with solution P(r+1). Since
there is always a feasible solution θ(r+1) for problem (22) to
maximize the objective function, (b) holds true. Hence, the se-
quence

{
Φ
(
P(r),θ(r)

)}
is non-decreasing and the algorithm

is guaranteed to converge.
The idea of alternatingly updating variables is quite straight-

forward. Such method is widely applicable and in general has
good performance, as verified in [8], [16]–[18]. Nonetheless,
this approach also has three following drawbacks: i) AO relies
on deterministic objective function and constraints. When
the studied problem has the nature of stochasticity, i.e., the
expectation objective function and probabilistic constraints, the
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Algorithm 2 Proposed AO Algorithm for Solving Prob-
lem (17)

1: Initialize: P(0) and θ(0), and set the iteration index r = 0.
2: repeat
3: Solve problem (18) for given θ(r), and denote the

optimal solution as P(r+1).
4: Obtain the optimal solution θ(r+1) via Algorithm 1 for

given
{
P(r+1),θ(r)

}
.

5: r = r + 1.
6: until The change of the objective value is below a

threshold ε′′′ > 0 or r ≥ rmax.
7: Output: the optimal solution

{
P(∗),θ(∗)}.

corresponding closed-form expressions must be obtained for
a further analysis, which is a major challenge for the multi-
VUE situation in which the closed-form expressions are not
allowed to be expressed explicitly. ii) The complexity of AO
depends on each subproblem’s complexity. The overall com-
plexity becomes unacceptable when all the subproblems also
require iterative methods. In addition, the accuracy of solution
obtained by AO depends on the convergence condition, i.e.,
a precise enough convergence criterion should be selected in
order to prevent from stopping at an uninteresting point. iii)
In the single-VUE case, the original stochastic optimization
problem is transformed into a deterministic problem according
to the statistical characteristics of CSI error. However, it is
not appropriate to straightly extend AO to the multi-VUE case
under imperfect S-CSI. As a result, a new algorithm with lower
complexity, greater robustness, and better extendibility is more
than essential for the multi-VUE case.

IV. MULTI-VUE CASE

A. CSSCA for Solving Problem (8)

In this section, we address the multi-VUE case where
there in general exists multi-user interference. The interference
terms give rise to difficulties of analyzing the closed-form
of the average achievable capacity, predominantly due to the
fact that the optimal MUD matrix as explicit functions of the
RIS phase shifts are prohibitive to obtain. This hinders the
beamforming design. A classical approach to deal with the
expectation operation of the objective function is the sample
average approximation method. Accordingly, we adopt a low-
complexity CSSCA optimization framework [14] [35]. The
pivotal idea of CSSCA is to construct strongly convex/concave
functions for the stochastic objective function and constraints
in conformity with the randomly generated channel samples
that are based on the S-CSI. The variables are updated by
solving a convex problem obtained by replacing the objec-
tive and the constraint functions with their convex surrogate
functions, based on the statistics of the channels, or a data set
containing a large number of channel samples that capture the
properties of the considered system. The corresponding steps
are elaborated as follows.

1) Step 1: For each block in the considered transmission
frame, TH new channel samples

{
H [t]

(i)
(j)

}
j={1,...,TH}

=

{
hm[t](j),hm,b[t](j)

}(i)

j={1,...,TH}
are randomly generated in

the ith iteration, where hm[t](j) and hm,b[t](j) are defined in
(6) and (7). To tackle the outage probability constraint in (8b),
we convert it into the following constraint with expectation.
By utilizing the step function u (x), we have

Pr
(
SINRm [t] ≤ γth) = E

[
u
(
γth − SINRm [t]

)]
. (24)

Let ûβ (x) =
(
1 + e−βx

)−1
be a smooth approximation of

the step function with a non-negative smooth parameter β that
can be used to control the approximation error. For conve-
nience, the set of optimization variables is defined as V ∆

=
{P,θ,F}. The objective function and the constraint in (8b)
can be expressed by gm,0 (V)

∆
= E [Rm (V ; H [t])] ,∀m, t,

and gm,1 (V)
∆
= E [Sm (V ; H [t])] ≤ 0,∀m, t, respectively,

where Sm (V ; H [t]) is shown in (25) at the top of the next
page and Rm (V ; H [t]) = log2 (1 + SINRm [t]). Then, by
obtaining new channel samples

{
H [t]

(i)
(j)

}
j={1,...,TH}

and the

results in the (i− 1)th iteration V(i−1), the surrogate functions
can be constructed to approximate the non-convex stochastic
functions gm,0 (V) and gm,1 (V), i.e.,

ḡ(i)
m,s (V) = ĝ(i)

m,s +
(
ḡ

(i)
P

)T
m,s

(
P−P(i−1)

)
+ <

{(
ḡ

(i)
θ

)H
m,s

(
θ − θi−1

)}
+ Tr

((
ḡ

(i)
F

)H
m,s

(
F− F(i−1)

))
− τs

∥∥∥P−P(i−1)
∥∥∥2

− τs
∥∥∥θ − θ(i−1)

∥∥∥2

− τsTr
((

F− F(i−1)
)(

F− F(i−1)
)H)

, s = 0, 1,

(26)

where(
ḡ

(i)
V

)
m,0

=
(

1− %(i)
)(

ḡ
(i−1)
V

)
m,0

+ %(i)∇VRm

(
V(i−1); H[t]

(i)
)
, (27a)(

ḡ
(i)
V

)
m,1

=
(

1− %(t)
)(

ḡ
(i−1)
V

)
m,1

+ %(i)∇VSm

(
V(i−1); H[t]

(i)
)
. (27b)

Detailed expressions of ∇VRm

(
V(i−1); H[t]

(i)
)

and

∇VSm

(
V(i−1); H[t]

(i)
)

in (27a) and (27b) are omitted here
due to the limitation of paper length, and they can be easily
derived in light of the facts in [36, Sec. 2.4]. The constant
τ0 > 0 is able to guarantee that ḡ(i)

m,0 (V) is strongly concave
with respect to all variables, and τ1 < 0 is able to ensure the
strong convexity of ḡ(i)

m,1 (V) with respect to all variables. %(i)

satisfies Assumption 1 (i.e., Assumption 5 in [35]), which
will be specified later. For the constant surrogate function,
we have

ĝ
(i)
m,0 =

1

i

i∑
j=1

Rm

(
V(i−1); H [t]

(i)
(j)

)
, (28a)

ĝ
(i)
m,1 =

1

i

i∑
j=1

Sm

(
V(i−1); H [t]

(i)
(j)

)
. (28b)
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Sm (V ; H [t]) = ûβ

γth

 ∑
m′∈M\m

Pm′
∣∣fHm (hHm′ [t]θ + hm′,b [t]

)∣∣2 + σ2
∣∣fHm ∣∣2

− Pm∣∣fHm (hHm [t]θ + hm,b [t]
)∣∣2− p0.

(25)

Therefore, based on the randomly generated channel samples{
H [t]

(i)
(j)

}
j={1,...,TH}

at the beginning of each iteration and

the corresponding solutions obtained in the last iteration
V(i−1) ∆

=
{
P(i−1),θ(i−1),F(i−1)

}
, the achievable average

rate gm,0 (V), although not expressed explicitly, can be ap-
proximated by updating

(
ḡ

(i)
V

)
m,s

and ĝ
(i)
m,s (s = 0, 1) in an

iterative manner in (27) and (28). Similar to the single-
VUE case, the unit-modulus constraint can be equivalent to
1 ≤ |θn|2 ≤ 1,∀n, and the non-convex part can be tackled by
linearization as expressed in (21).

2) Step 2: In this step, the yielding problem to attain the
optimal solution {V} is given by

max
{P,θ,F}

∑
m∈M

ḡ
(i)
m,0 (V) (29a)

s.t. 0 ≤ Pm ≤ Pmax,∀m, (29b)

ḡ
(i)
m,1 (V) ≤ 0,∀m, (29c)

|θn|2 ≤ 1,∀n, (29d)∣∣∣θ(i)
n

∣∣∣2 − 2<
{

(θ∗n)
(i)
θn

}
≤ −1,∀n. (29e)

Problem (29) is allowed to be viewed as a convex approxima-
tion of problem (8). However, problem (29) does not always
have a feasible solution. If it turns out to be infeasible, the
following surrogate problem is indispensable and solved as
the current update

min
{P,θ,F,ι}

ι (30a)

s.t. ḡ
(i)
m,1 (V) ≤ ι, ∀m, (30b)

|θn|2 − 1 ≤ ι, ∀n, (30c)∣∣∣θ(i)
n

∣∣∣2 − 2<
{

(θ∗n)
(i)
θn

}
+ 1 ≤ ι, ∀n. (30d)

Let V̄ ∆
=
{
P̄, θ̄, F̄

}
be the set of solutions for problem (30)

when (29) is infeasible. Note that optimizing P, θ and F in
problem (29) is able to maximize the achievable average rate
since ḡ(i)

0 (V) is a function of the optimization variable. While
by solving problem (30), we approximately minimize the gap
between Pr

(
SINRm (V ; H[t]) ≤ γth

)
and the corresponding

outage probability p0, i.e., ι, which helps to push the solution
to the feasible region when the current problem is infeasible
in the ith iteration. It can be seen that both problems (29) and
(30) are convex, which can be efficiently solved by off-the-
shelf solvers, such as MOSEK [33].

3) Step 3: After obtaining V̄ , V can be updated according
to

V(i) =
(

1− ζ(i)
)
V(i−1) + ζ(i)V̄(i)

, (31)

where ζ(i) is an iteration-dependent constant that satisfies
the following assumption [35, Assumption 5] (referred to

Algorithm 3 Joint optimization of Active and Passive
beamforming in the Multi-VUE case by leveraging CSSCA
(JAPMC)

1: Input:
{
%(i)
}

,
{
ζ(i)
}

and TH . Initialize: V(0) and i = 1.
2: repeat
3: Generate TH new channel samples according to the true

CSI H[t] at the tth block.
4: Update surrogate functions according to (26).
5: Obtain the optimal V(i) by solving problem (29) if (29)

is feasible. Otherwise solve problem (30) to obtain V̄ .
6: Update V(i) according to (31).
7: i = i+ 1.
8: until The convergence criteria is met.
9: Output: the optimal solution V ∆

= {P,θ,F}.

Assumption 1): i) %(i) → 0,
∑
i

(
%(i)
)2

< ∞; ii) ζ(i) → 0,∑
i ζ

(i) = 0,
∑
i

(
ζ(i)
)2 ≤ ∞; and iii) limi→∞

ζ(i)

%(i)
= 0.

The above process repeats iteratively until convergence, which
yields the proposed JAPMC algorithm as summarized in
Algorithm 3.

The proposed JAPMC algorithm tends to yield a faster con-
vergence speed, not only due to the fact that it provides much
freedom to design good surrogate functions for the case of
interest, but also because it iteratively optimizes a sequence of
surrogate functions with strong convexity/concavity [35]. It is
important to mention that JAPMC only requires the per-block
S-CSI to solve problem (8), i.e., resorting to the per-block
S-CSI to generate the channel samples

{
H [t]

(i)
(j)

}
j={1,...,TH}

for the stochastic optimization, which is practically engaging
due to the undesirable channel estimation overhead in the RIS-
aided high mobility system, especially for a large N and the
easily outdated CSI.

B. Convergence and Complexity of JAPMC

This subsection mainly discusses the convergence and com-
putational complexity of the proposed JAPMC. First of all,
the convergence of JAPMC is analyzed as follows. It is
supposed that V(0) ∆

=
{
P(0),θ(0),F(0)

}
are the feasible

initial points for problem (8), i.e., satisfying the probabilistic
constraint Pr

(
SINRm

(
V(i−1); H[t]

(i)
)
≤ γth

)
≤ p0,∀m, t.

Let
{
V(i)

}∞
i=1

denote the values iteratively generated by

JAPMC with a sufficiently small initial step size ζ(0), then
each limit point V(∗) of

{
V(i)

}∞
i=1

is a stationary point of
problem (8). In addition, JAPMC is able to almost surely
convergence to the set of stationary solutions of problem (8),
and a detailed proof can be found in [15] [35] .
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Next, let us analyze the computational complexity of
JAPMC, the complexity of which primarily stems from the
update of V(i) and V̄(i) in Step 5. Besides, both problems (29)
and (30) can be expressed as a second-order cone program
(SOCP), and the complexity of solving them by utilizing a
standard interior-point method [29] can be shown as o =

O
(√

2 (M +N)n
(
n2 + n

(
M
(
M +N +K2

)
+N

)))
,

where n = M + N is the number of variables. Accordingly,
the complexity for jointly updating the transmit power P, the
RIS phase shifts θ and the MUD matrix F is tmaxo, where
tmax denotes the maximum iteration number required by
JAPMC.

V. SIMULATION RESULTS

In this section, simulation results are presented to validate
the proposed transmission schemes for the RIS-aided mmWave
vehicular communication system and some useful insights are
drawn. We customize our simulation following the evaluation
methodology for the freeway case defined in 3GPP TR 36.885
[37, Annex A], which describes in detail vehicle drop models,
densities, speeds, and directions of movement. The considered
system operates at 28 GHz with bandwidth B = 500 MHz.
The mmWave channel parameters of distance-dependent path
loss is set to PL0 = 61.4 dB and σ2

s = 5.8 dB [38] [39]. We
configure αm,b = 3, αm,r = 2.2 and αr,b = 2.5 [8], i.e., the
path-loss exponent of the BS-VUE link is larger than that of
the BS-RIS and RIS-VUE link, to model the scenario that the
VUEs suffer from severe signal attenuation in the BS-VUE di-
rect link. The three-dimensional coordinates of the BS and the
RIS in meters are (0, 0, 25) and (50, 0, 25), respectively. The
BS is equipped with K = 16 antennas, and the total number of
RIS reflecting elements is N=Nh×Nv (30 = 5× 6), in which
the active and the passive antenna spacing of both are d =
λc/2 (λc denotes the wavelength). For the statistical CSI error
model, the variances of vec (∆hm) and ∆hm,b are defined as

(ηcm)
2

= (δc)
2
∥∥∥vec

(
ĥm

)∥∥∥2

2
and

(
ηdm
)2

=
(
δd
)2 ∥∥∥ĥm,b∥∥∥2

2
,

respectively. δc ∈ [0, 1) and δd ∈ [0, 1) measure the relative
amount of CSI uncertainties. Other system parameters are
set as follows unless specified otherwise: σ2 = −80 dBm,
Lm,b = Lr,b = Lm,r = 3, Pmax = 23 dBm, v = 140 km/h,
p0 = 0.001, γth = 12 dB, δc = 0.01, and δd = 0.02.
The temporal correlation coefficient is ρ (Ts) = 0.986 (when
v = 140 km/h and Ts = 10 us) and the Doppler shifts
{fm,b,l, fm,r,l} are uniformly distributed in [0, fmax] [21]. For
the single-VUE case, we let M = 1, i.e., select one VUE
randomly from the generated vehicles. For the multi-VUE
case, the corresponding parameters are: M = 5, TH = 300,
ρ(0) = 0, ρ(i) = 1

(1+i)2/3
, β = 105, ζ(i) = 2

2+i , and |τs| = 0.5.

A. Single-VUE Case

Figure 3 shows the convergence behavior of Algorithm 2
with different number of RIS reflecting elements. The conver-
gence condition is

(
Φ(r+1) − Φ(r)

)
/Φ(r) ≤ ε′′′

(
ε′′′ = 10−8

)
.

It can be observed from Fig. 3 that the proposed AO algorithm
is monotonically convergent, which is in good agreement with
the theoretical analysis of convergence behavior. At the same
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Fig. 3. Convergence behaviors of Algorithm 2 for different number of RIS
reflecting elements N .
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Fig. 4. Feasibility rate versus the number of RIS reflecting elements N for
different algorithms and CSI uncertainties.

time, the proposed algorithm converges rapidly and 6 iterations
are sufficient for the algorithm to converge. In addition, a
larger N allows the algorithm to converge to a higher value,
which benefits from the passive beamforming gain of the RIS.

In order to demonstrate the superiority of the proposed
penalty-CCP-based algorithm (Algorithm 1) in terms of
searching for feasible solutions with respect to RIS reflection
phase shifts, the commonly methods in use, such as conven-
tional SDR [16] [17] and successive convex approximation
(SCA) [8], are served as benchmark schemes. We compare
in Fig. 4 the feasibility rate of each algorithm under three
CSI uncertainties (i.e., perfect CSI, δc = 0.01, δd = 0.02,
and δc = 0.1, δd = 0.2, respectively). Feasibility rate is
defined as the ratio of the number of feasible channel to
the total number of channel generations, where a feasible
channel implies that there exists a feasible solution for the
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Fig. 5. Average achievable rate versus the number of BS antennas K &
reflecting elements N in the single-VUE case.

optimization problem under this channel generation1. An eye-
catching phenomenon in Fig. 4 is that there is no feasible
solution for three options when the CSI uncertainty level is
high, i.e., δc = 0.1, δd = 0.2. Meanwhile, the better the CSI,
the higher the feasibility rate, which implies that the algorithm
performance is greatly affected by the CSI uncertainty. In
addition, under perfect CSI and a low-level CSI uncertainty
(e.g., δc = 0.01, δd = 0.02), the proposed AO-penalty CCP,
compared to the other two schemes, always shows a fairly
high feasibility rate, i.e., almost approaches to 100% as N
increases, while both SDR and SCA, the performance of which
fluctuate with varying N , are largely affected by CSI. This
agrees with the discussion in Remark 1, and also demonstrates
the robustness and superiority of our proposed algorithm.

Figure 5 plots the average achievable rate versus the
number of BS antennas K and the number of RIS re-
flecting elements N under different CSI uncertainties. First,
we investigate the situation that the BS antennas is fixed
at K = 16. When the CSI uncertainty level is low, e.g.,
δc = {0.01, 0.03, 0.05} , δd = 0.02, the average achievable
rate increases in varying degrees with an increment of N ,
while it deteriorates under higher CSI uncertainties as N
increases. This is a noteworthy finding and the reasons are
analyzed as follows. An increasing number of RIS reflecting
elements give rise to a considerable gain in terms of the
average achievable rate due to the passive beamforming.
However, a larger N leads to a higher channel estimation error
under a high CSI uncertainty, which hinders the improvement
of system performance as N grows. Second, when fixing
N = 30, the other insight observed from Fig. 5 is that although
the increment of CSI uncertainty results in the loss of system
rate, the average achievable rate still raises as the number of
BS antennas K grows. This is attributed to the fact that the
benefits brought by the increase of K outweigh its drawbacks,

1It should be noted that one iteration with a feasible solution in general
has considerable dependence on parameter initialization, channel conditions
and algorithm design.
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Fig. 7. Average sum-rate versus the number of BS antennas K & reflecting
elements N in the multi-VUE case.

which can compensate for system performance under different
CSI uncertainties.

B. Multi-VUE Case

The convergence behavior of our proposed JAPMC is
illustrated in Fig. 6 by depicting that the objective value∑
m∈M

ḡm,0 (V) varies with the number of iterations under

different settings of CSI and N . Due to the stochastic nature of
the studied problem and the proposed algorithm, the objective
value curves in Fig. 6 are not monotonous and fluctuate in a
small range. However, it can be seen from the overall trend that
the curves gradually increase and exhibit trend of convergence
after about 250 iteration times. Meanwhile, compared with
perfect CSI, the schemes under imperfect CSI suffer a certain
loss of system performance.

The impact of CSI acquisition accuracy on system perfor-
mance in the multi-VUE case is illustrated in Fig. 7 that
depicts the average sum-rate versus the number of RIS re-
flecting elements N . In order to intuitively explore the impact
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of the variation of N with diverse CSI uncertainties of the
cascaded channels on the average sum-rate, specifically, we
set δd = 0 in Fig. 7(a) (i.e., assuming that the direct channel
is perfect). From Fig. 7(a), it can be observed that a high
CSI uncertainty has a great influence on the improvement of
system performance as N increases. This is because more RIS
reflecting elements bring higher CSI error, which degrades
the system performance. By contrast, we find in Fig. 7(b)
that the increment of the number of antennas K at the
BS is effective in boosting the average sum-rate, arriving
at the same conclusion as that of the single-VUE case. In
conjunction with the observations in the single- and multi-
VUE case, we conclude that a large number of reflecting
elements at the RIS, presumably resulting in a high average
rate, should be taken with a grain of salt: Within a reasonable
region of CSI uncertainty change, the gain brought by the
passive beamforming is good, which, however, suffers from
noticeable degradation if the CSI uncertainty grows beyond
the acceptable margin.

It is worth noting that the phase shifts are usually discrete
due to hardware limitations in the practical system [40]. Our
proposed algorithms provide, therefore, the best-case bound
for realistic scenarios and have the potential to be extended
to discrete phases. An intuitive solution is to round the con-
tinuous phase shift obtained to its nearest discrete phase shift,
which, however, imposes a performance loss due to the quanti-
zation effect. In this regard, Fig. 8 shows the impact of discrete
phase shifts at the RIS on average sum-rate. Particularly, we
consider, respectively, 1-bit phase shift {0, π}, 2-bit phase shift{

0, π2 , π,
3
2π
}

, 3-bit phase shift
{

0, π4 ,
π
2 , π,

5
4π,

3
2π,

5
4π,

7
4π
}

by employing JAPMC. It is observed from Fig. 8 that using
RIS with 3-bit phase shifts incurs inconspicuous performance
loss. In addition, the performance gap between the continuous
phases-shift case and low-resolution phase-shift case becomes
larger with an increment of N . More accurate phase shifts are
essential, which, however, tends to make the hardware imple-
mentation more challenging. Thus, the trade-off between the
overhead and the resolution should be concerned reasonably.
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Fig. 9. Average sum-rate versus LoS power ratio ω.

For the next evaluations, the following several benchmarks
are adopted for comparison. i) I-CSI-based scheme: partic-
ularly, similar to the single-VUE case, the MUD matrix is
designed by MRC2 and the RIS reflection phase shifts are
optimized by penalty-CCP method, both of which are updated
in an alternating iterative manner. ii) Non-robust scheme: the
estimated CSI, i.e.,

{
ĥm,b [t− Ts] , ĥm [t− Ts]

}
is treated as

perfect CSI. iii) Naive scheme: the channel samples are only
updated in the first iteration of JAPMC. iv) A random phase
scheme in which θ is not optimized in JAPMC. iv) The MUD
matrix is designed by MRC under the I-CSI without the aid
of the RIS.

In Fig. 9, we investigate the average sum-rate achieved
by different schemes versus the LoS power ratio. The LoS
power ratio of the BS-VUE link is defined as ωm,b =
|hm,b,1aL(ϑAoA

m,b,1)|
Lm,b∑
l=1
|hm,b,laL(ϑAoA

m,b,l)|2
[15], and the LoS power ratios of BS-

RIS and RIS-VUE links are defined by the similar procedure
and are denoted by ωm,r and ωr,b, respectively. We set
ωm,r = ωr,b = ω and ωm,b = 0. First, it is obvious that
the average sum-rate achieved by the I-CSI-based scheme is
superior to that of the S-CSI-based scheme, manifesting a
joint effect of the better multi-VUE interference suppression
capability of the AO scheme, the performance gap among
which reduces as the LoS power ratio ω decreases. The
performance gap will not approach zero under the considered
simulation settings. This is due to the fact that multi-VUE
interference is the critical bottleneck in the multi-VUE case,
and that the average sum-rate drastically deteriorates, provided
that I-CSI is not considered for the design of the RIS re-
flection coefficients. Second, there always exist performance
gaps between the robust and non-robust scheme under the I-
CSI- and the S-CSI-based cases, respectively. This evinces,
as expected, that the outdated estimated CSI gives rise to the
performance loss. The feedback of outdated CSI leads to the

2The weighted minimum mean-squared error (WMMSE) algorithm may
be more suitable for the beamforming design in multi-VUE case. In order to
reduce complexity, here, we adopt MRC to design MUD matrix at the BS
[13].
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Fig. 10. Impact of temporal correlation coefficient ρ (Ts) and vehicle speed
v on average sum-rate.

suboptimal beamforming, thus causing the average sum-rate to
fade compared with robust scheme. Third, the average sum-
rate obtained by JAPMC gradually enlarges as ω grows larger.
When ω increases, the performance improvement obtained by
JAPMC becomes pronounced mainly because of the reduction
in the degree of randomization of multi-VUE interference.
Another important reason for the improved performance is
that the cascaded link becomes more deterministic as ω in-
creases, thus rendering the beamforming to be more effective,
which underscores the importance of joint active and passive
beamforming optimization.

Finally, we analyze how the average sum-rate is affected by
the temporal correlation coefficient ρ (Ts) and vehicle speed
v in Fig. 10 to substantiate the robustness of our proposed
JAPMC. Note that as ρ (Ts) decreases, the CSI becomes more
outdated as shown in (6) and (7), and ρ (Ts) = 1 means
non-outdated CSI. Intuitively, as illustrated in Fig. 10(a), the
average sum-rates of all schemes degrade as CSI becomes
more outdated, and what is striking is that the non-robust
scheme suffers from noticeable degradation and the situation
is much worse than that of JAPMC. Besides, the decrease of
ρ (Ts) has more effects on the performance of other several
schemes while our proposed JAPMC retains the average sum-
rate at a favorable level, revealing that benchmark schemes are
more sensitive to the uncertainty of CSI and the robustness of
JAPMC. Fig. 10(b) plots the average sum-rate versus vehicle
speed v. Since ρ (Ts) is a function of v and decreases as v
increases, the average sum-rate degenerates as v grows larger,
which implies that a larger speed presumably endows the
acquisition of real-time CSI with more difficulty. That said,
we can still validate the advantage of the proposed JAPMC
since it outperforms other schemes and the average sum-rate
drops slowly compared with a dramatic decline in non-robust
scheme. This further verifies that the proposed JAPMC is more
robust against mobility-induced CSI uncertainty.

VI. CONCLUSION

In this paper, we study the robust transmission for RIS-
aided mmWave vehicular communications over time-varying
channels. By taking account of the unavailability of full accu-
racy I-CSI in the high-mobility scenario, a novel transmission
protocol is proposed by exploiting the imperfect knowledge of
S-CSI. Then, the uplink average achievable rate is maximized,
subject to the outage probability and RIS’s unit-modulus con-
straints. Effective robust beamforming algorithms are proposed
for the single- and multi-VUE cases, and useful insights are
drawn via theoretical analysis. Simulation results substantiate
that the system performance is greatly affected by the accuracy
of CSI, and the increasing number of RIS elements may
hamper the performance improvement when CSI uncertainty
is fairly high. In addition, the proposed S-CSI scheme can
significantly reduce signal processing complexity and channel
training overhead, but there is still a certain performance
weakness compared with the I-CSI scheme, which unveils
the trade-off between the acquisition scale of CSI and system
performance. RIS-aided high mobility scenario is an important
topic, and for future work, we will shed light on more effective
and efficient communication protocol and transmission design
for the RIS-aided high-mobility communications.

APPENDIX A
PROOF OF PROPOSITION 1

By plugging the optimal MUD matrix fopt
m into the objective

function of (9), the achievable ergodic rate of the mth VUE
can be formulated as

R̄m = E
{

log2

(
1 +

Pm
σ2

∥∥hHmθ + hm,b
∥∥2
)}

(a)

≤ log2

(
1 +

Pm
σ2

E
{∥∥hHmθ + hm,b

∥∥2
})

, (32)

where (a) comes from Jensen’s inequality. Next we focus on
the property of E

{∥∥hHmθ + hm,b
∥∥2
}

:

E
{∥∥hHmθ + hm,b

∥∥2
}

=E

{[(
ρmĥm + ∆hm

)H
θ + ρm,bĥm,b + ∆hm,b

]H
×
[(
ρmĥm + ∆hm

)H
θ + ρm,bĥm,b + ∆hm,b

]}
=E

{[(
ρmĥHmθ + ρm,bĥm,b

)
+
(
∆hHmθ + ∆hm,b

)]H
×
[(
ρmĥHmθ + ρm,bĥm,b

)
+
(
∆hHmθ + ∆hm,b

)]}
=E

{∥∥∥ρmĥHmθ + ρm,bĥm,b

∥∥∥2
}

+ E
{∥∥∆hHmθ + ∆hm,b

∥∥2
}
.

(33)

For simplicity, it is assumed that ĥr,b,i, ĥm,r,j and ĥm,b,l are
independent3 of each other [9] [14]. The first term of (33),

3Due to the difficulties of attaining the dependence of associated channels, a
probability-box (p-box) [41] can be constructed as the envelope of the various
distributions composed of the products of random variables by analyzing
probability bounds. In accordance with the facts in [42], the independence
assumption we made provides a proper subset of the general case, which also
contributes meaningful theoretical insights.
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i.e., E
{∥∥∥ρmĥHmθ + ρm,bĥm,b

∥∥∥2
}

, can be written as

E
{∥∥∥ρmĥHmθ + ρm,bĥm,b

∥∥∥2
}

=E
{∥∥∥ρmĥr,bΘĥm,r + ρm,bĥm,b

∥∥∥2
}

=$mE


∥∥∥∥∥∥
Lr,b∑
i=1

Lm,r∑
j=1

ĥr,b,iĥm,r,jÂr,b,iΘÂm,r,j

∥∥∥∥∥∥
2


+$m,bE


∥∥∥∥∥∥
Lm,b∑
l=1

ĥm,b,lÂm,b,l

∥∥∥∥∥∥
2
 , (34)

where Ar,b,i = aL

(
ϑAoA
r,b,i

)
aHP

(
ϑAoD
r,b,i , φ

AoD
r,b,i

)
∈ CK×N ,∀i,

Am,r,j = aP
(
ϑAoA
m,r,j , φ

AoA
m,r,j

)
∈ CN×1,∀m, j,

Am,b,l = aL

(
ϑAoA
m,b,l

)
∈ CK×1,∀m, l, $m =

ρ2m
Lr,bLm,r

(
Lm,r∑
j=1

exp {2πfm,r,jtTs}

)2

, $m,b =
ρ2m,b
Lm,b

×(
Lm,b∑
l=1

exp {2πfm,b,ltTs}

)2

, and Â is the

estimation of A. By defining random variables

|hr,b|
∆
=

∣∣∣∣∣Lr,b∑i=1

hr,b,i

∣∣∣∣∣ ∼ N

(
0,
Lr,b∑
i=1

10−0.1PLr,b,i

)
,

|hm,r|
∆
=

∣∣∣∣∣Lm,r∑j=1

hm,r,j

∣∣∣∣∣ ∼ N

(
0,
Lm,r∑
j=1

10−0.1PLm,r,j

)
,

and |hm,b|
∆
=

∣∣∣∣∣Lm,b∑l=1

hm,b,l

∣∣∣∣∣ ∼ N
(

0,
Lm,b∑
l=1

10−0.1PLm,b,l

)
, we

have

E


∥∥∥∥∥∥
Lr,b∑
i=1

Lm,r∑
j=1

ĥr,b,iĥm,r,jÂr,b,iΘÂm,r,j

∥∥∥∥∥∥
2


=

∥∥∥∥∥∥
Lr,b∑
i=1

Lm,r∑
j=1

Âr,b,iΘÂm,r,j

∥∥∥∥∥∥
2

E
{∣∣∣ĥm,r∣∣∣2} · E{∣∣∣ĥr,b∣∣∣2} ,

(35a)

E


∥∥∥∥∥∥
Lm,b∑
l=1

ĥm,b,lÂm,b,l

∥∥∥∥∥∥
2
 =

∥∥∥∥∥∥
Lm,b∑
l=1

Âm,b,l

∥∥∥∥∥∥
2

E
{∣∣∣ĥm,b∣∣∣2} .

(35b)

Since the square of the modulus of a complex Gaussian
random variable with zero mean tends to follow a central
chi-square distribution with a degree of freedom (DoF) of

2, i.e.,
∣∣∣ĥm,b∣∣∣2 ∼ 1

2

Lm,b∑
l=1

10−0.1PLm,b,lχ2 (2) [43], we have

E
{∣∣∣ĥm,b∣∣∣2} =

Lm,b∑
l=1

10−0.1PLm,b,l . Similarly, it follows that

E
{∣∣∣ĥm,r∣∣∣2} =

Lm,r∑
j=1

10−0.1PLm,b,j and E
{∣∣∣ĥr,b∣∣∣2} =

Lr,b∑
i=1

10−0.1PLr,b,i . For ease of expression, some

denotations are defined as follows: Âm =
Lr,b∑
i=1

Lm,r∑
j=1

diag
(
Âm,r,j

)
ÂH
r,b,i ∈ CN×K , Âm,b =

Lm,b∑
l=1

Âm,b,l

∈ CK×1, PLm,r = −10log10

(
Lm,r∑
j=1

10−0.1PLm,r,j

)
,

PLr,b = −10log10

(
Lr,b∑
i=1

10−0.1PLr,b,i

)
, and

PLm,b = −10log10

(
Lm,b∑
l=1

10−0.1PLm,b,l

)
. Thus,

E
{∥∥∥ρmĥHmθ + ρm,bĥm,b

∥∥∥2
}

can be formulated as

E
{∥∥∥ρmĥHmθ + ρm,bĥm,b

∥∥∥2
}

=$m

∥∥∥ÂH
mθ
∥∥∥2

10−0.1(PLm,r+PLr,b) +$m,b

∥∥∥Âm,b

∥∥∥2

10−0.1PLm,b .

(36)

Next, the second term of (33), i.e., E
{∥∥∆hHmθ + ∆hm,b

∥∥2
}

,
is analyzed as follows. Since both ∆hm,b and ∆hm follow
complex Gaussian distribution with zero mean and they are
independent of each other, we have

E
{∥∥∆hHmθ + ∆hm,b

∥∥2
}

= E
{∥∥∆hHmθ

∥∥2
}

+ E
{
‖∆hm,b‖2

}
=E

{
vecT (∆hm) (IK ⊗Θ) vec (∆h∗m)

}
+ E

{
∆hHm,b∆hm,b

}
=(ηcm)

2 (
1− ρ2

m

)
E
{

(icm)
T

(IK ⊗Θ) (icm)
∗
}

+
(
ηdm
)2 (

1− ρ2
m,b

)
E
{(

idm
)H (

idm
)}

(a)
=
(
ηcm
√

1− ρ2
m

)2 (
Tr (IK ⊗Θ) + E

{
(icm)

T
}

(IK ⊗Θ)E {icm}
)

+
(
ηdm

√
1− ρ2

m,b

)2 (
Cov (icm, i

c
m) + idm

(
idm
)H)

=

((
ηcm
√

1− ρ2
m

)2

+
(
ηdm

√
1− ρ2

m,b

)2
)
NK, (37)

where (a) comes from [36, in P35]. By combining the results
in (36) and (37), we obtain

E
{∥∥hHmθ + hm,b

∥∥2
}

=$m

∥∥∥ÂH
mθ
∥∥∥2

10−0.1(PLm,r+PLr,b) +$m,b

∥∥∥Âm,b

∥∥∥2

10−0.1PLm,b

+

((
ηcm
√

1− ρ2
m

)2

+
(
ηdm

√
1− ρ2

m,b

)2
)
NK, (38)

and we thus complete the proof.

APPENDIX B
PROOF OF PROPOSITION 2

The constraint (12b) is equivalent to
Pr
(
Pm
∥∥hHmθ + hm,b

∥∥2 ≥ σ2γth
)
≥ 1 − p0,∀m, and the

left hand side of this inequality can be reformulated as (39),
shown at the top of the next page. The second term of (39),

i.e., 2<
{(

ρmĥHmθ + ρm,bĥm,b

)H (
∆hHmθ + ∆hm,b

)}
,

can be written as (40) at the top of the next page, where
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Pr

{[(
ρmĥHmθ + ρm,bĥm,b

)
+
(
∆hHmθ + ∆hm,b

)]H [(
ρmĥHmθ + ρm,bĥm,b

)
+
(
∆hHmθ + ∆hm,b

)]
≥ σ2γth/Pm

}
= Pr

{(
ρmĥHmθ + ρm,bĥm,b

)H (
ρmĥHmθ + ρm,bĥm,b

)
+ 2<

{(
ρmĥHmθ + ρm,bĥm,b

)H (
∆hHmθ + ∆hm,b

)}
+
(
∆hHmθ + ∆hm,b

)H (
∆hHmθ + ∆hm,b

)
≥ σ2γth/Pm

}
. (39)

2<
{

vecT
(
θ
(
ρmθ

H ĥm + ρm,bĥ
H
m,b

))
vec (∆h∗m) +

(
ρmθ

H ĥm + ρm,bĥ
H
m,b

)
∆hm,b

}
=2<

{
ηcm
√

1− ρ2
mvecT

(
θ
(
θHρmĥm + ρm,bĥ

H
m,b

))
(icm)

∗
+ ηdm

√
1− ρ2

m,b

(
θHρmĥm + ρm,bĥ

H
m,b

)
idm

}
∆
=2<

{
vHmim

}
. (40)

Λm =


(
ηcm
√

1− ρ2
m

)2

(IK ⊗Θ) ηcmη
d
m

√
(1− ρ2

m)
(

1− ρ2
m,b

)
(IK ⊗ θ∗)

ηcmη
d
m

√
(1− ρ2

m)
(

1− ρ2
m,b

) (
IK ⊗ θT

) (
ηdm

√
1− ρ2

m,b

)2

IK

 . (41)

vm =

 ηcm
√

1− ρ2
mvec∗

(
θ
(
ρmθ

H ĥm + ρm,bĥ
H
m,b

))
ηdm

√
1− ρ2

m,b

(
ρmĥHmθ + ρm,bĥm,b

) 
and im =

[
(icm)

T (
idm
)H ]H

. The third term of (39), i.e.,(
∆hHmθ + ∆hm,b

)H (
∆hHmθ + ∆hm,b

)
, can be organized as

θH∆hm∆hH
mθ + 2<

{
θH∆hm∆hm,b

}
+ ∆hH

m,b∆hm,b

=vecT (∆hm) (IK ⊗Θ) vec (∆h∗
m)

+ 2<
{

∆hm,b

(
IK ⊗ θT

)
vec (∆h∗

m)
}

+ ∆hH
m,b∆hm,b

=
(
ηcm
√

1− ρ2
m

)2

(icm)T (IK ⊗Θ) (icm)∗

+ 2<

{
ηcmη

d
m

√
(1− ρ2

m)
(

1− ρ2
m,b

)(
idm

)H (
IK ⊗ θT

)
(icm)∗

}

+
(
ηdm

√
1− ρ2

m,b

)2(
idm

)H (
idm

)
∆
=iHmΛmim, (42)

where Λm is given by (41), shown at the top of this page.
By combining the results in (40) and (42), we can obtain the
expression in (13). Hence, the proof is completed.
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