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Abstract 
Digital technologies in mathematical modelling activities are receiving increased 
attention in curriculum and policy documents in Norway and internationally. An 
important point arising from diverse interests in technology and students’ 
mathematical modelling activities is the various forms of interactions that emerge 
within students’ activities generated by digital technologies. However, the 
majority of research on technology-mediated activities in mathematical modelling 
is still approached from a cognitive perspective. 

This study takes another perspective, a socio-cultural perspective combining 
Cultural-Historical Activity Theory (CHAT) with Affordance Theory. This 
dissertation explored how secondary school students solve mathematical 
modelling tasks with the aid of digital technologies. This research study focuses 
on different forms of interactions within students’ mathematical modelling 
activities with the aid of digital technologies in group settings. Three subgoals 
were formulated from the aim of the study: Examining the various forms of 
interactions within the students’ activities; investigating the students’ working 
processes; and examining students’ interactions with digital technologies. 

The study is framed within a qualitative research paradigm and adopts an 
ethnographical case study research design. It involves four secondary schools in 
southern Norway. Empirical data were collected through video recordings, screen 
capture, fieldnotes and students’ worksheets. A combination of inductive and 
deductive approaches was used in the data analysis. 

The study highlights three major findings. Firstly, it shows that the elements 
of CHAT are seen as a collective system interacting with each other, in contrast to 
cognitive approaches focusing on heuristics and modelling processes. Secondly, 
the findings indicate that students’ activities in mathematical modelling can be 
categorized as modelling actions and operations towards the object of solving a 
mathematical modelling task, from a CHAT perspective. Digital technologies also 
played an essential role in the modelling actions that emerged. Thirdly, the findings 
highlight the emergence of technological, mathematical and socio-cultural 
affordances and constraints of the digital technologies in the students’ activities. 

The study contributes to research in mathematics education and draws various 
implications out of the major findings regarding students’ use of digital 
technologies in mathematical modelling activities. These implications include the 
potential influence of digital technologies in group interactions, students’ tendency 
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in selecting or using particular digital technologies, the impact of different types 
of mathematical modelling tasks on interaction dynamics, and students’ roles in 
mathematical modelling activities. Future research is also suggested to explore the 
expansion of students’ mathematical modelling activities with the aid of digital 
technologies, teachers’ roles in the students’ activities, and considerations of other 
theoretical perspectives.    
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Sammendrag 
Digitale teknologier i matematisk modelleringsvirksomhet får økt oppmerksomhet 
i læreplaner og politiske dokumenter i Norge og internasjonalt. Et viktig poeng 
som oppstår fra ulike interesser for teknologi og elevenes matematiske 
modelleringsaktiviteter er de ulike formene for interaksjoner som dukker opp 
innenfor elevenes aktiviteter generert av digitale teknologier. Imidlertid er 
størstedelen av forskningen relatert til teknologimedierte aktiviteter innen 
matematisk modellering fortsatt tilnærmet fra et kognitivt perspektiv. 

Denne studien tar et annet perspektiv, et sosiokulturelt perspektiv som 
kombinerer Cultural-Historical Activity Theory (CHAT) med Affordance Theory. 
Denne avhandlingen utforsket hvordan ungdomsskoleelever løser matematiske 
modelleringsoppgaver ved hjelp av digitale teknologier. Denne forskningsstudien 
fokuserer på ulike former for interaksjoner innenfor elevenes matematiske 
modelleringsaktiviteter ved hjelp av digitale teknologier i gruppemiljøer. Tre 
delmål ble formulert fra målet med studien: Undersøke de ulike formene for 
interaksjoner innenfor studentenes aktiviteter; undersøke studentenes 
arbeidsprosesser; og undersøke studentenes interaksjoner med digitale 
teknologier. 

Studien er innrammet innenfor et kvalitativt forskningsparadigme og tar i bruk 
et etnografisk casestudie-forskningsdesign. Det involverer fire ungdomsskoler i 
Sør-Norge. Empiriske data ble samlet inn ved hjelp av videoopptak, skjermfangst, 
feltnotater og elevenes arbeidsark. En kombinasjon av induktive og deduktive 
tilnærminger ble brukt i dataanalysen. 

Studien fremhever tre hovedfunn. For det første viser funnene at elementene i 
CHAT blir sett på som et kollektivt system som samhandler med hverandre, i 
motsetning til kognitive tilnærminger med fokus på heuristikk og 
modelleringsprosesser. For det andre indikerer funnene at elevenes aktiviteter i 
matematisk modellering kan kategoriseres som modelleringshandlinger og 
operasjoner mot målet om å løse en matematisk modelleringsoppgave, fra et 
CHAT-perspektiv. Digitale teknologier spilte også en viktig rolle i 
modelleringshandlingene som dukket opp. For det tredje fremhever funnene 
fremveksten av teknologiske, matematiske og sosiokulturelle fordeler 
(“affordances”) og begrensninger (“constraints”) for de digitale teknologiene i 
studentenes aktiviteter. 
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Studien bidrar til forskning innen matematikkundervisning og trekker ulike 
implikasjoner ut av de hovedfunnene om elevenes bruk av digitale teknologier i 
matematiske modelleringsaktiviteter. Disse implikasjonene inkluderer den 
potensielle påvirkningen av digitale teknologier i gruppeinteraksjoner, elevenes 
tendens til å velge eller bruke bestemte digitale teknologier, innvirkningen av ulike 
typer matematiske modelleringsoppgaver på interaksjonsdynamikk, og elevenes 
roller i matematiske modelleringsaktiviteter. Fremtidig forskning foreslås også for 
å utforske utvidelsen av elevenes matematiske modelleringsaktiviteter ved hjelp 
av digitale teknologier, lærernes roller i elevenes aktiviteter og betraktninger av 
andre teoretiske perspektiver.  
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1 Introduction 
This doctoral dissertation explores how secondary school students solve 
mathematical modelling tasks with the aid of digital technologies. The dissertation 
mainly focuses on the different forms of interactions within the students’ activities.
Four Norwegian schools participated in this research project, and the results are 
based on an analysis of classroom observations of the students’ activities. 

This introductory chapter provides the rationale and overview of this research 
study. Section 1.1 presents the background of the study, followed by the
motivation of the study in Section 1.2. In Section 1.3, I present the research goals 
by highlighting the aims and motives of this research. Section 1.4 presents the 
research questions, and Section 1.5 presents the structure of the dissertation.

1.1 Background for the study
Applying digital technologies in the teaching and learning of mathematics,
resulting from technological advancements, has increasingly gained importance in
education systems (Greefrath et al., 2018). I will define and describe digital 
technologies in Section 2.2. However, for now, I share the views of Greefrath et 
al. (2018) that these technologies are digital media in the likes of computers, 
tablets, and handheld devices, among others, that can be used to support the 
teaching and learning of mathematics to some extent. Olofsson et al. (2020) argue 
that in the last decades, there has been an increase in the use of digital technologies
in upper secondary schools. Furthermore, this development is crucial as it enables 
students to participate in and contribute to a highly digitalized society. The
National Council of Teachers of Mathematics (2000) also argues that technology 
is essential in teaching and learning mathematics and that it might influence the 
mathematics taught, enhancing students’ learning. Drijvers (2003) highlights that 
the introduction of digital technologies has provided opportunities for exploring 
mathematical situations and opening new previously inaccessible horizons. That
is, facilitating students’ investigations and discoveries. For instance, Ellington
(2006) points out how digital technology (like graphical calculators) improved
students’ operational and problem-solving skills when this technology formed an 
integral part of testing and instruction. Genlott and Grönlund (2016) are also of the 
view that students perform better when digital technologies are well integrated 
with the curriculum. However, the benefit of using digital technologies in 
mathematics education itself is a subject of debate (Drijvers, 2018). For instance,
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the report by the Organization for Economic Co-operation and Development 
(OECD) on students’ achievement and the use of digital technologies shows that
“despite considerable investments in computers, internet connections and software 
for educational use, there is little solid evidence that greater computer use among 
students leads to better scores in mathematics and reading” (OECD, 2015, p. 145).

The report from OECD highlights that several things need to be considered 
when integrating digital technologies into mathematics education. For instance, 
understanding the relation between the user and the technology, in this case, how 
an individual uses the technology for a specific task (Artigue, 2002; Trouche, 
2005). Drijvers (2015) highlights some factors to consider when integrating digital 
technologies into the education system: the design of digital technology and the 
corresponding tasks and activities, the role of the teacher, and the educational 
context. Concerning the first factor, we can ask, ‘What forms of activities support 
the use of digital technologies?’. There are several activities, but one such activity
is mathematical modelling, a process that maps real-world situations in 
mathematical terms to find a real-world solution (discussed in Section 2.1).
Stillman (2007) reports that digital technology allows more authentic modelling 
situations. Furthermore, the literature supports the assertion that digital
technologies impact students’ modelling processes (Molina-Toro et al., 2019).
Despite the impact of digital technologies in mathematical modelling, Strässer
(2007) warns that these technologies should not only be considered as a means to 
enhance students’ modelling abilities and to enrich the students’ experience of 
applications and modelling since using such technologies might profoundly
change the scope and way mathematics is used within the society. Monaghan
(2016b) also critiques ideas of integrating digital technologies in mathematical 
modelling, pointing out the complex nature of technologies in this area (in reality).
Mathematical modelling with digital technologies plays an essential role in our 
societies; for instance, many decisions taken during the COVID-19 (novel 
coronavirus disease) pandemic were based on mathematical models generated by 
digital technologies (Romano et al., 2020; Alguliyev et al., 2021).

The teaching and learning of mathematical modelling have played an essential 
role in mathematics education worldwide over the years (Schukajlow et al., 2018). 
One of several reasons for this importance could be that today's schools face the 
challenge of preparing students to live, work and prosper in this rapidly changing 
world. It is through mathematical modelling that a lot of mathematics might be 
used in careers beyond school (Blum et al., 2007). Many countries responding to 
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this global challenge have adopted a national curriculum that focuses on 
developing 21st-century skills, and Norway is not an exception (Bakken & 
Andersson-Bakken, 2021). In the new Norwegian mathematics curriculum 
(student-centered), implemented in the autumn of 2020, “modelling and 
application” is incorporated as one of the core elements (Ministry of Education 
and Research, 2019). This implementation raises many questions and issues to 
explore in the Norwegian context. For instance, Bakken and Andersson-Bakken 
(2021) investigate if and how the tasks in science and language arts textbooks in 
Norwegian upper secondary schools have changed after the curriculum reform. 
Their results show that although the curriculum has changed, school tasks have 
mostly stayed the same. These tasks do not give students sufficient opportunities 
to practice the competences highlighted in the new curriculum. Berget (2022) also 
examines mathematical modelling in textbook tasks and national exams in light of 
the new curriculum. The findings indicate different perspectives on mathematical 
modelling in the curriculum, the textbook tasks, and the national exam, where only 
parts of the modelling process are included. None of these studies above touches 
on mathematical modelling with the aid of digital technologies, although there are 
some studies in this field which are sparse in the Norwegian context.  

Of course, research in mathematical modelling and the use of digital
technology is a topic that has been introduced previously. However, there are many 
unanswered questions about the involvement of digital technologies in
mathematical modelling. For instance, Greefrath et al. (2018) raise the question,
‘How does the effective acquisition of modelling competence (defined in Sub-
Section 2.1.2) differ as a function of student educational levels when using digital 
technologies?’. Blum (2002, p. 167) also raises a general question: “How should 
technology be used at different educational levels to effectively develop students’ 
modelling abilities and to enrich the students’ experience of open ended
mathematical situations in applications and modelling?” English et al. (2016) 
assumed in the literature that there is still a research gap since questions of these 
likes have not yet been answered satisfactorily. Indeed, answering such questions 
requires a broad variety of research and theoretical frameworks. However, research 
in this area is often done from a cognitive perspective focusing on heuristics and 
modelling processes (often schematized in a cyclic diagram—modelling cycle,
defined in Sub-Section 2.1.1) (Cevikbas et al., 2021). Vos and Frejd (2022)
emphasize that many researchers use the modelling cycle as an analytical tool to 
analyze empirical data in light of the different phases that the cycle distinguishes. 
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For instance, Wess et al. (2021) analyzed students’ modelling competencies and 
listed common difficulties or errors encountered by students in certain phases of 
the cycle. Vos and Frejd (2022) argue that a research result will be primarily
cognitive if an analytic framework has a cognitive focus. In summing up the
contributions of the systematic literature survey, Cevikbas et al. (2021)
acknowledge that many papers in the literature point to the vital need for further 
theoretical work on conceptualizing modelling competences. Vos and Frejd (2022)
argue that with only an emphasis on cognitive aspects, a research might not capture 
other important aspects that play a role in mathematical modelling. As such, they 
suggested some aspects like a dimension for metacognitive strategies, a dimension 
for digital technology use, and a dimension for social norms. Regarding a 
dimension for social norms, the modelling discussions should also consider 
interactions within modelling activities (e.g., student—student and teacher—
student interactions). For instance, the quality of peer interactions might determine 
the outcome of the activity (Hernandez-Martinez & Harth, 2015).

This research study contributes to the ongoing discussions by exploring how 
secondary school students solve mathematical modelling tasks with the aid of 
digital technologies from a socio-cultural perspective. This is done by looking at 
the students’ activity (as a whole) while paying attention to dimensions such as 
digital technology usage and social norms. The main focus of this study is on 
different forms of interactions taking place in classrooms in which active 
approaches to the use of digital technologies are supported. The interactions 
identified in this study are student—student (influenced to some extent by digital 
technologies and tasks), student—digital technology, student—tasks (influenced 
to some extent by digital technologies), digital technology—tasks, and others. The 
dimensions and the forms of interactions do not exist in isolation, as they interact 
within the students’ activities. As such, I subscribe to Cultural-Historical Activity 
Theory (CHAT—presented in Section 4.1) to study the different forms of 
interactions. Another aspect is that one needs more than CHAT to explore the
relationship between student—digital technology interactions, and I subscribed to
an Affordance Theory (defined and explained in Section 4.3). Of course, other 
theories could be used to study these interactions, but I chose Affordance Theory
while considering its compatibility with CHAT (this justification is presented in
Sub-Section 4.4.1). English et al. (2016, p. 406) point out that ‘there is still limited 
emphasis on the affordances of technology’ in the literature on mathematical 
modelling with digital technologies. Affordance Theory is one of the means of
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analyzing affordances of digital technologies in mathematics education. Bower
and Sturman (2015) argue that educators need to analyze the affordances and 
constraints of digital technologies to make them useful in the educational context.
Thus, affordances and constraints perspective helps understand the opportunities 
and challenges of integrating digital technology into the education system. 

I will now present my motivation for this research study. 

1.2 Motivation for the study 
The research goals (as stated in the next section) mainly stem from my past 
experiences. The first time I heard about mathematical modelling was a course 
(TMA4195—Mathematical Modelling) I took during my master’s degree in 
mathematical sciences at the Norwegian University of Science and Technology 
(NTNU). This course was an introduction to generic principles and methods to 
formulate mathematical models of systems and processes in science and 
engineering. The second time I heard about mathematical modelling was a course 
(MA-424—Working Methods in Mathematics) I took during my master’s degree 
in mathematics education at the University of Agder (UiA). One aspect of interest 
in this course was an overview of the role of problem-solving and mathematical 
modelling in mathematics research and curricula. The mathematical modelling 
course at UiA was under mathematics didactics compared to the one I took at 
NTNU (under mathematical analysis). Reflecting on the modelling course at UiA 
and comparing it with my experiences as a student from the primary to the 
secondary level, I found that most of the mathematical tasks I worked on in the 
past had no connection with the real world. The ones that came close were some 
word problems that I worked on but were more mathematical and did not relate 
much to the real world.   

With this background, I decided to conduct a research study in mathematical 
modelling for my master’s thesis at UiA. I chose to study “how upper secondary 
school students solve algebraic word problems in the area of mathematical 
modelling” (Afram, 2019). I analyzed students’ solutions to algebraic word 
problems and a mathematical modelling task, in this project. In the analysis, one 
of the students expressed his opinion that there is no need to learn about things (for 
instance, function analysis and trigonometry) that cannot be used in the future. 
This student also pointed out the need to learn more equations (algebra) as they 
could solve a realistic problem with that. From this point of view, engaging 
students in modelling activities might motivate them to learn the mathematics 
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subjects. Another student’s conception during the interview was that the modelling 
task could have been easier when using the computer rather than drawing the graph 
with paper-and-pencil. I was motivated by this and other issues to explore the 
students’ working activities further as they solve mathematical modelling tasks 
using digital technologies. Again, in the master thesis, I only analyzed students’ 
working sheets and interviews (conducted a week after the classroom activities), 
which was a limitation since I could not give a detailed account of the students’ 
interactions. As such, I was motivated in the current research study to do a 
classroom observation through video recordings (for details about the students’ 
working processes). Also, my engagement with upper secondary school students 
in my previous research influenced choosing participants for the current study. 

I was also motivated to study the relationship between the students and digital 
technology in the current research study based on the course (MA-421—Digital 
Tool in Mathematics Teaching) I took at UiA. One component of interest in this 
course is the theoretical background and insights from research on using digital 
tools in learning and teaching mathematics. From this theoretical background, I 
got to understand how affordances and constraints emerge from the interaction 
between students and digital technologies. Another important reason for choosing 
this current research study is the new Norwegian mathematics curriculum, which 
has 'applications and modelling' as one of its core elements. Implementing this new 
curriculum raises many questions and issues to explore in the area of modelling 
with digital technologies. Again, this research study supports using digital 
technologies and active learning approaches promoted by Center for Research, 
Innovation and Coordination of Mathematics Teaching (MatRIC) at UiA.     

With this motivation for the study and the background for the study, I will now 
present my research goals in the forthcoming section.  

1.3 Research goals: Aims and motives 

Following the discussion in Section 1.1, I raised two crucial concerns. The first 
concern was about the new Norwegian curriculum and the opportunity to explore 
the area of mathematical modelling with digital technologies. Generally, research 
in this area in the Norwegian context after implementing the new curriculum is 
sparse. This research could contribute to the literature in advancing knowledge in 
this area. The second concern I raised was that much of the research in this area 
follows a cognitive perspective focusing on its heuristics and modelling processes. 
As such, this research contributes to the ongoing discussion by exploring 
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mathematical modelling with the aid of digital technologies from a socio-cultural 
perspective. Combining the two issues, I study mathematical modelling with the 
aid of digital technology in the Norwegian context by subscribing to the socio-
cultural perspective. I do this by exploring the several factors (such as group work, 
digital technology, nature of tasks, and roles adopted by students) affecting 
students’ mathematical modelling and not just looking at cognitive barriers.    

Selecting a researchable issue means the researcher must determine the 
study’s goals based on empirical settings and previous research in the field. These 
goals are gradually articulated and refined into relevant research questions 
according to the research’s direction. Bryman (2016) highlights that many 
researchers begin their research with a general idea (goals) in which they are 
interested, and research questions guide the researcher to consider more specific 
issues they want to find out about much more precisely and rigorously. Research 
questions should be coherent with the choice of theoretical framework and 
methodology (Radford, 2008a). In this case, I initially formulated my primary 
research goal, and I also acknowledged that this would have to evolve into more 
specific research questions during the entire duration of the research process: 
Explore how secondary school students solve mathematical modelling tasks with 
the aid of digital technologies.       
 
Furthermore, sub-goals are formulated from this primary goal. Before presenting 
the sub-goals, I define students’ activity as “a group of secondary school students 
solving mathematical modelling tasks with the aid of digital technologies”. The 
sub-goals form the themes in which I derive the research questions. The three sub-
goals are listed as follows: 

o Examine the various forms of interactions taking place within the students’ 
activity.  

o Investigate the students’ working processes in the students’ activity. 
o Examine students’ interactions with digital technologies in the students’ 

activity. 
In light of these aims and motives, I will present the research questions of this 
study in the forthcoming section.  

1.4 Research questions 
In this section, I present the research questions organized into three themes. These 
themes are derived from the sub-goals of this research study. The first theme 
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relates to the different interactions occurring within the students’ activities. 
Students’ activities in this study are referred to as “a group of secondary school 
students solving two mathematical modelling tasks with the aid of digital 
technologies”.  There are several components within the students’ activities (e.g., 
digital technologies used, characteristics of the students, types of tasks, etc.), and 
these components interact with each other. This aspect covers the entire students’ 
activities (a dimension for digital technology use and social norms, among others). 
The second theme concerns the students’ solution processes and the role of digital 
technologies in these processes. Thus, it zooms into the students’ activities and 
pays particular attention to students’ actions emerging as they work on the 
mathematical modelling tasks using digital technologies. The third theme involves 
the relationship between the students and digital technologies. Through this 
relation, affordances and constraints of digital technologies emerge. Thus, the third 
theme zooms in further into the students’ activities and pays particular attention to 
students’ actions resulting from their engagement with digital technologies. 

Figure 1.1 summarizes the link between the research questions, showing that 
the second research question (RQ2a and RQ2b) is embedded in the first research 
question (RQ1), and the third research question (RQ3) is further embedded in the 
second research question. The terms used in the research questions are defined in 
greater detail in the following sections and subsections: mathematical modelling 
tasks in 5.5, digital technologies in 2.2, contingencies and students’ interactions in 
2.4.1, mediation in 4.1, emergence in 4.3.1 and 4.3.2, modelling actions in 2.1.3 
and 4.4.2, mathematical modelling activity in 2.1, affordances and constraints in 
4.3.4 and 4.4.1, technology-based model/solution in 2.2.1 and 5.5.  

 
Figure 1.1: Connection between RQ1, RQ2a, RQ2b, and RQ3. 

I analyze the following research questions from an Activity Theory perspective: 
Theme 1: Students’ mathematical modelling activities 
RQ1: How do students solve mathematical modelling tasks with the aid of digital 

technologies? 
This overreaching question is split into four more specific sub-research questions: 
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RQ1a: What digital technologies did the students use in solving the two 
mathematical modelling tasks? 

RQ1b: What contingencies were shown in the student interactions when solving 
the two mathematical modelling tasks with the aid of digital technologies? 

RQ1c: What are the rules that mediate students’ mathematical modelling activities 
when solving the two mathematical modelling tasks with the aid of digital 
technologies? 

RQ1d: What roles did the students adopt in the student interactions when solving 
the two mathematical modelling tasks with the aid of digital technologies? 

Theme 2: Emergence of modelling actions and the role of digital technologies 
RQ2a: What modelling actions emerge during the mathematical modelling 

activities of the students? 
RQ2b: What part do the uses of digital technologies play within the modelling 

actions that emerge? 
Theme 3: Emergence of affordances and constraints of digital technologies in 

mathematical modelling activities 
RQ3: What affordances and constraints of the digital technologies emerge as the 

students develop a technology-based model/solution? 
I analyze RQ1 using Engeström’s expanded mediational triangle (see Section 4.2). 
In this case, I consider three forms of interactions: 

1. Mediating artefacts/tools for the subject-object interactions, where I look at 
the digital technologies the students used and the interaction contingencies 
that were shown. This addresses RQ1a and RQ1b. 

2. Rules for the subject-community interaction. The rules could be explicit or 
implicit. This addresses RQ1c. 

3. Division of labour for the community-object interaction, where I look at the 
roles students adopt in the students’ interactions. This addresses RQ1d.  

I analyze RQ2a and RQ2b using Leont’ev’s three hierarchical layers of an activity 
(see Sub-Section 4.4.2). I analyze RQ3 using the combination of Leont’ev’s three 
hierarchical layers of an activity and Affordance Theory (see Sub-Section 4.4.1).  

I will now present the structure of this dissertation.  

1.5 The structure of the dissertation 

There are eight chapters in this dissertation. Chapter 1 briefly presents the 
background for the research study, my motivation behind the studies, the research 
goals, the research questions, and an outline of the thesis’s structure.   
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Chapter 2 provides a review of relevant literature. I start this chapter by 
discussing mathematical modelling and highlighting different perspectives on 
mathematical modelling, modelling competence, and ontology and epistemology 
of modelling competence. This is followed by a review of digital technologies and 
their use in mathematical modelling activities. The chapter concludes by 
discussing mathematical task design and group work/activity.   

Chapter 3 presents the Norwegian education system as the context of the 
research study. I discuss the Norwegian educational system, mathematics 
education in Norway, and mathematical modelling and applications in the 
Norwegian mathematics curriculum. This is followed by discussing the schools 
and cooperating teachers in this research study. 

Chapter 4 deals with the theoretical framework applied in this research study. 
I started by presenting an introduction to CHAT and how I adapted it to this study. 
This is followed by a discussion of Affordance Theory, highlighting the 
emergence, perception and actualization of affordances and constraints in 
mathematics education. The compatibility of the adopted theories is also presented. 

Chapter 5 concerns methodological issues such as the research paradigm, the 
research design and strategy, the context of the study, the digital technologies and 
mathematical modelling tasks used in this study, and data collection methods. I 
also discuss aspects like data analysis strategy and management, presentation of 
analysis, validity and trustworthiness, and ethical considerations.     

Chapter 6 presents the research study’s results. It provides an overview of data 
analysis in tabular form. Then, it describes the research findings in embedded case 
studies of four groups drawn from four schools. The four cases are discussed 
around a structure that helps to address the research questions. The chapter 
concludes by discussing a cross-case analysis of the four cases.   

Chapter 7 presents a discussion by revisiting the research questions in light of 
the emerging issues in the cases presented in the results section and as they stand 
to the theoretical and research literature. The chapter also presents significant 
issues arising from the research and my reflection on using theoretical perspectives 
and their link with the research findings.  

Chapter 8 concludes the thesis. It first presents a summary and reflection on 
the thesis’s quality. Then, the study’s limitations, implications, and proposal for 
further research are presented.   
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2 Literature Review   
This chapter presents the review of relevant literature in this research study. The 
chapter has five parts, and the first part presents a review of mathematical 
modelling, highlighting the different perspectives on mathematical modelling and 
modelling competence with its ontology and epistemology in Section 2.1. The 
second part, Section 2.2, explores the literature on digital technologies in 
mathematics education. The third part, Section 2.3, examines the literature on 
mathematical task design, highlighting the types of tasks, design elements of 
mathematical tasks, students’ perspectives on designed tasks, and the role of digital 
technologies in designing mathematical tasks. The fourth part, Section 2.4, 
presents the literature on group work in mathematical modelling activities. The 
final part, Section 2.5, presents the summary of the chapter. 

2.1 Mathematical modelling  
The notion of mathematical modelling depends, amongst other things, on the 
theoretical perspective adopted. Several different approaches towards applications 
and modelling are not newly discovered. Thirty-eight years ago, Kaiser-Meßmer 
(1986) pointed out that different perspectives could be distinguished within 
applications and modelling (Kaiser & Sriraman, 2006). Kaiser and Sriraman 
(2006, p. 302) argued that there is no “homogeneous understanding of modelling 
and its epistemological backgrounds within the international discussion on 
modelling”. The literature highlights different perspectives and approaches to 
mathematical modelling. The inclusion of mathematical modelling in curricula in 
schools and universities varies widely. Some of the goals of its inclusion might be: 
using mathematical modelling as a vehicle to teach mathematical concepts and 
procedures; promoting mathematics as a human activity answering problems of a 
different nature that might give rise to the emergence of mathematical concepts, 
notions and procedures; providing experiences that contribute to education for life 
after school; questioning the role of mathematical models in society and the 
environment; motivation to learn mathematics; amongst others (Stillman, 2019, p. 
4). On the issue of how mathematical modelling should be handled in teaching 
situations, Julie and Mudaly (2007) argued that central to the debate on this issue 
is whether mathematical modelling should be used as a vehicle for the 
development of mathematics (modelling-as-vehicle) or treated as content in and of 
itself (modelling-as-content) (ibid.). 
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In the following subsection, I will discuss the different theoretical approaches 
to mathematical modelling in mathematics education. 

2.1.1 Different perspectives on mathematical modelling 

Stillman (2019) presented four examples of current theoretical lines of inquiry in 

mathematical modelling: local theories (prescriptive modelling, modelling 

frameworks/cycles and modelling competencies) and a general line of inquiry 

(anticipatory metacognition). Geiger and Frejd (2015) argued that within the 

research conducted in mathematical modelling, the local theories (mainly 

modelling cycle and modelling competencies) are the most frequently used 

theoretical approaches compared to other approaches. That is, a strong emphasis 

is placed on developing these local theories rather than general theories from 

outside the field. I will briefly discuss an overview of each of the perspectives 

listed above, drawing on different literature in the line of argument, and discuss 

other perspectives afterwards.  

  
Prescriptive modelling. Meyer (1984) used descriptive and prescriptive modelling 

to describe models used for different modelling purposes. A descriptive model 

describes or predicts how something does or will work, and a prescriptive model 

is meant to help us choose the best way for something to work (ibid., p. 61). 

Alternatively, another name for prescriptive models is normative models. 

According to Niss (2015), the processes of descriptive modelling are typically 

represented by one of several or similar versions of the modelling cycle. In this 

case, most of the modelling processes follow descriptions of the modelling cycle 

from a cognitive perspective. Thus, much attention is given to the transitions 

between the modelling phases or nodes of the modelling cycle. Stillman (2019) 

pointed out that modelling cycles used in theoretical and empirical research are 

limited concerning adequately capturing all processes involved in prescriptive 

modelling (ibid., p. 7). Although a normative description of the modelling process 

is seen as an ideal way of modelling, Boromeo Ferri (2006) argued that an 

empirical description (what happens within the students’ activity) differs from the 

normative description. Niss (2015) recommended focusing on theoretical and 



13 
 

empirical research on prescriptive modelling while considering tasks of higher 

complexity.  

 
Modelling frameworks/cycles. Much academic work has been done on modelling 

cycles (a description of the modelling process as a cyclic activity). See Figure 2.1 

for an often-used example of a modelling cycle from Blum and Leiß (2007). There 

are other modelling cycles (Blomhøj & Jensen, 2003; Perrenet & Zwaneveld, 

2012), and these cycles may have fewer or more phases (and other wordings) in 

the modelling process compared to the seven phases shown in Figure 2.1.    

 
Figure 2.1:  The modelling cycle by Blum and Leiß (2007). 

The modelling cycle in Figure 2.1 illustrates (in an ideal way) steps in a modelling 

process from a cognitive point of view. Niss and Blum (2020) emphasized that it 

cannot be stressed enough that the depiction of the cognitive processes in Figure 

2.1, involved in performing modelling, is an analytic reconstruction of what must 

happen in principle (ibid.). It must be noted that students follow routes other than 

what is described in modelling cycles when they are given a modelling task. Niss 

and Blum argue that the modelling cycle in Figure 2.1 (or other cycles) is (are) not 

a description of the path a concrete modeller will necessarily take in actual 

practice. For instance, the student’s specific modelling routes in a given context in 

the study by Blum and Boromeo Ferri (2009) were different from the general 

modelling cycle depicted in Figure 2.1 (that is, the empirical description of 

modelling shows that the modelling cycle in Figure 2.1 is not linear); nonetheless, 
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most phases are observed in students’ activities. Stillman (2019) argued that a 

modelling cycle is a theoretical description of what real-world modelling involves 

and raised the question, ‘Do we really need separate cycles for modelling with 

technology?’. Other studies describe modelling cycles while including a stage for 

technology within the cycle (see Sub-Section 2.2.1).  

Other studies have opposing voices on the generality of modelling cycles 

(Albarracin et al., 2019). For instance, Cai et al. (2014) pointed out that a modelling 

cycle might show only some of the actual work done by students in a mathematical 

activity. Some studies (Ärlebäck, 2009; Czocher, 2016; Albarracin et al., 2019) 

highlight the difficulties in the qualitative identification of the stages of the 

modelling process corresponding to each episode of students’ work. For this 

reason, Albarracin et al. (2019) analyzed the video recordings of four groups of 

students working on mathematical modelling tasks using Modelling Activity 

Diagrams (MAD). MAD (proposed by Ärlebäck (2009)) is an analytical tool for 

characterizing students’ choices and actions in a mathematical modelling activity. 

The components of MAD comprise reading, making models/modelling, 

estimating, calculating, validating, and writing. These activities are used to 

characterize the modelling processes (Ärlebäck, 2009; Albarracin et al., 2019). 

Although these activities in MAD might help qualitatively identify the stages of 

the modelling processes, they do not include the role played by digital technologies 

in these activities. As such, this research study (in a different way) presents 

students’ modelling processes as emerging actions and provides technology’s role 

in these emerging actions (see Sub-Sections 2.1.3 and 4.4.2).   

  
Modelling competencies. There are several definitions relating to modelling 

competence, and most often, these descriptions are based on phases in the 

modelling cycle. Niss et al. (2007) described modelling competence as follows: 

Mathematical modelling competency means the ability to identify relevant 

questions, variables, relations, or assumptions in a given real-world situation, to 

translate these into mathematics and to interpret and validate the solution of the 

resulting mathematical problem about the given situation, as well as the ability to 
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analyze or compare given models by investigating the assumptions being made, 

checking properties and scope of a given model etc. (ibid., p. 12) 

 
That is, Niss and colleagues see modelling competence as the ability to perform 

specific appropriate actions in modelling situations to construct and investigate 

mathematical models. Kaiser (2007) sees this description as ‘modelling ability’ 

and argues that modelling competence must include the willingness to work out 

problems through mathematical modelling. Kaiser (2007) further distinguishes 

modelling competencies based on phases in the modelling cycle (see ‘modelling 

competence’ in Table 2.1 on page 26). In addition to this, Maaß (2006) highlights 

metacognition as an essential issue for developing modelling competencies 

(metacognitive modelling competencies). Vos and Frejd (2022) argue that 

metacognitive strategies are needed to regulate and coordinate the many processes 

(both individual and group processes) in modelling. Within modelling activity, 

aims and outcomes of the modelling processes need to be coordinated and 

regulated considering goals in the task and resources present, amongst others. Vos 

and Frejd further point out that different metacognitive strategies can be linked to 

each phase in Figure 2.1. For instance, strategies to understand and reformulate the 

problem and to use additional information can be linked to ‘constructing’. From a 

research point of view, analyzing metacognitive strategies requires a theoretical 

framework different from that used for cognitive activities. However, 

metacognitive strategies and cognitive activities are intertwined (ibid.). I will 

further discuss modelling competencies in Sub-Section 2.1.2.  

 
Anticipatory metacognition. Metacognition has been considered necessary in 

mathematical modelling (Maaß, 2006; Vorhölter, 2018), especially in reflecting on 

actions when addressing a real-world problem. The reflection on actions focuses 

on the mathematics employed and the modelling undertaken (Stillman, 2019). 

Stillman (2019) emphasized that new development in this area is anticipatory 

metacognition and describes it as “a reflection that points forward to actions yet to 

be undertaken, that is, noticing possibilities of potentialities” (ibid., p. 9). Noticing 

possibilities of potentialities can be an exciting idea to discuss from affordances 
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and constraints perspective (that is, perceived and actualized actions, see Sub-

Section 4.3.3). Back to the discussion, Stillman (2019, p. 9) highlighted three 

distinct dimensions that are encompassed within anticipatory metacognition: 

meta-metacognition, implemented anticipation, and modelling oriented noticing. 

Meta-metacognition results from teachers’ thinking about (or reflecting on) the 

appropriateness/effectiveness of their students’ metacognitive activity during 

mathematical modelling activity and subsequently acting, bearing this in mind. 

Implemented anticipation results from the successful use of foreshadowing and 

feedback loops to govern actions in decision-making during mathematization (see 

phase 3 in Figure 2.1). Niss (2010a) presented implemented anticipation as a pre-

mathematization process for which the modeller needs to project himself/herself 

into a situation that does not quite exist yet. Thus, relevant future steps projected 

back onto the current actions and can also be put as ‘what a modeller does now 

determines what they will do next’. Modelling oriented noticing involves 

‘noticing’ how mathematicians and educators act when operating within the field 

of modelling from mathematical and pedagogical points of view. Geiger et al. 

(2018) empirically test some aspects of the theoretical dimensions of anticipatory 

metacognition and recommend that further research will be worth pursuing.  

 
There have been other perspectives in mathematical modelling than those 

discussed above. For instance, Blum (2015) presented some perspectives 

(categorized by Kaiser and colleagues) of mathematical modelling according to 

their aims. Blum first distinguishes four groups of justifications for including 

applications and modelling in curricula and everyday teaching and then links these 

justifications to different perspectives in mathematical modelling. These 

justifications are listed as follows: 

 Pragmatic justification: In order to understand and master real-world 
situations, suitable applications and modelling examples have to be 
explicitly treated (requires concrete authentic examples).  

 Formative justification: Competencies can also be advanced by engaging in 
modelling activities; in particular, modelling competency can only be 
advanced in this way, and argumentation competency can be advanced by 
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“reality-related proofs (requires cognitively rich examples, accompanied by 
meta-cognitive activities).  

 Cultural justification:  Relations to the extra-mathematical world are 
indispensable for an adequate picture of mathematics as a science 
comprehensively (requires authentic examples that show students how 
strongly mathematics shapes the world or epistemologically rich examples 
that shed some light on mathematics as a science). 

 Psychological justification: Real-world examples may contribute to raising 
students’ interest in mathematics, to motivate or structure mathematical 
content, to better understand it and to retain it longer (requires either 
interesting examples for motivation or illustration purposes, to make 
mathematics attractive for students or mathematically rich examples that 
serve the purpose to make specific mathematical topics better 
comprehensible) (ibid., p. 81) 
 

Blum conceptualized ‘perspective’ as a pair (aim | suitable examples). 

Furthermore, with this idea, Blum distinguishes between six perspectives, namely: 

 (pragmatic | authentic) → applied modelling  
 (formative | cognitively rich) → educational modelling  
 (cultural with an emancipatory intention | authentic) → socio-critical 

modelling 
 (cultural concerning mathematics | epistemologically rich) → 

epistemological modelling  
 (psychological with marketing intention | motivation) → pedagogical 

modelling 
 (psychological | mathematically rich) → conceptual modelling 

 
Kaiser and Sriraman (2006), Blomhøj (2009), and Abassian et al. (2020) discuss 

these perspectives differently. Kaiser and Sriraman (2006) distinguished between 

different perspectives on modelling in mathematics education based on analyses 

of literature mainly generated by the International Commission on Mathematical 

Instruction (ICMI) and the International Community of Teachers of Mathematical 

Modelling and Applications (ICTMA) activities, amongst others. These 

perspectives are realistic/applied, contextual, educational, socio-critical, 

epistemological/theoretical, and cognitive modelling. This list (specifically, the 

wording used) slightly differs from Blum’s list above. For instance, Kaiser and 
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colleagues’ use of educational modelling might capture both pedagogical and 

conceptual modelling described by Blum. Nonetheless, these perspectives are 

classified according to their central aims concerning modelling and other factors.  

I will present an overview of each of the perspectives drawing on other literature:  

 
Epistemological/theoretical modelling. Mathematical modelling under this 

perspective is perceived as a lens to establish general theories for teaching and 

learning mathematics (Blomhøj, 2009), and the only goal of this perspective is the 

development of mathematical understanding (Abassian et al., 2020). Blomhøj 

(2009) listed two very different examples of such theories: Realistic Mathematics 

Education (RME; often used to conduct research within this perspective) and the 

Anthropological Theory of Didactics (ATD). García et al. (2006), from the 

theoretical perspective of ATD, argued that modelling is not considered an aspect 

or dimension of mathematics; instead, mathematical activity is essentially a 

modelling activity. They point out that their view of modelling is meaningful if a 

precise meaning is given to the modelling activity and if the idea of modelling 

includes both extra-mathematical modelling (real-world problems) and intra-

mathematical modelling (pure mathematics-related problems such as the 

geometrical representation of algebraic and arithmetical expressions). Following 

this argument, Kaiser and Sriraman (2006) emphasized that modelling is not 

limited to the mathematizing of non-mathematical issues. Freudenthal (1973) 

distinguished between two forms of mathematization, local and global, and further 

explains that in global mathematization, the process of mathematizing is viewed 

as part of the development of mathematical theory. Similarly, Treffers (1987) also 

distinguished between the two forms of mathematizing: vertical (working inside 

mathematics) and horizontal (from reality to mathematics) mathematizing.   

 
Realistic/applied modelling. Mathematical modelling under this perspective is 

viewed as applied problem solving for which a strong emphasis is put on real-life 

situations (Blomhøj, 2009). Students usually work with realistic and authentic 

(defined in Sub-Section 2.3.1) real-life modelling from this perspective. Kaiser and 

Sriraman (2006) emphasized that modelling can be understood as an activity to 
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solve authentic problems and not as the development of mathematical theory (in 

contrast to the epistemological/theoretical modelling perspective). Furthermore, 

they viewed modelling as a way to help students understand the relevance of 

mathematics in everyday life and acquire competencies that enable them to solve 

real mathematics problems. These competencies are classified as modelling 

competence. Blomhøj (2009) argued that the students’ modelling work should be 

supported using relevant digital technologies under this perspective. In academic 

literature, a modelling competence approach is often used more frequently than the 

other theoretical modelling approaches (Geiger & Frejd, 2015). From a realistic 

modelling perspective, Kaiser and Schwarz (2006) studied mathematical 

modelling as a bridge between school and university. Their results show that 

complex modelling examples are not only reserved for high-performing students 

but, on the contrary, average students in ordinary schools could carry it out.  

 
Educational modelling. This perspective puts the structuring of learning processes 

(didactical) and fostering the understanding of concepts (conceptual) into the 

foreground of interest (Kaiser & Sriraman, 2006). According to Blomhøj (2009), 

this perspective does not only have the goal of developing mathematical modelling 

competencies, such as realistic modelling but also of learning mathematics. From 

this perspective, Blomhøj and Kjeldsen (2006) viewed modelling as a suitable 

didactical choice considers some of the central challenges in curricular reforms 

(for instance, introducing some concepts and their development). Under this 

perspective, Zbiek and Conner (2006, p. 89) develop a “diagrammatic model of 

mathematical modelling as a process that allows for mathematical understandings 

to be identified as learners are engaged in modelling tasks”. Again, the empirical 

findings of Blomhøj and Kjeldsen (2013) showed that modelling activities open a 

window to the students’ images of the mathematical concepts involved.  

 
Socio-critical modelling. Kaiser and Sriraman (2006) referred to this perspective 

as the  socio-cultural dimensions of mathematics, which are closely associated with 

ethnomathematics (mathematics, which is practised among identifiable cultural 

groups). This perspective highlights the role of mathematics and the function of 
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mathematical modelling in society (ibid., 306). Barbosa (2006) argued from this 

perspective that the modelling processes developed in different approaches (for 

instance, realistic and educational modelling perspectives) are inadequate when 

describing students’ modelling activities and that there must be a focus on 

students’ discourse in modelling activities. Reflexive discussions amongst students 

form part of the modelling process, which might promote critical thinking. 

According to Kaiser and Sriraman (2006), critical thinking should be promoted as 

a central goal of teaching in mathematics pedagogy.  

 
Contextual modelling. According to Kaiser and Sriraman (2006), contextual 

modelling is a long-standing perspective of solving word problems, especially in 

the American realm. In this perspective, Doerr (2006) argued that the tasks used 

in modelling activities reveal students’ thought processes through descriptions, 

explanations, justifications, and representations students develop as they engage 

with the tasks. The above activity is the Model Eliciting Activity (MEA) (Lesh & 

Doerr, 2003; Doerr, 2006; Doerr & Lesh, 2011). MEA is defined as “a problem-

solving activity constructed using specific principles of instructional design in 

which students make sense of meaningful situations, and invent, extend, and refine 

their own mathematical constructs” (Kaiser & Sriraman, 2006, p. 306). Doerr and 

Lesh (2011) acknowledge that there is more to modelling than just MEAs. In 

conclusion, Abassian et al. (2020) pointed out an overlap between the contextual 

modelling perspective and the goal of modelling from the educational perspective, 

and the fundamental difference is the emphasis on MEA.    

 
Cognitive modelling. This perspective looks at the analysis of modelling processes 

with a cognitive focus (Kaiser & Sriraman, 2006). Blomhøj (2009, p. 10) argued 

that the main interest in this perspective “is to understand which cognitive 

functions are activated in the individual student’s mathematical modelling 

activities”. That is, identifying the cognitive barriers in the modelling processes. 

Blomhøj (2009) argued that the cognitive perspective is closely related to the 

educational perspective and the goal of developing mathematical modelling 

competence. Kaiser and Sriraman (2006) highlighted that this perspective is not a 
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normative approach connected to the goals of teaching modelling in school, but 

rather, it starts from a descriptive position (see “prescriptive modelling” on page 

12). Looking at the different types of modelling situations, Boromeo Ferri (2006) 

points out that the structure of tasks used in modelling activities influences, to 

some extent, the distinction between phases of the modelling processes. For 

example, from a cognitive perspective, Palharini and de Almeida (2015) studied 

how the interaction between modelling tasks and students’ mathematical thinking 

occurs. They found that students’ engagement in modelling tasks might promote 

the development of advanced mathematical thinking.     

 
Another perspective that has yet to be explicitly captured in the list so far is 

ethnomodelling (which originates in ethnomathematics). This term expresses the 

relationship between culture and mathematics (D'Ambrosio, 2001). Rosa and Orey 

(2013) described ethnomodelling as the study of ideas and procedures elaborated 

by members of distinct cultural groups, and this involves the mathematical 

practices developed, used and presented in diverse situations in the daily life of the 

members of these groups. This process allows the group members to study 

mathematics as a system taken from their reality. Furthermore, they pointed out 

that ethnomodelling can be considered part of critical mathematics education 

(Skovsmose & Nielsen, 1996) because it might provide a learning process in which 

teachers encourage the use of multiple sources of knowledge from different 

cultural contexts. Furthermore, the acquired knowledge here is centred, oriented 

and grounded on the students’ cultural backgrounds (ibid.).    

I will end this section by addressing the question, ‘Which of the perspectives 

discussed above do I adopt in this research study?’. Firstly, I have to consider the 

current Norwegian curriculum and its’ description of modelling and applications 

since this research study is in the Norwegian context. According to the Ministry of 

Education and Research (2019), modelling and applications are described as (a 

Google translate of the Norwegian text): 
A model in mathematics is a description of reality in mathematical language. The 

students must have an insight into how models in mathematics are used to describe 
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everyday life, working life and society in general. Modelling in mathematics is 

about creating such models. It is also about critically assessing whether the models 

are valid and their limitations, assessing the models in light of the original situations 

and assessing whether they can be used in other situations. Applications in 

mathematics are about the pupils’ gaining insight into how they should use 

mathematics in various situations, both inside and outside the subject. 

 
The description above follows Blum’s pragmatic justification for including 

applications and modelling in curricula. Thus, students gain insight into how 

models in mathematics are used to describe everyday life when suitable 

applications and modelling examples are explicitly treated. This explanation falls 

mainly under the realistic/applied modelling perspective. The Norwegian 

curriculum also highlights model creation, critically assessing the validity of the 

model, its limitations and generalization of the model, which corresponds to some 

of the elements in modelling frameworks/cycles and modelling competence 

description (local theories: see pages 13 and 14). However, this curriculum does 

not explicitly mention these local theories, although we can link the descriptions 

in the curriculum to the elements of these local theories. I will return to this issue 

in Section 3.3, but before that I will discuss modelling competence in the 

forthcoming subsection.    

2.1.2 Modelling competence  

The notion of mathematical competence is broad and encompasses more 

specifically defined competencies (such as modelling competence); as such I will 

first discuss mathematical competence before presenting modelling competence.  

 
Mathematical competence. Kilpatrick and Lerman (2014) argued that there are 

many different theoretical approaches to mathematical competence, and no single 

conceptual framework exists. Niss (2003, p. 6) defined mathematical competence 

as “the ability to understand, judge, do, and use mathematics in a variety of intra- 

and extra-mathematical contexts and situations in which mathematics plays or 

could play a role”. Weinert (2001) identified seven ways competence is defined or 
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theoretically interpreted: general cognitive competencies, specialized cognitive 

competencies, the competence-performance model, modifications of the 

competence-performance model, cognitive competencies and motivational action 

tendencies, objective and subjective competence concepts, and action competence 

(Kilpatrick & Lerman, 2014). Kilpatrick and Lerman (2014) emphasized that 

competence frameworks in mathematics education fall primarily into Weinert’s 

specialized cognitive competencies (the cognitive prerequisites that must be 

available for an individual to perform well in a particular content area). Blomhøj 

and Jensen (2007) argued that the discussions above are good reasons for applying 

competence as an analytical concept in mathematics education; however, to 

transform it into a developmental tool, we need to be more specific (I will further 

expound on this statement below). Boesen et al. (2018) proposed six competencies 

with particular content areas in assessing mathematical competence: problem-

solving, reasoning, procedural, representation, connection and communication 

competency. The categories mentioned above describe cognitive activities. In 

addressing the question, ‘What does it mean to master mathematics?’ The Danish 

KOM (Competencies and the Learning of Mathematics) project identifies eight 

competencies: mathematical thinking, representation, symbols and formalism, 

communication, aids and tools, reasoning, modelling and problem handling (Niss, 

2003; Niss et al., 2016; Niss & Højgaard, 2019) (see Figure 2.2 below).   

Each competency highlighted in Figure 2.2 overlaps each of the other seven 

competencies but is also distinct. For instance, modelling with digital technologies 

touches both modelling and aids and tools competency (discussed further in Sub-

Section 2.2.1). Niss and Højgaard (2019) argued that competencies can be applied 

normatively for designing curricula in any mathematics education context and 

level. Such normative use of the competency framework can be seen in the new 

Norwegian mathematics curriculum (K20), which has the following core elements: 

exploring and problem solving; modelling and applications; reasoning and 

argumentation; representation and communication; abstraction and generalization; 

mathematical knowledge areas; and programming and algorithmic thinking 

(Ministry of Education and Research, 2019). 
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Figure 2.2: A visual representation of the competence framework (Niss & Højgaard, 

2019, p. 19). 

Niss and Højgaard (2019) suggested that the competency framework can also be 

used in describing the ongoing teaching and learning of mathematics. Classroom 

observation is a means that can be used directly to research these competencies in 

teaching and learning mathematics, but there are some challenges to be noted and 

addressed (Schlesinger & Jentsch, 2016; Schoenfeld et al., 2018; Ing & Webb, 

2012). One such challenge concerns the observer ratings of the observations 

conducted by internal (teachers or students) or external (researchers or educators) 

observers. I have addressed this challenge in this study in Sub-Section 5.9.1. One 

competency content of interest that I will discuss now is modelling competence.  

 
Modelling competence. I briefly discussed modelling competence in Sub-Section 

2.1.1 (see page 14), but I will discuss it in more detail here. Blomhøj and Jensen 

(2003) explained modelling competence using cyclic activities, and by modelling 

competence, they meant “being able to autonomously and insightfully carry 

through all aspects of a mathematical modelling process in a certain context” (ibid., 

p. 126). According to Niss and Højgaard (2019), modelling competence focuses 

on mathematical models and modelling, which is when mathematics is used in 

dealing with extra-mathematical questions, context, and situations. Mathematical 

models “refers to purposeful mathematical descriptions of situations, embedded 
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within particular systems of practice that feature an epistemology of model fit and 

revision” (Lesh & Lehrer, 2003, p. 109). Thus, models are mathematical 

representations of reality. Geiger et al. (2022) argued that modelling competency 

can be understood as the capacity to undertake all aspects of mathematical 

modelling holistically. All the definitions above seem to capture the same thing: 

the aspects needed to master a modelling process. Again, these definitions of 

modelling competence are based on competence frameworks on modelling cycles 

describing congnitive activities, which can be observed in (or deduced from) 

students’ speech, gestures, writings, reactions and other explicit or implicit 

expressions. This competence framework identifies congnitive barriers in the 

modelling process but never any socio-cultural barriers. That is, the framework 

detaches individual modellers from cultural-historical contexts.  

Wess et al. (2021) argued that modelling competence is not a one-dimensional 

construct but can be interpreted as a combination of different sub-competencies. 

The German group (e.g., Blum, Kaiser, Maaß) has done much work on developing 

a comprehensive concept of modelling competencies based on sub-competencies 

and their evaluation (Kaiser & Brand, 2015). Table 2.1 below describes the sub-

competencies of modelling. The sub-competencies described in Table 2.1 

highlight the other seven aspect of Niss’s (2003) competency framework (see 

Figure 2.2 on page 24). Theoretical reflections from different literature point to 

many possible sub-competencies of modelling competencies; however, Maaß 

(2006) argued that it can be challenging to gain empirical evidence about which 

sub-competencies are needed to carry out a modelling process.    

Concerning the description of modelling and applications in the new 

Norwegian mathematics curriculum (see the last paragraph on page 21), the phases 

in Figure 2.1 (on page 13) and the modelling competencies and sub-competencies 

in Table 2.1 are recognized in the description of the curriculum. The summary of 

the description is creating models (a description of reality in mathematical 

language), critically assessing the models’ validity and limitations, assessing the 

models in light of original situations, and assessing whether they can be used in 

other situations. Creating models is associated with setting up a mathematical 
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model, as it requires the translation of the real situation into a mathematical model. 

To critically assess the model’s validity, the mathematical question(s) within the 

mathematical model need to be solved while recognizing the model’s limitations. 

Assessing the model in light of the original situation is associated with interpreting 

the mathematical results in a real situation and generalizing the solution to suit a 

different context. So, the modelling processes in the new Norwegian curriculum 

are prominent in explaining modelling, like in the definitions of modelling 

competence.    

Modelling Competence Sub-Competencies 
Understand the real 
problem 

Making assumptions about the problem and simplifying 
the situation.  
Identifying relevant questions in the given real-world 
situation.  
Looking for available information and differentiating 
between relevant and irrelevant information. 
Recognizing quantities that influence the situation (by 
naming them and identifying key variables). 
Constructing relations between the variables. 

Set up a mathematical 
model 

Translating the real problem into the mathematical 
world and eventually GeoGebra (the computer world).  
Mathematizing relevant quantities and their relations. 
Simplifying relevant quantities and their relations (that 
is, reducing their number and complexity).  
Choosing appropriate mathematical notations and 
representing the situations graphically. 

Solve the mathematical 
questions within the 
model 

Using mathematical knowledge to solve the problem.  
Observing the effect of parameters on the graph (For 
instance, using sliders in GeoGebra to vary parameters 
to see the effects on the function/s on the graph). 
Manipulating mathematical figures and shapes 
dynamically to see what happens. 

Interpret the 
mathematical results in a 
real situation 

Using appropriate mathematical language to 
communicate the solutions. Generalizing the solution to 
suit a different context. 

Validate the solution Critically check and reflect on found solutions. Reflecting 
on other ways of solving the problem.  
Going through the modelling process if the solution does 
not fit the situation. 

Table 2.1: Structure of Modelling Competence (based on Maaß (2006) and Blum & 
Kaiser (1997)). 
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There are different perspectives on modelling competence, aside from the one 

reported by the German group (see the second paragraph on page 25). Putting all 

the perspectives together, Kaiser and Brand (2015) summarized them as:  

1. The introduction of modelling competencies in an overall 
comprehensive concept of competencies within the Danish KOM 
project. 

2. The assessment of modelling skills and the development of 
assessment instruments (as within British-Australian researchers). 

3. Development a comprehensive concept of modelling 
competencies based on sub-competencies and their evaluation 
(predominantly among German researchers). 

4. Integrating metacognition into modelling competencies 
(predominantly among Australian researchers) (ibid., p. 135). 
 

Within these perspectives shaping the discourse on modelling competencies, 

Cevikbas et al. (2021) distinguished two primary approaches: ‘a holistic 

understanding’ and ‘analytic description’ of modelling competencies. Niss and 

Blum (2020, pp. 80-81) respectively label these approaches as top-down and 

bottom-up.  According to Niss and Blum (2020), the first perspective corresponds 

to top-down, whereas the second and third perspectives correspond to the bottom-

up. The fourth perspective does not represent a specific approach but is placed 

somewhere between top-down and bottom-up.  

 
Top-down (modelling competency): This approach deals with a comprehensive, 

overarching entity called the modelling competency in the singular. In this 

perspective, there exists such a distinct, recognizable, and more or less well-

defined entity. Moreover, there is the possibility (resulting from closer analysis) of 

identifying major components of and other elements in this entity. In this case, the 

modelling competency is the primary object, whilst the major components (sub-

competencies) are derived (secondary objects).  

 
Bottom-up (modelling competencies): This approach deals with a set of distinct 

and separate modelling competencies in the plural without, in the first place, seeing 

them as instances, aspects or components of a comprehensive, overarching 



28 
 

modelling competency. And these competencies are tightly linked to the modelling 

cycle.  

 
Although Niss and Blum (2020) placed the fourth perspective between top-

down and bottom-up, Kaiser and Brand (2015) assigned the fourth perspective to 

the analytic approach (bottom-up). I will delve into this issue by discussing holistic 

and atomistic approaches to the development of modelling competency. According 

to Blomhøj and Jensen (2003), a holistic approach needs a full-scale modelling 

process, where students work on the modelling process in its entity. In contrast, in 

an atomistic approach students concentrate on selected phases of the modelling 

process. Thus, students work to develop one (or few) sub-competencies at a time 

(especially mathematizing and analyzing models). Blomhøj and Jensen (2003) 

emphasized a balance between the two approaches, as none of them is seen as 

adequate. Kaiser and Brand (2015, p. 146) argued that the complex construct 

[modelling competency] consists of a global, overarching modelling competency 

and several sub-competencies. Niss and Blum (2020) see this description as 

combining the top-down and the bottom-up definitions.     

For instance, Maaß (2006) argued that different empirical studies hint at single 

factors which seem to influence modelling competencies. For instance, 

mathematical skills, knowledge about the modelling process, a sense of direction, 

and working in groups, amongst others, are sometimes seen as distinct factors that 

seem to have a positive impact on the development of modelling competencies and 

aspects which have not yet been considered might have a significant influence 

(ibid., p. 119). Blomhøj and Jensen (2007) argued that progress in mathematical 

modelling competency needs to be described in more than one dimension. Blomhøj 

and Jensen analytically distinguish between at least three different dimensions in 

mathematical modelling competency, namely: 

 A dimension describing the degree of coverage, meaning which parts of the 
modelling process the students are working with and at what level of 
reflection. 
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 A dimension that has to do with the technical level of the students’ activities 
involved in the modelling process, meaning what kind of mathematics they 
use and how flexibly they do it. 

 A dimension that has to do with variation in the situations and contexts in 
which the students can activate their mathematical modelling competency 
(radius of action) (ibid., p. 51).  

 
Analyzing progress in mathematical modelling competency might require an 

interplay between the dimensions, for instance, the parts of the modelling process 

the students are working with and the mathematics they use in that part. So far, the 

discussion on modelling competence still emphasizes cognitive aspects, which 

may not capture other aspects that play a role in mathematical modelling. Vos and 

Frejd (2022) pointed out that other dimensions in the form of metacognitive skills, 

digital technology use and social norms play a role in mathematical modelling. For 

instance, Cevikbas et al. (2021) argued that metacognitive skills are needed to 

monitor modelling activities, specifically the many processes in modelling—both 

individual and group processes (Maaß, 2006; Stillman, 2011; Vorhölter, 2018). 

Within the Australian modelling discussion groups (Galbraith, Stillman), much 

work has been done on integrating metacognition into modelling competencies 

(Kaiser & Brand, 2015). I will continue with the discussion of the metacognitive 

dimension (while discussing more of the digital technology dimension in Section 

2.2 and the social norms dimension in Section 2.4). 

The term metacognition does not have a standardized definition (Desoete & 

De Craene, 2019). However, Maaß (2006) described it as knowledge about an 

individual’s thinking up to self-regulation in problem-solving. Maaß (2006) 

identified, in a qualitative study, misconceptions: (a) setting up the real model, (b) 

setting up the mathematical model, (c) the mathematical solution, (d) the 

interpretation and validation, (e) and general misconceptions, although most of the 

students developed appropriate metacognitive modelling competencies (ibid., p. 

134). In Maaß’s studies, students’ meta-knowledge was measured by analyzing 

interviews and concept maps, which the students had to create (and the quality of 

meta-knowledge in most cases was related to performance in modelling). 

Vorhölter (2018) emphasized that Maaß’s work focused on metacognitive 
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knowledge and not strategies. Vorhölter argued that knowledge and skills are 

essential but insufficient for solving a problem successfully and that other aspects 

influence metacognitive strategies during group work. For example, aspects like 

students’ motivation, task difficulty, group members, digital technology used, and 

others (ibid.). Vos and Frejd (2022) linked different metacognitive strategies to 

each of the phases of the modelling cycle in Figure 2.1 (on page 13). Table 2.2 

below illustrates phases in the modelling process with indicative dimensions for 

cognitive activities, metacognitive strategies, and digital technologies used.  

Students would have to read the intentions beneath the task description 

(sometimes problematic) at the start of their work and anticipate what they can do 

to reach a satisfying answer. From Table 2.2, in each cognitive activity, the 

students can expect unexpected situations for which they might reflectively change 

the initial plans; to do this, they need to anticipate, reflect, plan, and monitor, 

amongst others. Vos and Frejd (2022) emphasized that from a research point of 

view, a theoretical framework should be different from that of cognitive activities 

to analyze metacognitive strategies. However, metacognitive and cognitive 

activities are intertwined (ibid.).  Another way of studying metacognitive strategies 

in the students’ activity while considering other aspects (such as digital technology 

use and social norms, amongst others) is through the lens of Activity Theory. From 

an Activity Theory perspective, these aspects can be viewed as components 

interacting with each other as a whole and not distinct.  

I will further address this issue in Chapter 4. However, in the following 

subsection, I will discuss the ontology and epistemology of modelling competence 

(based on an activity theorist’s epistemology and ontology). 

 Cognitive 
Activities 

Metacognitive Strategies Digital technologies used 

1 Constructing  strategies to understand and 
reformulate the problem, to 
use additional information 

Interpret task sheet, 
investigate resources (e.g., 
Wikipedia, Google search, 
Google maps, etc.). 

2 Simplification 
/structuring   

strategies to select and 
organize information, develop 

Experiment with sketch & 
drawing tools (e.g., GeoGebra), 
spreadsheets, etc. 
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plans, anticipate later actions, 
to monitor progress 

3 Mathematizing  strategies to organize 
information, develop & 
implement plans, to monitor 
progress 

Visualize and organizing with 
spreadsheets, plotter, 
GeoGebra, etc. 

4 Working 
mathematically  

strategies to implement plans, 
to monitor progress 

Calculate & simulate with 
GeoGebra, calculators, 
spreadsheets, etc. 

5 Interpreting  strategies to interpret results, 
to face unplanned outcomes 

Visualize with presentation 
tools, etc. 

6 Validating  strategies to verify results, to 
invite critique, to evaluate the 
process and products 

Control using information 
resources, etc. 

7 Exposing  strategies to present results, to 
communicate and convince  

Present a report using digital 
tools (e.g., Microsoft Word, 
etc.). 

Table 2.2: Phases in the modelling process with indicative dimensions for cognitive 
activities, metacognitive strategies and digital technologies used (based on Vos & Frejd 
(2022)). 

2.1.3 Ontology and epistemology of modelling competence 

I will discuss the ontology of modelling competence in light of top-down and 

bottom-up approaches (see page 27). Niss and Blum (2020) argued that these 

approaches are ontologically distinct. Thus, a top-down approach corresponds to 

an empirically well-delineated entity found in the real world. Moreover, we can 

say that someone possesses this competency. In the other view, separate modelling 

competencies constitute the primary notions within the bottom-up approach, each 

of which exists (in conceptual and empirical terms) independently of the other 

competencies; furthermore, an individual may possess some of these competencies 

and not others. 

I have carefully and deliberately used Niss and Blum’s (2020) own words 

rather than paraphrasing them. I do this for the reason of dwelling on the 

ontological stances reflected in the words or phrases: “set of distinct and separate 

modelling competencies”, “someone possesses this competency”, and “each of 

which exists”. These highlighted phrases sound a bit like someone out there 

possesses this competency. However, I do not believe or claim that the literature 
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on modelling competencies sees competencies as entities floating about in an 

ethereal space that students somehow grasp hold of. Again, Niss and Blum (2020) 

provided a rich ontology in both approaches and see competency or competencies 

as existing entities. However, I argue that these competencies are transient entities 

that emerge and then disappear. I will further explore this statement by turning to 

activity theorist epistemology and ontology, but before that, I will present 

mathematical modelling as a mathematical activity. 

Mathematical modelling is a subset of mathematical activity. Dundar et al. 

(2012) described mathematical modelling as a conversion activity of a real-world 

problem in a mathematical form. There is no clear definition for mathematical 

activity. However, we can describe some components and types of mathematical 

activities. According to Cuoco et al. (1996), mathematical activity could include 

pattern-seeking, experimenting, describing, tinkering, inventing, visualizing, 

conjecturing, and guessing. On the other hand, Plaxco and Wawro (2015) defined 

five mathematical activity categories: defining, proving, relating, example-

generating, and problem-solving. All these components in the two descriptions 

above are highlighted in the modelling competences described in Table 2.1 (on 

page 26). The term activity here is used in the sense of Activity Theory (Leont’ev, 

1981a). Activity in Cultural-Historical Activity Theory (CHAT) is the analytic unit 

for understanding human performances, such as their practices, the sense they 

make, or their actions (Roth, 2012).  Kaptelinin et al. (1995) pointed out that 

“activity cannot exist as an isolated entity” and “the very concept of activity 

implies that there is an” individual or collective ‘subject’ who acts, for which the 

“activity is directed at something” (ibid., p. 191). As describe by Leont’ev (1974), 

the concept of activity refers to the subject-object interaction mediated through 

tools and societal relations and tools (defined and explained in Section 2.2 and 

Sub-Section 4.1.1). In the sense of CHAT, mathematical activity can be described 

as a cultural or historically developing sociocultural activity comprising several 

components and aspects or object-oriented, collective, and culturally mediated 

human activity. Mathematical modelling can also be viewed as an activity in the 

sense of CHAT, and it is through this activity that modelling competencies emerge. 



33 
 

Now, back to the discussion on the ontology of modelling competence, I will 

expound on a CHAT ontological interpretation of modelling competence for this 

research study. I then regard modelling competenc(y)(ies) as “cultural forms of 

reflection”. Furthermore, I do so by turning to Radford’s (2008b, p. 215) 

ontological basis for knowledge objectification, the “social process through which 

students become progressively conversant with cultural forms of reflection”. 

Radford (2008b, p. 221) again “suggests that mathematical objects are historically 

generated during the course of the mathematical activity of individuals”. To be 

precise, Radford further highlights that “mathematical objects are fixed patterns of 

reflexive human activity incrusted in the ever-changing world of social practice 

mediated by artefacts” (ibid., p. 222). In his argument, Radford used a conceptual 

object such as a circle, but I would say that his argument applies to modelling 

competenc(y)(ies). I argue that modelling competence is a phenomenon that 

emerges within an activity since competencies are not seen as entities floating 

about in an ethereal space that students somehow grasp hold of. Thus, this 

phenomenon is not seen as a general manifestation but emerges within an activity. 

For instance, modelling competencies always emerge in students’ interactions with 

digital technologies during modelling activities. As such, one cannot know (in 

advance) which modelling competence will emerge in a particular 

situation/context, although we can draw on experience to anticipate the emergence 

of potential modelling competencies (that is not always the case). An example in 

Blum and Boromeo Ferri (2009) showed that the students’ specific modelling 

routes, in a given context, differed from the defined general modelling cycle. Niss 

and Blum (2020) point out that the ideal modelling process described in a 

modelling cycle is not an analytic reconstruction of what must happen in principle. 

If we then interpret competencies as emerging actions performed by students 

within an activity, then one might raise the issue that “when students get a 

mathematical modelling task and say, they could take approach A or B (approach 

A is somewhat faster, but the students carry out approach B because the teacher 

wants them to use GeoGebra—a dynamic mathematics software, discussed in 

Section 5.4); can we then conclude that the students only have the competency to 
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do approach B, because that was the emerging action, although the students can 

carry out approach A? More generally, how do we then analyze professional 

modellers’ competencies – they can potentially solve many problems in many 

different ways. However, they will not always show all these options in an activity. 

Further to this, when looking at the emerging actions, does that mean that he/she 

only has limited competencies when only one approach shows up at the moment 

we are analyzing?” I will address these issues in the discussion below.     

Taking a closer look at modelling competence, when students engage in a 

mathematical modelling task (successfully) during a modelling activity, they 

employ historically accumulated knowledge that they have appropriated. One can 

view this through the lens of the modelling process. However, the activity, actions 

and operations (this is defined in Sub-Section 4.1.2) are specific to the context of 

the task – the knowledge is situated (Lave & Wenger, 1991). For instance, 

Boromeo Ferri (2006) argued that an individual might stay mainly between the real 

model and mathematical model concerning Problem 1 compared to Problem 2.  

 Problem 1—contains more information in connection with given 

numbers in the task, and numbers which have to be adding through 

extra-mathematical knowledge.  

 Problem 2—have fewer numbers given, but inner-mathematical 

knowledge is available on an implicit level and must be recognized and 

used for solving (ibid., p. 93).  

Back to the argument, the formulation and mathematization of the students depend 

on their extant knowledge when meeting the task. Furthermore, there is a 

dialectical relation between the artefacts (mathematical concepts, digital 

technologies, among others) they employ and their mathematical analysis. For 

example, in the same task, one student might draw a function to represent the data 

with GeoGebra, and another might use Excel/spreadsheet to generate data to solve 

the task. Again, the interpretation and evaluation of the students are related to their 

perception of the task’s demands. Generally, students’ actions emerging within an 

activity might depend on the rules of the activity (e.g., whether a teacher tells the 

students to use approach A or B), the technology used, the characteristics of the 
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students, and groupwork, among others. All these components acts as a whole in 

influencing students’ actions.     

This series of arguments could be conceived of in terms of top-down and 

bottom-up perspectives of modelling competence. However, as mentioned above, 

I argue that modelling competence is an emergent phenomenon. Thus, from the 

student’s perspective, the competence disappears once the task is solved. However, 

remnants of the competence may be retained, and throughout solving multiple 

tasks, some actions may be routinized. I conclude that if students face a new task, 

which might require historically accumulated knowledge that the students have not 

appropriated, then what is called modelling competence will not be available to 

the students. For instance, students solving Task A (see Appendix B on page 355) 

might measure the air distance between the different locations. These same 

students might again measure the air distance between cities while working on 

Task 2 (see Sub-Section 5.5.2). However, the new task (Task 2) does not require 

only the air distance but also the consideration of actual road distance and other 

factors. Suppose these students work on multiple tasks similar to Task A for some 

time. In that case, some of their actions may be routinized (they might even 

develop different approaches to solving this type of task over time), and upon 

meeting Task 2, their appropriated historically accumulated knowledge comes into 

play (although the emerging actions are specific to the context of the current task). 

Considering Niss’s (2010a) notion of implemented anticipation about relevant 

future steps that are projected back onto current actions. I would say that these 

future steps result from students appropriated historically accumulated knowledge 

and components such as digital technology used, students’ characteristics, group 

work, and others governing the emerging actions in decision-making within 

modelling activities. Furthermore, the student’s actions emerging here, I will call 

modelling actions in an Activity Theory sense. I will return to the notion of 

modelling actions in Sub-Section 4.4.2. In conclusion, I view the modelling 

process (for instance, modelling cycle and competence) as a tool for analyzing 

students’ modelling work (Vos & Frejd, 2022) or a lens through which we can 

view the historically accumulated knowledge that the students have appropriated. 
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The idea of modelling actions might, in a broader sense, describe the emerging 

actions, the goals these actions are directed towards, and the operations done 

within these actions of a modelling activity.   

Another dimension of concern within students’ modelling activity is the 

digital technology used. I will discuss this dimension in the following section.    

2.2 Digital technologies  

Digital technologies are electronic tools, systems, resources and devices that help 
generate, store or process data (Ibem & Laryea, 2014). Digital technologies are 
tools (digital tools), and from the perspective of CHAT, they are used in goal-
directed actions. In this case, digital tools mediate the activities of individuals (see 
Section 4.1). In mathematics education, Greefrath et al. (2018) referred to digital 
tools as digital media such as computers, tablets, or hand-held devices that can be 
used to support the learning and teaching of mathematics in some specific way 
(ibid., p. 234). From the descriptions above, I argue that digital tools are computer 
hardware, software tools, networks, calculators, and mobile technologies, among 
others, and the primary concern of using such tools in mathematics education is 
not simply becoming fluent with these tools but ensuring the learning and teaching 
of mathematics. Some perspectives or frameworks describe students’ use of digital 
tools in mathematics education: instrumental approach, co-action, co-construction 
of tools, affordances and constraints (discussed in Section 4.3), and others. These 
frameworks uniquely acknowledge an interaction between the user(s) and the tool 
where one is not wholly formed without the other. 
 
Instrumental approach. This approach was developed to view students’ activity 
in technology-enhanced environments from a French didactics perspective. 
Verillon and Rabardel (1995) proposed an approach that distinguishes an artefact 
from an instrument. According to Trouche (2005), an artefact is a material or 
abstract object aiming to sustain human activity in performing a task (for instance, 
a calculator and an algorithm for solving quadratic equations are artefacts). In 
contrast, an instrument is what the subject builds from the artefact. Thus, the 
artefact becomes a mediating tool, and an instrument emerges once a meaningful 
relationship develops between the artefact and the student(s) as they work on a 
specific task. The building process in Trouche’s definition of an instrument is 
called instrumental genesis. Instrumental genesis refers to a complex process 
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linked to the characteristics of the artefact (its potentialities and constraints) and 
the subject’s activity, his/her knowledge and former work methods (ibid., p. 144). 
This instrumental genesis has two components (Artigue, 2002): 
instrumentalization and instrumentation. Instrumentalization is the transformation 
of the artefact into an instrument such that the potentialities of the artefact for 
performing specific tasks are recognized. Instrumentation is the process (taking 
place) within the user in order to use the instrument for a specific task. In summary, 
Trouche (2005) points out that a subject builds an instrument to perform a type of 
task, and this instrument is thus composed of both an artefact and the subject’s 
schemes, allowing him/her to perform tasks and control his/her activity. According 
to Drijvers and Gravemeijer (2005), the process of instrumental genesis is two-
dimensional in that, on the one hand, the possibilities and constraints of the artefact 
shape the conceptual development of the user and, on the other hand, change how 
he/she uses the artefact, in some cases may even lead to changing the artefact or 
customizing it (ibid., p. 168). We can label a teacher’s activity towards promoting 
students’ instrumental genesis as instrumental orchestration (Trouche, 2003, 
2005). Social aspects of learning are recognized within this process, and 
instrumental genesis takes place in a social context. Although instrumental genesis 
is often a social process, the utilization schemes are individual, according to 
Drijvers and Gravemeijer (2005). 
 
Co-action with digital technologies. Moreno-Armella et al. (2008) introduced the 
concept of co-action (in the study of shifting from static to dynamic media in 
mathematics classrooms), which meant that “a user can guide and simultaneously 
be guided by a dynamic software environment”. This concept describes a fluid 
activity in that students within a dynamic environment perform specific actions 
upon the environment while their subsequent actions are guided by the 
environment (ibid). For instance, if a student drags a vertex of a rectangle in 
GeoGebra, the medium re-acts to the student’s action, producing a new object, and 
this might stimulate a new action from the student (if, for instance, the student 
wants to have a sizeable rectangle). According to Moreno-Armella and Hegedus 
(2009), “the student and the medium re-act to each other and the iteration of this 
process” can be described as co-action between the student and the medium (ibid., 
p. 510). Carreira et al. (2013) applied this concept to study students’ modelling of 
linear functions, mainly on how GeoGebra stimulates a geometrical approach.    
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Doerr and Zangor’s co-construction of tools. Doerr and Zangor’s (2000) idea of 
co-construction stems from a perspective in which psychological aspects of 
learning are coordinated with the social aspects through students’ interactions with 
mathematical tasks, each other and their teacher within the social context of the 
classroom. Critical aspects of this social context include the tools (for instance, 
graphical calculator) and the norms for tool usage (the calculator as computational, 
transformational, data collection and analysis, visualizing, and checking tool), 
which emerge as students and teachers interact with the tool and each other. Doerr 
and Zangor argued that “it is through these interactions that the meaning of the 
graphing calculator as a tool for mathematical learning within the classroom is 
constructed by both teacher and students”. They further highlight a limitation: the 
tendency for students to use their calculator (tool) as private devices regularly leads 
to a breakdown of group interactions (defined and explained in Section 2.4) (ibid.).   
 

Each framework described above acknowledges that the purpose and use of a 
tool are inseparable from its user and the context (the activity in which the tool is 
used). However, these frameworks do not outline the role of digital technologies 
as mediating tools for social interaction among peers (in transforming an artefact 
into a tool), although these frameworks describe processes for forming a tool and 
students’ use of tools in mathematics classroom environments. What, then, is the 
role of digital technologies in mediating socially oriented mathematical practice? 
In order to consider the roles digital technologies play in mediating collaborative 
(defined and explained in Section 2.4) practice, it is helpful to start with Taylor’s 
(1980) description of the three ways in which technology is used in education: 

 As a tutor—for teaching or providing feedback.  
 As a tool—for doing mathematics or presenting ideas. 
 As a tutee—programming or teaching the computer (ibid.). 

Building on these descriptions, other literature considers another role of digital 
technology as an actor (e.g., artificial intelligence/AI systems and other non-
human actors). Digital technology as an actor means the capacity of the technology 
(actor) to act in a given environment (Van Vaerenbergh & Pérez-Suay, 2022). 
Thus, there is no difference between human beings and computers, although they 
have different capacities (Borba & Villarreal, 2006). In this regard, we can view 
humans and computers as actors/agents from an Actor-Network Theory (ANT) 
perspective. Actor-Network Theory (ANT) provides a framework that explains 
that everything exists in a network of interactive relationships, including people, 
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technology and non-living or inanimate objects (Callon, 1984; Law, 1992; Latour, 
2005). ANT proposes that human and nonhuman agents are equally important, and 
both agents can influence the development of social-ecological systems 
(Dwiartama & Rosin, 2014).  

Digital technologies used in students’ mathematical activities might influence 
students’ collaborative discussions. For instance, Geiger et al. (2010) emphasized 
that digital technologies (such as GeoGebra, Excel, etc.) can be used to mediate 
productive collaborative interaction (in mathematical modelling activities) even 
though these technologies have not been specifically designed to support 
collaboration.  Goos et al. (2003) extensively researched how digital technologies 
can facilitate collaborative inquiry in small-group interactions or whole-class 
discussions. Furthermore, they categorized and illustrated four roles of technology 
in teaching and learning interactions: technology as master—students might be 
subservient to the technology if their knowledge and usage are limited to a narrow 
range of operations over which they have technical competence; technology as 
servant—technology is used as a fast, reliable replacement for mental or pencil-
and-paper calculations, but the tasks of the classroom remain unchanged; 
technology as partner—technology is used creatively to increase the power 
students exercise over their learning, for example, by providing access to new 
kinds of tasks or new ways of approaching existing tasks; and technology as 
extension of self—involves users incorporating technological expertise as a natural 
part of their mathematical and/or pedagogical repertoire (ibid.). Discussing some 
issues in designing environments that support computer-supported collaborative 
learning, Stahl (2006) points out that cognitive tools (defined on page 41) for 
collaborative settings are essentially different from cognitive tools for individuals. 
Stahl outlines some considerations concerning the differences: 

 The use of cognitive tools by a collaborative community takes place 
through many-to-many interactions among people, not by individuals 
acting on their own, 

 The cognition the tools foster is inseparable from the collaboration they 
support and others (ibid., p. 104). 

The considerations above support a socio-cultural perspective on learning. Geiger 
et al. (2010) argued that using digital technologies to mediate collaborative 
learning is consistent with a socio-cultural perspective on intellectual 
development, where learning takes place via social interaction and is supported by 
cultural artefacts or tools. In this case, there is a more robust and complex 
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interaction between technologies and humans, which can also change the 
interaction between humans. Borba and Villarreal (2006) presented that human 
thinking is reorganized by different media, such as computers and their evolving 
interfaces. By reorganization, Borba and Villarreal meant that computers do not 
substitute humans, nor are they juxtaposed (placed side by side) with them. They 
further argued that these computers interact and are actors in knowing. Again, 
these computers form part of a collective that thinks and are not simply neutral 
tools or have some peripheral role in producing knowledge (ibid., p. 2). Borba and 
Villarreal further suggest that “humans are constituted by technologies that 
transform and modify their reasoning and, simultaneously, these humans are 
constantly transforming these technologies”. In this case, there is an inter-shaping 
relationship between students and technologies. Moreover, per the argument 
above, Borba and Villareal dismiss the dichotomization of humans and technology 
and assert that knowledge is produced by a collective composed of human-with-
media or human-with-technologies and not by individual humans alone or 
collectives composed only by humans (ibid.). Another perspective of discussing 
this relationship between students and digital technologies is through the 
affordances and constraints of digital technologies (see Section 4.3).  In the next 
paragraph, I will discuss some categorizations of digital technologies.   
 
Categories of digital technologies. In the last decades, there has been an increase 
in the use of digital technologies in secondary schools (Olofsson et al., 2020). 
Olofsson et al. (2020) argued that this development is essential as it enables 
students to participate in and contribute to a highly digitalized society. There are 
hundreds of digital technologies/tools in mathematics education. These digital 
tools have different functions, for instance, tools that include software for algebra 
and calculus (e.g., computer algebra systems—CAS), for 2D and 3D geometry 
(dynamic geometry systems—DSG), for statistics (e.g., R programming), among 
others (Drijvers, 2020). I will first categorize digital tools under digital resources. 
Digital resources can be described as any resource/material in digitalized form 
(either internet or offline resources). For example, calculators, computers and 
mathematics software are digital resources (Artigue, 2007). These resources can 
be further categorized as hardware technologies and educational technologies. 
Hardware technologies include calculators, laptops, smartphones, and others. 
Davies and West (2014) considered educational technology as any tool that might 
help students accomplish specified learning goals (not always the case in reality). 
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This technology includes both instructional technologies (focusing on 
technologies teachers employ to provide instruction) and learning technologies 
(focusing on technologies learners use to accomplish specific learning objectives) 
(ibid.). We can further distinguish educational technologies as standard 
educational software (e.g., Wolfram Alpha, GeoGebra, Excel, Stack, Numbas, 
Aplusix, and others) and online educational technologies (e.g., Khan Academy, 
massive open online courses—MOOCs, Google Search and Maps, among others).  

Pepin et al. (2017) distinguished between digital curriculum resources and 
educational technologies (in terms of curriculum material). Curriculum material 
is broad as it encompasses several things ranging from little things (like 
worksheets) to a full-blown curriculum scheme. Nonetheless, Pepin and colleagues 
based their distinction on curriculum materials that are specifically organized 
systems of digital resources in electronic formats that articulate a scope and 
sequence of curricular content. In this case, “it is the attention to sequencing—of 
grade-, or age-level learning topics, or of content associated with a particular 
course of study (e.g., algebra)—to cover (all or part of) a curriculum specification, 
which differentiates digital curriculum resources from other types of digital 
instructional tools or educational software programme”. There is an overlap in this 
distinction as digital curriculum resources use these other types of tools and 
software (ibid., p. 647).           

Digital technologies in mathematics education can also be described as 
cognitive tools. Jonassen (1992) described cognitive tools as mental and 
computational devices that support, guide, and extend the thinking processes of 
their users. According to Mayes (1992), a cognitive tool is a device or technique 
for focusing the student’s analytical processes. Jonassen (1992) argued that many 
cognitive tools (such as cognitive and metacognitive learning strategies) are 
internal to the learner, while computer-based devices and environments that extend 
learners’ thinking processes are external. These computer-based devices and 
environments can engage learners in meaningful cognitive processing of 
information. Some digital technologies (e.g., GeoGebra, Excel, Wolfram Alpha, 
etc.) can also be viewed as learning tools which have been adapted and developed 
to support learning as compared to other regular or task-specific tools (e.g., basic 
calculator, etc.) (ibid.). In summary, cognitive tools are tools that can facilitate 
cognitive processing or tools that support a learning process.      

There are other categorizations of digital technologies based on their designed 
features or usability features (usability is defined and explained in Sub-Section 
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4.3.4) (Sedig & Sumner, 2006; Goodwin & Highfield, 2013; Sinclair & 
Baccaglini-Frank, 2015).  These characterizations might help in comparing the 
different digital technologies. The affordances and constraints (defined in Section 
4.3) concept might help evaluate digital technologies to see whether some 
characterizations are present in the tool in a way relevant to the mathematical 
concept under study. For instance, GeoGebra and graphical calculators have 
different design/usability features. An individual cannot manipulate the graph or 
function on the graphical calculator unless he/she changes the equation keyed in. 
In contrast, such changes can be made in GeoGebra, whether in its ‘Algebra view’ 
or ‘Graphical view’. However, these affordances make sense only if an individual 
can use (or reach) what the digital tool affords.  In the following subsection, I will 
discuss mathematical modelling with the aid of digital technologies.   

2.2.1 Mathematical modelling with the aid of digital technologies 

In this subsection, I will discuss empirical studies relevant to this study on 
mathematical modelling with the aid of digital technologies. Greefrath et al. (2018) 
argued that there is a general assumption in the literature that mathematical models 
used during modelling activities are influenced to some extent by digital 
technologies available to students, not just students’ mathematical knowledge and 
abilities. However, developing a model does not depend only on the skills 
embedded in certain digital technologies but also demands mathematical 
knowledge (Berry, 2002). Over two decades ago, Zbiek (1998) identified that the 
digital technologies used did not aid in generating, choosing, or validating function 
models and that the student’s knowledge and understanding of the mathematical 
concepts were vital. From these arguments, we can say that the skills of using 
particular digital technology and students’ mathematical knowledge are both 
necessary in developing a model. 

What is the role of digital technologies in the students’ modelling 
processes? Siller and Greefrath (2010) described using digital technologies in 
mathematical modelling activities (see Figure 2.3 below). Figure 2.3 shows a 
unilateral view of digital technology usage exclusively between the mathematical 
model and the mathematical solution. However, in reality, students use digital 
technologies at every stage of the modelling process, depending on the nature of 
the task. For instance, students working on Task 2 in this study (see Sub-Section 
5.5.2) might start searching for the cities’ positions even before setting up a 
mathematical model. Based on the results of a qualitative study on digital 
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technology usage in the modelling cycle, Greefrath et al. (2018) showed an 
example of how GeoGebra was used at the different stages of the modelling 
process (see Figure 2.4). Figure 2.4 shows how digital technology was used at 
different points in the modelling cycle, contrary to the description in Figure 2.3. 
The writings in red, in Figure 2.4, describe the usability features of digital 
technology.    Following the cognitive activities in a modelling cycle (see Figure 
2.1 on page 13), Vos and Frejd (2022) suggested analytic dimensions for 
metacognition, digital tools used, and social norms that interact differently and 
modify the cognitive modelling activities. For instance, Table 2.2 (on page 31) 
shows the phases in the modelling process with indicative dimensions for cognitive 
activities, metacognition, and the use of digital technologies.    

 
Figure 2.3: Extended modelling cycle – regarding technology when modelling (Siller & 

Greefrath, 2010). 

 
Figure 2.4: Digital technology usage in the modelling cycle (Greefrath et al., 2018). 

I will now discuss some empirical results of mathematical modelling with the 
aid of digital technologies. Mousoulides et al. (2007) examined students’ 
mathematization processes and their interaction with digital technologies during 
modelling activities. This study is a case study of one group of three 12-year-old 
students who worked for two 40-minute sessions on a modelling task. Results from 
the study show that the software assisted the students in developing the necessary 
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mathematical constructs and processes (a similar study was conducted by 
Mousoulides (2011) with one class of 14-year-old students). Greefrath and Siller 
(2017) undertook a theoretical (the concept of modelling competence and 
simulations) and empirical examination of modelling with digital technologies in 
mathematics instruction. This is a case study of four pairs of students in grade 10 
at a secondary school in Germany, observed as they worked on a reality-based 
assignment using GeoGebra. Results from the study show that the students used 
GeoGebra at different points in the modelling process. 

Carreira et al. (2013) examined students’ (8th graders) approaches to 
contextualized problems in a modelling activity and found that these students 
skipped much of the algebra work and chose a geometrical approach while 
working on the problem. Thus, the students obtained an algebraic equation to the 
problem in the ‘Algebra View’ in GeoGebra through a geometrical representation 
they set up in the modelling process. The graphical representation features of some 
digital technologies might support the various processes in students’ modelling 
activities (Pead et al., 2007). Arzarello et al. (2012) argued that these digital 
technologies provide students with diverse representation options (such as graphic, 
symbolic and numeric) while working on mathematical modelling tasks. These 
digital technologies do not only offer diverse representation options but also might 
have controlling options. Moreno-Armella et al. (2008) pointed out that these 
controlling options might be the selection, dragging, pointing, clicking, and 
grabbing (by mouse movements) options these digital technologies provide as 
students engage with mathematical modelling tasks. For instance, students in a 
modelling activity can drag the vertices of well-constructed objects/figures to 
observe if parameters are preserved upon manipulation. 

To summarize these arguments above, Gallegos and Rivera (2015) pointed out 
that digital technologies might promote the transition between different stages of 
the modelling cycle. However, the studies mentioned above do not account for 
other social factors besides digital technologies mediating the students’ activity. 
Furthermore, some studies address this issue from the perspectives of some 
adopted theories. Gallegos and Rivera (2015) suggested that in future 
investigations, some attention should be given to the technological and 
collaborative work of the students and not only the mathematical competencies. 
So, using CHAT as a theoretical lens in this research study, I address the issue of 
mathematical modelling with the aid of digital technologies, where I look at the 
forms of interactions within the students’ modelling activity. 
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I have so far presented discussions on digital technologies and their use in 
mathematical modelling activities, and it is equally important to understand 
students’ tendency to select specific digital technologies while working on 
mathematical tasks. As such, in the following subsection, I will discuss students’ 
tendency to use specific digital technologies while working on mathematical tasks. 

2.2.2 Choice of digital technologies in students’ activities    

My use of the word ‘choice’ here (and elsewhere) is without meaning (in regard to 

the adopted theories used in this study) but should be understood as ‘free choice’. 

I consider choice of digital technologies in students’ activities as the students’ 

tendency of selecting or using a particular technology. Generally, there are several 

reasons behind students’ tendency to select or use a particular digital technology 

regularly (Margaryan et al., 2011) in a mathematical activity. For instance, a 

students’ interest in using a certain digital technology might stemmed out from 

their experience in the classroom (Jacinto & Carreira, 2017). That is, students 

following how their teacher uses digital technology quite often in a way of 

illustrating some examples during mathematics lessons. Geiger et al. (2002) also 

points out that students might prefer to use a particular digital technology over 

another simply because these students use this particular digital technology often 

and are more familiar with its operation. However, there can be situations where 

students must decide on the digital technology to use (from a variety of different 

digital technologies) if, for instance, the teacher uses several digital technologies 

in classroom activities. In such a situation, students might decide on using a 

particular digital technology for some reason. For instance, Flehantov and 

Ovsiienko (2019) and Flehantov et al. (2022) argued that students use 

Excel/spreadsheet for numerical calculations and representation of numerical 

results in the form of tables, and GeoGebra for visual representation and drawing 

of functions. An approach (known or unknown) a student uses in problem solving 

is determined by the type of digital technology used. Jacinto and Carreira (2017) 

argued that unknown ways of tackling a problem might be revealed if students are 

allowed to choose digital technologies of their choice. In this case, the nature of 

digital technologies might give students different options while working on a task. 
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For instance, Hoyles (2018, p. 211) pointed out that digital technologies such as 

dynamic and graphical tools allow “mathematics to be explored in diverse ways, 

from different perspectives”. For example, students might easily be aware of what 

varies and what does not, through the reflection on and the manipulation of a sketch 

on a graph. In such a situation, students are likely to become aware of what to focus 

on in the process of dragging their sketch and knowing if the constraints of the 

problem are indeed satisfied while also becoming aware of invariants and possible 

relationships between the elements under dragging.  

Combining two or more digital technologies in a single problem solving 

activity might be beneficial to students’ learning. Flehantov and Ovsiienko (2019) 

emphasized that working with several digital technologies might give an advantage 

over using only one. For instance, the simultaneous use of Excel and GeoGebra 

might improve the academic achievement of students in a mathematical modelling 

activity (ibid.). Abramovich (2022) asserted that problem solving that is 

technology-enabled might include the use of multiple digital technologies in 

support of a single mathematical task. Monaghan (2016a) demonstrated how 

several tools could be used in working on a single mathematics task. Given a single 

task about the bisecting of an angle, Monaghan (2016a) showed how tools such as 

a straight edge and a compass, a protractor, a dynamic geometry system, and a 

book (which sounds a bit strange) could be used in bisecting an angle. Although 

several tools provide the platform of solving a single task, students must still 

choose between the different tools while working on a task (and they do so for 

several reasons). Several influences might affect students’ decision if their teacher 

allows these students to choose a digital technology being used for an assignment. 

Some digital technologies (e.g., GeoGebra) offer students different platforms for 

working on a task. GeoGebra, for instance, has the graphic view, algebra view, 

spreadsheet (or numeric) view, among others for which students can choose any 

of the views depending on the nature of the task, the students’ preference, and 

others. Hegedus et al. (2017) pointed out that the features of a digital technology 

might support individual preferences and approaches while working on a task. For 

instance, GeoGebra offers a platform for both numerical and graphical views, and 
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a student might subscribe to any of them depending on the strategy they adopt. 

That is, if a student prefers to key in some numbers and generate the data they 

might go for the numerical view of the digital technology or the graphical view if 

the students prefer sketching and manipulating a graph.  

Anastasakis et al. (2017) argued that the decision made by students in 

choosing certain tools is goal oriented; and so, the students might choose a certain 

tool based on the demands of the tasks. A problem solving strategy adopted by 

students might also influence students’ choice of digital technology. Yerushalmy 

(2000) reported on a problem solving strategy (function representations) where 

students might start with a graphical representation of variations, used later on to 

analyze patterns of numbers by watching the behaviour of the increment, moves 

on to analysis and construction of relations between quantities that are defined, to 

accurate graphs and then to explicit expressions (ibid.). And in these stages, a 

student might use a particular tool or tools in each of the stages above. Choosing a 

certain tool might also be influenced by prior experience (Gueudet & Pepin, 2018) 

and the simplicity and efficiency of the tool (Hillesund, 2020). That is, students 

might choose certain digital technologies based upon ease of using them. Students’ 

choices in using certain digital technologies might also be based on their 

experiences of using them; and if these technologies resulted in a positive 

experience (i.e., having more confidence of using them), then it is likely for the 

students to use the same technology again (Owens-Hartman, 2015).    

The studies above (and others elsewhere) mostly touch on digital technologies 

in mathematical problem-solving activities and not necessarily in modelling 

activities. Furthermore, in the activities of the studies above, the students were 

either allowed or instructed to use certain digital technologies. In general, there is 

a limited literature base related to the issue of students’ selection and/or switching 

between digital technologies when learning or doing mathematics (Geiger et al., 

2002). A part of this thesis seeks to extend knowledge in this domain through the 

analysis of students’ activities, in their selection and/or switching between digital 

technologies in a mathematical modelling activity, where the students are allowed 

to use any tool (no restriction of digital technologies use). Without any restriction 
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on digital technologies use, there might be some dynamics in the students’ solution 

process (particularly, on how and why students choose certain tools over others).  

The task given to the students in this research study was prepared by the 

researcher (although adapted from other literature), and based on this, it is 

reasonable to discuss mathematical task design. In the forthcoming section, I will 

present mathematical task design, where I discuss the types of mathematical tasks, 

design elements of mathematical tasks, students’ perspectives on task design, the 

role of digital technologies in designing mathematical tasks, and some 

considerations in designing a tool-based task.    

2.3 Mathematical task design  
The tasks that are used in the classroom form the basis for students’ learning 
(Doyle, 1988) and might give some opportunities for students’ thinking. Stein and 
Smith (1998) argued that the tasks that ask students to perform a memorized 
procedure routinely led to one type of opportunity for student thinking whilst the 
other led to a different set of opportunities for student thinking (that is, the tasks 
that require students to think conceptually and that stimulates students to make 
connections) (ibid., p. 269). Doyle (1983) pointed out that tasks influence students’ 
by directing their attention to particular aspects of content (or concepts they have 
been taught) and by specifying ways of processing information (ibid., p. 161). In 
this case, the tasks given to students might help them better understand the 
concepts being taught, so the task given might define what the students learn. 

Shimizu et al. (2010) pointed out that mathematics tasks are essential vehicles 
for such a purpose in classroom instruction that aims to enhance students’ learning. 
The role of mathematical tasks in stimulating students’ cognitive processes is 
crucial in achieving quality mathematics instruction (ibid., p. 1). On the other hand, 
Christiansen and Walther (1986, p. 262) highlighted that “even when students 
work on assigned tasks supported by carefully established educational contexts 
and by corresponding teacher actions, learning as intended does not follow 
automatically from their activity on the tasks”. Over the years, several research 
activities have been on task design in mathematics education. There have been 
different perspectives into which researchers look at task design in these activities. 
Watson and Ohtani (2015) emphasized that attention to task design is significant 
from several perspectives regarding mathematics education and practice. For 
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instance, from a cognitive perspective, the detail and content of tasks have a 
significant effect on learning; from a cultural perspective, tasks shape the students’ 
or learners’ experience of the subject and their understanding of the nature of 
mathematical activity; and from a practical perspective, tasks are the bedrock of 
classroom life, that is, the “things to do” (ibid., p. 3). 

2.3.1 Types of mathematical tasks 

Tasks are critical in teaching and learning (National Council of Teachers of 
Mathematics, 2000). The National Research Council (2001) claimed that the 
quality of teaching depends on the kind of cognitively demanding tasks the teacher 
selects. Zaslavsky and Sullivan (2011) argued that the tasks used by teachers are 
mediating tools and that it is through and around tasks that teachers and students 
communicate and learn mathematical ideas. In mathematics education, issues 
concerning the selection of mathematical tasks for instruction in the classroom are 
of great interest to researchers (Berisha & Bytyqi, 2020; Lithner, 2017; Watson & 
Ohtani, 2015; Sullivan et al., 2009). Moreover, a proper selection, among other 
things, of tasks might lead to one type or a different set of learning opportunities 
for students thinking (Stein & Smith, 1998). For instance, Berisha and Bytyqi 
(2020) argued that solving familiar tasks does not often require (any kind of) 
conceptual understanding and that a proper selection of tasks, among other things, 
might cover a wide range of learning outcomes. 

To discuss the types of mathematical tasks, I will first define and explain 
mathematical tasks. Doyle (1988) defines academic tasks (not specific to 
mathematics) in terms of four components: a product, operations to produce the 
product, resources, and the significance or weight of a task in the accountability 
systems of a class.  These components sum up to four aspects of work in a class: a 
goal state or end product to be achieved; a problem space or set of conditions and 
resources available to accomplish the task; the operations involved in assembling 
and using resources to reach the goal state or generate the product; and the 
importance of the task in the overall work system of the class (ibid., p. 169). From 
this definition, we can refer to a mathematical task as the product students are 
expected to produce and the operations and resources that students need to use or 
are expected to use when generating the product for assessment. Mathematical 
tasks are given to assess the students or further help the students understand 
mathematical ideas or content taught. From this perspective, Stein et al. (1996) 
defined a mathematical task as a classroom activity for the purpose of directing 



50 
 

students’ attention to a particular mathematical idea or content (ibid., p. 460). The 
National Council of Teachers of Mathematics (2000) considered mathematical 
tasks to be things constructed by the teacher (or from the textbook) and presented 
to the students as a way of learning and doing mathematics. Christiansen and 
Walther (1986) perceived tasks as proposals and challenges set by the teacher (or 
taken from the textbook) for the students to achieve a specific goal. That is, what 
a teacher wants to achieve in a classroom determines the kind of tasks which are 
given to the students. Furthermore, one should remember that not all mathematical 
tasks offer the same learning opportunities (Stein et al., 2009).   

Berisha and Bytyqi (2020) argued that different types of mathematical tasks 
have different weights, roles and potential in mathematics teaching and learning 
(ibid., p. 752). Mathematical tasks can be categorized depending on how we look 
at or analyze the tasks. Furthermore, the categories of mathematical tasks depend 
on the contextual features, forms of representation, answer forms required, the 
mathematical activity involved, the level of cognitive demand and others (Zhu & 
Fan, 2006; Glasnovic Gracin, 2018; Bayazit, 2013). There are several frameworks 
and methods for categorizing mathematical tasks based on the perspectives above 
(Berisha & Bytyqi, 2020); however, the perspective used in this study is adopted 
according to the views of Zhu and Fan 2006; Glasnovic Gracin, 2018 Bayazit, 
2013; Sahlberg and Berry, 2003.   

I will now present the types of mathematical tasks according to their 
contextual features, forms of presentation, answer forms, and group tasks in school 
mathematics. Moreover, these categories are linked together (to some extent).    
 
Contextual features. Berisha and Bytyqi (2020) argued that categorizing 
mathematical tasks based on the type, amount, and nature of the context embedded 
in the task is a frequent dimension of task categorization. Glasnovic Gracin (2018) 
referred to contextual features as the extent and ways real-world experiences are 
incorporated into the tasks. Real-world contexts play the role of linking school 
mathematics tasks with students’ actual experiences. Zhu and Fan (2006) put 
mathematical tasks in different classifications, and the classification of interest 
here is the distinction between application and non-application tasks.  A non-
application task is unrelated to the real world (or any practical background in 
everyday life) (for example, see the example task under “symbolic presentation” 
in Table 2.3). In contrast, an application task is rooted in the context of a real-life 
situation. Zhu and Fan further distinguished application tasks into two different 
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categories: fictitious and authentic. Fictitious/realistic application tasks contain 
conditions and data made by the one formulating the tasks (see Task 1 in Sub-
Section 5.5.1), whilst authentic application tasks contain conditions and data from 
real-life situations or collected by the students themselves from their daily lives 
(see Task 2 in Sub-Section 5.5.2) (ibid., pp. 613-614). 
 
Forms of presentation. Mathematical tasks can be differentiated according to the 
form of presentation. The presentation of tasks could be verbal, symbolic (purely 
mathematical), visual, or combined (Zhu & Fan, 2006; Berisha & Bytyqi, 2020). 
Zhu and Fan (2006) argued that the categorization above is based on the 
representation forms of a problem describing the situation’s setting and the data 
presentation for the task/question (ibid., p. 615). These representation forms of 
mathematical tasks are linked to the forms of communication in the mathematics 
classroom, for which Berisha and Bytyqi (2020) described the link as interrelated 
and that they depend on each other. Berisha and Bytyqi further pointed out that 
different and multiple presentation and communication forms might facilitate the 
development of representation, modelling and communication skills. For instance, 
Friedlander and Tabach (2001) highlighted that the forms of presentation can 
potentially enhance the learning process. However, each form of presentation has 
disadvantages, and a combined use might cancel out these disadvantages. Table 
2.3 presents a description of each of the forms of presentation with an example. 

Forms of 
Presentation 

Description Example 

Symbolic 
(Pure 
mathematical) 

Tasks presented in symbolic 
form, or if the stem of a 
problem/task includes only 
mathematical expressions.  

Solve the following system of 
simultaneous equations: 4 + 3 = 100 4 − 19 = 12 

Verbal Tasks presented in textual 
form, or if the stem is entirely 
verbal, namely, in written 
words only. 

Task 1 and 2 
(See Section 5.5) 

Visual If the stem simply consists of 
figures, pictures, graphs, 
charts, tables, diagrams, 
maps, etc. 

 7 17 31 51 83 
 1 3 5 7 9 

Draw a graph for the data given in 
the table. 

Combined Tasks are presented in 
combined modes of two or 
three presentation forms. 

Example: Visual and Verbal 
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A farmer has stacked up straw 
bales like in the photo above. You 
can assume that all straw bales are 
1.5m in diameter and that they 
always sink 20cm into the layer of 
straw bales below them.  
Make a labeled drawing and set up 
a formula that you can use to 
calculate the height of the stack. 
You do not need to calculate the 
height (Hankeln et al., 2019).   

Table 2.3: Examples of tasks with different forms of presentation (adapted from Zhu 
and Fan (2006)). 

 
Answer forms. Mathematical tasks can be categorized based on the answer type 
required. Glasnovic Gracin (2018) classified mathematical tasks as open-ended 
(tasks with several/many correct answers, see Task 2 in Sub-Section 5.5.2), close-
ended (tasks that have only one answer, see Task 1 in Sub-Section 5.5.1), and 
multiple-choice tasks (tasks that offer a limited number of defined response 
options) (Zhu & Fan, 2006; Yeo, 2007; Glasnovic Gracin, 2018). The open-ended 
and close-ended task can be further distinguished. For instance, a task can be open 
at the start but can have either a close-end or an open-end (likewise, a task with a 
close start). Monaghan et al. (2009) argued that the open-start tasks are different 
from many tasks classified as open-ended tasks. The openness or closeness of a 
task can be linked to the teaching approach in the classroom. Berisha and Bytyqi 
(2020) pointed out that the answer type required by the tasks used for class 
instruction might indicate whether the teaching approach is open or closed. The 
openness of a teaching approach creates a rich environment for creativity, 
autonomy and deeper levels of conceptual understanding, whilst the other relies 
mainly on fully defined tasks that usually have only one way of solving (only one 
solution) (ibid., p. 752). 
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Group tasks in school mathematics. Sahlberg and Berry (2003) classified 
different types of group tasks. The task under this classification falls (somehow) 
under the categories described above. Table 2.4 describes a typology of group tasks 
in school mathematics with examples. The left column of the table presents the 
scope of mathematical tasks and categories, and the right column presents an 
example corresponding to the categories. The middle column describes the nature 
of each task type (see Sub-Section 2.4.2 for further discussion of Table 2.4).  

Category Nature of Task Example 
Drilling basic 
skills  

Close in terms of method 
and outcomes.  

Solve 3 + 2 = 7 
Applying a 
formula or 
algorithm 

Typically closed in terms of 
outcomes and also the 
methodology.  

Ella wanted to buy new shoes. The 
initial price was 480.99 Nok and 
there was a 30% sale in that store. 
They gave an additional 20% 
discount on shoes. How much 
money did Ella need for her shoes? 
What percentage was the actual 
reduction? 

Measuring 
and collecting 
data 

There is some openness 
regarding methodology but 
rather closed in terms of 
outcomes. 

The Burglar 
(Sahlberg & Berry, 2003, p. 145) 

Real problem 
solving  

Real problems are those 
encountered in everyday 
life. They may or may not 
involve mathematical 
models. The openness of 
these tasks may vary from 
closed to open.  

A simple model of a drink can is a 
cylinder of radius r with circular 
ends. If its volume is 330 ml. find an 
expression for h, the height of the 
can, and hence an expression for A, 
the total surface area of the can.  
Find the dimensions of the can that 
has the smallest surface area for this 
volume. Comment on your answer.  

Mathematical 
modelling 

Modelling tasks are 
typically real problems that 
require mathematical 
principles and formulas to 
solve the task. Tasks are 
open in terms of 
procedures and outcomes.  

You have a roll of kitchen paper and 
one sheet of identical paper. 
Estimate the number of sheets that 
your kitchen roll has in total.  

Mathematical 
Investigations 

Basic investigations are 
often closed regarding 
outcomes but open to 
various methods. Extended 
investigations are typically 
open tasks.  

Choose a two-digit number. Reverse 
the number to give a new number. 
Find the difference between the two 
numbers. Repeat for other numbers. 
Is the difference always the same? 
What do you notice about your 
answers? Can you find a rule? …. 
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Designing 
projects and 
studies in 
mathematics 

Projects and studies are 
the most open 
mathematical tasks. The 
openness includes the 
setting of questions and 
the selection of methods.   

It's your birthday. Your parents 
agree that you can have a party to 
celebrate. You can have the event at 
home, or you can book a hall so that 
more of your friends can come. Plan 
your event. Make sure that you 
arrange for enough food and drink. 
Be careful to include everything in 
your estimate of the cost. Decide 
how you are going to report your 
work. You may do a poster, a 
written report, a diary or something 
else.   

Table 2.4: A classification of group tasks in school mathematics (adapted from 
Sahlberg and Berry (2003)). 

In conclusion, this subsection presents a framework for categorizing and 
classifying mathematical tasks. In Section 5.5, I will discuss the mathematical 
tasks used in this study with the categories presented above. In the forthcoming 
subsection, I will discuss a framework that describes the design elements of 
mathematical tasks. 

2.3.2 Design elements of mathematical tasks  

The tasks designed for students focus on the nature of the mathematics that is 
taught. Sullivan et al. (2015) pointed out that the potential and appropriateness of 
a task might depend on the student’s prior experiences, the pedagogic purpose, and 
the teacher’s and student’s expectations. The age range of the students can also be 
factored in when designing a task (ibid., p. 90). For instance, Jaworski et al. (2011) 
described a task based on a specific content of mathematical knowledge but 
modified to suit students from grade 1 to 13, respectively. Several frameworks 
exist for task design dilemmas and suitability criteria in designing and analyzing 
mathematical tasks. However, I will discuss a few of the task design dilemmas and 
suitability criteria framework relevant to this study. The design dilemmas and the 
suitability criteria are adopted from Sullivan et al. (2015). Sullivan et al. (2015) 
presented five task design dilemmas: context, language, structure, distribution, 
and level of interactions. 
 
Context as a dilemma. In this dilemma, Barbosa and de Oliveira (2013) 
highlighted three possibilities for mathematical tasks: pure mathematics, semi-
reality and reality. Zhu and Fan (2006) categorized these features of mathematical 
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tasks as application and non-application tasks (see page 50). Tasks 1 and 2 (see 
Section 5.5) used in this study have semi-reality and reality contextual features, 
respectively. Barbosa and de Oliveira argued that conflict arises when students 
discuss the adequacy of the context for a task to achieve its learning goal. Sullivan 
et al. (2015) emphasized that a task with realistic context (to some extent) 
maximizes students’ engagement. Furthermore, the context’s level of reality might 
diminish the task’s potential to achieve the intended learning. For instance, Brady 
and Jung (2022) argued that the choice of tasks might stimulate students’ interest 
in solving the problem. However, these students might end up discussing more 
about the reality of the task and less about the mathematical ideas or concepts for 
the intended learning. The reality level of the context of Tasks 1 and 2 does not 
detract from the potential of the task from the mathematics to be learned. 
Nonetheless, Task 2 requires additional elements. Thus, it requires the students to 
make decisions in the face of uncertainty. Furthermore, students are forced to 
reconcile their answers with reality, but ultimately, the intended learning of the 
mathematical concepts is achieved.    
 
Language as a dilemma. Barbosa and de Oliveira (2013) referred to language 
under the design dilemma as the level of rigour tied to the task. Under this 
dilemma, Sullivan et al. (2015) argued that mathematical precision is part of the 
desired learning, and the students need clarity to support the learning. For instance, 
Task 2 (see Sub-Section 5.5.2) in this study was redesigned to suit the Norwegian 
context. Again, Tasks 1 and 2 were translated into Norwegian to deal with any 
form of language barrier. Language is essential in task design as it leads to a form 
of understanding. Polya (2004) argued that the first step to problem-solving is 
understanding the problem. Understanding the problem text is a crucial step that 
might lead to a correct mathematical computation (Boonen et al., 2016; Lewis & 
Mayer, 1987). However, understanding the problem text can be subjective as it 
might depend on the nature of the task and the characteristics of the students, 
among others. Reusser (1988) pointed out that students sometimes solve problems 
correctly, even without understanding them. At times, students tend to focus more 
on what to do with the numbers in the problem situation if, for instance, the 
problem text has some numeric elements. In a classic example, many students from 
different parts of the world tend to solve the unsolvable problem “There are 26 
sheep and 10 goats on a ship. How old is the captain?” by combing the numbers 
given in the problem (Verschaffel et al., 2000, p. 3). 
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Structure as a dilemma. According to Barbosa and de Oliveira (2013), structure 
refers to the degree of task openness. A task is closer if more supplementary 
questions are posed to guide students’ actions. Sullivan et al. (2015) argued that 
questions can be posed in such a way that they scaffold student engagement with 
a task in a more prescribed way on the one hand and, on the other hand, allow 
students greater opportunity to make strategic decisions on pathways and 
destinations for themselves (ibid., p. 93). For instance, Task 1 is closer, whilst Task 
2 is more open. Again, what constitutes openness of a task is a subject of discussion 
(Monaghan et al., 2009). Glasnovic Gracin (2018) puts the structure of tasks into 
three categories based on their answer types (see page 52).    
 
Distribution as a dilemma. Barbosa and de Oliveira (2013) referred to distribution 
to the selection content to be focused on tasks, that is, what is expected to be taught 
in a task. This dilemma is linked to the level of cognitive demand as described by 
Stein and Smith (1998). Stein and Smith (1998) developed a framework that 
describes the hierarchy of tasks that develop from memorization to procedures 
without connections to procedures with connections to doing mathematics tasks. 
For instance, regarding Tasks 1 and 2, the students will be doing mathematics 
when creating their solutions and considering the solutions of others (group 
members). In converting the word problem into the mathematical form and solving 
it, the students would perform procedures with connections. When they identify 
the commonalities and differences between the questions, they would be doing 
mathematics at this point (Sullivan et al., 2015). One must note that the control of 
what is to be explored by the students while approaching an open-ended task (such 
as Task 2) could be unpredictable (Barbosa & de Oliveira, 2013). 
 
Levels of interaction as a dilemma. According to Barbosa and de Oliveira (2013), 
the interaction level refers to how the task positions students and teachers. Sullivan 
et al. (2015) pointed out that a task does not exist by itself and that its 
implementation is influenced by the nature of the intended interactions between 
the participants (in this case, the teacher and the students). Clark et al. (2014) 
argued that the problem type might lead to effective group interaction and activity. 
Considering these considerations, the tasks used in this study (Task 1 and 2) were 
intended to engage the students in discussions with peers and then the teacher 
(especially in the introductory activity, see Section 5.3) at some stages of their 
solution process. Barbosa and de Oliveira (2013) highlighted that teachers are 
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expected to keep themselves far from students’ doings on a structured task (close-
ended task), whilst teachers interact more with students if the task does not have 
many scaffolds (ibid., p. 546). These arguments could be an expectation, but they 
are not always the case. The teacher’s role must be carefully considered when a 
teacher interacts more with students in an activity in which the task given does not 
have many scaffolds. Calor et al. (2022) suggested a small group scaffolding tool 
that might assist teachers regarding how and when to support students in group 
interactions/activities. These tools are contingency to the group, phasing out 
content support when the group can continue independently, and transferring 
responsibility for learning to the group. 
 

Designers and teachers sometimes confront these task design dilemmas and 
make some choices while considering mathematical tasks for students. In some 
instances, the teacher might make decisions that the designer did not intend or 
anticipate (Sullivan et al., 2015). For instance, Son and Kim (2015) investigated 
teachers’ selection and enactment of problems and tasks from textbooks and 
highlighted some critical issues in teacher decision-making. That is a situation 
where a teacher might not understand the underlying philosophy of the textbook 
used. In this case, there is a difference between the curriculum goals and the 
enacted tasks goals. In the Norwegian context, Berget (2022) examined 
mathematical modelling in textbook tasks and national exams in light of the new 
curriculum. The findings indicate different perspectives on mathematical 
modelling in the curriculum, the textbook tasks and the national exam, where only 
parts of the modelling process are included. From these arguments, Giménez et al. 
(2013) suggested a suitable framework for the analysis of tasks: epistemic, 
cognitive, interactional, mediational, affective, and ecological suitability.  
 
Epistemic suitability. According to Giménez et al. (2013, p. 581), “epistemic 
suitability refers to the extent to which the mathematics taught is good 
mathematics”. In this case, the specific content of the curriculum (and the 
institutional mathematics) is used as a reference in designing a task (Sullivan et 
al., 2015). One question we can ask is, ‘Does the designed task meet the curriculum 
goals?’. For instance, the nature of the task used in this study allows the students 
to go through all the modelling processes as intended by the curriculum. Task 1 
addresses critical mathematical concepts as they connect with the concept of 
functions to some extent. Sullivan et al. (2015) highlighted that the student’s prior 
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experience should be factored in and not only considering the content of the 
curriculum when designing a task. In the case of Task 2, students at the lower 
secondary level might only consider the mathematical aspect of the task without 
reconciling their mathematical results with reality, as compared to students at the 
upper secondary level. Garfunkel and Montgomery (2016) argued that students in 
the higher grades might take more sophisticated information into account while 
solving mathematical modelling tasks compared with students in the lower grades. 
 
Cognitive suitability. Giménez et al. (2013) described cognitive suitability as the 
reflection of “the degree to which the teaching objectives and what is actually 
taught are consistent with the student’s developmental potential, as well as the 
match between what is eventually learnt and the original targets” (ibid., p. 581). 
Sullivan et al. (2015) emphasized that the objectives of the mathematics lessons 
and what the students have been taught previously play a significant role in task 
design. For instance, regarding Tasks 1 and 2, the students have already been 
taught functions, geometry, and others (a prerequisite to solving both tasks). 
 
Interactional suitability. This category “relates to the extent to which the forms of 
interaction enable students to identify and resolve conflicts of meaning and 
promote independent learning” (Giménez et al., 2013, p. 581). Barbosa and de 
Oliveira (2013) described a similar concept (referred to as “levels of interaction”, 
see page 56), and Sullivan et al. (2015) pointed out that this interaction could be 
between teacher and students, student and the peers, and the student and the task.    
  
Mediational suitability. Giménez et al. (2013, p. 581) described mediational 
suitability as “the availability and adequacy of the material and temporal resources 
required by the teaching/learning process”. The availability of some digital 
technologies (e.g., GeoGebra, Excel/spreadsheet, Google Maps, and others) might 
prompt students to produce a technology-based model/solution. Again, Sullivan et 
al. (2015) argued that the cognitive demands of a task might be evident through 
the level and type of engagement in group activity. For instance, the context of 
both tasks used in this study might require role-playing the situation, so the nature 
of the task becomes apparent. Some students might be taking the position of a 
member of one of the three cities in Task 2 during group interaction. 
 
Affective suitability. According to Giménez et al. (2013, p. 581), “affective 
suitability reflects the students’ degree of involvement (interest, motivation, etc.) 
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in the study process”. Middleton (1995) argued that one of the characteristics that 
influence effective responses between teachers and students is the arousal and 
control levels in determining the intrinsic motivation for mathematics activities. 
Furthermore, Sullivan et al. (2015) described this as an opportunity for students’ 
decision-making (that is, the choices that the students can make). Interest and 
arousal could be important determinants of student motivation. As Brady and Jung 
(2022) argued, some realistic tasks could stimulate students’ interest in solving a 
problem. For instance, in Task 2, the students not only do the math but also must 
make decisions in the face of uncertainty. Thus, students might decide what is 
‘fair’ and imagine themselves in a related situation. 
 
Ecological suitability. Giménez et al. (2013, p. 581) referred to ecological 
suitability as “the degree of compatibility between the study process and the 
school’s educational policies, the curricular guidelines, and the characteristics of 
the social context, etc.” Considering Tasks 1 and 2 (and the other tasks in Appendix 
B), the problems are redesigned to suit the Norwegian context, and these tasks are 
compatible with the core elements of the Norwegian mathematics curriculum. For 
instance, Tasks 1 and 2 allow the students to go through all the mathematical 
modelling processes (as intended by the curriculum) and not only focus on an 
aspect of the modelling process (Berget, 2022). Sullivan et al. (2015) argued that 
the aims of mathematics curricula are challenging to discern. Sometimes, the link 
between the task and the mathematics curriculum is more tenuous and requires the 
teacher’s intervention in making things explicit.  

The two frameworks discussed in this section describe the elements and design 
considerations for mathematical tasks. Of course, other frameworks may be similar 
or different from the two frameworks discussed in this study. I will further discuss 
these frameworks in Section 5.5 in light of the tasks used in this study. In the design 
frameworks presented above, little is discussed about students’ perspectives on 
task design considerations. As such, I will present the literature on students’ 
perspectives on task design in the forthcoming section.      

2.3.3 Students’ perspective on task design 

Ainley and Margolinas (2015) argued that focusing on the impact of students’ 
perceptions of tasks on their mathematical learning raises some relevant questions 
if we do not only look at the intentions of task designers and teachers who select 
these tasks. Furthermore, researching these questions might help to minimize the 



60 
 

gap between teacher intentions and student mathematical activity. Using 
contextualized word problems in mathematical activities might make learning 
more accessible by giving meaning to mathematical ideas or concepts (showing 
their usefulness). However, using context can distract students’ attention from the 
mathematical ideas (ibid., p. 116). Gerofsky (1996) argued that in some instances, 
students tend to ignore the story elements in the task and use the mathematics they 
have just learned to transform the word problem into an arithmetic or algebraic 
form and solve the problem to find an answer (ibid., p. 39). Cooper and Dunne 
(2000) gave a task (the shopping item) that students needed to recognize the hidden 
structure of the problem (a pair of simultaneous equations). However, one student 
used the first equation and the knowledge of the price of cola she had gained from 
everyday shopping to generate the solution (ibid., p. 41). In this case, this student 
used the price she recently paid rather than using the information given in the task. 

Jaworski et al. (2012) analyzed the teaching goals and students’ 
epistemological positions and highlighted fundamental differences between 
students’ perceptions of the teaching they experience and the goals of the teaching 
team. Ainley and Margolinas (2015) gave an example where students had their 
conception (different from the teacher’s) when asked to solve the question, “Is -1 
the square of a number?”. The teacher expected the answer ‘it is not possible’; 
however, one student thought it was possible since −(1) = −1 (resulting from 
students’ previous learning) (ibid., p. 120). Again, if we consider the solution of a 
linear equation in mathematics instruction, there might be the possibility of 
different perspectives regarding the teacher and the students. For instance, the 
teacher might put it in the broader perspective of the usefulness beyond the 
classroom walls or achieving deep levels of understanding. In contrast, the students 
might simply be motivated by getting an answer. Although this example applies to 
mathematical instruction, a similar concept applies to mathematical task design. It 
is necessary to consider the goal of mathematical tasks as intended by the teacher 
and student’s perspective. Ainley and Margolinas (2015) pointed out that students’ 
perspective changes the very definition of a task. 

How can we close the gap (which might arise) between teachers’ (and task 
designers’) intentions and the students’ perceptions concerning task design? From 
the example (is -1 the square of a number?) above, students previous learning led 
them to overgeneralize the situation in a way the teacher had not anticipated. 
Ainley and Margolinas (2015, p. 127) argued that “deciding when it is, or is not, 
appropriate to generalize a mathematical idea can be challenging for students”. 
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Students who are only exposed to problems that require a single answer might face 
challenges while solving problems with several solutions. Schukajlow et al. (2015) 
argued that the performance of students might improve as they engage in an 
activity of constructing several solutions to a problem. Savard et al. (2013) 
commented that students’ progress in solving problems that require holistic 
analysis, but teachers tend to revert to more traditional formats with a single 
answer. One example of this traditional setting is a teacher explicitly giving all 
requirements (or kinds of behaviours) expected of the students, which might be 
counterproductive if the teacher’s aim is for the students to develop creative, 
independent mathematical thinking and others (Ainley & Margolinas, 2015). Coles 
and Brown (2013) addressed this tension by pointing out that “the more the desired 
behaviours in students are specified, the less these behaviours are likely to emanate 
from the students’ own awareness” (ibid., p. 184). Ainley and Margolinas (2015) 
summarized the above discussion on research addressing student perspective in 
task design into two different perspectives: reflective and emergent task design.    

 
Reflective task design. This perspective considers students’ perspectives in task 
design that takes place in a reflective space away from the classroom. In this case, 
the designer anticipates students’ learning or what they might learn as they engage 
in the tasks. Palhares et al. (2013) emphasized the need for cognitive analysis of 
tasks to adapt their connections to the student’s abilities as best as possible. A 
means of accessing students’ abilities in task design is through a prior analysis of 
the mathematical knowledge involved. Calleja (2013) reported factoring students’ 
likely responses while designing tasks. Furthermore, these likely responses might 
lead to a change in a mathematical problem. Ainley and Margolinas (2015) 
emphasized that a simple change in a mathematical problem can make a big 
difference in the cognitive demands of students. For instance, Problem 1 in the 
study by Mousoulides (2011) has a realistic context involving three unknown 
cities; this problem was transformed into another problem (see Task 2 in Sub-
Section 5.5.2) with authentic context. That is, giving actual names to the three 
cities students can identify (using Google Maps). In Problem 1, the students might 
construct a rectangle with its vertices representing the unknown cities and find the 
midpoint of these vertices. At the same time, the transformed task (Task 2) is less 
about finding the midpoint of the vertices (representing the unknown cities) and 
more about estimation in terms of the time of travel, the population, and others.     
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Emergent task design. This perspective considers students’ perspectives on task 
design within the classroom. Ainley and Margolinas (2015) argued that this 
perspective “concerns the ways in which teachers develop tasks during the flow of 
classroom activity, in response to the actions of students” (ibid., p. 133). According 
to Bikner-Ahsbahs and Janßen (2013), emergent tasks refer to the situation in 
which “the teacher conceives the mathematical potential of a learning opportunity 
and translates it into a task” (ibid., p. 154). The teacher does that to maintain 
students’ interest. This aspect of task design is seen in this study’s introductory 
activity (see Section 5.3). In the introductory activity, the students solved Tasks A 
and B (see Appendix B on page 355) by themselves, and the teacher (and/or 
researcher) provided some support in moments of difficulty. These supports were 
not straightforward but can be classified as emergent tasks. Thus, the teacher poses 
the difficulty within the initial task as a new task for the students/group or asks 
other group members if they can address this difficulty. In such a situation, Calor 
et al. (2022) suggested that small group scaffolding tools might assist teachers in 
how and when to offer students support in group interactions/activities (see Sub-
Section 2.4.2 under “levels of interaction” as a dilemma). Emergent task design 
might be helpful in the learning process. However, Ainley and Margolinas (2015) 
highlighted that it can be challenging for teachers in specific moments/situations.   
 

So far, I have discussed the literature on task design, highlighting types of 
tasks, design elements, and students’ perspectives on task design. A few of the 
categories relevant to this study have been discussed, and there are several 
categories to consider in mathematical task design. At this point, I have not yet 
discussed the role of digital technologies in designing mathematical tasks. The 
literature on the role of digital technologies in task design is relevant to this study, 
as the participants solve mathematical modelling tasks using digital technologies. 
As such, I will present the literature on the role of digital technologies in task 
design in the forthcoming section. 

2.3.4 The role of digital technologies in designing mathematical tasks 

Digital technologies are mediating artefacts that mediate the activities of 
individuals (see Sub-Section 4.1.3). These artefacts are directed towards an 
activity with a motive. According to Cole (1996), when an artefact is used in a 
goal-directed action, it becomes a tool (see Sub-Section 4.1.1). Tools in the context 
of mathematical task design can broadly be viewed as physical or virtual artefacts 
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that have the potential to enhance mathematical understanding (Leung & Bolite-
Frant, 2015). Leung and Bolite-Frant (2015) described a tool-based task: 

A tool-based task is seen as a teacher/researcher design aiming to be a thing to do 

or act on in order for students to activate an interactive tool-based environment 

where teachers, students, and resources mutually enrich each other in producing 

mathematical experiences (ibid., p. 192).    

 
From this description, teachers/researchers design these tasks based on their 

intentions of what they want the students to learn. For instance, Monaghan (2016a) 
presented how four different tools can be used on a single task, bisecting angles. 
These tools have different affordances to students’ mathematical learning. Hence, 
a teacher might decide which tools to use based on his/her intentions of what he/she 
would like the students to learn. From these arguments, it can be said that different 
epistemological approaches to mathematical learning might have different 
implications for designing tool-based tasks. Leung and Bolite-Frant (2015) put 
these approaches into two perspectives using Sfard’s (2008) two metaphors for 
learning, participationist and acquisitionist: 

A participationist orientation would favor design with potential for students to 

participate in the construction of mathematical knowledge/ experiences, whereby a 

more acquisitionist orientation would favor design that explores and discovers 

established mathematical knowledge (Leung & Bolite-Frant, 2015, p. 192). 

 
Revisiting the example by Monaghan (2016a, p. 13), considering the use of 

‘straight edge and a compass’ and ‘dynamic geometry software’ for bisecting an 
angle. In this situation, students might follow a teacher’s given construction 
procedure or check the validity of a given theorem while using a straight edge and 
a compass. On the other hand, students might construct their geometrical models 
to explain a specific mathematical phenomenon using dynamic geometry software. 
This argument depends on the affordances that each tool affords. Monaghan and 
Trouche (2016) highlighted the existence of a mismatch between tasks and tools. 
For instance, the actions of sketching a function using graphing software require 
techniques (typing digital-mathematics, keying, dragging and zooming in or out) 
quite different from the techniques of sketching the same function with a paper-
and-pencil approach (construct a table of x and y values, select suitable scales, 
draw axes on graph paper, plot the points, and sketch the graph by interpolating 
values between points.). However, in another given task, a lot more mathematical 
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actions might be done with the graphing software than paper-and-pencil. Again, 
one tool can afford different perspectives of teachers’ intentions towards students’ 
learning. For instance, Leung and Bolite-Frant (2015) argued that the same tool 
could be used in two task designs at opposite epistemological poles.   

There are several theoretical frameworks for designing tool-based tasks, and 
a few are mentioned in Section 2.2. However, for this study, I chose an Activity 
and Affordance Theory framework for designing tool-based tasks (see Chapter 4). 
One can study the relationship between the tool and the subjects/students from an 
Affordance Theory perspective. Another way to look at the relationship between 
tool use and the pedagogic environment is by looking at the interrelationships in 
the structural representation of Activity Theory (e.g., Engeström’s mediational 
triangle, see Figure 4.3 on page 96). For example, consider students’ mathematical 
activity in constructing a geometric figure/shape. The components in Figure 4.3 
will represent: the subject is a class of students, the object of the activity is to 
construct a geometric figure/shape, the tool (mediating artefact) is GeoGebra, the 
rules are how to use GeoGebra’s functionalities, the community is the teacher and 
students, and the division of labour is organized by pedagogical approaches and 
arrangements. In such a scenario, Leung and Bolite-Frant (2015) argue that task 
design might focus on how GeoGebra can assist students in creating a learning 
process comprising a possible connection of activity routes that might lead to 
possible outcomes.       

I will now discuss some considerations in designing tasks that use tools. Many 
tools are used in mathematics education, but I will only focus on selected digital 
technologies while discussing these considerations for this study. There are several 
considerations in designing tool-based tasks. However, I will discuss four 
considerations Leung and Bolite-Frant (2015) reported: epistemological and 
mathematical, tool representational, pedagogical, and discursive considerations.   

 
Epistemological and mathematical consideration. Under this consideration, 
Leung and Bolite-Frant (2015) argued that different epistemological approaches to 
mathematical knowledge have different implications on task design. That is, the 
tasks designed for students are based on the kind of mathematical knowledge the 
teacher wants the students to achieve, and this also affects the type of tool used. 
Drawing on Sfard’s participationist and acquisitionist epistemological orientation, 
Leung and Bolite-Frant (2015) emphasized that the first might favour a tool-based 
design that can lead students to participate in the construction of shared 
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mathematical experiences. In contrast, the latter might lead students to explore and 
consequently construct personal mathematical knowledge. From this argument, we 
can say that different tools used in task design might have different epistemological 
stances (depending on their affordances). Similarly, the same tool can be used in 
task designs with different epistemological stances. Reflecting on these instances, 
it can be a challenge in tool-based task design when considering possible 
epistemological orientations and the type of mathematical knowledge the tool can 
afford. For instance, a tool like GeoGebra used in task design might cover a 
sizeable epistemic spectrum from drawing precise, robust geometrical figures 
(shared mathematical experiences) to exploring new geometric theorems and 
developing argumentation discourse. In summary, the kind of knowledge to be 
acquired by the students might lead to the type of epistemological approach 
adopted and the tool that will be used.   
  
Tool representational considerations. The nature of school mathematics is 
symbolic. As such, Leung and Bolite-Frant (2015) argued that the way a chosen 
tool represents mathematical knowledge is at the heart of tool-based task design. 
They further suggested some questions of consideration that might be of interest 
for a mathematical topic: “How far away from the expected symbolic 
representation is in the tool’s potential to represent the mathematical concept?” 
and “Is the tool capable enough of representing the targeted mathematical 
knowledge parallel to the corresponding symbolic representation?” (ibid., p. 195). 
These questions highlight the gap between the symbolic representation within the 
mathematics curriculum and the tool. Morgan et al. (2009) described this gap as 
epistemological distance. Epistemological distance constitutes the difference 
between the affordances for meaning when considering the distance between 
representations (ibid.). For instance, Wassie and Zergaw (2019) pointed out that 
some of the commands used in the input bar of GeoGebra are not user-friendly 
(especially for individuals with no prior programming experience). In another 
example, there is a significant distance between the mathematics of the standard 
curriculum and the representation in GeoGebra version 4.4. One example is using ^2 rather than the superscription for powers , which can form a barrier for some 
students (the same applies to Excel/spreadsheet, especially using it as a tool for 
learning algebra). To address this issue, the students in this study used GeoGebra 
6, which has an interface that corresponds much with the standard curriculum.      
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Pedagogical considerations. Under this consideration, Leung and Bolite-Frant 
(2015) argued that a suitable pedagogical environment must support tool-based 
task design. Different types of tools afford different mathematical task activities. 
For instance, a tool like GeoGebra with the ‘graphics view’, ‘algebra view’, and 
‘spreadsheet view’ combines these views into a single dynamic multi-
representational tool, and this may open up a rich pedagogical space for task design 
to explore. When considering a tool-based task, there is a need to consider the 
distance, classified by Morgan et al. (2009) as pedagogic distance, between the 
form of pedagogy represented in the tool’s environment and that of the classroom 
into which it is being introduced. As such, Leung and Bolite-Frant (2015) argued 
that familiarity with a tool and how to use it effectively to teach and learn are also 
critical pedagogical considerations for tool-based task design. For instance, 
students at secondary schools in Norway are familiar with the GeoGebra software, 
so a tool-based task design with such a tool may support group activities and is 
also cost-efficient. That is, the pedagogy represented in GeoGebra’s environment 
is not far from the pedagogy represented in the classroom.   
 
Discursive considerations. Leung and Bolite-Frant (2015) emphasized that 
practising using a tool to accomplish a task involves the formation of appropriate 
tool-based vocabularies to develop utilization routines. Thus, the designed tool-
based tasks should bring about discourses for mathematical knowledge mediated 
by tools in the mathematics classroom. For instance, when students work in groups 
to complete mathematical modelling tasks with digital technologies, the discourses 
that emerge during the student’s activities mediated by these digital technologies 
must relate to the mathematics knowledge/content. These discourses emerging 
within the students’ activities must relate to the mathematical content as a shared 
goal (Roschelle & Teasley, 1995; Granberg & Olsson, 2015). Granberg and Olsson 
(2015) argued that to create a shared goal, the students have the tool to look at the 
same thing as they negotiate and agree on the appearance of the mathematical 
representation generated by the tool. The students might also use the tool as a 
reference tool (during a mathematics discourse) to visually demonstrate their ideas 
to one another. For instance, a student might suggest a function/equation to their 
peers and use GeoGebra to represent this function graphically. Similarly, in the 
discursive consideration, a tool can be used to observe and repair divergencies 
during a mathematics discourse (Roschelle & Teasley, 1995; Granberg & Olsson, 
2015). Granberg and Olsson (2015) point out that to observe and repair 
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divergences, the tool is used to maintain shared mathematical knowledge and ideas 
through the verification of ideas or to settle disagreements by performing tests and 
referencing, among others, during a mathematics discourse.   
 
In summary, much has been discussed about the dimension for digital technology 
use (so far), not the social norms dimension, which is also relevant in mathematical 
modelling processes. As such, in the forthcoming section, I will present a 
discussion on group work in relation to mathematical modelling activities.    

2.4 Group work/activity   
There are several definitions for group work/activity (depending on the perspective 
one adopts). In this study, I will take the approach where a teacher forms a group 
(same or mixed ability/attainment regarding exam scores) to work on a 
mathematical task. In this perspective, Cohen and Lotan (2014, p. 1) defined group 
work/activity as “students working together in a group small enough so that 
everyone can participate in a clearly assigned learning task”. Furthermore, the type 
of task might determine the level of participation among group members (Cohen, 
1994; Sahlberg & Berry, 2003). There are different types of group work/activities, 
and some examples are cooperative, collaborative, problem-based and team-based 
learning, amongst others. Cooperative and collaborative are the best-known and 
most researched among these types. 

Cooperative learning is seen as a type of group work where participants split 
a task into subtasks among themselves and independently work on these subtasks. 
That is a division of work between students in a joint activity situation 
(Hadjerrouit, 2012). Judd et al. (2010) argued that collaborative learning involves 
the mutual engagement of participants in a coordinated effort to solve a task 
(collectively). According to Witney and Smallbone (2011), collaborative learning 
can be described as a learning process generated by small, interdependent groups 
of students who work together as a team with shared problem-solving (ibid., p. 
103). The group work/activity used in this research study is a form of collaborative 
learning. Thus, I design an environment intended for achieving mutuality (sharing 
of an action or equal contribution). However, students in the group contribute 
differently (see Section 5.3). Hadjerrouit (2012) emphasized that through 
collaboration, students contribute to each other’s learning, which might create a 
social learning environment that is more fruitful than the addition of individual 
work. Hadjerrouit further pointed out that collaborative learning is grounded in 
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Vygotsky’s socio-constructivist learning theory, which assumes learning occurs 
through collaboration and information sharing in authentic contexts. Furthermore, 
how students learn is shaped by their relationships with others (ibid.).    

Mathematical modelling and problem-solving are often accompanied by 
group work (collaborative learning). Interactions generated by group activities are 
often suitable for mathematical modelling (Ikeda & Stephens, 2001). The literature 
on collaborative group work (hereafter referred to as “group work/activity”) in 
problem-solving and mathematical modelling shows how students’ interactions 
contribute positively to their learning. For instance, Laal and Ghodsi (2012) 
documented the potential benefits of group work to students learning. Sahlberg 
and Berry (2002) pointed out that group work might produce equal academic 
outcomes among all group members compared to more traditional methods of 
instruction. On the other hand, Thom (2020) argued that not all contexts in which 
students interact with each other benefit students’ levels of learning.   

In mathematical modelling with the aid of digital technologies, interactions 
generated by group activities affect and are affected by digital technologies. Digital 
technologies as mediating artefacts might impact sense-making in group 
interactions as students work on mathematical modelling tasks. For instance, the 
results by Granberg and Olsson (2015) showed that GeoGebra provided students 
with a shared working space and feedback that became the subject of these 
students’ creative reasoning. The results from Zengin (2021) also showed how 
GeoGebra impacted sense-making in group interactions. However, other studies 
highlight the complex nature of group interactions in this area. For instance, 
Lowrie (2011) reported on the tensions between using genuine artefacts and group 
interactions when some students were challenged to solve a realistic mathematics 
problem. Clark et al. (2014) suggested that the problem type might lead to effective 
group interaction and activity. For instance, some problem types might motivate 
the students to engage positively with their peers in a group activity. Sahlberg and 
Berry (2003) presented a list of problem types and their associated interactions (I 
will further develop this argument in Sub-Section 2.4.2). Brady and Jung (2022) 
argued that the choice of tasks, having a client outside the classroom for whom the 
solution to the problem is meaningful and relevant, might stimulate students’ 
interest in solving the problem. Students adopt different roles in group activities 
while working on a mathematical modelling task. In some group activities, 
temporary roles are assigned by the teacher to embody particular divisions of 
labour in group work (Radinsky, 2008). Thus, a teacher might assign differentiated 
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roles to each group member (Smith, 1996; Rosser, 1998; Crawford, 2001) within 
a group activity (e.g., the role of task recorder, process recorder, coordinator, 
checker and timekeeper). The roles identified in this study are characterizations of 
the observed patterns of students’ participation in a group activity.               

What are (some of) the roles students adopt in group activity in mathematical 
modelling with the aid of digital technologies? There are several roles students 
adopt in group interaction during mathematical modelling activities. For instance, 
one student might be taking charge of the computer activities (mainly when a group 
works with only one computer), and another student might be taking records with 
paper-and-pencil. Other roles can also be observed within group interactions 
(through classroom observations), such as questioning and challenging, leading 
roles, and others. Questioning and challenging ideas are seen as one of the factors 
in the success of group interaction (Goos et al., 2002; Paterson & Watt, 2014). 
Sahlberg and Berry (2003) pointed out the need for students to challenge each 
other’s thinking to develop new concepts. In a group interaction, a student might 
question another student’s idea(s) (in an attempt) to understand his/her thinking, 
and the response to the question might also be seen as an attempt to clarify, 
elaborate, evaluate, or justify one’s thinking. Hernandez-Martinez and Harth 
(2015) argued that sometimes, the student whose idea(s) is challenged might not 
be able to respond to the challenge. Lowrie (2011) gave a potential reason that 
sometimes a student might not have the confidence to justify his convictions; 
hence, his/her idea(s) may lose impact within group interactions. The leading role 
describes the student dominating the communications within group interactions. 
The student dominating sometimes leads the other group members through his/her 
ideas. Esmonde (2009) highlighted that high-achieving students often dominate in 
group interactions. Costley (2021) argued that students might take on different 
roles and contribute to different levels and that students with high levels of 
motivation are more likely to contribute to group work through planning and 
sharing of information, amongst others (ibid., p. 4). 

Other roles that might emerge within group interactions are suggesting, 
supporting, opposing, and non-contributing (described in Table 9.5 in Appendix 
E). Through classroom observations, I categorized these roles in the analysis of the 
pilot studies (see Sub-Section 5.6.4) and the empirical data of the main studies. In 
an opposing role, students do not agree to or accept their peers’ comments and (or) 
introduce their ideas/solutions while solving a common task. With the non-
contributing role, the student does not contribute entirely to the group work or 
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contributes at some point but remains silent most of the time. Costley (2021) 
emphasized that students primarily gain an advantage from just being a member 
of a group and not necessarily by making significant contributions to that group 
(ibid.), although Tsay and Brady (2012) pointed out that students who actively 
participate in group work learn more and that the more students interact (with each 
other), the greater their learning. In a suggesting role, the students usually 
recommend an idea to assist the idea of the other student. In contrast, in a 
supporting role, the student only agrees to comments without adding anything new 
or critically assessing it.    

In the forthcoming section, I will present the trends/patterns within group 
interactions. I will label these trends/patterns as interaction sequences. These 
interaction sequences depend much on the characteristics of the students.      

2.4.1 Group interaction sequences  

What are the patterns in group interactions as students work on mathematical 
tasks? Several patterns occur within group interactions. Jones and Gerard (1967) 
distinguished four categories of patterns (interaction sequences) that might occur 
within social interaction. They named these patterns social contingencies, a 
conceptual framework that deals with contingencies among replies. These 
interaction sequences are pseudocontingency, asymmetrical, reactive and mutual 
contingency. Pseudocontingency describes a limited cases of social interaction 
where members within the group follow their pre-established plans. Thus, each 
individual’s responses are primarily determined by his/her pre-established plan. In 
an asymmetrical contingency, Student A’s responses are primarily determined by 
self-produced stimuli (plans, strategies, or ideas). In contrast, Student B’s 
responses are determined predominantly by social stimuli produced by Student A. 
In Peter-Koop’s (2002) study, high-performing students frequently dominated this 
category. In reactive contingency, neither Student A nor Student B follows self-
produced stimuli; instead, the interaction occurs in a sequence in which each 
student’s response is almost entirely dependent on the preceding response of the 
other. Concerning mutual contingency, this is a situation where sense-making and 
conversations are mutually driven. Thus, each response is partially determined by 
the proceeding response of the other and partly by the individual’s internal and 
self-produced stimulation. In Peter-Koop’s (2002) study, this category is 
infrequent and tends to occur when high-performing students work together. In an 
example of mathematics education, Peter-Koop (2002) utilized these four 
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contingencies in monitoring students’ lines of thought as they engage in group 
activity. Lowrie (2011) also utilized these contingencies in analyzing group 
interactions in collaborative learning in mathematics tasks. 

On the other hand, Mercer (1994) identified three distinct talk types or 
interaction categories as he explored the quality of talk in computer-assisted 
collaborative activity. These talk types are disputational, cumulative and 
exploratory. Disputational talk is characterized by disagreement and 
individualized decision-making. In the cumulative talk, the speaker builds 
positively but uncritically on what the other person said, and repetitions, 
confirmations, and elaborations characterize this discourse. In exploratory talk, 
members engage critically but constructively with each other’s ideas (Wegerif & 
Mercer, 1997). Falloon and Khoo (2014), in exploring young students’ (1st grade) 
talk in iPad-supported collaborative learning environments, described different 
elements under the talk types identified by Mercer (see Table 2.5 below). Table 
2.5 is an extract from the literature by Falloon and Khoo (2014). Table 2.5 presents 
Mercer’s talk types with some elements (active subcode) described by Falloon and 
Khoo (2014) for analyzing students’ talk. There are more elements described in 
the original table. However, the elements in Table 2.5 are for the purpose of 
analyzing empirical data in this study. For instance, in the original table, an 
element ‘competitive/defense’ describes students competing for time on the device 
(‘my turn, your turn’). However, in this study, the students are secondary school 
students, and this element is not generally observed in the students’ interactions.   
Talk Type Active subcode Talk description 

Cumulative  Affirmative/ 
agreement  

Talk that is supportive and affirming. Non-critical. 
Agreement with what was suggested without 
cause to review or challenge. Passive and 
compliant. 

Consensus/ 
clarification 

Talk that builds understanding of suggestions or 
ideas but in a non-critical, non-challenging and 
non-expansive way. 

Elaboration Questions are asked to seek further detail about 
how to do things or clarify why a partner suggests 
a particular course of action. 

Disputational  Individualized  Talk that indicates possessiveness of own 
contribution. Unwilling to consider other's 
suggestions for improvement or change. 

Exploratory Critically 
constructive  

Talk that indicates respectful cognitive 
engagement with and consideration and critical 
review of others' ideas in a way, leading to 
improved decision-making or content. 



72 
 

Constructive critique focuses on the ideas or 
suggestions, not the person. 

Negotiated/ 
debated  

Talk that demonstrates tentative ideas being 
offered and debated. Student(s) receptive to 
change if an excellent supporting reason(s)/case 
can be made by other(s). Different perspectives 
are acknowledged and synthesized into a 
collective response. 

Justification Talk that seeks justification of perspectives or 
ideas being offered, focusing on how they will 
improve decision-making or output quality. 
Reasons for suggestions are pursued through 
probing questioning or offering alternatives. 

Table 2.5: Talk type classifications, subcodes and description (adopted from Falloon 
and Khoo (2014)). 

The group interaction framework by Jones and Gerard (1967) described a 
more general situation considering the contingencies among replies, while the 
framework by Mercer (1994) described in a more detailed way the kind of talk 
emerging from students’ group interactions (in a computer environment). To study 
the patterns in group interactions as students work on a mathematical modelling 
task using digital technologies, I combined the two frameworks (Jones & Gerard, 
1967; Mercer, 1994) to analyze the empirical data in this research study. Mercer 
takes a socio-cultural perspective based on Vygotsky and other socio-culturalists, 
while the perspective taken by Jones and Gerard is not clear. However, Jones and 
Gerard’s interpretations of the different interaction sequences somewhat relate to 
Mercer’s description. For instance, Falloon and Khoo’s (2014) descriptions of the 
elements in Table 2.5 help combine the two frameworks. That is, disputational talk 
(individualized) is more associated with pseudocontingency, where the students’ 
responses are individualized, and group members might be unwilling to consider 
other suggestions for improvement or change. Again, pseudocontingency can co-
occur with another contingency involving the use of digital technology in group 
interaction. For instance, in a group of three students, Student A might interact 
with the computer (using a different strategy) while Student B and C communicate 
together (using another strategy) as they work on the same task. Thus, the 
interaction between Student A—computer and Student B—Student C is a 
pseudocontingency. However, the interaction between Student B and C could also 
be another form of contingency or interaction sequence. 

Cumulative talk (affirmative/agreement, consensus/clarification, elaboration) 
is associated with asymmetrical contingency, where the response of Student A to 
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Student B’s comments/ideas within a group interaction is affirmative and non-
critical. This second response could also be a repetition of the first response for 
clarity, and this response is non-critical and non-challenging. Again, this second 
response could also be a question to seek further details about a member’s earlier 
suggestion or ideas. Exploratory talk has both elements of reactive (critically 
constructive, justification) and mutual (negotiation) contingency. In reactive 
contingency, a group member considers and critically reviews another member’s 
ideas, leading to improved decision-making or content. The reasons for 
suggestions (justifications) are pursued through probing questions or offering 
alternatives, and it must be noted that each individual’s response is almost entirely 
dependent on the preceding response of the other. The description for reactive 
contingency here might be slightly different from Peter-Koop’s (2002) description. 
In Peter-Koop’s description, students react (often very spontaneously) to 
comments from their peers without developing and contributing their strategies. 
However, in this study, the emphasis is on the reaction, which is critically 
reviewing the ideas of others, and from this perspective, I relate reactive 
contingency to an exploratory talk. Concerning mutual contingency, different 
perspectives are acknowledged and synthesized into a collective response.   

The issue of high-achieving students dominating discussions within group 
interactions discussed above can take a different turn. For instance, scaffolding has 
been contrived as the interaction between a more knowledgeable leader and the 
learner. However, similar but different sorts of scaffolding (but still effective) can 
occur between peers of complementary skills. In this case, students can come 
together with different skills and scaffold each other (Panselinas & Komis, 2009). 
Thus, in a mixed attainment group, there can be a possibility that a low-achieving 
student might complement a high-achieving student based on his/her unique skills 
(and not necessarily a high-achieving student only dominating in group 
interactions). Sahlberg and Berry (2003) argued that a well-designed task might 
lead to an interaction where students stimulate each other with ideas at the edge of 
their knowledge, understanding and skills, other than a high-achieving student only 
helping a low-achieving student to perform basic tasks. Another perspective of 
addressing this issue is Wenger’s conception of community of practice, which 
offers a possible model for a classroom that could facilitate learning through social 
interaction (Olitsky, 2007). Olitsky (2007) argued that this perspective describes 
learning as taking place within a collective activity in which individuals provide 
scaffolding for each other to acquire the skills and knowledge for participation.    
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Summarizing the discussion on group interaction sequences, I would say the 
frequency of the interaction sequences within group activities might depend on the 
nature of the task (which I will further discuss in the forthcoming section), digital 
technologies used (see pages 38—40), and others. Different interaction sequences 
might emerge in different stages of the students’ modelling activities. Drawing on 
the discussions on mathematical task design in Section 2.3, I will now discuss 
group work/activity concerning task design. 

2.4.2 Group work/activity and task design 

In this subsection, I will discuss the types of mathematical tasks (see Sub-Section 
2.3.1) concerning group work/activity (there are other perspectives one can 
consider). Sahlberg and Berry (2003) addressed the question, ‘What kinds of 
mathematical tasks are suitable for small group learning?’. The type of tasks 
selected for group activity depends on the teacher’s/researcher’s intentions 
towards students’ learning. Furthermore, the way students work together in groups 
and the interaction quality also depends on task design. Sahlberg and Berry argued 
that if the objective of the task is to develop relatively routine mathematical skills 
(recalling facts, learning basic algorithms and rules, among others), then the 
designed task will take a particular form different from a designed task (with the 
objective) to develop higher order skills (mathematical thinking, creative problem 
solving or conceptual understanding). Moreover, the type of interaction among 
students working in small groups in both designs will also be different. For 
instance, when students work together in a group to solve a routine task, in many 
instances, the high-performing student often tends to help the low-performing 
student to perform the basic tasks better. In this case, the one who constructs the 
explanation and the other who receives the explanation both benefit if the quality 
of the explanation is conceptually rich. On the other hand, when students work 
together in a group to solve a conceptual understanding task, there might be a kind 
of interaction in which students stimulate each other with ideas at the edge of their 
knowledge, understanding and skills (ibid., p. 73). 

Cohen (1994) distinguished between two types of tasks using the notion of 
exchange models: limited exchange model and equal exchange model. These 
models describe the quality and type of exchange/interaction when students work 
in small groups (Sahlberg & Berry, 2003). Cohen (1994) described a limited 
exchange model as a pattern in group interaction where the main reason for 
interaction lies in supplying information on how to proceed and content 
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information, and the information is likely to flow from academically more robust 
students to weaker students (ibid., p. 64). This interaction usually is suitable for 
routine tasks. For instance, consider an example given by Sahlberg and Berry 
(2003), considering a group of three students who solve routine tasks such as 
solving quadratic equations. Each student might likely take turns to solve the 
problem while the other student might watch to check that the method and solution 
are correct (and that they understand what is happening). These students might also 
solve the same problem and then discuss the solution (ibid., p. 73). 

Cohen (1994) argued that if we consider a less routine task with more 
conceptual objectives, then the pattern model of working together (in group work) 
might be an equal exchange model. To create equal exchange in group work, one 
needs to design a task where a single student within the group cannot easily do the 
task alone (ibid., p. 64). In this case, members within the group might find it 
necessary to exchange ideas freely for the common goal of getting the right 
solution. Sahlberg and Berry (2003) pointed out that a task that demands multiple 
abilities from group members might produce an equal exchange form of 
interaction. If we consider Task 2 (see Sub-Section 5.5.2) in this study, it is 
unlikely that a single student within the group can sit down and do the problem 
straight away by working alone. There are many issues to think about, such as, 
what is the definition of ‘fairness’ in the task, whether it is about the population, 
the time/distance of travel, and so on. As such, Task 2 might provide a very 
different interaction type that is much richer than a routine task. Task 1 (see Sub-
Section 5.5.1) in this study might not yield similar results as there is a possibility 
that a single member within the group can solve it alone.  From the definition of 
the types of exchange models above, we can associate the equal exchange model 
with reactive and mutual contingencies and the limited exchange model with 
asymmetrical and pseudo- contingencies. 

Sahlberg and Berry (2003) presented some types of mathematical tasks and 
their corresponding type of exchange model. Table 2.6 below is an extract from 
this book. Table 2.6 presents a classification of the suitability of group 
mathematical tasks for collaborative student group work. The nature of each task 
category with a corresponding example is already presented in Table 2.4 (on page 
54). Equal exchange in Table 2.6 describes the extent to which the designed task 
affords equal contributions from all members within the group as against limited 
exchange, which describes situations where one or more students know(s) the 
answer and tell(s) the other group members. 
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Category of Mathematical Task Type of Exchange Model 
Drilling basic skills Very limited  
Applying a formula or algorithm  Limited in how to proceed and checking 

results  
Measuring and collecting data Provides some opportunities for equal 

exchange of ideas and opinions 
Real problem solving  Equal exchange  
Mathematical modelling  Several opportunities for rich equal exchange  
Mathematical Investigations Several opportunities for rich equal exchange 
Designing projects and studies in 
mathematics.  

Rich equal exchange  

Table 2.6: A classification of group mathematical tasks using the notion of exchange 
models (Sahlberg & Berry, 2003, p. 74). 

So far, I have discussed interaction sequences and group work relating to task 
design without mentioning digital technologies. This does not mean the technology 
is separated from the students’ activities; it is an integral part (see Section 2.2). 

2.5 Summary of the chapter  

This chapter has provided a general overview of current research in mathematical 
modelling with the aid of digital technologies. The chapter highlights different 
perspectives on mathematical modelling, modelling competencies, digital 
technologies, task design, and group interactions. While the field of mathematical 
modelling with the aid of digital technologies is attracting interest from 
researchers, and a lot of work has been done from a cognitive perspective, a mature 
theory of studying this field from a socio-cultural perspective is still emerging. 
Several studies suggest other dimensions such as metacognitive strategies, digital 
technology used, social norms, and the designed task, not only focusing on 
cognitive activities in mathematical modelling. As such, more empirical studies 
are needed to address these dimensions from a socio-cultural perspective. The 
suggested dimensions are not viewed as separate components but are seen as 
interacting with each other as a whole. That is, the inseparability of cognitive 
activity from the metacognitive strategies, the designed tasks, the social norms, 
and the digital technologies that help mediate the students’ activity is consistent 
with a Vygotskian view of the social nature of learning. From this point of view, I 
will discuss in Chapter 4 how I put all these dimensions together (as a whole) using 
both Activity and Affordance Theory. Before this discussion, in the next chapter 
(Chapter 3), I will present the Norwegian educational context, which is the context 
in which the study was conducted.        
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3 The Norwegian Educational Context   
One needs to know the context of a situation in order to understand it fully. Hence, 
I will elaborate on the context of the participants in this research study, which is 
the Norwegian educational context. Section 3.1 presents an overview of the 
Norwegian school system. Section 3.2 elaborates on mathematics education in 
Norway, highlighting mathematics education at the secondary school level. 
Section 3.3 presents mathematical modelling and applications in the Norwegian 
mathematics curriculum, particularly at the secondary school level. Section 3.4 
describes the schools where the research took place with the cooperating teachers 
and research cohort. The chapter ends with a summary in Section 3.5.   

3.1 The Norwegian school system 
The information about the Norwegian school system given here is strictly taken 
from the Ministry of Education and Research (2019), Onstad and Kaarstein (2015) 
and Feagles and Dickey (1994). The Norwegian education system is governed by 
national legislation, and the Ministry of Education and Research 
(Kunnskapsdepartementet) (involving expert groups) is responsible for carrying 
out national educational policy at all levels of education, including preschool (for 
children up to age five). The curriculum used in Norway is centralized and 
comprises all subjects for Grades 1 to 13. Within the framework set by the 
curriculum, local schools and teachers have considerable freedom to make their 
own decisions regarding organization and instructional methods. Kindergarten or 
preprimary school is neither compulsory nor (totally) free in Norway (although 
every child has a right to attend). Following preprimary school, every child has the 
legal right to 13 years of education, of which the first 10 years (Grades 1 to 10) are 
compulsory and free. The next three years of education (Grade 11 to 13) are not 
compulsory but are still free. Most students are generally enrolled in public 
schools, as private schools play a minor role in Norwegian education. Mathematics 
is a compulsory subject between Grade 1 to 10, and one of the common subjects 
at the upper secondary school. Currently, there is a new Norwegian curriculum 
(Kunnskapsløftet 2020) for all school years.   

I will now present mathematics education in the Norwegian curriculum in the 
forthcoming section.         
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3.2 Mathematics education in Norway 
Mathematics is one of the prominent subject in the Norwegian school curriculum, 
and it is one of the core subjects covered on national examinations in the 10th grade. 
Over the years, longitudinal studies such as the Trends in International 
Mathematics and Science Study (TIMSS) and the Programme for International 
Students Assessment (PISA) have shown a setback in mathematical performance 
among students in both lower and upper secondary school, particularly in the 
topics of numbers and algebra (Lie et al., 1997; Grønmo et al., 2004; Kjærnsli et 
al., 2004, 2007; Grønmo & Onstad, 2009; Grønmo et al., 2010, 2011). Espeland 
(2017) pointed out that the Norwegian results from these comparative studies are 
generally considered unsatisfactory and have stimulated much debate in Norway. 
As a result of such debates, Norway has adopted a new curriculum for all school 
years. The new Norwegian mathematics curricula are organized under competence 
aims and assessment for each school year (Grades 1 to 10) and the upper secondary 
education. The Norwegian mathematics curriculum has six core elements: 
exploration and problem-solving; modelling and applications; reasoning and 
argumentation; representation and communication; abstraction and generalization; 
and mathematical fields of knowledge. The new curriculum emphasizes that (a 
Google translate of the Norwegian text):  

The students must work more with methods and ways of thinking to understand the 

subject better. Numbers and numerical understanding are the foundation of what 

students must master during primary school. Personal finance, measurement and 

statistics are essential areas where numbers are used in realistic contexts. 

Programming and algorithmic thinking also become part of the subject.      

 
The text above highlights understanding the subject, applying it in a realistic 

context, and using digital technologies in such inquiries. One may ask, “Are there 
any major changes between the new and the previous curricula, in terms of 
materials used?” which is a relevant question. Nonetheless, Bakken and 
Andersson-Bakken (2021) conducted a study in this area a year after implementing 
the curriculum. Bakken and Andersson-Bakken investigated if and how the tasks 
in science and language arts textbooks in Norwegian upper secondary schools have 
changed after the curriculum reform. A content analysis was conducted of around 
5,067 tasks in science and language arts textbooks compared to tasks (in textbooks) 
published before the reform. The results from the study show that there was only 
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a marginal change in tasks in each subject. That is, although the curriculum has 
changed, the tasks used in schools have not changed that much, and these tasks do 
not present the students with sufficient opportunities to practice the competencies 
highlighted in the new curriculum. Moreover, what was the focus of the previous 
Norwegian mathematics curriculum? Pedersen (2015) presented some studies 
from TIMSS in the Norwegian context and pointed out that:   

Previous analyses have revealed that the Norwegian curriculum for upper 

secondary school mathematics places the most significant emphasis on applying 

procedures and methods and that the curricular objectives, to a far lesser degree, 

describe activities such as analyzing, investigating, assessing, discussing, proving, 

modelling and generalizing” (ibid., p. 74).    

 

From the text above, the focus of the previous curriculum differs from the core 
elements of the new curriculum. Suppose the task used within the previous 
curriculum is used again within the new curriculum without any modification (to 
suit the current curriculum). In that case, the competencies highlighted by the new 
curriculum might not be realized. The results from Pedersen’s studies show that 
(concerning the previous curriculum), Norwegian upper secondary school students 
tend to perform weakly on items that place high demands on symbol manipulation. 
However, these students’ strengths are in tasks placed in an extra-mathematical 
(applied) context. In this case, the students can generate the mathematical 
expressions needed to find a solution but have a low ability to manipulate symbolic 
expressions. Early school leaving (or non-completion) in the upper secondary 
school is another concern. Markussen et al. (2011) argued that Norwegian upper 
secondary schools do not (to some extent) recognize the significant variation in 
knowledge and skills among students transitioning from lower to upper secondary 
schools. Thus, pedagogical differentiation is not used to the necessary extent, and 
as such, most of these students are treated as if they could cope with the demands 
of upper-secondary education. As a result of this issue (and other factors), students 
might leave/drop out of upper secondary school (ibid., p. 240).  

In recent times, Haugan et al. (2019) conducted a longitudinal study of factors 
predicting students’ intentions to leave upper secondary school. Their results show 
that the student’s grades from elementary school, parental and teacher support, and 
school engagement in upper secondary school are important factors (to some 
extent) that lead to early school leaving (dropout). The issues highlighted here 
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seem to give an impression of Norwegian education (regarding the transition 
between lower and upper secondary school) in general and not specific to 
mathematics education. However, the discussed issue might also apply in a 
mathematics subject context. For instance, teachers might have different beliefs 
and practices in mathematics teaching (Nilsen, 2010) at both levels, leading to 
differences in school engagement. Feldlaufer et al. (1988) pointed out that the 
differences in a classroom environment might contribute to the changes and 
behaviours sometimes associated with a transition from one level to another (e.g., 
from the elementary school level to the lower secondary school level). These 
differences could be the class task organization, competition and social 
comparison among students and others. In the next paragraph, I will present some 
competence aims in the Norwegian mathematics curriculum relevant to this study.  

The participants in this current research study are students in lower and upper 
secondary school levels, specifically Vg1 (first year in upper secondary school), 
Vg2 (second year in upper secondary school), and Grade 9. The students in both 
Vg1 (Grade 11) and Vg2 (Grade 12) are under the program for general studies 
taking 1T (theoretical mathematics—year 1) and R1 (mathematics for science—
year 2) mathematics, respectively. Competence aims are defined in the 
mathematics curriculum for Grade 9, Vg1 (1T mathematics) and Vg2 (R1 
mathematics). A summary of a section of the competence aims highlight students’ 
application of mathematics to realistic/authentic problems using digital 
technologies. For instance (at the Vg1 level), students are to identify variable 
quantities in different contexts while creating models with digital tools.  

In the forthcoming section, I will present mathematical modelling and 
applications in the Norwegian curriculum.  

3.3 Mathematical modelling and applications in the Norwegian 
mathematics curriculum 
Mathematical modelling has been part of the Norwegian curriculum for decades 
(Berget & Bolstad, 2019) and might have a different approach. Twenty-nine years 
ago (and years before), modelling, experimentation, and exploration were among 
the nine aims in upper secondary school mathematics (Berget, 2022). Frejd and 
Bergsten (2018) pointed out that mathematical modelling has been incorporated in 
different ways in national curricula. For instance, the approaches towards 
mathematical modelling in Norway implicitly describe mathematical modelling 
where the terms are used but not explained or used at all (ibid., p. 119). Thus, the 
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Norwegian curriculum does not use the term modelling explicitly but says students 
should work with problems in a realistic context. However, the curriculum is 
explicitly connected to information technology. For instance, an appropriate use 
of graphic calculators and computers in the modelling process at the upper 
secondary level (Antonius, 2004).    

The discussion above is based on the previous curriculum, and I will now 
discuss the new Norwegian curricula in the context of mathematical modelling and 
applications. I have already described the curriculum’s core element of “modelling 
and application” (see the last paragraph on page 21). The steps in a modelling cycle 
(see Figure 2.1 on page 13) can be recognized in the description of “modelling and 
applications” in the curriculum: to convert a real situation into a mathematical 
model, to solve this model and assess the validity of the model, to interpret and 
generalized the model, among others. The description of mathematical modelling 
highlighted in the curriculum is prominent in explaining modelling, as in the 
definitions of modelling cycle and competencies. In summary, the Norwegian 
curriculum does not use terms like modelling competencies and cycle(s); however, 
the descriptions can relate to these terms. 

One may ask, “Which of the steps of a modelling cycle are needed to solve 
textbook modelling tasks or tasks from Norwegian national examinations?”. To 
address this question, I will turn to Bakken and Andersson-Bakken’s (2021) 
findings in the previous section. Thus, the tasks used have not changed much 
regarding the previous and current curricula. In the context of mathematical 
modelling and applications, Berget (2022) examined mathematical modelling in 
textbook tasks and national exams in light of the new curriculum. The findings 
indicate different perspectives on mathematical modelling in the curriculum, the 
textbook tasks and the national exam. Thus, in the textbook and national exams, 
only parts of the modelling process are included as compared to what is intended 
by the curriculum. For instance, Berget (2022) presented an example of a task 
analyzed through the steps in a modelling cycle (see Figure 2.1). Figure 3.1 below 
shows an analysis of a textbook task through the lens of a modelling cycle. The 
steps such as constructing, simplifying, mathematizing, validating and exposing 
(that is, steps 1, 2, 3, 6 and 7, respectively, in the far right of Figure 3.1) are missing 
out, whilst the only steps present are working mathematically and interpreting (that 
is, steps 4 and 5 respectively in the far right of Figure 3.1).    

From Figure 3.1, the dataset is already presented, and the students are asked 
to make a linear model. To make this model, the students must only work 
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mathematically on the given numbers using digital technology (e.g., GeoGebra). 
The task in Figure 3.1 does not ask for validation and argument on why the model 
should be accepted. The answers to the preceding sub-questions in Figure 3.1 must 
be translated from the mathematical model. As such, there is no need to expose the 
model, as no assumptions are made by the students in this situation. Berget (2022) 
emphasized that several examples of tasks, like Figure 3.1, are seen in textbooks 
and exam tasks. Concerning Tasks 1 and 2 (see Section 5.5) in this study, the task 
is formulated in everyday language, and there are no given steps on how the 
students should solve it. Thus, the students decide and identify critical components 
themselves and mathematize the situation. Berget argued that only a few examples 
of textbook tasks relate to Tasks 1 and 2 in this study.   

One of several reasons why schools continue to use tasks such as the one 
presented in Figure 3.1 might be the strong bias against mathematical modelling. 
At the same time, greater attention is given to high-level mathematics such as 
theorems, proofs, formulas, and others at the upper secondary level (particularly 
in some European countries) (Stillman, 2007). There could also be the possibility 
that teachers have to prepare their students for national exams and that greater 
attention is given to tasks similar to what the students will meet in the exam. Artaud 
(2007) argued that the teaching process must be accorded extra time if 
mathematical modelling (concerning Task 1 and 2) is added to the ordinary 
didactical system. Antonius (2004) also points out that it is still hard to find time 
for modelling activities, which are very time-consuming in the Nordic context. 

 
Figure 3.1: Analysis of textbook task through the lens of a modelling cycle (Berget, 2022, 
p. 60). 

In the next section, I will present the background of the schools and students 
that participated in this research study. 
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3.4 Schools and cooperating teachers in this study 
Four schools participated in this research study, and students from these schools 
are of different levels (but all are at the secondary school level). These schools are 
located in the southern part of Norway (Agder). Students in these schools can use 
different digital technologies in problem-solving (e.g., GeoGebra, Excel, and 
others). The students also have their personal computers that they use for 
mathematics lessons. All the schools follow the same national curriculum 
(although task selection is specific to each teacher), as presented in the previous 
sections. Before this research study, the students had not solved tasks such as Tasks 
1 and 2 (see Section 5.5). However, they have experience tackling tasks like those 
in Figure 3.1 (especially the students at the upper secondary level). 

I will present a specific description of each school in the following 
subsections. Pseudonyms are used for schools, teachers and students. The reports 
under each school are strictly from the teachers' reflections during my visits to the 
schools between Autumn 2020 and Autumn 2021 (see Table 5.3 on page 137).  

3.4.1 School A  

School A is a public upper-secondary school specializing in general studies and 
vocational education programs. School A is a medium-sized school by Norwegian 
standards with a ceiling of a little over 600 students. 

Ten (7 males and 3 females) second-year students (Vg2) from School A 
participated in the research study. These students had been together for almost a 
year and a half. The age of these students at the time of the research was between 
16 and 17 years, of which the majority were 17. The students were taking the R1 
mathematics subject in Autumn 2021. Furthermore, they covered topics like 
logarithms, functions, equations (linear, quadratic, and exponential functions), and 
trigonometry. The students had geometry at the lower secondary level. 

The students have five 45-minute mathematics lessons weekly. They usually 
solve a mathematics task in between 10 and 30 minutes (depending on the task, 
either flexible, allowing students to explore and be creative or restricted). The 
students usually work in groups, although some prefer to work individually. 
Working in groups, the students have the perception that all group members should 
contribute. Regarding assessments, students must learn and use the methods taught 
or use their methods if they can argue for them. 

The teacher expects that students should learn and understand mathematics, 
but these students might have different goals (to pass the test/exams and not 
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necessarily learn mathematics). Concerning technology, the school allows students 
to use it. However, the teacher believes that technology takes away the 
mathematics, and sometimes the teacher struggles as she wants the students to 
learn mathematics. The teacher believes that much time is spent on technology 
since the students have less experience using digital technologies (e.g., 
programming) at the lower secondary (an issue in the change of the curricula).  

Of the ten students who participated in the studies in School A, three 
volunteered to form the focus group (Group A) during data collection. I will briefly 
summarize this focus group based on their teacher’s account. 
 
Group A. Thea, Rolf and Kåre were members of Group A, and within this group, 
Thea and Rolf were assigned grade 4, whilst Kåre was assigned grade 3 after the 
exams/test. In the Norwegian performance scale, a high performance is between 
grades 5 and 6, an average performance is between grades 3 and 4, and a low 
performance is between grades 1 and 2. To further differentiate Thea and Rolf, the 
teacher noted that Thea performs higher than Rolf, but Rolf has the highest 
mathematical understanding but has a little lower motivation within the group.   

3.4.2 School B 

School B is a public upper-secondary school specializing in general studies and 
vocational education programs. School B is a large school with a population of 
approximately 1500 students. 

Twenty-eight (14 males and 14 females) first-year students (Vg1) from School 
B participated in the research study. These students have known each other since 
the start of the Autumn 2021 semester (but some knew each other before, as they 
were in the same class at the lower secondary school). The age of these students at 
the time of the research was between 16 and 17 years, of which the majority were 
16. The students were taking the 1T mathematics subject in Autumn 2021. 
Furthermore, they were expected to cover topics like basic calculation (fractions, 
multiplication, division, integers, and others), equations (linear and quadratic), 
factorization, linear polynomial functions, exponential functions, regression, 
percentage calculations, rate and programming. The students had geometry at the 
lower secondary level (not in the syllables at the upper secondary level).  

The students have five 45-minute mathematics lessons weekly. They usually 
solve a mathematics task in between 10 and 25 minutes (depending on the task—
flexible or restricted). The students usually work in pairs and sometimes in groups 
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of four. The students expect every member of the group to participate. Regarding 
assessments, the students usually send a screenshot of their work to the teacher. 
The teacher also makes a checklist of what she expects of the students. With the 
new syllables, the students are taught the tools and can choose which to use 
depending on the situation. The teacher does not tell the students to solve a problem 
in a specific way but expects them to show what they did and why. 

The teacher believes the students have different backgrounds/levels and does 
not expect everyone to pass. The teacher expects the students to learn and 
understand mathematics rather than just pass the exam. However, they must pass 
(minimum, grade 4) to enrol in the International Baccalaureate (IB) program the 
following year. Moreover, some students like mathematics and want to learn 
further (sometimes have exciting thoughts). Regarding using digital technologies, 
students often use computers at school. However, the teacher wants them to 
understand how to solve problems algebraically (paper-and-pencil), and not just 
press the button with the computer without understanding what is happening 
mathematically. The teacher also feels that much time is spent on technology since 
the students have less experience. 

Out of the 28 students who participated in the studies in School B, 4 
volunteered to form the focus group (Group B) during data collection. I will briefly 
summarize this focus group based on their teacher’s account.   

 
Group B. Emil, Thor, Ella, and Tore were Group B members, and the teacher 
assigned Emil grade 5, Thor grade 4, Ella grade 3, and Tore grade 1 after the 
exams/test. The teacher sees Emil as a high-performing student who works in a 
different way than ‘school math’ and thinks logically and outside the box. Thor is 
a medium-plus performing student and good at logical thinking, but he is not that 
good at using symbols and takes time to understand them. Ella is a medium/ 
average performing student who performs better than Tore (struggling in math). 

3.4.3 School C 

School C is a public upper-secondary school specializing in general studies and 
vocational education programs. School C is a large school by Norwegian 
standards, with a population of approximately 900 students. 

Seventeen (6 males and 11 females) first-year students (Vg1) from School C 
participated in the research study. These students have known each other since the 
start of the Autumn 2021 semester. The age of these students at the time of the 
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research was between 16 and 17 years, of which the majority were 16. The students 
were taking the 1T mathematics subject in Autumn 2021. They were expected to 
cover topics like functions, algebra, equations, 2nd-degree expression, percentage 
calculations, fractions, square roots, and programming. The students had geometry 
at the lower secondary level.  

The students have five 45-minute mathematics lessons weekly. They usually 
solve a mathematics task in between 2 and 10 minutes (depending on the task—
flexible or restricted). The students usually work individually, and the teacher 
sometimes instructs or encourages them to work together. The students believe that 
they know a little, and so do their peers, so they build on each other’s knowledge. 
Very often, the one who knows most about the technology grabs the computer, so 
they get even better than the others. Regarding assessments, the teacher marks or 
assesses and gives feedback on most of the tasks the students hand in. The teacher 
also assesses the class participation of the students. 

The teacher expects the students to do well as they should (within their limits). 
The teacher encourages them to work with the things until they understand them. 
However, the student’s primary goal is to get good grades. Aside from this goal, 
some students think mathematics is fun. Regarding using digital technologies, the 
school follows the curriculum. With the new curriculum, the school can only 
include some things now, and it will take some years to get all the mathematics 
teachers in the school to that level. Again, the teacher emphasized that the current 
group of students are struggling more than the previous group because they have 
lost a lot during the COVID-19 pandemic. The teacher believes there is not enough 
time to teach technology because the basics of mathematics are not very good. 
Thus, the students must first know the logic or structure of algebra, and GeoGebra 
will be an excellent tool for visualizing and finding solutions and explorations. 

Out of the 17 students who participated in the studies in School C, 3 
volunteered to form the focus group (Group C) during data collection. I will briefly 
summarize this focus group based on their teacher’s account. 
 
Group C. Nils, Anna, and Jørn were Group C members, and the teacher assigned 
them grade 5 after the exams/test. The teacher did not give further information 
about this group or the hierarchies within the performance bands. 
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3.4.4 School D 

School D is a private primary (Grade 5 to 7) and lower secondary (Grade 8 to 10) 
school. School D is a small school by Norwegian standards with a ceiling of 
approximately 105 students. 

Eighteen (5 males and 13 females) Grade 9 students from School D 
participated in the research study. The students comprise two schools that came 
together in the 5th grade (but some students have known each other since the 1st 
grade). The age of these students at the time of the research was between 14 and 
15 years, of which the majority were 14. These students took the 9th-grade 
mathematics subject in Autumn 2021, which comprises functions, logical 
reasoning, math for the national tasks, and others. The students were familiar with 
algebra and equations from the 7th and 8th grades (and will have it in both the 9th 
and 10th grades). The students also worked on geometry each year. 

The students have five 45-minute mathematics lessons weekly. They usually 
solve a mathematics task in between 10 and 15 minutes (depending on the task). 
The students usually work with open tasks, which allow them to explore (being 
creative). The students usually work in groups of three. Some students prefer 
working individually, while others prefer working in groups. The school has a big 
focus on group work. The students expect their peers to work and expect 
everybody to take responsibility within the group. Regarding assessments, oral, 
written and student-to-student (students giving feedback to each other) forms of 
assessment are usually used. 

The teacher believes these students’ expectations are low since many students 
struggle with mathematics. Furthermore, the entire school has a big expectation of 
students’ achievements (students have achieved higher results over the years). The 
teachers see the current class as lower than the other classes. The teacher 
emphasized that some students in this class might want to pass the exam, and some 
have been working hard to get a higher grade (and find mathematics exciting). 
Regarding using digital technologies, the school has a big focus on the use of 
digital technologies, and there is a one-to-one Chrome book (computer) for every 
student. The students have been working with different kinds of software and smart 
screens (big screens). The students have worked with GeoGebra and many Google 
applications (like Google Sheets, documents, and presentations, among others) for 
many years. Digital technology is incorporated in all subjects at School D. Students 
often use digital tools but can work without them. 
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Of the 18 students who participated in the studies in School D, 3 volunteered 
to form the focus group (Group D) during data collection. I will briefly summarize 
this focus group based on their teacher’s account. 

 
Group D. Olga, Hege and Lena were members of Group D, and the teacher 
assigned Olga grade 6, Hege grade 4 and Lena grade 3 after the exams/tests. The 
teacher described Olga as far from the others (high-performing student), Hege as 
an average plus student, and Lena as average. 

3.5 Summary of the chapter 
This chapter has provided an overview of the Norwegian educational context and 
the schools participating in this research study. The chapter highlights the structure 
of the Norwegian school system, mathematics education in the Norwegian context, 
mathematical modelling and applications in the Norwegian curriculum, and a 
description of the schools taking part in the research project. One of the significant 
issues raised in this chapter is the use of tasks (from the previous curricula) in the 
current implementation of the new curricula, which does not present the students 
with sufficient opportunities to practice the competencies highlighted in the new 
curricula. Another significant issue raised is about the mathematical modelling 
tasks from textbooks, which have a different perspective on mathematical 
modelling compared to what the new curriculum intends. In this case, only parts 
of the modelling process (and not the whole) are included in the textbook tasks.   
There are some similarities and differences in the descriptions of the schools. 
Students in Schools A, B, and C were not very experienced in using digital 
technologies from previous years due to the COVID-19 pandemic and the 
implementation of the new curriculum. These students lacked some aspects of the 
mathematics subject as well. Students in School D were experienced in using 
digital technologies, which was a primary focus of the school. Groups A, B, and 
D (respectively from School A, B, and D) were made up of mixed attainment 
students (based on their scores in the exam), whilst Group C (from School C) was 
made up of high-performing students. 

Having presented the context of the students in the schools in which the study 
was conducted, I will, in the next chapter (Chapter 4), present the theoretical 
framework providing knowledge of what is already known through previous 
research, thus guiding the analysis and interpretations of the data generated.  
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4 Theoretical Framework   
This chapter addresses the theoretical basis of the research study. I repeat to the 
reader the aim of this research, which is to explore how secondary school students 
solve mathematical modelling tasks with the aid of digital technologies. Different 
theories are used in studying mathematical modelling (Buchholtz, 2013). For 
instance, the commognition theory (Ärlebäck & Frejd, 2013), Anthropological 
Theory of Didactics (Garcia et al., 2006), and others. These theories help 
understand modelling issues (with digital technologies). Silver and Herbst (2007) 
argue that (the concept of) theory has been defined in several ways and can be seen 
and used differently in diverse contexts and areas. 

Theories in research can provide models and frameworks as tools for 
describing and understanding a particular phenomenon (Nesher, 2015). In 
research, theories can be seen in quite different ways: theory as a lens (Simon, 
2009; Nesher, 2015; Niss, 2007); theory as a tool (Assude et al., 2008; Simon, 
2009); or theory as an object (Assude et al., 2008). Furthermore, theories are 
categorized into three common levels: grand theories, middle-range theories and 
local theories. Again, theories help researchers formulate the research problem and 
questions, the study’s design, the method adopted, the analysis of data, and the 
interpretation of results (Silver & Herbst, 2007; Bikner-Ahsbahs & Prediger, 
2010). For this reason, I present in this chapter Cultural-Historical Activity Theory 
(CHAT) as a lens to study students’ use of digital technologies in mathematical 
modelling activities. This thesis focuses on interactions within the students’ 
activities, and as such, a socio-cultural approach (in this case, CHAT) with a focus 
on actors and action is relevant. I will also show how supplementary theories, such 
as Affordance Theory and concepts like modelling actions (coined from the 
ontology of modelling competence in the sense of CHAT) complement CHAT in 
this study. 

The chapter opens with an introduction to CHAT in Section 4.1. Section 4.2 
presents an argument for adopting CHAT perspective stance in this research study. 
Section 4.3 elaborates on Affordance Theory, highlighting the emergence, 
perception and actualization of affordances and constraints, and affordances and 
constraints in mathematics education. Section 4.4 elaborates on the compatibility 
between the adopted theories, where I shed light on the compatibility between 
CHAT and Affordance Theory and the interpretation of modelling actions from 
CHAT perspective. The chapter ends with a summary in Section 4.5.   
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4.1 Introduction to Cultural-Historical Activity Theory (CHAT) 
To explore how secondary school students solve mathematical modelling tasks 
with the aid of digital technologies, I tend to consider the situation as students’ 
activity. And I address issues such as ‘Can students’ activity be broken down into 
smaller units?’, ‘what role does digital technologies play in students’ activity?’, 
among others. To address these questions, the students’ activity needs a more 
elaborate concept of activity, which can be offered by Activity Theory.   

Activity Theory refers to various theories rooted in Soviet approaches to 
psychology 100 years ago. ‘Activity’ is an everyday word for ‘doing something’; 
however, the activity in Activity Theory retains this meaning but conceives it as 
the interaction of a person(s) (subject) with things around them (mediating 
artefacts) to achieve a particular outcome (the object of the activity). Activity 
Theory is often referred to as CHAT. Activity in CHAT is the analytic unit for 
understanding human performances, such as their practices, the sense they make, 
or their actions (Roth, 2012). The concept of activity is fundamental in that its 
representations can be used for many different functions (Moran, 2003), and one 
of such functions is human-computer interactions. For instance, Nardi (1996) 
discusses using Activity Theory as a framework to study human-computer 
interactions. There are many versions of Activity Theory. However, three that are 
highly referenced are associated with Vygotsky, Leont’ev and Engeström 
(chronologically). These versions of the development of CHAT can be organized 
into three generations.  

I will present the different CHAT versions stated above in the forthcoming 
subsections.   

4.1.1 First generation CHAT 

Lev Vygotsky’s sociocultural approach is considered the first generation of 

CHAT. In the 1920s, Vygotsky focused on activity in his considerations of 

consciousness as a problem for psychology. In CHAT, social and cultural reality 

is constructed, and according to Vygotsky (1978), acceptable knowledge is the 

interpretation of the participant’s actions and thinking in a given context. CHAT 

draws from the idea that all social actions are mediated by language, discourse, 

and other cultural means (Jones et al., 2016). Cole (1996, p. 108) states that the 

central thesis of CHAT is that “the structure and development of human 
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psychological processes emerge through culturally mediated, historically 

developing, practical activity”, and these three components are interrelated. The 

idea of mediation is usually illustrated by the mediational triangle (see Figure 4.1).  

In Figure 4.1, tools are intermediate between the subject and the object. Tools 

are sociohistorically formed means and modes through which a person is 

connected to other people and assimilates the experiences of humanity. “Tools 

shape how human beings interact with reality” (Kaptelinin et al., 1995, p. 192). 

Monaghan et al. (2016) define an artefact as a material object humans make for 

specific purposes. According to Cole (1996), when an artefact is used in a goal-

directed action, it becomes a tool. According to Vygotsky, there are two distinct 

tools: technical and psychological. Kaptelinin et al. (1995) highlight that 

“technical tools are intended to manipulate physical objects (e.g., a hummer)” 

whilst “psychological tools are used by human beings to influence other people or 

themselves (e.g., the multiplication table, a calendar, among others)” (ibid., p. 

192). One should note that tools and concepts are two different things in Activity 

Theory, and that only tools can mediate. For instance, ‘logarithm’ is a 

mathematical concept, but a logarithm table is a material tool. In other words, a 

logarithm table is a material manifestation of the logarithm concept that can 

mediate between subject and object (e.g., solve problems) or between people (e.g., 

teach solution procedures). Vygotsky claimed that activity always involves 

mediating artefacts (e.g., tools, language, and other people). Thus, the subject(s) 

interact with an object with a motive (object-oriented activity-the unit of analysis).  

Another essential construct in Lev Vygotsky’s theory of learning and 

development is the Zone of Proximal Development (ZPD).  The concept of ZPD 

relates to the difference between what a student can achieve independently and 

what this student can achieve with guidance and encouragement from a skilled 

partner (Vygotsky, 1978). Thus, a student can reach a learning goal by solving 

tasks (not every task, but ones beyond the student’s capabilities) with more 

competent peers (or the teacher). Furthermore, through collaboration within a 

student group, the gap between what a student can learn on his/her own and what 

this student can learn with help from others can be bridged. In an example, 
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Hernandez-Martinez and Harth (2015) studied “an Activity Theory analysis of 

group work in mathematical modelling” and pointed out that peers’ ideas proposed 

at each moment in time (in group interactions) become the tool that the group use 

in their process of sense-making as they work on a mathematical modelling task. 

 
Figure 4.1: The mediational triangle (Vygotsky, 1978). 

The first generation of CHAT focuses on individuals performing actions in a 

sociocultural setting (Engeström, 2001). That is, the unit of analysis remained 

individually focused on Vygotsky’s work. This was a limitation in Vygotsky’s 

work. However, Leont’ev explains in detail the key difference between an 

individual action and a collective activity. In the forthcoming subsection, I will 

present Leont’ev’s version of CHAT (second generation).  

4.1.2 Second generation CHAT 

The second generation of CHAT is based on the work of Leont’ev. As Leont’ev 

(1974) described, the concept of activity refers to the subject-object interaction 

mediated through tools and societal relations. The second generation of CHAT 

shifts the focus of analysis from individual tool-mediated action to the level of 

collective human activity. Leont’ev (1981b) argues that individual actions are 

senseless and unjustified if we do not consider collective activity.  Kaptelinin et al. 

(1995) point out “that activity cannot exist as an isolated entity”, and the very 

concept of activity implies that there is an individual or collective ‘subject’ who 

acts, for which the activity is directed at something (ibid., p. 191). The principle of 

object-orientedness states that all human activities are directed towards their 

objects (with a specific motive), and the activities are differentiated by their 

respective objects (Kaptelinin, 2017). Thus, activities are comprised of actions for 
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which these actions are directed towards a motive or goal (Leont’ev, 1978). For 

instance, when students solve mathematical modelling tasks by modelling with 

digital technologies, their main goal might be to develop a technology-based 

model/solution. An activity cannot be without a motive; however, an unmotivated 

activity has the motive concealed subjectively or objectively. The motive and 

object of the activity ensure a meaningful activity (Williams & Goos, 2012). 

Leont’ev (1977) presented a theoretical model that analyzes human activity in 

a three-level hierarchy. This theoretical model explains the structure of human 

activities regarding human functioning. Figure 4.2 below shows Leont’ev’s three 

hierarchical layers of an activity, where the top level concerns the whole activity, 

which is driven by an object-related motive. The object gives direction to an 

activity and distinguishes one activity from another. For instance, the motive 

behind the classroom activity involving solving a linear equation may differ 

whether one considers it from the teacher’s or the student’s perspective. The 

teacher might put it in the broader perspective of the usefulness beyond the 

classroom walls, whereas the students might be motivated by passing the exam. 

The second level in Figure 4.2 concerns the individual actions that translate 

an activity into reality. Developing an activity into separate actions often results 

from the division of labour among the participants. In Leont’ev’s perspective, 

separate partial results are achieved by separate participants in the collective labour 

activity, where these separate partial results are goals to which the actions are 

directed. The actions of the participants are also interwoven in the motive of the 

activity. Kaptelinin et al. (1995) explain that actions are conscious processes 

oriented towards goals, and these goals are the objects of actions. Thus, goals are 

functionally subordinated to other goals, which may be subordinated to still other 

goals (and so on). Nonetheless, we finally reach a top-level goal (the first level in 

Figure 4.2), which is not subordinate to any other goal as we move up the hierarchy 

of goals. This top-level goal (called the motive) is the object of the whole activity. 

In summary, goals are the objects human activities are directed at, while motives 

are the objects which motivate human activities. Moving down the hierarchy of 

actions (as shown in Figure 4.2), we cross the border between conscious and 
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automatic processes, and these automatic processes for which individuals are not 

aware of are responsive to actual conditions (ibid., p. 193).  

 
Figure 4.2: Hierarchical levels of an activity (Leont’ev, 1977). 

The third level in Figure 4.2 deals with the operational aspects, which are the 

objective circumstances under which the actions are carried out. The operations at 

a more subconscious level describe the methods by which goal-directed actions 

are carried out. Operations are routine processes (they do not have their own goals) 

providing an adjustment of actions to ongoing situations. They are oriented toward 

the conditions under which the subject (both individual and collective) is trying to 

attain a goal. In summary, activities (driven by motives) are performed through 

specific actions directed towards goals, which, in succession, are implemented 

through certain operations (Kaptelinin et al., 1995). For instance, Tyskerud et al. 

(2017) used this principle to investigate “teachers’ lesson study” as they study the 

development of mathematics teachers’ professional practice.  

In summary, Leont’ev explains in detail the key difference between an 

individual action and a collective activity. However, he never graphically 

expanded Vygotsky’s original model into a model of a collective system 

(Engeström, 2001). Hence, I will present Engeström’s version of CHAT (third 

generation), highlighting his graphical expansion of Vygotsky’s original model. 

4.1.3 Third generation CHAT 

Engeström (1987) extends Vygotsky’s focus on mediation through signs and tools 

to multiple forms of mediation and extends Leont’ev’s frame to activity systems, 
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which include the community and social rules underlying activity (see Figure 4.3 

below). Leont’ev explicitly highlights that activities can be carried out by 

individual human beings and social entities (collective subjects). However, he does 

not systematically explore the structure and development of collective activities 

(Kaptelinin, 2017). Engeström presents a conceptual model of collective activity 

(activity system, see Figure 4.3). Figure 4.3 presents Engeström’s extended 

triangular mode of an activity system. An activity system incorporates the tool 

mediation and the societal mediation in an activity, as proposed by Leont’ev, with 

the addition of societal dimensions in the triangular model of this tool mediation. 

Engeström (third generation) focuses on the collective system and considers 

students solving problems with tools as an activity system by interactions between 

subject, object, community, rules, division of labour and mediating artefacts/tools. 

Engeström presents the activity system as an indivisible ‘whole’, and the unit of 

analysis is the same as the activity system.  

The subjects engage in this object-oriented activity (with the reason) to obtain 

an outcome. The state of the object in Figure 4.3 is subject to change, and when 

the change happens, then the result is an outcome leading to the realization of the 

reasons for the activity. The rules, the community, and the division of labour 

represent the social or collective elements of the activity, which interact between 

them and, along with the mediating artefacts/tools, mediate the activity. The 

activities of the students are driven by motives which are then directed towards an 

object. Figure 4.3 shows multiple forms of mediation. For instance, the top triangle 

(subject-tool-object) is a mediational triangle; the lower right triangle (division of 

labour-community-object), the division of labour mediates the object-oriented 

actions of the community; the lower left triangle (subject-rules-community), the 

social rules (norms and conventions) are mediational means. The rules regulate an 

activity by setting standards for human actions. In mathematics education, some 

researchers distinguish between implicit and explicit rules (Núñez, 2009). Implicit 

rules are associated with Yackel and Cobb’s (1996) concept of ‘sociomathematical 

norms’. These rules can be the gesture of raising hands in the classroom (Núñez, 

2009) and students setting boundaries in group work (Hernandez-Martinez & 
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Harth, 2015). Explicit rules are associated with conditions set by authorities (e.g., 

school/institution). These rules could be assessments, formant of examination, and 

time constraints. The community comprises the subjects and other individuals (who 

may interact directly or indirectly with the subjects) who are brought together by 

a shared object. Division of labour shows how participants in an activity divide the 

task to reach the object of the activity.  

 
Figure 4.3: Engeström’s expanded mediational triangle (Engeström, 2001). 

I will demonstrate how I used CHAT theoretical perspective in this research study.  

4.2 Adopting CHAT perspective stance 
This thesis focuses on interactions; as such, adopting a socio-cultural approach (in 
this case, CHAT) that centres on actors and actions is relevant. The advantage of 
adopting CHAT perspective is how it can provide a particular conceptual overview 
of an activity. Activity (hereafter referred to as students’ activity) in this research 
study is a group of secondary school students solving two mathematical modelling 
tasks with the aid of digital technologies. CHAT helps in making sense of human 
practice in real settings (Roth et al., 2009) and acknowledges the cultural origins 
of human learning and cognition (Roth, 2020). In clarifying the cultural-historical 
stance on human activity and cognition, Roth (2012, p. 102) points out that CHAT 
“does not require us to make hypotheses about the contents of peoples’ minds but 
asks us to study societal relations that are the origin of anything that might be 
attributable to the individuals and their minds”. Given this, I do not only look at 
how the students solve mathematical modelling tasks on a cognitive level but 
rather consider the whole context surrounding the students’ activities. Thus, 
considering the contextual factors helps to understand the interactions and actions 
that emerge in the students’ activities.  
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To address the first research question and its sub questions (RQ1, RQ1a, 
RQ1b, RQ1c and RQ1d, see Section 1.4 on page 7), Engeström’s version of CHAT 
captures the whole students’ activity in the form of multiple mediations. Table 4.1 
below presents the possible description of the elements in Figure 4.3 in this 
research study. The descriptions are adapted from Kain and Wardle (2014) and 
Hashim and Jones (2007). The elements in Table 4.1 are not in isolation but 
interact with each other as a whole. Rules in Table 4.1 help address RQ1c, while 
the division of labour helps address RQ1d. The mediating artefact/tool in Table 
4.1 helps address RQ1a and RQ1b. One missing point in Table 4.1 is classifying 
group work/interaction as a mediating artefact/tool. Sahlberg and Berry (2003) 
argue that some tasks demand multiple abilities from group members. In this case, 
a single student within the group cannot sit down and solve the problem by 
working alone. Thus, group work/interaction can be a tool in solving the task (see 
Vygotsky’s idea of ZPD, the last paragraph on page 91).   

To summarize this section, I would say that although Engeström’s version of 
CHAT captures the whole activity in the form of multiple mediations, introducing 
the concept of modelling actions might help better understand the subject-tool-
object interaction in Figure 4.3. The operationalization of CHAT and modelling 
actions helps address the second research question (RQ2a & RQ2b, see Section 
1.4). I will address this in Sub-Section 4.4.2. Again, zooming in on the student—
tool interaction, an Affordance Theory might help to explore this interaction. This 
will help address the third research question (RQ3). Furthermore, I will address 
this in Sub-Section 4.4.1.  
Elements in the 
Activity System 

Students’ Activity System 

Subject Secondary school students (both lower and upper secondary). 
These students share a common problem space or object. 
The students are the focus of the study. 

Mediating 
artefacts/tools 

GeoGebra, Excel/spreadsheet, calculator, Google Maps, Google 
Search, group work/interactions, and others. 
These are physical objects and systems that the subjects use to 
accomplish the activity.  

Object Solving mathematical modelling tasks. 
The immediate goal of the activity or intended activity. 

Outcome Technology-based model/solution. 
Long-term goal of the activity. 

Motive To develop a technology-based solution/model. 
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Purposes or reasons for the activity.  
Rules Norwegian mathematics curriculum, school regulations, norms/ 

expectations, expectations of peers, time constraints, and others. 
These are sets of conditions that help determine how and why 
individuals may act and result from social conditioning.   

Community Students (teachers, researchers, and school leaders may interact 
directly or indirectly with the students). 
The people and groups whose knowledge, interest, stakes, and 
goals shape the activity.   

Division of 
labour  

Students’ roles in group work and their relation to other 
participants in the community (see Section 2.4).  
This provides for the distribution of actions and operations among 
the community.  

Table 4.1: Elements of the Activity System in this research study. 

Before addressing the compatibility issues of the adopted theories and 
concepts, I will discuss Affordance Theory in the forthcoming section.    

4.3 Affordance Theory (AT) 
The concept of affordances, originated by James Gibson (1977), denotes action 
possibilities provided to the actor by the environment. That is, Gibson (1977) 
defines affordance as what the environment offers the organism what it 
provides/furnishes, either for good or ill. Affordance, in this case, refers to the 
relationship between an object’s physical properties and a user’s characteristics, 
enabling specific interactions between the user and the object (Hadjerrouit, 2017). 
Object here differs from those described in Sections 4.1 and 4.2. Gibson (2014) 
argues that affordances emerge in perception from the relation between the 
organism(s) and the environment. From the definitions above, we can say that an 
affordance is not a property of an object but rather defined in the relation between 
the user and the object. For instance, a vehicle door allows (affords) opening if an 
individual can reach the handle. However, for a toddler, the vehicle door does not 
allow opening if he/she cannot reach the handle.  An example with digital 
technology, Geogebra affords the conversion of numeric values to a function/graph 
if an individual can select the tabular information in the ‘Spreadsheet View’ and 
select ‘list of points’, which converts the tabular information into a graphical 
representation. The concept of affordance was introduced to the human-computer 
interaction community by Norman (1988) to describe the perceived and actual 
properties of the user interface of a tool to determine just how it could be used.  
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It is essential to highlight that affordance does not happen in isolation; it goes 
along with constraints. That is, both affordances and constraints have a dialectic 
relation between them. Hadjerrouit (2020) argues that affordances are not without 
constraints, and when one thing is afforded, something else is simultaneously 
constrained. Thus, affordances and constraints are not separable because 
constraints are complementary and not the opposite of affordances (ibid., p. 367). 
Brown et al. (2004) point out that affordances describe the potential for action, 
whilst constraints describe the structure for action. For instance, the graphical 
calculator affords mathematical representation, and one is constrained in terms of 
representational control. Thus, one can directly alter only a function’s algebraic or 
numerical representations, not the graphical representation (ibid.). In an 
educational setting, Kennewell (2001) emphasizes that teachers can orchestrate the 
affordances and constraints of the settings of digital technologies to (deliberately) 
constrain novice learners. This act allows intended learning to occur, resulting 
from the gap between the intended ability (needed to achieve the task outcome) 
and the existing ability of the learner. For instance, a teacher can take the bisector 
angle command out of GeoGebra so that the students have to construct the bisector 
themselves, which might ultimately foster mathematical thinking.  

If there are such things as affordances and constraints, then the question is 
‘How do they exist?’. I will address this issue in the forthcoming subsections, but 
I will discuss the notion of emergence first.   

 4.3.1 The notion of emergence   

Van Lier (2004) argues that emergence could happen when simple organisms or 
elements reorganize themselves into more complex systems, and these systems 
could adapt to changing conditions, whereas the simpler forms do not have such 
adaptive abilities. That is, emergence occur when the parts of the organism(s) 
interact. In this case, the organism(s) attains new properties its parts do not have 
on their own (ibid). In the mathematics education context, for instance, students 
do not only understand the concept of functions when the teacher only talks about 
it, but they do so by participating in certain practices like proving, generating 
conjectures, working with examples, group discussions, and others. In this way, 
their interaction with the social environment brings about the gradual emergence 
of understanding the concept of functions.  From the ontological basis, Font et al. 
(2013) argue that “mathematical objects emerge from the practices performed by 
people within particular contexts, communities, cultures or institutions”. Thus, it 
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through mathematical practice (activity) “in which individuals gain their 
experience and in which mathematical objects emerge” (ibid., p. 104). Based on 
the descriptions above, I define emergence in this study as an occurrence resulting 
from students’ interactions with their social environment.  

I will present the emergence of affordances and constraints in the forthcoming 
subsection.          

4.3.2 Emergence of affordances and constraints   

From the argument in Sub-Section 4.3.1, I would say that the emergence of 

affordances is the action possibilities that the organism/perceiver can do with the 

object/tool within an activity. In the context of mathematics education, affordances 

emerge during individual(s) interactions with a mathematical object during an 

activity. That is, the relation between the characteristics of an individual and 

specific properties of the mathematical object fosters the emergence of 

affordances. Radford (2008b, p. 221) suggests that “mathematical objects are 

historically generated during the course of the mathematical activity of 

individuals”. From these arguments, I argue that affordance is a phenomenon that 

emerges within an activity and is not seen as a general manifestation. In the case 

of mathematical modelling activities with digital technologies, affordances emerge 

in the students’ interactions with digital technologies. Moreover, one cannot know 

which affordances will emerge in a particular situation/context in advance. 

However, we can draw on past experiences to anticipate the emergence of potential 

affordances (which is not always the case). For instance, although GeoGebra 

affords data generation, students might end up using an Excel/spreadsheet to 

generate their data based on the nature of the task and the student’s characteristics, 

among others. It could also be the results of the students’ modelling process (e.g., 

differences in the ideal modelling route and students’ actual modelling route, Blum 

& Boromeo Ferri, 2009). In other instances, a student might know that the tool can 

afford him/her while working on a task, but they cannot achieve that (since the 

student cannot use/reach what he/she perceived).  

The last example above leads to a discussion of the perception and 

actualization of affordances and constraints in the forthcoming subsection.   
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4.3.3 Perception and actualization of affordances and constraints  

Osiurak et al. (2017) argue that affordances can be objective and subjective. That 

is, affordances are objective since they exist independently of the act of perception 

but also subjective since the frame of reference is the individual’s action 

capabilities (ibid). Affordances are not the properties of the object; however, the 

properties of the object are necessary conditions for affordances. Markus and 

Silver (2008) argue that affordances should be perceived by the individual(s) 

before they can be acted on or actualized. For instance, the affordances that emerge 

when a group of students solve mathematical modelling tasks with GeoGebra can 

be put into two categories: the students being aware of the existence of the action 

potential of GeoGebra (perceived affordances), and when the students can turn the 

potential of GeoGebra into action (actualized affordances). In this case, 

affordances could be potentials for actions that might or might not occur, 

depending on the goal of the individuals (goal-oriented actors, Strong et al., 2014).  

Affordance actualization is the action potential of the digital technologies 

turned into actual actions (Anderson & Robey, 2017), bringing an effect, an 

outcome attributed to the actualization of an affordance (Bernhard et al., 2013). 

Strong et al. (2014, p. 70) define affordance actualization as “the actions taken by 

actors as they take advantage of one or more affordances through their use of the 

technology to achieve immediate concrete outcomes in support of organizational 

goals”. Individuals interacting with digital technologies are goal-oriented actors, 

and affordance actualization might vary from one individual to another. Volkoff 

and Strong (2017) argue that “actualization relates to a particular individual actor 

and details regarding the specific actions that actor will take or has taken” (ibid., 

p. 137). For instance, different affordance actualizations emerge when two 

different groups of students solve mathematical modelling tasks using digital 

technologies, and this depends on the students’ characteristics and goals.  

There are several arguments that affordances are perceived before being 

actualized (Anderson & Robey, 2017; Bernhard et al., 2013) and actualized 

without perceiving it (Strong et al., 2014; Volkoff & Strong, 2013; Wang et al., 

2018). This is somewhat complicated as Anderson and Robey (2017, p. 102) argue 
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that “affordance actualization observed in practice is not fully explainable through 

perception and goals alone because there are times when a user is both aware of 

an affordance and has a current goal that the affordance could support, and yet the 

affordance is not actualized”. This could result from the characteristics of the 

students, the features of the digital technologies, and the characteristics of the 

classroom environment (Strong et al., 2014). For example, Hadjerrouit and 

Nnagbo (2021) subscribed to the view that perceived and actualized affordances 

are two distinct processes as they explore the formative feedback of digital 

technology for teaching and learning mathematics. In this study, I acknowledge 

that both perceived and actualized affordances are two distinct processes, and 

nonetheless, in most instances, affordances are perceived before being actualized.  

From the arguments above, I would say that the codes (see Table 9.7 in 

Appendix E.3) generated for the analysis regarding the third research question 

(RQ3, see Section 1.4) in this research study are perceived affordances resulting 

from pilot studies and existing literature. It is without doubt that not all the 

perceived affordances are actualized. I will now present affordances and 

constraints in mathematics education.  

4.3.4 Affordances and constraints in mathematics education  

In mathematics education, several affordances and constraints emerge. Turner and 

Turner (2002) described a three-layer definition of affordances that emerge. These 

layers are perceived, ergonomic and cultural affordance. Chiappini (2013) applied 

these notions to Alnuset (a digital technology for high school algebra). According 

to Chiappini (2013), perceived affordance concerns the evaluation of the basic 

usability aspects of controls that mediate interaction with the tool, while ergonomic 

affordance concerns affordance for the embodied actions involved in solutions of 

tasks to the context where the tool is used. Cultural affordance concerns the 

cultural teaching and learning objectives underlying the tool use (ibid., p. 95). 

Kirschner et al. (2004) describe a three-layer definition of affordances similar to 

the framework by Turner and Turner (2002). These layers are technological 

affordances covering usability issues, educational affordances facilitating teaching 
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and learning, and social affordances fostering social interactions. From these 

arguments, Hadjerrouit (2019) categorize affordances according to technological, 

pedagogical and socio-cultural levels in mathematics education. And these 

concepts are applied in this research study while acknowledging that the 

affordances that might emerge will depend on the student’s characteristics and 

knowledge level, the type of tasks, the classroom environment, the teacher’s 

characteristics, fellow students, and other factors. To be precise, pedagogical 

affordances are broad and consist of other affordances at different levels, such as 

the student, classroom, mathematics tasks, and mathematics subject levels (Pierce 

& Stacey, 2010). Thus, due to the scope of this study, I consider mathematical 

affordances (which are at the mathematics tasks level).  

Individuals perceiving affordances and constraints in their interaction with 

digital technologies within mathematical modelling activity provides an 

opportunity for a broader perspective in understanding mathematical modelling 

with digital technologies. I will discuss technological, mathematical and socio-

cultural affordances and constraints from this perspective. Technological 

affordances concern the usability features of digital technologies. Usability is 

concerned with whether a system allows for the accomplishment of a set of tasks 

efficiently and effectively that satisfies the user (Kirschner et al., 2004). Some 

digital technologies at the functional level might help to construct diagrams, 

perform calculations, and draw graphs and functions, among others (Takači et al., 

2015). Hadjerrouit (2019) argues that technological affordances are a pre-requisite 

of a tool leading to mathematical affordances, in this case providing support. 

Pierce and Stacey (2010) highlight that several mathematical affordances emerge 

at the mathematics subject level. For instance, linking representations (moving 

fluidly between geometric, numeric and graphic representations), simulating real 

situations (using dynamic diagrams, dragging, and collecting data for analysis), 

exploring regularity and variation (strategically varying computations, searching 

for patterns, observing effect of parameters), among others (ibid., p. 7). For 

example, Mousoulides (2011) argues that digital technology, like GeoGebra, 

assists students in broadening their explorations and visualization skills concerning 



104 
 

some mathematical concepts. Finally, curricular and other social issues are 

considered on the socio-cultural level. Hadjerrouit (2019) emphasizes that digital 

technology should provide opportunities to concretize the mathematics subject 

curriculum. Furthermore, the tool should be tied to teaching mathematics in 

schools, supporting mathematics learning at all levels. Socio-cultural affordances 

also foster social interactions during group activities in mathematical modelling. 

Kirschner et al. (2004) used the term social affordances to describe socio-cultural 

affordances, as the properties of digital technologies acting as social-contextual 

facilitators relevant to the students’ social interactions.   

The students in this research study solve two mathematical modelling tasks 

(see Section 5.5) in groups, and there is a need to describe the type of affordances 

that emerge within the students’ activity. Leonardi (2013) differentiates between 

different affordances that could emerge: individual, collective and shared. 

Individual affordances are actualized by one actor acting independently of others, 

while collective affordances involve many people doing different things to 

accomplish a joint goal. Shared affordance is the same affordance being actualized 

by many people in similar ways: group members interact and depend on each other 

to accomplish a joint goal (Leonardi, 2013; Volkoff & Strong, 2017).  Considering 

the context (see Section 5.3) of this study, I subscribe to shared affordances 

because the students share one common working space (using only one computer). 

In contrast, collective affordances might come into play when the students use their 

individual computers while solving the task.  

In the forthcoming section, I will present the compatibility between CHAT 

and Affordance Theory and CHAT’s interpretation of modelling actions.  

4.4 Compatibility between the adopted theories 

Compatibility of theories raises the question of networking theories (a complex 

issue that cannot be addressed sufficiently in this study). Bikner-Ahsbahs (2016) 

argues that networking of theories means building relations among theories and 

that networking allows for explicitly working with different theories to benefit 

from their theoretical strengths (ibid.). Radford (2008a) argues that a connection 
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between theories can happen at the level of principles or as a combination/ 

coordination of these theories depending on their compatibility (e.g., CHAT and 

Commognition) or incompatibility (e.g., CHAT and Constructivism or Theory of 

Didactic Situations—TDS) of their theoretical premises. Networking CHAT and 

other theories can also happen at the methodologies and research questions level.  

I will now present the compatibility between CHAT and Affordance Theory.   

4.4.1 Compatibility between CHAT and Affordance Theory 

In this subsection, I will discuss affordances from a CHAT point of view. To 

understand how CHAT and Affordance Theory can work together to explain the 

complexity of students’ mathematical modelling with the aid of digital 

technologies, an overview of the main ideas of each theory is needed (which I have 

discussed in Section 4.1 and 4.3 respectively). Using CHAT and Affordance 

Theory in conjunction is rare (not enough work is done in this situation). Few 

studies are reporting on instances where an explicit connection between these two 

theories can be made (Albrechtsen et al., 2001; Bærentsen & Trettvik, 2002; 

Martinovic et al., 2013; Fredriksen, 2021). It is essential to find a connection 

between these theories in mathematical modelling using digital technologies, as 

this contributes to the theories themselves. Figure 4.4 below summarizes the 

connection between CHAT and Affordance Theory based on the discussions of 

these theories in earlier sections. Figure 4.4 presents a general overview of 

‘viewing the affordances of digital technologies and the activities mediated with 

digital technologies in mathematical modelling through the lenses of Activity and 

Affordance Theory’. I will further explain Figure 4.4 in the paragraphs below.   

Pedersen and Bang (2016) point out that Affordance Theory needs CHAT to 

understand the societal nature of the individual-environment relationship. 

Considering the ontological basis for CHAT and affordances, Albrechtsen et al. 

(2001) argue that Activity Theory and Gibsonian thinking share the basic idea that 

perception is not conducted inwards (a general manifestation) and that it is 

connected with action and only through acting do people perceive their 

environment (ibid., p. 15). Connecting CHAT and Affordance Theory based on 

their ontology is quite broad, and a deep philosophical discussion on this issue 
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cannot be addressed in sufficient detail in this study. Thus, Affordance Theory has 

no exact ontology (Blewett & Hugo, 2016). There are two distinct ontologies 

concerning CHAT: one is realism (we assume reality exists but make some 

interpretations of that reality), which is linked with activity systems—Engeström, 

and another is anti-realism associated with Radford (2008b, 2013). However, 

arguing from the ‘emergence’ (see Sub-Sections 4.3.1 and 4.3.2) perspective, we 

can say that both affordances and activity emerge. Affordances emerge in the 

relation between the individuals and the tool in an activity (through the perception 

of the individuals).  Albrechtsen et al. (2001) argue that CHAT insists that human 

actions and perceptions are mediated by a variety of tools. Thus, CHAT gives a 

valuable means for understanding the tools and how they are shaped in a dialectical 

relationship with the changing practice of use (ibid., p. 15). 

Kuswara et al. (2008) argue that Activity Theory and the concept of 

affordances concern how people interact with the world. For instance, considering 

a group of students working on mathematical modelling tasks with the aid of 

digital technologies, one can view the socially mediated aspects of group work 

(e.g., group activities mediated with digital technologies) through Activity Theory 

and how student(s) within the group utilizes the environment (affordances of 

digital technologies) to perform their contribution (see Figure 4.4). In this case, a 

change in the form of activity is reflected by a change in which affordances and 

constraints are utilized (ibid.). CHAT is concern with the socio-historical 

dimension of an individual’s interaction with the environment. 

Albrechtsen et al. (2001) argue that Gibsonian thinking relates to the level of 

operations in Leont’ev’s (1977) three-level hierarchy description of an activity. 

The level of operation describes the things to be performed or modes of using tools. 

Bærentsen and Trettvik (2002) emphasize that at least some of the 

misunderstanding of the concept of affordances is caused by the fact that Gibson 

focused mainly on the perceptual side of the concept, thus leaving the organism’s 

activity as a largely implicit precondition. That is, Gibson did not account for the 

internal dynamic structure of activity as suggested by Leont’ev.  Furthermore, 

Gibson’s “focus was on the perceptual requirements of the operational realization 
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of activity, the information available in the environment that lets the organism 

control locomotion and simple forms of object related activities” (ibid.). Pedersen 

and Bang (2016) point out that there should be a theoretical need to overcome an 

undifferentiated notion of activity in order to bring Affordance Theory forward 

concerning not only the operational level of activities but human activity as such. 

A distinction between using digital technologies in an activity might help 

categorize affordances from a CHAT perspective. For instance, Bødker’s (1991) 

distinction between the complementary aspects of the use of digital technologies.    

 
Figure 4.4: Viewing the affordances of digital technologies and the activities with 
digital technologies in mathematical modelling through the lenses of Activity and 

Affordance Theory (adapted from Martinovic et al., 2013).  

I will present an argument on how I view affordances and constraints 

emerging in the students’ activity concerning operations, actions and activity. I 

consider students’ interaction with digital technologies conditioned by the 

usability features of the digital technologies to form the operational level in 

Leont’ev model. The students perform several (individual) actions within the 

activity as they develop a technology-based model/solution. For instance, students’ 

use of actual data to create a model is seen as an action where the goal is to develop 

a real model (from the researcher’s perspective). This action and other actions 

forms the second level of Leont’ev’s model. Group work and interaction with peers 
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form part of the collective level that facilitates the actions for the common motive 

of developing a technology-based model/solution. I consider the joint 

mathematical discourse or interaction taking place through collaboration within 

the group to be the activity level in Leont’ev’s model.     

How do affordances and constraints relate to Leont’ev’s model? Relating 

affordances and constraints to Leont’ev’s model, at the operational level, 

technological affordances and constraints relate to the usability features of digital 

technologies. Examples of these usability features could be the ability to draw 

graphs and functions, construct diagrams, solve equations, perform calculations, 

and more. One can perceive these usability features when engaging with digital 

technologies, and eventually actualize them if one can use/reach what the digital 

technologies afford. At the action level, students might perceive mathematical 

affordances and constraints as they solve mathematical modelling tasks. Thus, they 

perceive mathematical affordances and constraints of connecting mathematical 

representations, exploring regularity and variations of the graph, simulating and 

visualizing mathematical concepts, and others. In the activity level, the final level, 

socio-cultural affordances and constraints relate to the norms controlling the 

students’ activity as they interact with themselves (student-student) and digital 

technologies (e.g., student-GeoGebra) in solving the mathematical modelling 

tasks. This interaction might induce affordances and constraints at a collective 

level. For instance, digital technologies might stimulate student cooperation as 

they develop a technology-based model/solution.  

The socio-cultural affordances and constraints emerging from the students’ 

activities at the activity level could be a common focus (shared knowledge and 

creating a shared goal), observing and repairing divergencies (Roschelle & 

Teasley, 1995; Granberg & Olsson, 2015), authority of the digital technology 

(personalizing of problems in group situations) (Lowrie, 2011), among others 

(these categories are coded under “socio-cultural affordances and constraints” in 

Table 9.7, in Appendix E.3). To explain further, in creating a shared goal, the 

students have the facility (digital technology) to look at the same thing as they 

negotiate and agree on the appearance of the mathematical representation 
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generated by the digital technology. They also might use digital technology as a 

reference tool to visually demonstrate their individual ideas to one another. For 

instance, a student might suggest a function/equation to their peers and use 

GeoGebra to represent this function graphically. To observe and repair 

divergences, digital technology is used to maintain shared knowledge and ideas 

through the verification of ideas or settling disagreements by performing tests, and 

referencing, among others. The authority of digital technology describes situations 

where students only accept an answer from the digital tool as the correct answer. 

Personalizing problems is based on an individual’s interest, which could be the 

problem-solving strategies (Yerushalmy, 2000) adopted or the choice of 

mathematical representation and representational types offered by digital 

technology. In an example in mathematics education, Fredriksen (2021) combines 

Leont’ev’s model and Affordance Theory in investigating the affordances of a 

flipped mathematics classroom, and the results highlight affordances for 

mathematics learning at the three levels of Leont’ev’s version of CHAT.      

In summary, from Affordance Theory, affordances and constraints exist 

(emerge in an activity) through the perception of the individual/s. However, the 

theory does not account for the environment (social aspects) in which affordances 

and constraints emerge. CHAT provides the social aspect of the activity in which 

affordances and constraints emerge (if we connect the two theories, as shown in 

Figure 4.4). In the forthcoming subsection, I will present the interpretation of 

modelling actions from a CHAT perspective.   

4.4.2 Modelling actions in CHAT perspective    

Following the discussion in Sub-Section 2.1.3, where I presented the ontology of 

modelling competence, I will discuss the interpretation of modelling actions from 

a CHAT perspective in this section.  

The focus of this research study expands from considering the cognitive levels 

in the students’ modelling processes (modelling cycles and competencies) to 

embracing the whole context in which students’ actions in the form of modelling 

actions emerge. Thus, individual actions are senseless and unjustified if we do not 
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consider collective activity (Leont’ev, 1981b). Again, the student’s activities are 

oriented towards an object with a specific motive (Leont’ev, 1978). Williams and 

Goos (2012) point out that the motive/object of the activity ensures that the activity 

is meaningful and integrates both emotional and cognitive aspects. Given this, 

putting the processes from the substantive mathematics on one side and the 

contexts of practical activity in which they make ‘sense’ on the other might leave 

the metacognitive aspect high-and-dry. Thus, it elevates metacognition but 

detaches it from the context and the affective, which is the motive and emotions 

(ibid.). Considering the collective activity, in this study, the actions identified in 

the students’ activity of solving mathematical modelling tasks include: 

 breaking the tasks into manageable parts,  
 searching for a model,  
 finding a solution for the model,  
 explaining the results in real terms and 
 checking the results for adequacy.  

The respective identified goals for which these actions are directed to are to 

understand the problem text or real situation, to set up a mathematical model, to 

solve the mathematical questions within the model, to interpret the mathematical 

results in real situation, to validate the solution, among others (presented as 

modelling competences, see Table 2.1). These actions and goals characterizes the 

students’ modelling processes in a mathematical modelling activity. I consider the 

categories of actions and goals (presented above) as just names used for the 

purpose of reporting or describing the students’ modelling processes, other than 

anything intrinsic in the ontology of modelling competence (see Sub-Section 

2.1.3). The goals are viewed through the observations of the students’ actions 

emerging. The students’ actions in this study are not a cyclic activity (as described 

in Figure 2.1 on page 13) but rather depends on the characteristics of the students, 

the nature of the task and the digital technologies used. In this case, the result of 

an action might lead to the next action. For instance, if the students perform the 

action of breaking the task into manageable parts and identify the model in this 

process, they might perform another action of finding a solution for that model 

(skipping the action, searching for a model). 



111 
 

I will now present how modelling actions are analyzed in this research study. 

Modelling actions are manifested in the students’ activities of solving 

mathematical modelling tasks with the aid of digital technologies, and the 

environment in which the students solve these tasks plays a role in the modelling 

actions that emerge. One of the sub-goals in this study is to investigate the students’ 

working processes in the students’ activity (see Section 1.3), which corresponds to 

the second research questions (RQ2a and RQ2b, see Section 1.4). That is, the study 

tends to investigate the modelling actions emerging in light of the circumstances 

that form the setting of the students’ activity. To achieve this purpose, modelling 

action must be considered as a process instead of a product. That is, modelling 

actions are not a general manifestation (definite) as different groups of students 

have different modelling actions emerging. As an analytical tool, CHAT helps 

understand how modelling actions are conceptualized as a process. When students 

engage in a mathematical modelling task during a modelling activity, they employ 

historically accumulated knowledge that they have appropriated, which we can 

view through the lens of modelling process (that is, the cognitive activities in 

modelling cycles and competencies—Table 2.1 on page 26). Niss and Blum (2020) 

explain that a modelling cycle should be understood as an analytic reconstruction 

of the steps of modelling necessarily present, explicitly or implicitly, as an 

instrument for capturing and understanding the principal processes of 

mathematical modelling (ibid., p. 14). In this case, the modelling cycle is a tool for 

analyzing (among others) some essential aspects of modelling. However, zooming 

out and observing modelling actions emerging in a modelling activity might yield 

analytical results that could be social (in nature). Thus, the modelling actions 

emerging through the lens of modelling process are viewed, and attention is paid 

to the context in which these actions emerge.   

Solving a mathematical modelling task using digital technologies can be seen 

as an activity (modelling activity) in the perspective of CHAT, and to solve the 

task comprises a combination of action(s) (modelling actions) and operations 

(modelling operations). In summary, modelling activities driven by motives are 

performed through specific modelling actions directed towards goals, which are 
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implemented through certain modelling operations in succession (see Figure 4.5). 

Figure 4.5 presents a model for mathematical modelling activity categorized in the 

three-level hierarchy of activity. I will further explain this figure in Table 4.2.   

Students go through different processes in developing a technology-based 

model/solution for a modelling task. For instance, a group of students solving a 

modelling task perform an action of ‘breaking the task into manageable parts’ with 

the goal ‘to understand the problem text or the real situation’. In this process, 

individual actions are directed towards a common goal, and in the end, all these 

actions form a collective action. The students’ actions are observed through their 

utterances, interactions with the computer, and writings with paper-and-pencil. 

 
Figure 4.5: A model for modelling activity, actions and operations in CHAT perspective 

I will relate the goals directing the students’ actions of solving the 

mathematical modelling task to the categories of modelling competencies 

described in Table 2.1 (to report or describe the students’ modelling processes). 

Analyzing the students’ actions in this case enables us to make sense of the 

emerging modelling actions. This analysis also facilitates making sense of the 

factors of the environment contributing to the students’ actions (if any). Carrying 

out the students’ actions (modelling actions) of solving the mathematical 

modelling tasks involves some execution of operations (modelling operations). 

This execution of operations is considered parallel to Leont’ev’s operation-

condition layer in Figure 4.2. For instance, to breaking the task into manageable 

parts, the students perform several operations, for example, searching for available 

information, recognizing relations between variables, and constructing relations 



113 
 

between the variables, among others. This operational level enables us to analyze 

the role tools (mainly, digital technologies in our case) play in the execution of 

these operations. I relate the kind of operations the students execute in achieving 

the goals (categories of modelling competence) to the categories of sub-

competencies of modelling in Table 2.1 (thus, viewing the emerging operations 

through the lens of sub-competencies). For the reader, I repeat that the categories 

(sub-competencies) are just names used to report or describe the students’ 

modelling processes, other than anything intrinsic to the modelling competence’s 

ontology. Table 4.2 below further explains the model in Figure 4.5. Thus, it 

presents a model for modelling activity, actions and operations from a CHAT 

perspective in mathematics education.  

The actions and operations in CHAT imply that the students’ actions of 

solving the task and the operations executed are connected. For instance (see Table 

4.2), if we consider the students’ action of ‘breaking the tasks into manageable 

parts’, the students perform some operations like ‘looking for available 

information and differentiating between relevant and irrelevant information’. In 

looking for available information, the students might use Google Search or Google 

Maps (an example of digital technology), and the information they get influences 

how they differentiate between relevant and irrelevant information. The 

information the students gather affects the forthcoming action, for example, 

‘searching for a model’. Furthermore, new operations are formed as the students 

search for a model. These processes are not straightforward, and they could be 

back and forth; for instance, the operations the students perform in ‘searching for 

a model’ might not lead to the next action of ‘finding a solution for the model’ but 

instead going back again to ‘breaking the tasks into manageable parts’ to 

understand the mathematical modelling task further. This could be a result of a 

failed operation. In summary, the modelling actions and operations listed in Table 

4.2 are not always the case, as the emerging actions are specific to the nature of 

the task, the characteristics of the students, and the digital technology used, among 

others. 

 



114 
 

Modelling 

Activity 

Group of secondary school students solving mathematical modelling tasks by modelling 
with digital tools. 

Object/ 
Motive 

Solve a mathematical modelling task/Develop a technology-based model or solution. 

Modelling 

Actions 

Breaking the task into 
manageable parts. 

Searching for a 
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Finding a 
solution for 
the model. 

Explaining 
the results 
in real 
terms. 

Checking 
the results 
for 
adequacy. 
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Table 4.2: A model for modelling activity, actions, and operations in CHAT perspective. 
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4.5 Summary of the chapter 
This chapter has provided a general overview of Cultural-Historical Activity 
Theory (CHAT) and Affordance Theory from the perspective of students’ 
mathematical modelling using digital technologies. Activity in CHAT is an 
analytic unit for understanding human performances such as their practices, the 
sense they make, or their actions (Roth, 2012). Students’ mathematical modelling 
activities have been defined in the sense of CHAT. That is, a cultural activity or 
historically developing sociocultural activity comprising several components and 
aspects, or in other words, as an object-oriented, collective, and culturally 
mediated human activity. From Engeström’s version (third generation) of CHAT, 
I consider a group of secondary school students as an activity system with several 
interactions between the components subject, objects, community, rules, division 
of labour, and mediating artefacts/tools. These components forming an activity 
system is an indivisible whole.  

A CHAT interpretation of modelling actions has been presented in this 
chapter. Leont’ev (second generation of CHAT) presented a theoretical model that 
analyzes human activity in three-level hierarchy (activity, actions, and operations) 
and that all human activities are oriented towards an object with a specific motive. 
Through these hierarchy, I viewed students’ mathematical modelling activities as 
modelling activities, modelling actions and modelling operations. Modelling 
actions are seen as emerging in the students’ activities and are considered a process 
instead of a product. Again, modelling actions and operations emerging are 
specific to the nature of the task, characteristics of the students, digital technologies 
used, and others.   

Affordances and constraints regarding technological, mathematical and socio-
cultural (in mathematics education) have been presented in this chapter. 
Affordances and constraints emerge within an activity, and both perceived and 
actualized affordances are two distinct processes, but in most instances, 
affordances are perceived before being actualized. Another aspect of the students’ 
mathematical modelling activities is their relationship with the digital technology 
they use, which we can view through Affordance Theory. With a combination of 
CHAT (Leont’ev’s version) and Affordance Theory as a lens, we can view the 
affordances of digital technologies and the activities mediated with digital 
technologies in mathematical modelling. Thus, CHAT and Gibson’s thoughts 
about affordances share the basic idea (from their ontological basis) that perception 
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is not conducted inwards and is connected with action (Albrechtsen et al., 2001). 
From an emergence perspective we can also say that affordance and constraints 
and the activity itself emerge.  

The next chapter (Chapter 5) presents this study’s epistemological, ontological 
and methodological issues. Thus, the methods used to gather and analyze data and 
the theoretical underpinnings for these methods. In mathematics education 
research, the theoretical framework, methodology and research questions are 
closely related. Given this, Radford (2008a) explains that a well-connected 
theoretical framework and its methodology help distinguish between relevant and 
irrelevant data. Furthermore, to tackle a research question, the question needs to 
be framed in the form that the theory can deal with (ibid.).   
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5 Methodology   
This chapter presents an outline of the fundamental epistemological, ontological 
and methodological issues relating to the research design of this study. This 
research aims to study how secondary school students solve mathematical 
modelling tasks with the aid of digital technologies, and three research questions 
(see Section 1.4) guide the research. This research is conducted within a qualitative 
paradigm based on an activity theorist epistemology and ontology.   

The chapter opens with a presentation of the research paradigm in Section 5.1, 
followed by an elaboration of the adopted research design and strategy in Section 
5.2. Section 5.3 presents the context of the study and sheds light on my role as a 
researcher during the data collection process. Section 5.4 presents the digital 
technologies the students used in solving the mathematical modelling tasks. 
Section 5.5 presents the mathematical modelling tasks the participants worked on. 
Section 5.6 further elaborates on methods for data collection, while Section 5.7 
addresses the strategies concerning data analysis and management. Section 5.8 
presents the data analysis before I reflect on the validity and trustworthiness of the 
research design in Section 5.9 and ethical considerations in Section 5.10. The 
chapter ends with a summary in Section 5.11.    

5.1 Research paradigm 

There are several definitions and different usages of ‘paradigm’ as there seems to 
be no agreement among philosophers, educators, and scientists, among others, on 
a precise definition of paradigm. However, in this research, I subscribe to the 
definition by Thomas S. Kuhn, which has been used across different fields of 
study. Kuhn (2012) in the 1960s described a paradigm as “the entire constellation 
of beliefs, values, techniques, and so on shared by the members of a given 
community”. In this case, the research paradigm constitutes established models in 
a research community in which researchers subscribe to their beliefs in making 
sense of the phenomena under study. According to Guba and Lincoln (1994), 
research paradigms can be characterized by the way scientists respond to three 
basic questions: 

1. Ontological question: What is the form and nature of reality, and, therefore, 
what is there that can be known about it? 

2. Epistemological question: What is the nature of the relationship between 
the knower or would-be knower, and what can be known? 



118 
 

3. Methodological question: How can the inquirer (would-be knower) go 
about finding out whatever he/she believes can be known? (ibid., p. 108). 

 
In the forthcoming sub-subsections, I will address the questions above in light 

of this research study. CHAT is the overarching framework for this study, and I 
subscribe to an activity theorist epistemology and ontology. According to 
Vygotsky (1978), knowledge is socially constructed in historical and cultural 
contexts; thus, knowledge primarily originates from the social sphere. 
Furthermore, the choice of research paradigm must be consistent with this 
presumption. This study explores how secondary school students solve 
mathematical modelling tasks using digital technologies. As such, I consider 
reality to be somehow embedded in the cultural expression that these students are 
part of, and it is not appropriate to choose a research paradigm that considers 
humans as mere predictable units (Cohen et al., 2017). For instance, we cannot 
view affordances and constraints of digital technologies in students’ activities as 
cause and effect but rather see it as emerging within the activity depending on the 
characteristics of the students and the nature of the task, among others. Again, I 
acknowledge that the teacher and students form their own culture with their unique 
expressions and attributes, although there is an external shaping of this culture. 
Thus, if we consider that the participants/humans interact with a particular social 
world (which has its own norms and cultural expressions), then the notion of truth 
(which is problematic in itself) and validity needs to be considered in a much 
broader sense. In this view, Enerstvedt (1989) considers truth as a negotiation 
between culturally informed humans or constructed in and by human activity.    

This study explores specific human behaviour, such as the forms of 
interactions (e.g., student—student and student—tools, among others) within 
group activities of secondary school students. The study focuses on interactions in 
students’ activities, which requires interpreting events, and an endeavour that is 
more closely aligned with a qualitative methodology is essential. As the research 
paradigm needs to reflect the nature of what is being studied, I find it appropriate 
to choose a qualitative research paradigm, where video recordings of group 
activities, screen capture software, and field notes are central data sources. These 
data are elaborated through systematic coding and descriptive analyses (Bryman, 
2016). Qualitative research involves an interpretative and naturalistic approach to 
the world, that is, an inquiry process conducted in a natural setting to understand a 
social problem by reporting detailed views of informants (Denzin & Lincoln, 2005; 
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Creswell, 2007). Qualitative research calls for a subjective dimension in processes 
involving the interpretation of empirical data (Cohen et al., 2017). Subjectivity 
here is linked to both the research object and the researcher. Patton (2002) argues 
that traditions of the qualitative paradigm are broad and encompass other more 
specifically defined paradigms. One such paradigm is the naturalistic paradigm, 
and from the theoretical stance perspective, Moschkovich and Brenner (2000) 
highlight that this paradigm can be defined with the assumption that meaning is 
socially constructed and negotiated in practice. In this view, research endeavors in 
naturalistic inquiry focus on how individuals behave in natural settings while 
engaging in life experiences (and reality is subjective). Now, viewing meaning as 
socially constructed, Given (2008, p. 548) explains this concept by emphasizing 
“human interaction, and the context in which those interactions occur, as the basis 
for how one comes to know or understand phenomena”. Thus, to understand or 
explore how secondary school students solve mathematical modelling tasks using 
digital technologies, we cannot undermine the characteristics of the students, the 
nature of the task, the kind of digital technologies used, and group work, among 
others. This study is conducted in the participants’ natural environment (the 
students’ classroom during lesson hours). Although it is a natural environment, the 
presence of the researcher and the task given to the students are outside this natural 
environment. Selecting students for this study should be purposive in ensuring that 
these students have direct experience with the issues or the topic under study.   

Another paradigm to consider is the interpretive paradigm. Kivunja and 
Kuyini (2017, p. 33) explain that the interpretive approach tries “to understand and 
interpret what the subject is thinking or the meaning s/he is making of the context”. 
Given this, I try to understand the viewpoints of the participants being observed 
rather than the observer’s viewpoint. As such, I interpret the empirical data from 
the participants’ perspectives and my impressions, interpretations, and meanings 
that are inferred from the empirical data (due to the subjective nature of qualitative 
research). Again, ethnographic paradigm is another broad term within the 
qualitative paradigm. Cohen et al. (2017, p. 292) argue that “an ethnography is a 
descriptive, analytical, and explanatory study of the culture (and its components), 
values, beliefs, and practices of one or more groups”. Bryman (2016) argues that 
ethnographic researchers immerse themselves in the group/society they study. In 
this study, I participated in the culture of the students and the teacher as a 
researcher. I played the role of observer-as-participant (defined in Sub-Section 
5.3.1) in an ethnographic sense. Thus, I observed the teacher and students in their 
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natural settings and gathered data through videotape, screen-capture software and 
field notes. Immersing myself in their culture, which I hold, gives me ample 
grounds to provide an authentic interpretive perspective towards the study. Cohen 
et al. (2017) emphasize that understanding participants’ interactions with the world 
around them shouldn’t come from the outside but rather from the inside. In this 
case, the individuals’ behaviour can only be understood by the researcher sharing 
their frame of reference. Subscribing to the ethnographic perspective has specific 
methodological implications (Patton, 2002). Thus, finding methods to explore the 
norms, understanding, and assumptions of participants in the culture being studied. 

To be more specific on the methodological position, I consider ontological, 
epistemological, and unit of analysis issues in light of the research paradigm.   

5.1.1 Ontology 

Ontology is the study of being and its assumptions concerned with what constitutes 

reality (Scotland, 2012). Mertens (2020, p. 10) phrases the ontological question as 

“what is the nature of reality?” The deep philosophical roots of this question cannot 

be addressed in sufficient detail in this thesis. Given CHAT, the nature of reality 

is socially constructed. Engeström (2001) explains in the second principle (multi-

voicedness of activity system) of CHAT that “an activity system is always a 

community of multiple points of view, traditions and interests” (ibid., p. 136). 

From the naturalistic perspective, Moschkovich and Brenner (2000) view reality 

as multiple constructed realities, and to understand learners on their terms; it is 

essential to consider multiple points of view of their activities. This study involves 

humans acting within a social environment and investigates how secondary school 

students solve mathematical modelling tasks using digital technologies. Given 

CHAT, I consider reality as social constructions comprising actions, operations, 

and contextual conditions, among others, of the students’ activities. Hence, the 

phenomena under study can only develop within an activity, not a general 

manifestation (definite). For instance, modelling actions and affordances emerge 

within an activity depending on the characteristics of the students, the nature of the 

task, and the digital technology used, among others. Furthermore, my role as a 

researcher is to interpret the variety of impressions from the students’ activities 

into a specific body of knowledge, as argued by Cohen et al. (2017).  
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It might be possible to interpret these ontological assumptions’ consequences 

differently. However, I am convinced that the argument above shows that the 

CHAT’s ontological assumptions apply to this study without causing any 

ontological contradictions.    

5.1.2 Epistemology 

Schwandt (1997) defines epistemology as the study of the nature of knowledge and 

justification. Mertens (2020, p. 10) phrases the epistemological question as “What 

is the nature of knowledge and the relationship between the knower and the would-

be known?”  From the naturalistic perspective, Lincoln and Guba (1985) argue that 

the knower and known are interactive and, to some extent, inseparable. In this case, 

we cannot describe the students solving the tasks, the context in which they solve 

them, and the researcher separately. Instead, we consider them as mutually 

interacting. Lincoln and Guba (1985) explain this mutual dependency in that 

human beings are always in relationships—with one another and the investigator. 

One cannot study people without considering these relationships.      

In the historical and cultural context, acceptable knowledge is what we 

interpret about the real world in a social context (Vygotsky, 1978). Considering 

the question phrased by Mertens, there is a link between ontological and 

epistemological issues pointing to the fact that the nature of knowledge depends 

on what one knows. Corbin and Strauss (2015) argue that the nature of knowledge 

is not definite outside the participants in the first assumption of their ontological 

position. Thus, the external and the internal worlds are created and recreated 

through interaction (ibid.). Following the arguments above, I will emphasize that 

the nature of knowledge under study in this research only develops within the 

students’ activities. The students’ activities in this study entail communications 

and mediation through the use of digital technologies in solving mathematical 

modelling tasks, and the students’ experiences evolve through interactions, 

negotiations and shared perspectives. The evolving experiences are seen as 

knowledge, which is constructed socially, resulting from the personal experiences 

of the researcher’s engagement with the students in their natural settings.    



122 
 

5.1.3 Unit of analysis 

The methodological question has been phrased by Mertens (2020, p. 10) as “How 

can the knower go about obtaining the desired knowledge and understanding?” An 

appropriate unit of analysis (UoA) should be defined to address this question since 

this influences the sample size and sampling strategies (Patton, 2002). The UoA 

determines the kind of data to be collected. As Patton (2002, p. 228) points out, 

“the primary focus of data collection will be on what is happening to individuals 

in a setting and how individuals are affected by the setting”. In this study, these 

individuals are secondary school students in a specific environment or setting. 

Säljö (2009, p. 206) emphasizes that the UoA is “the choice of a conceptualization 

of a phenomenon that corresponds to a theoretical perspective or framework”. 

Wertsch (1998) argues that in the socio-cultural perspective, mediated action or 

individual-acting-with-mediational-means is the UoA. Now, the environment or 

setting that the students belong to in this study involves solving mathematical 

modelling tasks in a group using digital technologies. Within this environment, 

several mediated actions occur, for instance, communications between the 

students, students’ accomplishments of the modelling tasks, digital technologies 

usage, and others. In CHAT, the UoA is the activity system (Engeström, 2001), 

and putting the individuals together with their environment or setting forms an 

activity system. Given this, the UoA in this study is called the students’ activity 

system (which is described below): 

A Group of secondary school students solving two mathematical modelling tasks 

with the aid of digital technologies. 

 
The description above is the UoA for the entire research study. However, there are 

some shifts in the analysis as I zoom in on more specific constituents due to the 

complex nature of the study. That is, looking at the students’ activity system as 

analytical components (Engeström version of CHAT) and the three-level hierarchy 

of activity (Leont’ev version of CHAT). Firstly, the students’ activity system is 

broken into analytical components of subject, mediating artefacts/tools, object, 

rules, community and division of labour. This is done to study how secondary 
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school students solve mathematical modelling tasks using digital technologies. 

Furthermore, the components (mentioned earlier) are seen as an indivisible whole; 

that is, they interact with each other within the system. Secondly, I will analyze 

the actions and operations within the students’ activities. This is done to study the 

emergence of modelling actions, affordances and constraints by observing the 

actions and operations of the students within the activities. The shifts described 

above are necessary as Säljö (2009) argues that shifts in UoA should be considered 

meaningful to study the many facets of complex issues of learning activities (in 

our case, students’ mathematical modelling activities).      

Now, with a clear definition of the UoA in this research, the research questions 

(see Section 1.4) will be addressed while considering the UoA in light of the 

theoretical framework. The forthcoming sections address the methodological 

issues involving the adopted research paradigm in this research study. 

5.2 Research design and research strategy 
Bryman (2016) defines research design as a framework for collecting and 
analyzing data. That is, the research design gives the framework created to find 
answers to the research questions. According to Yin (2014) when selecting a 
research design, the researcher should consider these three conditions: 

1. the type of research question posed, 
2. the extent of control a researcher has over actual behavioral events, 
3. and the degree of focus on contemporary as opposed to entirely historical 

events (p. 9). 
In this research, the questions asked are of the form ‘how’ and ‘what’ in an 
exploratory sense. As a researcher, I have little control over the activities of the 
students. That is, I prepare mathematical modelling tasks for the students, and 
these students solve the tasks using digital technologies without any support from 
me (the researcher) or the teacher. Yin (2014, p. 14) asserts that a case study design 
is suitable when “a how or why question is being asked about a contemporary set 
of events, over which a researcher has little or no control”. A ‘what’ type of 
question could also be under a case study design if they are more exploratory 
(and/or explanatory). Now, the forms of questions described by Yin under the case 
study design are more explanatory as they deal with operational links traced over 
time instead of measuring mere frequencies.     
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Case study design  
According to Miles and Huberman (1994, p. 25), a case is “a phenomenon of some 
sort occurring in a bounded context”. Stake (1995) refers to a case as a bounded 
system. Thus, a case study is the study of the particularity and complexity of a 
single case, to understand its activity within critical circumstances (ibid.). Given 
the definitions above, a case study has a close relationship with the UoA; for that 
matter, the UoA is the case itself (case is the same as the UoA in activity theorists’ 
perspective). Yin (2014, p. 16) defines case study design as “an empirical inquiry 
that investigates a contemporary phenomenon (the case) in depth and within its 
real-world context, especially when the boundary between phenomenon and 
context may not be clearly evident”. For instance, in this study, defining the 
boundary between the phenomenon (modelling actions, affordances and 
constraints) and the context (how they emerge in the students’ activities) is not 
clearly evident or predictable. Given this, case study design is helpful in studies of 
this nature. In addressing the research questions in this study, the case study design 
helps me make sense of modelling actions, affordances and constraints that emerge 
through observing students’ interactions with digital technologies while working 
on mathematical modelling tasks. In this case, I analyze the actions and operations 
of the students and the components in the students’ activity system holistically.   

Case study research characteristically emphasizes natural settings rather than 
artificial situations. In this study, the students are observed in their natural setting: 
an existing mathematics class in a secondary school where the researcher designs 
the mathematical modelling tasks and spontaneous groups are formed (and 
dissolved after the activity). Case studies may be single or multiple. Yin (2014) 
argues that multiple case studies generate more compelling results than one. The 
selection of cases in multiple case studies follows a replication, not a sampling 
logic. This means that “each case must be carefully selected so that it either 
predicts similar results (a literal replication) or predicts contrasting results but for 
anticipatable reasons (a theoretical replication)” (ibid., p. 54). It is argued from the 
premise that modelling actions, affordances and constraints (see Section 4.4) 
emerge in a particular situation/context. However, one can anticipate the potential 
emergence of these phenomena by drawing on experiences. The cases in this study 
have some differences on which predictions might be based. The cases involve 
four different secondary schools with different classroom environments, students’ 
characteristics, knowledge levels, and others, and the selection of these cases might 
predict contrasting results in a theoretical replication sense.    
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How is sampling done in the adopted case study research design? Sampling 
in this research study is done at two levels: the context and the participants (Yin, 
2014). The first sampling level relates to the choice of schools (see Section 3.4), 
and this sampling is considered purposive (Cohen et al., 2017) in the sense that the 
selected context is relevant to answering the research questions. These schools use 
the same curriculum (see Sections 3.2 and 3.3) but also have some differences. The 
choice of these different schools gives some diversity for triangulation (defined in 
Section 5.9) purposes in the empirical data. Students in these schools are also more 
familiar with the GeoGebra software (the primary digital technology used in this 
study; see Section 5.4), and this influenced the choice of schools since it takes time 
to learn how to use a technological/mathematical tool considering the time limit of 
the research study. Another form of sampling adopted at this level is convenience 
sampling, where these schools were selected because they were geographically 
accessible for the research study within the resources available to the project. 
Again, these schools were self-selected regarding the curriculum, digital tool 
criterion, and willingness to participate in the research. As such, invitations were 
sent to the majority of the public secondary schools in the south of Norway, and 
only four schools responded positively to the invitation. 

The second level of sampling relates to the choice of participants/students. 
Students from different schools volunteered to participate in this study, which is 
considered volunteer sampling (Murairwa, 2015). The project resources, the 
COVID-19 pandemic, and the results from the pilot studies (see Sub-Section 5.6.4) 
did not permit video recordings of all the groups within a single classroom across 
the schools. For this reason, only one group of students was targeted (focus group) 
for the video recordings in each of the four schools. These groups are randomly 
selected from amongst the students who volunteered. Thus, the students who were 
willing to participate in the video recordings (the rest of the students in the same 
classroom participated without being recorded on tape). The sampling forms 
discussed above serve the purpose of the study since the study is a case study 
emphasizing the depth of study rather than the breadth of study and also focusing 
on the particular and not the general. To conclude my choice of adopting a case 
study research, Cohen et al. (2017) remark that investigators must be vigilant as 
case study research is prone to selective reporting. That is, picking some pieces of 
evidence which only support a particular conclusion, which might misrepresent 
the credibility of a case. This form of bias is addressed in the research study 
through my critical reflection and awareness of how my interests and experiences 
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could affect the interpretation. As such, I use the triangulation method (see Section 
5.9), which I believe helps minimize the extent of observer bias. 

The methods of collecting data in this study have some elements of 
ethnography, so I classify it as an ethnographical case study (Moschkovich & 
Brenner, 2000). More about ethnographical case study will be discussed in the 
subsequent sections, but before that, I will first discuss some criticisms of case 
study research. Case study research has been criticized for its non-
representativeness and lack of statistical generalizability despite the many 
advantages and the description of case study research as discussed above. Yin 
(1984) points out that case studies are often tagged as difficult to conduct and 
produce a massive amount of documentation (in particular, case studies of an 
ethnographic or longitudinal nature). Zainal (2007) adds that case studies provide 
minimal basis for scientific generalization since they use few subjects. In response 
to these criticisms, Flyvbjerg (2006) points out that case studies provide a 
generalization through “the force of example”. For instance, case study research 
might offer an example of students’ activities and the conditions of these activities. 
In this situation, Bassey (1999) considers the generalization here as “fuzzy 
generalization”. That is, “fuzzy generalization arises from studies of singularities 
and typically claims that it is possible or likely or unlikely that what was found in 
the singularity will be found in similar situations elsewhere” (ibid., p. 12). Having 
discussed issues concerning case study research, I will discuss the context of the 
research study in the next section.       

5.3 Context 
This study involves four secondary schools located in the southern part of Norway. 
These schools use the same curriculum, implemented in Autumn 2020, and have 
mathematical modelling and applications as one of its core elements. The 
participants are in lower and upper secondary schools (see Table 5.1). The students 
in the lower secondary school take the mathematics subject at the ninth grade, 
while the students in the first-year upper secondary school take the 1T (theoretical 
mathematics) course. The students in the second-year upper secondary school take 
the R1 (mathematics for science) course (see Section 3.2). The participants are 
between the ages of 14 and 17 years. Approximately 73 students (32 males and 41 
females) voluntarily participated in this study. Furthermore, out of the 70 students, 
10 students were randomly selected as the focus group (See Section 3.4).  
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What is the role of the teacher in this research study? One of the factors 
considered in integrating digital technology into the education system is the role 
of the teacher (Drijvers, 2015), and their knowledge of the tool and understanding 
of the principles behind its use is necessary (Watson et al., 1993). As such, at the 
beginning of the project, I met the teachers at each school and discussed and solved 
the mathematical modelling tasks. The role of the teacher here is to act as a 
facilitator (providing students with help/hints when necessary). I labelled this stage 
of the students’ activity the introductory activity. In the introductory activity, the 
students were allowed to engage with some examples of mathematical modelling 
tasks (Tasks A, B, and C in Appendix B). The idea of engaging the students in the 
introductory activity was that the students were not familiar with such tasks. At the 
beginning of the introductory activity, the teacher briefly introduced the activities, 
and then the example tasks were presented to the students on paper. The students 
were permitted to ask questions, but the teacher and/or researcher were not 
supposed to give a direct answer. However, the students mostly solved the tasks in 
groups during the introductory activity. Sometimes, they called for help from the 
teacher or researcher. In situations like this, the teacher or researcher only gives 
hints to the students so they can figure out the answer themselves. The students in 
the introductory activity mostly used GeoGebra while working on the example 
tasks, and the average time spent on each task was approximately 20 minutes.    

The next activity was the main activity. In the main activity, the students solve 
a set of mathematical modelling tasks (Tasks 1 and 2, see Section 5.5) without the 
help of either the teacher or the researcher. In the main activity, the teacher 
distributed the task sheet to the groups and gave some instructions. Thus, each 
group solves the task and digitally sends their reports to the teacher (see Appendix 
D for the solution reports of the focus groups and the other groups in the same 
classroom in each school). The expected time for each task was 20 minutes. At the 
end of the main activity, each group presented their results to the class. The 
researcher did not engage with the students during the main activity but only took 
notes. The students were allowed to solve the tasks alone (in a group) so that there 
would be no interruption in the flow of their discussion. For this reason, some 
groups used more than 20 minutes on a single task but were not interrupted (since 
the researcher was interested in the outcome). One primary reason for allowing the 
students to work alone was that these students were the focus of the study and not 
the teacher (or the researcher). The students were allowed to use a digital 
technology of their choice while working on Tasks 1 and 2. Thus, digital 
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technologies were not imposed on the students; instead, they were allowed to 
choose freely which technology suits them best. Empirical data for this research 
study was collected during the main activity, for which the focus was on one 
particular group (focus group) among the other groups within the class. All the 
data were collected during the Autumn 2021 semester. In the introductory and 
main activity, the students solve the mathematical modelling tasks in groups of 3-
4. The groups in the introductory activity were maintained for the main activity. 
The main activity was conducted a few days (in some cases, a week) after the 
introductory activity. Lou et al. (2001) point out that small groups are more likely 
to collaborate than large groups. Therefore, the students in this study worked in 
groups of 3-4 (depending on the class size). The students’ joint work (group work) 
was an object of study, and as such, the students were not given any instructions 
on how to organize their work (or were assigned roles while working on the tasks).      

Table 5.1 below presents a description of the students in the different schools. 
Group A are students in the second year at the upper secondary school (12th grade), 
while students in Group B and C are students in the first year at the upper 
secondary school (11th grade). The students in Group D are in the lower secondary 
school (9th grade). The time spent by each group on both tasks in the main activity 
is recorded in Table 5.1. The table again presents the hierarchies within the bands 
of performance (high, average and low). The teachers of the groups gave 
information on the hierarchies within performance based on the grades assigned to 
the students. In the Norwegian performance scale (or grading scale), a high 
performance is between grades 5 and 6, an average performance is between grades 
3 and 4, and a low performance is between grades 1 and 2. To further differentiate 
between the performance scale, the teacher for Group A highlights that Thea 
performs higher than Rolf, although they were both assigned grade 4. However, 
Rolf has the highest mathematical understanding but has a little lower motivation 
within the group. The teacher in Group C did not give any further information 
besides the assigned grades. Groups A, B, and D consist of students with different 
attainments (mixed-achievement), while Group C consists of students with the 
same attainment (same-achievement) or a group of high-performing students. 
Mixed/same-achievement is a product of the Norwegian school system and is not 
a rigorous measure. The empty spaces or spaces marked by a dash (-) represent no 
performance score in Table 5.1. 
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Group Level Students Performance  Time 
High Average Low  Task 1 Task 2 
6 5 4  3 2 1 

 
 

A 

2nd year Upper 
secondary 
school (12th 
grade) 

Thea - - X - - -  
 

25 

 
 

35 
Rolf - - X - - - 
Kåre - - - X - - 

 
 
 

B 

1st year Upper 
secondary 
school (11th 
grade) 

Emil - X - - - -  
 

20 

 
 

40 Thor - - X - - - 

Ella - - - X - - 

Tore - - - - - X 
 
 
 

C 

1st year Upper 
secondary 
school (11th 
grade) 

Nils - X - - - -  
 

8 

 
 

31 
Anna - X - - - - 
Jørn 

 
- X - - - - 

 
D 

Lower 
secondary 
school (9th 
grade) 

Olga X - - - - -  
17 

 
18 Hege - - X - - - 

Lena - - - X - - 

Table 5.1: A summary of the level, performance of each member of the different groups, 
and the time (in minutes) used on each task. 

Table 5.2 below presents the tools each group member engaged with while 

working on Tasks 1 and 2. The tools are a calculator device, computer (GeoGebra, 

Excel/spreadsheet, Google Maps, Google Search, and calculator software on 

computer), and paper-and-pencil. In each group, the students took turns using these 

tools. I further differentiate between high, medium, and low tool usage in the table. 

High tool usage is when the students use the tool on most occasions, whilst medium 

usage is when the students use the tool on some occasions. Low tool usage is when 

the students use the tool in just one instance. 

Group Students Tool usage 
 

A 
Thea Computer (high) and paper-and-pencil (medium) 
Rolf Computer (medium) 
Kåre Calculator device (high) and paper-and-pencil (medium) 
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B 

Emil Computer (high) 
Thor Computer (high), calculator device (high) and paper-and-

pencil (medium) 
Ella Computer (low) and calculator device (low) 
Tore Paper-and-pencil (medium) 

 
C 

Nils Computer (high) 
Anna Computer (high) 
Jørn - 

 
D 

Olga Computer (high) 
Hege Computer (medium) 
Lena - 

Table 5.2: A summary of each group member's tool usage in the students' activities. 

I will now present the role of the researcher during both the introductory and 

the main activity in the forthcoming subsection.  

5.3.1 The researcher’s role 

Classroom observation is the means I used in researching the activities of the 
students. As a researcher, I play different roles in the students’ activities 
(introductory and main activities, described in the section above). In the 
introductory activity, I played the role of observer-as-participant. In this role, Gold 
(1958), in his typology of roles in participant observation, explains that the 
researcher contributes to some extent to discussions and activities. However, the 
most important part is taking notes. This role allows the researcher to participate 
in the students’ activities as desired. Thus, I play this role by giving help/hints to 
students (by going around the class) when they call for it (other than that, I only 
observed and took field notes). The teacher was the primary facilitator, going 
around the class and providing help/hints when the students called for it. The 
students mostly asked the teacher instead of the researcher for help in the face of 
challenges while working on the tasks. When the students asked the researcher for 
help a few times, the teacher was already engaged with other groups (and these 
students could not wait). This is to say that the students were more comfortable 
asking the teacher than the researcher (as the researcher is not part of the students’ 
natural settings in the classroom).            

In the main activity, I play the role of a complete observer. In this role, Gold 
(1958) explains that the researcher only observes and takes field notes. In this case, 
the researcher is completely hidden as he/she observes the participants’ activities 
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(Kawulich, 2005). I play this role by taking field notes (whilst the students work 
alone without support). Taking field notes is challenging as one might not be able 
to grasp all of the exchanges among the students, so I used video recordings during 
the observation. The teacher and the students were aware of my intentions in both 
roles that I played. Thus, before both activities, I met the teacher and students, 
presented the details of the whole activity, and afterwards, they signed a consent 
form (see Appendix A). Some challenges come with the two roles that I played 
during the students’ activities. An example of such challenges was my presence in 
the classroom and my use of the video camera. That is, the students act differently 
than they usually do in class, and the presence of video cameras might cause stress 
among the students. I will address this issue and how I minimize this challenge in 
Section 5.9. Another challenge concerns observer ratings. Observer ratings in this 
study are discussed in two dimensions: the information an observer has about the 
participants and the coding of students’ participation in an activity. Schlesinger 
and Jentsch (2016) highlight that external observers (researchers) usually have 
only a little information about the class and the students compared with the internal 
observer (teacher). Concerning this research study, the only information I knew 
about the students is the general information online concerning the curriculum and 
the regulations outlined by the Norwegian Ministry of Education and Research. As 
such, I had several meetings with the respective teachers seeking extra information 
about the participants, which is relevant to the study (see Section 3.4). Coding the 
observed activities of students (from the researcher’s perspective) could be biased. 
However, this bias could be minimized if another rater codes the observed data 
with the same guidelines (Ing & Webb, 2012). I had another researcher who coded 
a section of the data from the students’ activities (see Sub-Section 5.9.1). 

I used fieldnotes, video recordings, and screen capture software in this 
classroom observation (see Section 5.6). In the following section, I will now 
present the digital technologies the students used while working on Task 1 and 2. 

5.4 GeoGebra, Excel/spreadsheet, calculator, Google Search and 
Google Maps 
In this subsection, I will discuss the literature on the digital technologies the 

students in this study used in their mathematical modelling activities while 

highlighting some particular usability features of these digital technologies. 
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GeoGebra. Wassie and Zergaw (2019) point out that GeoGebra is an interactive 

mathematics software that can be used for teaching and learning mathematics 

(mainly algebra and geometry). GeoGebra has several usability features, and some 

examples are its potential to enable multiple representations of concepts, allowing 

the insertion of images (for example, taking a screenshot from Google Maps and 

inserting it into GeoGebra for analysis), among others. Pereira et al. (2017) 

emphasize that the effectiveness of GeoGebra might improve students’ 

understanding of some mathematical concepts (or geometric figures). For instance, 

Anabousy et al. (2014) show how GeoGebra is essential in visualizing and 

understanding the effects of varying parameters through function transformations 

in different representations. GeoGebra allows students with different learning 

styles to flourish (Wassie & Zergaw, 2019) due to its multiple representation 

features. However, some challenges come with GeoGebra’s use in students’ 

activities. For instance, some of the commands used in the input bar of GeoGebra 

might not be user-friendly (see “tool representational consideration” on page 65).  

 
Excel/spreadsheet. Microsoft Excel is a spreadsheet developed by Microsoft 

which features calculation or computation capabilities (arithmetic operations) and 

graphing tools (for displaying data), among others. Evans (2000) reports that Excel 

offers some pedagogical advantages for learning simulation. For instance, students 

could modify a data set’s price, cost, or profit and observe the corresponding 

dynamic graphical output. Flehantov and Ovsiienko (2019) analyze the 

simultaneous use of Excel and GeoGebra in mathematical modelling and how it 

might improve students’ learning outcomes. The students who use Excel mainly 

represent their data in table form and analyze the obtained numerical results and 

graphs by changing the input parameters of their model. On the other hand, the 

students who only use GeoGebra created visual representations while interactively 

using sliders to change the model’s input parameters. The students that use Excel 

and GeoGebra mainly use Excel for numerical calculations and representation of 

numerical results in tables while using GeoGebra for visual representation and 

analysis of dynamic motion characteristics (ibid.). 
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Calculator. A calculator is an electronic device (or computer software) used to 

perform calculations (such as addition, multiplication, subtraction, division, and 

others). Several types of calculators (e.g., scientific calculators, graphing 

calculators, and others) could be used to perform calculations ranging from basic 

arithmetic to complex mathematics. Stacey and Groves (1994) argue that the 

presence of calculators might allow students to work with more significant 

numbers and solve more realistic problems. Thus, the calculator might provide the 

opportunity to compute large numbers quickly and perform error-prone and time-

consuming calculations when done by hand (paper-and-pencil) (Pierce & Stacey, 

2010). Retnawati et al. (2019) point out that integrating calculator utilization into 

students’ activities might enhance students’ participation in mathematics learning. 

However, Strässer (2007) warns that digital technologies (such as calculators) 

might put the mathematics in a ‘black box’. For instance, students might not know 

the algorithm behind the computation made by the calculator.   

 
Google Maps and Google Search. Google Search is an internet search engine, 

while Google Maps is a web mapping platform which offers locations (of 

countries, cities, towns, and others), satellite imagery, street maps, route planning 

for travelling (by foot, car, bike, air and public transportation), among others. Both 

Google Maps and Google Search are applications offered by Google, and these 

applications can be used in mathematics education. For instance, Fesakis et al. 

(2018) in their study used Google Maps to design a mathematical trail for students 

in primary education. According to Shoaf et al. (2004, p. 6), “mathematics trail is 

a walk to discover mathematics”. That is a part of outdoor education, where 

students discover and solve mathematical problems on real objects while walking.   

 
In the next section, I will present a discussion on the two mathematical 

modelling tasks used in the main activity.    

5.5 The mathematical modelling task 

This section presents two mathematical modelling tasks (Task 1 and 2) used in the 
main activity. These two tasks are adapted (adopted in the case of Task 1) from the 
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study by Mousoulides (2011) and are different from what the students usually work 
on at school (e.g., see Figure 3.1). The two tasks were chosen to study secondary 
school students’ mathematical modelling activities using digital technologies. The 
subsections below present an a priori analysis of Tasks 1 and 2, respectively.   

5.5.1 Task 1 

Solar power car: A car making company is launching a new solar powered car. Recent 
market research showed that one hundred people would buy the car for a selling 
price of €5000. Further, the market research showed that for every €100 price 
increase, people’s interest in buying the car would decrease by one person. Find the 
best-selling price for the car, so as to maximize the company’s sales revenue. Send a 
letter explaining how you solved the problem to the company’s sales manager. 

 
Task 1 (presented in the box above) has a realistic context (see ‘contextual 
features’ on page 50), linking school mathematics tasks with real-life experiences. 
The task is formulated in everyday language, and students are not told how to solve 
the task. Thus, a step-by-step account of how the students should solve the task is 
not given, nor are sub-questions directing students on specific things that need to 
be done. In such a situation, the task might not provoke the steps in the modelling 
cycle (see, for instance, Figure 3.1 on page 82). Task 1 contains more information 
(than Task 2) in connection with given numbers in the task, which have to be added 
through the application of mathematical formulas (described as inner-
mathematical knowledge—Boromeo Ferri, 2006, 2007), such as developing a 
function from a given information. Task 1 is closed-ended (having only one 
answer) but can also be viewed as an open-ended task (depending on the argument 
the students might give). The task requires students to develop quadratic function 
models for finding the best-selling price for a solar-powered car. However, 
students might use different approaches while working on the task. Students must 
decide and identify critical components from the task themselves and mathematize. 
Thus, identifying the number of people buying the car (persons) and the price at 
which they buy the car (price). Students might quite easily use the formula 
persons*price for calculating the total amount of money. The students would have 
to further calculate, interpret and validate their answers (as the task requires a 
report on how the students solve it). Students will produce calculations and 
reasoning using their previous knowledge, and they can be of a different nature or 
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approach. I will present some typical approaches that the students might take in 
solving the task: 

1. The students might directly apply algebraic expressions. Thus, an algebraic 
formula for all the identified variables. Students might further look for a 
graphical representation of these formulas.   

2. The students might solve the task numerically. Thus, the initial data set is 
entered, and the entire data is generated on a spreadsheet. 

3. Students might first enter and generate their data on a spreadsheet and then 
represent their generated data on the graph. This approach links the different 
representations: numeric/table, graph, and equation. 

The students might have other approaches different from the ones above. The 
approach students choose might be influenced by the kind of digital tool used, the 
working style of the students or characteristics of the students, amongst others. 

5.5.2 Task 2 

Building a shopping center: The authorities of three towns (Kristiansand, 
Lillesand and Vennesla) are planning to build a mega shopping center that will 
serve the needs of their citizens. Identify the optimal place for the shopping 
center location so that the needs of the three towns are served in a fair way. 
Send a letter to the ministry in charge explaining and documenting your solution. 
 
Task 2 (presented in the box above) has an authentic context (see ‘contextual 
features’ on page 50), linking school mathematics tasks with real-life experiences. 
The task is formulated in everyday language, and students are not told how to solve 
the task. Task 2 does not have numerical values in its presentation as compared to 
Task 1 but might require extra-mathematical knowledge (result of experiences) 
(Boromeo Ferri, 2006, 2007). The original task (Problem 1 by Mousoulides 
(2011)) contains four unknown towns, where the students have to find an optimal 
location for building an airport that reasonably serves the needs of these unknown 
towns. The new task (Task 2) is presented so the context is relevant (something 
the students can relate to). Task 2 is open-ended and purposefully not well-defined, 
and students might have to make some necessary hypotheses to clarify the 
problem. That is, the task for students is not only to determine one possible answer 
but to find a way to resolve a societal issue. Again, the task raises issues about 
what constitutes “fairness” and how social considerations such as the population 
of each city, the travel distance, and the nature of the area, among others, are 
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integral aspects of the solution. Task 2 might also require students’ ability to locate 
the known cities on Google Maps, find an optimal position (applying some 
geometry), and argue for this position while considering some factors (e.g., 
population ratio). Although Task 2 might contain little mathematics initially, the 
range of arguable solutions might be thought-provoking. I will present some 
typical approaches that the students might take in solving Task 2:       

1. The students might solve the task geometrically. Thus, locating the known 
cities on Google Maps and importing a screenshot of the identified 
positions into GeoGebra for further analysis. The students might connect 
the three unknown cities, forming a triangle, and find the middle point of 
this triangle (either by circumcircle/circumcenter of a triangle approach or 
the median of a triangle or centroid approach). 

2. The students might locate the three known cities on Google Maps and then 
conduct some analysis. Thus, looking for the population, actual travel time, 
distance between these cities, and the optimal location. The students might 
use the ratio of the values (regarding the population, time and distance of 
travel) to estimate the optimal location. Some students might further 
consider the nature of the possible location, whether in the middle of the 
woods, river or mountain. The students might also generalize their model 
by applying the first approach if they do not consider other factors. 

I will now present the methods for data collection in this research study during the 
observation of the students as they work on both Task 1 and 2.  

5.6 Methods for data collection 
The empirical data considered as appropriate for the purpose of investigation is 
influenced by the choice of research paradigm. This study has elements of 
interpretive, naturalistic and ethnographic paradigms, and it is relevant to seek 
evidence considering human activity in its natural setting (Patton, 2002). Thus, to 
address the research questions, I will use qualitative methods. Fusch et al. (2017) 
point out that ethnographic case studies can employ a wide range of methods in 
collecting empirical data for the purpose of triangulation. The primary method for 
data collection was classroom observation. Thus, I observed groups of students 
solving mathematical modelling tasks using digital technologies in their natural 
settings. Table 5.3 presents a timeline of the research process in this study. The 
timeline includes the time frame in which the teacher and students were informed 
until empirical data was collected and analyzed. The table starts with the beginning 
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of the research project, where consent was sought, and through with the classroom 
observations. The empirical data was collected during the main activity. 

Time-Frame Activity Procedure Students 
Involve 

Letters were sent to secondary schools in the Agder region (Southern Norway) – 
in August 2020. 
Had a first meeting with the schools that responded positively to the letter (4 
schools) – between August 2020 and October 2020 
Meetings with the school heads and the teachers at the different schools – 
between January 2021 and June 2021.  
*NSD approval for data collection (1st pilot study) – April 2021 
Conducted the first pilot study (4 university students) – May 2021 
Scheduled the date and time for the introductory and main activity with the 
teachers – June 2021  
*NSD approval for data collection (main study) – August 2021 
*NSD approval for data collection (2nd pilot study) – August 2021 
Teachers and students signed the consent forms – September 2021 
Conducted the second pilot study (4 university students) – September 2021 
October 2021 
(week 42) 

Introductory The students in School A worked on 
some tasks (see Appendix B). 

10 

October 2021 
(week 43) 

main The students in School A worked on 
Tasks 1 and 2 (see Section 5.5). 

10 

November 
2021 (week 46) 

Introductory The students in School B worked on 
some example tasks. 

 
28 

November 
2021 (week 46) 

main The students in School B worked on 
Tasks 1 and 2. 

 
27 

November 
2021 (week 47) 

Introductory The students in School C worked on 
some example tasks. 

 
15 

November 
2021 (week 47) 

main The students in School C worked on 
Tasks 1 and 2. 

 
16 

November 
2021 (week 47) 

Introductory The students in School D worked on 
some example tasks. 

 
14 

November 
2021 (week 48) 

main The students in School D worked on 
Tasks 1 and 2. 

 
15 

In-depth analysis of recorded videos, screen-capture software and fieldnotes. 
Table 5.3: Time-frame of the research process (*NSD – Norwegian Centre for Research 
Data). 

I will present and justify why I used the methods, fieldnotes, video recordings, 
and screen capture software in the classroom observations.  
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5.6.1 Fieldnotes 

Fieldnotes were used as one of the data collection methods throughout the research 
process (in and out of the classroom observation). Notes were first taken during 
the meetings with the teachers at the respective schools. In these meetings, each 
teacher described the students regarding the courses they have taken and their 
performances, among others (see Section 3.4). Again, most notes were taken 
during the introductory activities, as the video camera was only used during the 
main activity. The notes taken at this stage help to account for the students’ 
activities. In addressing the first research question (RQ1, see Section 1.4), the 
fieldnotes help give a detailed account of the component ‘subject of the activity’, 
as these descriptions are not captured in the video recordings. To make sense of 
the interaction sequences (see Sub-Section 2.4.1) and the component ‘division of 
labour’ (roles adopted by the students) in the students’ activity (as captured in the 
video recordings), the fieldnotes about the students’ performances helps in 
understanding these phenomena to some extent.   

5.6.2 Video and audio recording  

I used video and audio recordings to collect data from classroom observations to 
address the three research questions. The approximate time of recordings of the 
students’ activities was 18 and 31 minutes for Task 1 and 2, respectively (see Table 
5.1). The video recordings provided evidence of the students’ interactions during 
the main activities. This evidence helped reveal the students’ modelling processes 
as they worked on Tasks 1 and 2. The recordings also shed light on the types of 
digital technologies the students used, the kind of interaction sequences that took 
place, the roles the students adopted, and the rules that guided the students within 
the students’ activities. The video recordings gave a detailed account of the 
communication between the students (in the form of suggestions, questions, 
answers, arguments, etc.), some gestures like pointing to the computer screen, 
computer activities, their use of other devices such as calculator devices (which 
cannot be captured by screen capture software), among others. Furthermore, 
through this, I identified the modelling actions that emerged and the parts that the 
uses of digital technology played within these actions that emerged. Again, the 
video recording gives a detailed account of the students’ interactions with digital 
technologies, and it is from these interactions that I identified the affordances and 
constraints of the digital technologies that emerged.   
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5.6.3 Screen capture software 

The screen capture software (TechSmith Camtasia screen recorder) was used as 
one of the data collection methods in the classroom observations. This data 
collection form complements the video recordings as it provides information about 
how the students solve Tasks 1 and 2 on the computer. Although the position of 
the video camera captured the students working on the computer, their actual work 
was unclear due to the students’ movement (blocking the camera view). As such, 
I used the screen capture software, which gave a detailed account of the students’ 
work on the computer. In addressing the issues concerning the students’ 
interactions with digital technologies in the three research questions, the screen 
capture software gives the needed evidence. The screen capture software only gave 
evidence of interaction with digital technologies such as GeoGebra, 
Excel/spreadsheet, computer calculator, Google Search and Google Maps. Digital 
technologies, such as calculator devices, were captured by the video recordings.   
 

The instruments used for collecting data were first tested. I tested and modified 
these instruments by conducting two pilot studies. The forthcoming subsection 
presents the pilot studies conducted in this research. 

5.6.4 Pilot studies 

I conducted two pilot studies before the introductory and main activity (see Table 
5.3). The pilot studies mainly focused on testing my data collection instruments. 
That is, it checks the efficiency of the instruments and what needs to be measured 
to address the research questions. At the end of the pilot studies, I got critical 
feedback from the participants and my supervisors. This feedback was an 
invaluable means of seeking further guidance on dealing with emerging practical 
and methodological issues (and the modifications required for the main study). I 
will now present the two pilot studies below: 
 
Pilot study 1. The first pilot study was conducted with two pairs of university 
students. These students volunteered to partake in this pilot study (after visiting 
different classes and talking to students about the research project). Three 
participants were students in the mathematics education program, and the last was 
in the engineering program. The participants formed two random groups, with two 
students in each group. The activities were conducted in two hours (one hour for 
the introductory and one hour for the main activity). Both groups were in the same 
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classroom (small size room) simultaneously. In the introductory activity, the 
groups solve three example tasks (see Tasks A, B, and C in Appendix B). The 
groups solved the task alone but were allowed to ask for support from the 
researcher in the face of uncertainties. The groups almost solved the task without 
asking for any support. The students continued with the main activity after 
completing the introductory activity. The students solve Tasks 1 and 2 (see Section 
5.5) in the main activity. At this stage, I video-recorded the activities of the two 
groups. I used two video cameras, each directed towards one of the respective 
groups. Again, the students installed screen capture software (CamStudio, free 
screen recording software) on their computers before the main activity. In the main 
activity, the groups were supposed to solve the task without support from the 
researcher. There were some challenges concerning data collection after the main 
activity. The first challenge was the video recordings. The audio was unclear, 
although one can see the students' actions in the recordings. There were times that 
I often heard the discussions of the first group in the recordings of the second group 
(voice-over). Furthermore, it was not easy to transcribe the recordings. Another 
challenge had to do with the screen recordings. The audio recordings from the 
screen capture software had issues similar to those of the video camera recordings 
described above. Again, the interface of the screen recordings was white (showing 
no screen activities). Considering these challenges, I conducted the second pilot 
study using different instruments and setups. 
 
Pilot study 2. The second pilot study was conducted with two pairs of university 
students. The participants were all students in the mathematics education program. 
These students volunteered to participate in the second pilot study (after visiting 
some classes and talking to students about the research project). The participants 
formed two random groups, with two students in each group. The exact time (two 
hours) used in the first pilot study was used in the second pilot study. The students 
also solved the same tasks as the other students did in the first pilot study in the 
introductory and main activities. To solve the issue of voice-over in the second 
pilot study, each group worked alone in separate classrooms (one group per day). 
For that reason, I could clearly hear each group’s discussions while having a clear 
view of their actions in the recordings. I used a new screen capture software 
(TechSmith Camtasia screen recorder) recommended by the IT help at UiA. Each 
group installed the screen capture software a day before the activities. During the 
introductory activity, each group recorded the screen activities. The researcher 
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played the screen recordings (checking the interface) before the main activity 
(which was then re-recorded). At the end of the main activity, the screen recordings 
clearly showed the students’ activities on the computer. It was easier to transcribe 
the recordings of the students’ activities.  

I used the same setup and instruments used in the second pilot study in the 
main study to overcome the challenges in the first pilot study. Although knowing 
this setup would work for the main study, some challenges still needed to be 
addressed. That is, I had no intention of having each group representing the 
respective schools (see Section 3.4) to solve the task in a separate classroom. That 
is, taking these groups of students from their natural settings and placing them in 
a created new setting. So, the question was, ‘How do I videotape the groups 
without having similar challenges as in the first pilot study?’. To address this issue, 
I planned to spread the groups in the classroom and use two video cameras. I also 
used an additional microphone and sound filter. One camera was directed towards 
the groups’ computer activities, and the other camera pointed at the table so I could 
see what they wrote with paper-and-pencil. Furthermore, a microphone and sound 
filter on their working table to get a clear audio recording from each group. The 
screen-captured software also had an audio recording feature, so in the end, I had 
three different audio recordings (with the same group discussions and 
interactions). It was easier to transcribe the recordings of the groups’ activities, 
although these groups were in the same classroom as other groups.   

In the forthcoming section, I will present the processes governing how I 
managed and analyzed the empirical data of this research study.         

5.7 Data analysis strategy and data management   

5.7.1 Transcriptions   

The first question I addressed was, ‘How do I store the data?’. Van den Eynden et 
al. (2011) argued that a data storage strategy is essential because digital storage 
media are inherently unreliable. In order to prevent unauthorized persons from 
accessing the raw data, the video recordings were stored on the University of 
Agder server (for which the researcher was the only person who had access). At 
the end of the students’ activities (main activity), I had approximately 3 hours and 
14 minutes of video recordings (and screen recordings). In addition, data from 
fieldnotes and copies of the students’ working sheets (with paper-and-pencil) were 
included. The students mostly communicated in English and sometimes 



142 
 

Norwegian (especially Group D). However, all the excerpts in the thesis are 
presented in English translations. I started the data management by listening and 
watching the recordings several times and following the students’ working 
processes. The recordings were transcribed verbatim. Pseudonyms were used 
during the transcriptions for anonymity. I did the transcriptions relating to Groups 
A, B and C myself. During the transcriptions, there were times when the students 
used some Norwegian words, which were easy to translate. Group D mostly 
communicated in Norwegian; as such, the transcriptions were done by a native 
Norwegian speaker. To avoid violating the agreement with the participants (see 
Appendix A), this native speaker only had access to the audio version of the 
recordings, not the video (students could not be identified by the voice recordings). 
The video recordings were deleted entirely six months after the research.    

5.7.2 Coding 

To start coding the empirical data, I first partition the students’ activities (the 
transcribed data) into episodes. The episodes do not follow any category but the 
researcher’s judgment from the classroom observations. An episode in this 
research study describes an event in a particular time frame in the students’ 
activity. For instance, in the first 3 minutes (episode 1) of the students’ activity, 
the students identified and classified the variables in the mathematical modelling 
task. In the next 4 minutes (episode 2), the students presented the mathematical 
problem on the computer, and so forth. Partitioning the recorded students’ 
activities into episodes helped me analyze the empirical data (see Appendix C for 
the partitioned episodes of the activities of all the groups), as I did not look at all 
the empirical data at once. The analysis was done for each episode, and in the end, 
all the episodes were put together to have a holistic analysis of the entire empirical 
data. There are similar ways of partitioning students’ activities into episodes for 
coding and analysis. For instance, to analyze young students’ talk in the iPad-
supported collaborative learning environment, Falloon and Khoo (2014) 
partitioned the data sets into episodes, and these episodes were reviewed several 
times to fully understand the nature of the talk occurring.   In another literature, 
Monaghan and Ozmantar (2006) divided protocol excerpts into episodes 
describing a student’s activity in the study of abstraction and consolidation. Now, 
to describe phenomena such as modelling actions and affordances and constraints 
emerging, it was helpful to categorize the materials. That is, describing the 
phenomena concerning the theoretical framework and identifying specific nuances 
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and patterns in the empirical data. As such, I describe the coding in this research 
study as theory-informed inductive coding. This coding strategy is an interplay 
between the theoretical framework and the empirical data. In working inductively, 
Patton (2002, p. 468) explains that “the analyst moves back and forth between the 
logical construction and the actual data in a search for meaningful patterns”. 

I developed a coding template based on the research question and the 
theoretical framework (deductive coding). This template serves as a data 
management tool for organizing segments of similar or related text (to assist in the 
interpretation of data). I tested the initial codes in a pilot study. The predefined 
codes were then modified and used in the main study. Predefined codes do not 
often fully cover the empirical data, so I allowed themes to emerge directly from 
the data (inductive coding) (Fereday & Muir-Cochrane, 2006). For instance, 
considering RQ3 (see Section 1.4), I had ‘observing and repairing divergences’ 
defined under socio-cultural affordances. However, this definition could not help 
explain an episode in the students’ activities. Hence, I introduced a new code, 
‘observing and improving strategies’, which best described the particular episode. 
The theory-driven codes were modified over time to define the students’ activities 
clearly. I also invited another person to code a section of the empirical data, after 
which we compared the results and modified the codes (see Section 5.9.1). 
Ultimately, the codes were organized into themes that seemed to say something 
about the research questions (Fereday & Muir-Cochrane, 2006; Braun & Clarke, 
2006). I have presented the codes for the three research questions in Table 9.5, 9.6 
and 9.7, respectively, in Appendix E. Concerning RQ1, there were 17 theory-
driven codes and 5 inductive codes emerging from the empirical data (see Table 
9.5 on page 388). Concerning RQ2, there were 23 theory-driven codes and 1 
inductive code emerging from the data (see Table 9.6 on page 394). Concerning 
RQ3, there were 8 theory-driven codes and 3 inductive codes emerging from the 
data (see Table 9.7 on page 398).     

In the following subsection, I will present the analysis of the empirical data.  

5.7.3 Data analysis  

Following the coding strategy described in the prior subsection, I used a combined 
technique of inductive and deductive thematic analysis to analyze the empirical 
data. According to Rice and Ezzy (1999), thematic analysis involves the 
identification of themes through careful reading and re-reading of the data, and the 
emerging themes become the categories for the analysis. Themes are allowed to 
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emerge directly from the empirical data as well as following predefined themes 
from the prior theory. The categories for the analysis in this study were mainly 
developed to support answering the research questions (see Section 1.4). Tables 
9.5, 9.6 and 9.7 in Appendix E present the categories and their 
definition/description for analyzing the empirical data. The codes in these tables 
represent the categories, with sub-codes that describe them. These sub-codes 
represent the themes emerging from the empirical data. The themes/sub-codes for 
the ‘role of digital technologies’ in Table 9.6 are the same for ‘technological 
affordances and constraints’ in Table 9.7. To analyze the data, I used Table 9.5 
(corresponding to the first research question) to look at each episode of the 
students’ activity. In this case, I started with the activities of Group A for both Task 
1 and 2, then moved on to Group B, C and D. While using the table of codes, I 
allowed some themes to emerge directly from the empirical data (as explained in 
the subsection above). After analyzing the data corresponding to the first research 
question, I repeated the same procedure using Table 9.6 (corresponding to the 
second research question) to look at each episode of the students’ activity for both 
Task 1 and 2 (from Group A to D). Again, I repeated the above procedure for the 
third research question using Table 9.7.       

I will now discuss how I present the analysis in the forthcoming section. 

5.8 Presentation of the analysis 
I will present the analysis of empirical data in Chapter 6. In Section 6.1, I will 
present an analysis overview in table form (in a structure that addresses RQ1). In 
Sections 6.3, 6.4, 6.5 and 6.6, I will present the analysis of Groups A, B, C and D 
in the form of a report with evidence from the data extracts. The structure of each 
report is arranged in an order that addresses the research questions. Table 5.4 
presents an overview of the data collection, the analysis, and the interpretation of 
data and how these are linked to the three research questions. 

RQ1: How do students solve mathematical modelling tasks with the aid of digital 
technologies? 
RQ1a: What digital technologies did the students use in solving the two 
mathematical modelling tasks? 
RQ1b: What contingencies were shown in the student interactions when solving the 
two mathematical modelling tasks with the aid of digital technologies? 
RQ1c: What are the rules that mediate students’ mathematical modelling activities 
when solving the two mathematical modelling tasks with the aid of digital 
technologies? 
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RQ1d: What roles did the students adopt in the student interactions when solving 
the two mathematical modelling tasks with the aid of digital technologies? 
Data collection    *Video recordings (recorded conversations and actions) 

    *Screen capture software (computer activities) 
    *Fieldnotes       *Students’ worksheets 

Data Analysis Both inductive and deductive analysis: Categories developed in the 
data based on the research question and theoretical framework. 
Engeström’s activity system. 

Data 
Interpretation  

Activity system: subject (characteristics of the students), object 
(solving mathematical modelling task), mediating artefact/tools 
(digital technologies and group work/interactions sequences), 
community (group of students), rules (implicit and explicit), and 
division of labour (roles adopted by the students). 

RQ2a: What modelling actions emerge during the mathematical modelling activities 
of the students? 
RQ2b: What part do the uses of digital technologies play within the modelling 
actions that emerge? 
Data collection      *Video recordings    *Screen capture software 

     *Fieldnotes                *Students’ worksheets 
Data Analysis  Both inductive and deductive analysis: Categories developed in the 

data based on the research question and theoretical framework. 
Leont’ev’s three-level hierarchy: activity, actions, and operations 
Modelling actions description: Breaking the task into manageable 
parts, searching for a model, … 
Technical features of the digital technology assisting the model 
development 

Data 
Interpretation 

Breaking the task into manageable parts (seeking information, 
construct relations, …), searching for a model (simplified model, 
represent the mathematical problem in the computer world, …), … 
Draw geometric objects and functions, visualize, measure, …. 

RQ3: What affordances and constraints of the digital technologies emerge as the 
students develop a technology-based model/solution? 
Data collection      *Video recordings    *Screen capture software 

     *Fieldnotes                 
Data Analysis Both inductive and deductive analysis: Categories developed in the 

data based on the research question and theoretical framework. 
Leont’ev’s three-level hierarchy: activity, actions, and operations. 
Affordance model (technological, mathematical, and socio-cultural 
affordances and constraints).  

Data 
Interpretation 

Technological affordances: drawing graphs and functions, 
constructing diagrams, performing calculations, … 
Mathematical affordances: exploring regularities, simulation and 
visualization, mathematical representations, …. 
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Socio-cultural affordances: common focus, observing and repairing 
divergencies, …. 

Table 5.4: Data collection, analysis and interpretation linking the research questions. 

The research quality criteria should be considered when going through the 
processes described in the table above. As such, in the forthcoming section, I will 
address the issue of validity and trustworthiness in my research study. 

5.9 Validity and trustworthiness  
Over the years, qualitative research methodology in education has been criticized 
for lacking rigour, credibility, and trustworthiness (Cohen et al., 2017). Questions 
concerning what constitutes quality and rigour in qualitative remain contentious. 
What are the quality criteria that could ensure the integrity of my research 
findings? To address this question, I will discuss four criteria of trustworthiness 
that qualitative researchers must establish (Bryman, 2016). These criteria are 
credibility, transferability, dependability and confirmability: 
 
Credibility. The main question to address under credibility is, ‘How credible are 
the findings?’. Lincoln and Guba (1985) recommend triangulation as an essential 
technique in assessing the credibility of the research findings. A Triangulation 
method increases the trustworthiness of a research study (Patton, 2002). Table 5.5 
presents the categories of triangulation, their description/definition, and how it is 
realized/applied in this research study. 
 
Triangulation Description Applied in this research study 

Data/source 
triangulation 

Examining the 
consistency of data 
sources under the 
same method. 
Exploring divergences 
according to types of 
data sources.  

Under the same methods of collecting 
data, I gathered data from four secondary 
schools. This helped in identifying the 
consistencies in the empirical data.   

Investigator 
triangulation 

Using multiple 
observers or coders. 
That is, using another 
investigator to review 
findings.  

I invited another researcher to code a 
section of the empirical data (see Sub-
Section 5.9.1). Again, my supervisors 
reviewed all the processes in this research 
study.  

Theoretical 
triangulation 

Using alternative 
theoretical 

I used Engeström’s version of CHAT while 
looking at the students’ activity system. I 
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perspective in 
interpreting data.  

used Leont’ev’s version of CHAT and the 
construct modelling actions while looking 
at the students’ modelling processes. I also 
used a combination of Leont’ev’s version 
of CHAT and Affordance Theory while 
looking at the students’ engagement with 
digital technologies. 

Methodological 
triangulation 

Checking the 
consistency of 
findings using 
different methods. 
Exploring divergences 
between findings 
from different 
methods.  

 Video recordings, screen-captured 
software data, and fieldnotes were the 
source of data. That is, the video 
recordings gave evidence of the students' 
interactions, whilst the screen recordings 
provided information on the students' 
computer activities, which corresponded 
to the students’ interactions. 

Table 5.5: Triangulation as applied in this research study. 

 
Transferability. The main question under transferability is, ‘Can the findings be 
transferred or applied to other contexts?’. This question is challenging to address 
as Lincoln and Guba (1985, p. 316) argue that whether the findings “hold in some 
other context, or even in the same context at some other time, is an empirical 
issue”. Bryman (2016, p. 384) argues that qualitative research findings “tend to be 
oriented to the contextual uniqueness and significance of the aspect of the social 
world being studied”. As such, qualitative investigators need to produce a thick 
description (a rich account of the details of a culture) to permit careful comparison. 
In this study, I consider analytical generalization and not statistical generalization. 
Thus, the study takes place in a specific learning environment within a particular 
context, and my goal is to produce a rich description and depth of study rather than 
breadth of study. Another issue is the question of what constitutes a proper 
rich/thick description. However, I will bypass this philosophical issue and immerse 
myself in the ideas of Lincoln and Guba (1985, p. 316) that an investigator “can 
provide only the thick description necessary to enable someone interested in 
making a transfer to reach a conclusion about whether transfer can be contemplated 
as a possibility”. For this reason, I provide a database in the results section in 
Chapter 6 and codes in Appendix E, which I believe will make transferability 
judgments possible on the part of potential appliers. 
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Dependability. The main question under dependability is, ‘Are the findings likely 
to apply at other times?’ Thus, will this research study’s results be similar if 
repeated in the same context with similar methods and participants? In addressing 
this issue, I argue that operationalizations of this research study have been made 
understandable for replication, that is, the application of Activity Theory, 
Affordance Theory, and modelling actions construct. A clear description of what 
it entails for secondary school students to solve mathematical modelling tasks with 
digital technology has been given in Section 4.2. Section 4.3 and Sub-Section 4.4.1 
clearly describe what it entails for the affordances and constraints of digital 
technologies to emerge in the students’ activities. Lastly, a clear description of 
what it entails for modelling actions to emerge in the students’ activities has been 
given in Sub-Sections 2.1.3 and 4.4.2. Again, the procedures (selection of 
participants, video recording transcripts, data analysis decision, among others) 
used in this research study are well documented.      
 
Confirmability. The main question under confirmability is, ‘Have the findings 
largely or to a high degree been influenced by the researcher’s point of view and 
values?’. That is, while recognizing that complete objectivity is impossible in 
qualitative research, Bryman (2016, p. 386) points out that it should be apparent 
that the investigator “has not overtly allowed personal values or theoretical 
inclinations to sway the conduct of the research and the findings deriving from it”. 
The findings of this research study are the result of the ideas and experiences of 
the participants rather than the characteristics and preferences of the researcher; 
however, I do present in the results chapter my impressions, interpretations, and 
meanings that are inferred from the empirical data. Thus, I do so by reporting a 
detailed description of the research study, including an in-depth methodological 
description where I acknowledge the methods’ shortcomings and potential effects 
on the study. Again, interpreting the findings in light of the theoretical framework 
in this research study has been a very long process, evolving through conversations 
with my supervisors and colleagues and participation in seminars and conferences, 
among others. 

5.9.1 Interrater Reliability  

Intercoder reliability refers (IR) to the extent to which two or more independent 
coders agree on coding the content of interest with an application of the same 
coding scheme (Cho, 2008; Lombard et al., 2002). IR is a standard measure of 
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research quality where a low level of IR suggests weakness in coding methods. 
This might result from poor operational definitions, unclear coding categories, and 
poor coder training. The narrative below shows the IR process and the percentage 
of the coding agreement of this study. 

Nils-Jakob Herleiksplass (a PhD fellow at the University of Stavanger) and I 
had meetings that lasted approximately six hours and thirty minutes in the space 
of three days (16th – 18th August 2022) to check the reliability of the coding 
schema that I used for the analysis of empirical data. The meetings took place after 
I had finished analyzing the first school (Group A) concerning the three research 
questions (see Section 1.4). Nils-Jakob was the best choice for this work as we’ve 
known each other through three PhD courses (theory, methodology, and measuring 
teachers’ and students’ mathematical competence course) we took together. Nils-
Jakob has some knowledge about my studies, as we were mostly paired together 
to read and criticize each other’s work within our courses. A week before our 
meeting, I sent the table of codes (coding schema, see Appendix E) and their 
definitions, as well as an example of the analysis, to Nils-Jacob to have an 
overview of what our meeting entails. In the meeting, I first explained the progress 
of my studies and the empirical data I collected to Nils-Jakob. I also explained to 
him the codes developed with their definitions and how I analyzed the empirical 
data with those codes, and he asked questions of clarity afterwards. Nils-Jakob 
agreed to the codes after explaining further and answering the questions, and then 
he started coding the empirical data alone. The coding was done for only the data 
set of Group A, which is a transcription of approximately an hour of video and 
screen capture recordings of students solving Tasks 1 and 2 (see Section 5.5). The 
coding was done in three parts concerning the research questions. 

On the coding relating to the first research question, Nils-Jakob pointed out 
that some codes need to be well defined or expanded (for instance, the sub-code 
‘suggesting role = RSS’, see Table 9.5 in Appendix E.1 on page 383) to capture 
some parts of the empirical data. We both agreed to use a new sub-code, 
‘supporting role = RSX’, to explain some of the students’ roles. Table 5.6 below 
compares the frequency of code entries by the researcher and Nils-Jakob 
concerning the first research question (RQ1). The red codes represent the updated 
or modified codes, whilst the new codes are marked in blue. The codes in Table 
5.6 are defined and described in Table 9.5 (see Appendix E.1). At the end of the 
process, I used 150 codes, whilst Nils-Jakob used 134 concerning RQ1. The 
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percentage of our coding agreement for both Task 1 and 2 was 89.33% ≈ × 100% . 

 
Categories Codes Task 1 Task 2 

Researcher Nils-
Jakob 

Researcher Nils-
Jakob 

Ratify the objective RO 2 2 2 2 
 
 
Digital technology 

DTG 13 9 - - 
DTE - - - - 
DTC 10 8 - - 
DTM - - 3 3 
DTS - - 3 3 

Pseudocontingency PCI 3 4 - - 
Asymmetrical 
contingency 

ACA 10 9 2 2 
ACC 9 6 2 1 
ACE 3 3 1 - 

Reactive 
contingency 

RCC 1 1 4 4 

RCJ - - 1 - 
Mutual 
contingency 

MCN 1 1 3 3 

 
 
Roles of students 

RSL 12 12 5 5 
RSO 2 2 5 6 
RSQ 3 4 4 3 
RSS 8 6 6 5 
RSN 6 7 2 2 
RSX 12 7 12 14 

Total 95 81 55 53 
Table 5.6: A comparative table of the researcher’s and Nils-Jakob’s code entries in 
relation to RQ1. 

 
On the coding relating to the second research questions (RQ2a and RQ2b), 

Nils-Jakob disagreed with the codes marked in red in Table 5.7. We discussed it, 
and I explained to him why I used these codes. Nils-Jakob agreed and pointed out 
that he was confused with the definitions and that I should clarify them in the final 
version. Upon agreeing to the updated version, Nils-Jakob coded the selected 
empirical data alone and afterwards, we compared our coding. Table 5.7 below 
compares the frequency of code entries by the researcher and Nils-Jakob about the 
second research question. The codes in Table 5.7 are defined and described in 
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Table 9.6 (see Appendix E.2 on page 388). The percentage of our coding 

agreement for both Task 1 and 2 was 91.36% ≈ × 100% .   

 
Categories Codes Task 1 Task 2 

Researcher Nils-
Jakob 

Researcher Nils-
Jakob 

Breaking the task 
into manageable 
parts 

BAS 2 2 2 2 
BCR 1 1 1 1 
BSI 1 1 4 4 

BRQ 1 1 1 - 
Searching for a 
model 

SMT 1 1 - - 
SMR 1 1 1 - 
SMS 1 1 - - 
SMA 1 1 - - 

Finding a solution 
for the model 

FK 1 - - - 
FA - - 7 7 
FE 8 8 - - 
FM 10 7 - - 

Explaining the 
results in real 
terms 

EA - - - - 

EG - - - - 

EM 1 1 1 1 

Checking the 
results for 
adequacy  

 
CR 

 
7 

 
6 

 
4 

 
4 

 
Role of digital 
technology 

RTC 6 6 - - 
RTR 1 1 3 3 
RTM - - 2 2 
RTE 9 8 - - 
RTG 1 1 - - 
RTV - - 2 2 
RTA - - - - 

Total 53 48 28 26 
Table 5.7: A comparative table of the researcher’s and Nils-Jakob’s code entries in 
relation to RQ2a and RQ2b. 

 
On the coding relating to the third research question (RQ3), Nils-Jakob 

disagreed with the codes marked in red in Table 5.8. I explained to him why I used 
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these codes. Nils-Jakob agreed and emphasized that the codes need to be updated 
for clarity. In our discussion, we both agreed that the code SOR does not match 
the description in the empirical data. Hence, a new code (SOI) was introduced. 
Upon agreeing to the updated version, Nils-Jakob coded the selected empirical data 
alone and afterwards, we compared our coding. Table 5.8 below compares the 
frequency of code entries by the researcher and Nils-Jakob about the third research 
question. The codes in Table 5.8 are defined and described in Table 9.7 (see 
Appendix E.3 on page 394). The percentage of our coding agreement for both Task 

1 and 2 was 98.44% ≈ × 100% . 

 
Categories Codes Task 1 Task 2 

Researcher Nils-
Jakob 

Researcher Nils-
Jakob 

 
 
Technological 
affordances 

TC 6 6 - - 
TR 1 1 5 5 
TM - - 2 2 
TG 3 3 - - 
TE 7 7 - - 
TV - - 1 1 

TAG - - - - 
 
 
Mathematical 
affordances 

MU - - - - 
MC 1 1 - - 
MA - - 5 5 
MS - - - - 
ML 3 3 - - 
MR 8 8 - - 

MAR 6 6 - - 
Socio-cultural 
affordances 

SC 7 7 5 5 
SOR - - - - 
SOI 3 3 - - 
SA 1 - - - 

Total 46 45 18 18 
Table 5.8: A comparative table of the researcher’s and Nils-Jakob’s code entries in 
relation to RQ3. 

 
In the forthcoming section, I will address key ethical considerations associated 

with this research study. 
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5.10 Ethical considerations  
Cohen et al. (2017) argue that questions concerning validity and trustworthiness 
are also ethical issues; however, in this section, I will focus on the rights and needs 
of the participants in this study. Bryman (2016) highlights that researchers should 
pay attention to some ethical principles, such as harm to participants, lack of 
informed consent, invasion of privacy and involvement of deception in a research 
project. I will now address each of the principles in this research study (and it also 
applies to the pilot studies). 
 
Harm to participants. Bryman (2016, p. 126) points out that the harm in a research 
study could include: “physical harm; harm to participants’ development; loss of 
self-esteem; stress”, among others. In this research study, the possible harm to 
participants might be my presence in the classroom, causing disturbances in the 
students’ working process during the classroom observations. Again, using a video 
camera might cause stress among the students. As such, I fixed a video camera 
(without recording) in the introductory activity for the students to get used to it 
before the main activity, where I recorded the students’ activities. Regarding my 
presence in the classroom, I first met the students and discussed my intent to 
conduct this research. During the students’ activities, I tried not to stand right 
behind the students but only observed them from afar. 
 
Informed Consent. Bryman (2016, p. 129) highlights that “research participants 
should be given as much information as might be needed to make an informed 
decision about whether or not they wish to participate in a study”. This research 
project is registered and approved by the Norwegian Centre for Research Data 
(NSD). The NSD has a mandate to ensure the personal protection of participants 
in a research project by demanding a certain level of ethical considerations from 
the researcher. At the beginning of the study, invitations for participation were sent 
to many schools, and only four schools volunteered to participate (see Section 3.4). 
The schools, teachers, and students were well-informed about the research project. 
Thus, the informed consent of the participants was obtained in a process where the 
participants signed an informed consent form (see Appendix A). Participation in 
the activities was voluntary, and written parental consent was required for 
participants under age 16. 
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Invasion of privacy. Bryman (2016, p. 132) points out that the “issue of privacy is 
invariably linked to issues of anonymity and confidentiality in the research 
process”. The participants’ privacy and anonymity were ensured by introducing 
pseudonyms, while the personal information concerning participants was kept 
confidential. I ensured that all necessary precautions were taken, ensuring that no 
unauthorized person(s) got access to the raw data. Thus, the personal data was 
stored on an external hard drive and the University of Agder server. The students 
and teachers were informed to request the deletion of their data at any time.   
 
Deception. Deception occurs when researchers represent their work as something 
other than what it is (Bryman, 2016). As such, participants were informed about 
the aim of this research study. That is, to examine the relation between the students 
and the digital technologies and the modelling actions that will emerge during the 
modelling activities. The research questions I will address at the end of the study 
were clearly stated in the consent form (see Appendix A). The participants could 
ask further questions about the research project before signing the consent forms.   

5.11 Summary of the chapter  
This chapter addressed the study’s ontological, epistemological and related 
methodological issues. The study is framed within a qualitative research paradigm 
based on activity theorist epistemology and ontology. The research design and 
strategy that have been used in addressing the research questions are presented in 
this chapter. That is, an ethnographical case study research design was adopted in 
this study. The context of the study, the digital tools and a prior analysis of the 
mathematical modelling task used are clearly presented in this chapter. A 
presentation of an overview of the data collection and analysis procedures 
followed. Thus, empirical data were collected in Autumn 2021 through video 
recordings (recorded conversations and actions of students), screen capture 
software (computer activities), students’ worksheets and fieldnotes, and an 
inductive-deductive approach was used in the data analysis. After that, I discussed 
validity and trustworthiness issues related to the adopted research design in detail. 
Finally, I presented some ethical considerations regarding the principle of 
informed consent, harm to participants, invasion of privacy and deception. 

The next chapter (Chapter 6) presents the research study’s results. In Chapter 
6, I will present an overview of data analysis in table form and a structure for each 
group’s case study reports (followed by each group’s report). 



155 
 

6 Results   
This chapter presents the analysis of data corresponding to the research questions. 

The research aims to study how secondary students solve mathematical modelling 

tasks with the aid of digital technologies. In particular, to study the different 

interactions within the students’ mathematical modelling activities. The analysis 

involves students’ language (suggestions, questions, answers, arguments, etc.) and 

actions (gestures and interaction with digital technologies). The data sources for 

the analysis consist of recorded conversations (video recordings), computer 

activities (screen capture software), students’ worksheets and fieldnotes.   

This chapter consists of three parts, and the first part (Section 6.1) presents the 

data analysis overview (in table form) corresponding to the first research question. 

The second part (Sections 6.2, 6.3, 6.4, 6.5 and 6.6) presents the structure and 

report of the groups. Thus, Section 6.2 presents a structure for reporting the 

different case studies, whilst the other sections (Sections 6.3, 6.4, 6.5 and 6.6) 

present the case study reports for Groups A, B, C and D, respectively. The report 

for each group consists of a detailed analysis. The third part (Section 6.7) presents 

the cross-case analysis of the groups. The chapter ends with a summary in Section 

6.8. I repeat that pseudonyms were given to the students, and the results from this 

study cannot be generalized or conceived of as an attempt to paint a general picture 

of the situation; instead, it should be understood as a “detailed and in-depth 

description so that others can decide the extent to which findings…are 

generalizable to another situation” (Cohen et al., 2007, p. 137). 

6.1 Overview of data analysis 

The summary of results corresponding to the first research question is presented in 

a tabular form in this section. These results consist of the types of digital 

technologies used in solving Task 1 and 2 (see Section 5.5), the interaction 

sequences within the students’ activities (see Sub-Section 2.4.1), rules mediating 

the students’ activities (see Sub-Section 4.1.3) and the roles taken by the students 

in the activities (see Section 2.4). I will present the results corresponding to the 

first research questions (RQ1, RQ1a, RQ1b, RQ1c and RQ1d—see Section 1.4) in 
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the following four sub-sections. Considering the activity system (see Table 4.1 on 

page 98), the components subject (students), mediating artefacts/tools (digital 

technologies and group work/interactions), object (solving mathematical 

modelling tasks), rules (time constraints, among others), community (group of 

students), and division of labour (students’ roles), interact with each other in the 

activity system. Sub-Section 6.1.1 and 6.1.2 report on physical (digital 

technologies—RQ1a) and non-physical (group work/interaction—RQ1b) tools 

that mediate the subject and object interactions. Sub-Section 6.1.3 reports on the 

rules mediating subject and community interactions (RQ1c). Sub-Section 6.1.4 

reports on the division of labour that mediates the community and object 

interactions (students’ roles—RQ1d).           

6.1.1 Digital technologies  

Table 6.1 below presents an overview of the types of digital technologies that the 

students used while working on Tasks 1 and 2. Recall that the students worked in 

groups and were allowed to use any digital technology of their choice, although 

they mostly used GeoGebra during the introductory activity (see Section 5.3). The 

digital technologies that mediated the students’ activities were GeoGebra, 

Excel/spreadsheet, calculator, Google Maps and Google Search. These sets of 

digital technologies are coded in Table 9.5 (in Appendix E.1) for the analysis. 

From Table 6.1, the students used one or several digital technologies to solve Tasks 

1 and 2. The spaces marked by (X) in Table 6.1 show that the group used the 

corresponding digital technology as they worked on the respective task, whilst the 

empty spaces marked by a dash (-) represent no use of the corresponding digital 

technology. I will further explain this table in Sub-Sections 6.3.1, 6.4.1, 6.5.1 and 

6.6.1 with some excerpts from the video recording transcriptions and screen 

recordings (or computer activities) as evidence.   

 
Group 

 
Task 

Digital Technology 
GeoGebra Excel/Spreadsheet  Calculator Google 

Maps 
Google 
Search 

A 1 X - X - X 
2 - - - X X 

B 1 X - X - - 
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2 X - X X X 
C 1 - X - - - 

2 X - - X X 
D 1 X X X - - 

2 X - - X - 
Table 6.1: The digital technologies each group used while working on Tasks 1 and 2. 

The forthcoming subsection summarizes the results on the dynamics of the 

interaction sequences recorded within the students’ group work activities. 

6.1.2 Interaction sequences  

Table 6.2 below summarizes results relating to the interaction sequences (group 

interactions) in the students’ activities (see Sub-Section 2.4.1). Recall that the 

activities of the groups in both tasks (Task 1 and 2) were divided into episodes (see 

Sub-Section 5.7.2 and Tables 9.1, 9.2, 9.3 and 9.4 in Appendix C) for the analysis 

of the empirical data. Each group had different episodes for Tasks 1 and 2, 

depending on their solution process and the type of interaction that took place. The 

categories of interaction sequences are coded in Table 9.5 for the analysis (see 

Appendix E.1). Table 6.2 gives an overview of the frequency of the interaction 

sequences relating to Tasks 1 and 2 that occurred during the students’ activities. I 

do not present the interaction sequence as it occurred in each episode but only the 

total count in the table form. The spaces marked by a dash (-) show that the 

corresponding interaction sequence did not occur within the students’ activities. I 

will further explain this table in Sub-Sections 6.3.1, 6.4.1, 6.5.1 and 6.6.1 with 

some excerpts from the video recording transcriptions and screen recordings as 

evidence. 

Group 
Interactions/Interaction 

Sequences 

Group 
A B C D 

Task Task Task Task 
1 2 1 2 1 2 1 2 

Pseudocontingency - - - - - - - - 
Asymmetrical 
contingency 

7 2 6 1 - 1 1 1 

Reactive contingency 1 4 - 5 - 2 3 - 
Mutual contingency 1 3 1 2 2 2 2 3 
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Asymmetrical 
contingency + 
Pseudocontingency 

 
3 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

Total (episodes) 12 9 7 8 2 5 6 4 
Table 6.2: The frequency of the group interactions/interaction sequences that emerged 
within the students’ activities (episodes) relating to Tasks 1 and 2. 

The forthcoming subsection summarizes the results of the rules that mediated 

the students’ activities. 

6.1.3 Rules  

Table 6.3 below presents an overview of the rules (explicit and implicit) that were 

observed in the student’s activities. The table presents two explicit rules (time 

constraints and no restriction of digital technologies) and one implicit rule 

(dismissing comments/suggestions). These rules are coded in Table 9.5 (in 

Appendix E.1) for the analysis. There were no restrictions on digital technologies 

in the student’s activities; as such, the students used several digital technologies 

while working on Tasks 1 and 2 (see Table 6.1). Thus, all the groups used at least 

two digital technologies while working on both tasks. The spaces marked by (X) in 

Table 6.3 show that a specific rule was observed, whilst the empty spaces marked 

by a dash (-) represent no observed rule. I will further explain this table in Sub-

Sections 6.3.1, 6.4.1, 6.5.1 and 6.6.1 with some excerpts from the video recording 

transcriptions and screen recordings (or computer activities) as evidence.   

Group Task Rules 
Explicit Implicit 

Time 
constraint  

No restrictions on 
digital technologies 

Dismissing comments/ 
suggestions 

A 1 X X X 
2 - X - 

B 1 - X X 
2 X X X 

C 1 - X - 
2 - X - 

D 1 - X - 
2 - X - 

Table 6.3: The explicit and implicit rules observed in the students’ activities relating to 
Tasks 1 and 2. 
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The forthcoming subsection summarizes the results of the roles adopted by the 

students within the group work activities. The results on the roles adopted by the 

students help to address RQ1d. 

6.1.4 Roles of students  

Table 6.4 summarizes results relating to the roles adopted by the students in 

Groups A, B, C and D, respectively. Different roles are adopted by the students 

(see Section 2.4) within each episode of the students’ activities; for instance, in an 

episode, a student might be opposing and/or suggesting ideas as they work on the 

task. Table 6.4 gives an overview of the frequency of roles adopted by the students 

(in the respective groups) as they work on Tasks 1 and 2. The categories of roles 

adopted are coded in Table 9.5 (Appendix E.1) for the analysis. In Table 6.4, Task 

1 is marked in red whilst Task 2 is marked in green; the first block in grey describes 

the adopted roles of Group A members; the second block in white describes the 

adopted roles of Group B members; the third block in grey describes the adopted 

roles of Group C members; and the fourth/final block in white describes the 

adopted roles of Group D members. The spaces marked by a dash (-) show that the 

student did not adopt the corresponding role. I will further explain this table in 

Sub-Sections 6.3.1, 6.4.1, 6.5.1 and 6.6.1 with some excerpts from the video 

recording transcriptions and screen recordings as evidence. 

 
 

Group/ 
Student 

 
 
 
Task 

 
 

Roles of Students 

Le
ad

in
g 

 

O
pp
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in

g 

Su
gg

es
tin

g 

Q
ue

st
io

ni
ng

 
&

 
ch

al
le

ng
in

g 

Su
pp
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tin

g 
 

No
n-

co
nt

rib
ut

in
g 

 

 
 

A 

Thea 1 11 1 1 - - - 
2 5 3 1 - 1 - 

Kåre 1 - 1 3 3 9 - 
2 - 1 3 2 6 - 

Rolf 1 1 - 4 - 3 5 
2 - 1 1 1 5 2 

 
 
 

Thor 1 5 - - - 2 - 
2 1 2 4 1 7 - 

Emil 1 1 - 4 2 5 - 
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B 2 - 2 2 1 7 - 
Tore 1 - - - - 7 - 

2 - - 1 - 7 - 
Ella 1 - 1 2 - 5 1 

2 - 2 3 1 5 1 
 
 

C 

Nils 1 - - 2 - 2 - 
2 1 - 4 - 4 - 

Anna 1 - - 2 - 2 - 
2 - - 3 1 5 - 

Jørn 1 - - 1 - - 2 
2 - - 2 3 2 1 

 
 

D 

Hege 1 - - 5 2 5 - 
2 - 1 3 - 4 - 

Olga 1 1 1 4 - 5 - 
2 1 - 3 - 3 - 

Lena 1 - 2 2 - 6 - 
2 - 1 1 - 4 - 

Table 6.4: The frequency of roles taken by each group member within the groups while 
working on Tasks 1 and 2. 

So far, I have not presented an analysis of data in a tabular form corresponding 
to the second and third research questions (RQ2a, RQ2b and RQ3). I will present 
such tables before the reports in Sub-Sections 6.3.2, 6.3.3, 6.4.2, 6.4.3, 6.5.2, 6.5.3, 
6.62 and 6.6.3. Before doing this, I will present the structure for the case study 
reports in the forthcoming section. The reports are structured in a form 
corresponding to the three research questions.   

6.2 A structure for the case study reports 
This section presents the structure for the case study reports in Sections 6.3, 6.4, 
6.5 and 6.6, which provide data and information that will allow me to address the 
research questions in Chapter 7. The case study descriptions, analysis, and 
interpretations of how secondary students solve mathematical modelling tasks 
using digital technologies are presented from the students’ perspectives. On the 
other hand, interpretations that are inferred from the empirical data are also 
presented. I subscribe to Flyvbjerg’s (2006, p. 238) idea that ‘the case story is itself 
the result’. A well-defined case constitutes a purposeful, holistic and context-
sensitive unit of analysis. This principle has guided my delineation of the unit of 
analysis throughout this study. For the reader, I repeat the unit of analysis (see Sub-
Section 5.1.3), which is ‘a group of secondary school students solving 



161 
 

mathematical modelling tasks with the aid of digital technologies’. Within this unit 
of analysis, I look at the actions and interactions within the students’ activities. 
The research questions in this study are formulated in such a way as to address the 
issue of actions and interactions taking place within the students’ activities.   

Recall that the research questions are presented (Section 1.4) in three foci: (i) 
students’ mathematical modelling activities (see Sub-Section 4.1.3 and Section 
4.2) – RQ1; (ii) emergence of modelling actions and the role of digital technologies 
(see Sub-Sections 2.1.3 and 4.4.2) – RQ2a and RQ2b; (iii) emergence of 
affordances and constraints of digital technologies in mathematical modelling 
activities (see Sub-Sections 4.3.4 and 4.4.1) – RQ3. These three foci became the 
structuring themes. Recall also that I analyzed the research questions from an 
Activity Theory perspective. The categories under the three foci are coded in 
Tables 9.5, 9.6 and 9.7 (see Appendix E), corresponding to RQ1 (RQ1a, RQ1b, 
RQ1c and RQ1d), RQ2a and RQ2b, and RQ3, respectively. Below is the list of the 
themes and sub-themes supplementing it: 

1. Students’ mathematical modelling activities 
a. Subject of the activity 
b. Community  
c. Object of the activity  
d. Mediating artefacts/tools for the subject-object interaction 

i. Digital technologies 
ii. Group interactions 

e. Rules for the subject-community interaction  
i. Explicit rule 

ii. Implicit rule 
f. Division of labour for the community-object interaction  

i. Roles adopted by students. 
2. Emergence of modelling actions and the role of digital technologies 

a. Breaking the task into manageable parts 
i. Role of digital technology  

b. Searching for a model 
i. Role of digital technology  

c. Finding a solution for the model 
i. Role of digital technology  

d. Explaining the results in real terms 
i. Role of digital technology  

e. Checking the results for adequacy 
i. Role of digital technology  
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3. Emergence of technological, mathematical, and socio-cultural affordances 
and constraints  

a. Technological affordances and constraints  
i. Researching 

ii. Measuring 
iii. Visualizing 
iv. Geometric construction 
v. Experimenting/Changing 

vi. Data entry and generation 
vii. Calculating 

b. Mathematical affordances and constraints  
i. Clarification 

ii. Analyzing 
iii. Simulating and visualizing 
iv. Linking representations 
v. Regularity and variations 

vi. Arithmetic and statistics 
c. Socio-cultural affordances and constraints  

i. Common focus 
ii. Observing and improving strategies 

iii. Authority of the digital technology 
The case study reports of the groups are addressed along the three themes 

listed above. Under each theme and sub-theme, I will present only aspects of the 
data or sections that represent the entire data as evidence (recorded dialogue). For 
instance, if there are seven instances where the students ‘ratify their objective’ of 
solving Tasks 1 or 2 throughout the data set, I will report on all but only present 
one out of the seven instances as evidence. Thus, the one example or evidence that 
captures all the other six instances recorded in the data set. Again, I will give a 
detailed account of the activities in Group A, but for other groups (Groups B, C 
and D), I will only report on issues different from Group A. That is, not repeating 
instances similar to that of Group A. I will now present the report for Group A. 

6.3 Case study report: Group A (Thea, Kåre and Rolf) 
This section offers a detailed description of the case study report of the first school 
(Group A; see Sub-Section 3.4.1). The narrative is presented in an order as 
highlighted in Section 6.2. Group A are second-year upper secondary school 
students (Grade 12). Group A comprises three students aged between 16 and 17 
years. The reports in Sub-Sections 6.3.1, 6.3.2 and 6.3.3 correspond to RQ1 
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(RQ1a, RQ1b, RQ1c and RQ1d), RQ2a & RQ2b and RQ3 respectively. I will first 
start the report on the students’ (Group A’s) mathematical modelling activities.        

6.3.1 Students’ mathematical modelling activities 

Analyzing the research questions from an Activity Theory perspective, I consider 
the students’ mathematical modelling activities an activity system. The activity 
system (hereafter referred to as ‘activity’) analyzed in this research report is a 
group of secondary school students solving mathematical modelling tasks with the 
aid of digital technologies. Details about the students are presented in Sub-Section 
3.4.1. I will present each of the components of the activity system (see Sub-Section 
4.1.3 and Section 4.2). These components are interrelated (an indivisible whole), 
but I linearly present them.      

Subject of the activity   
Three students (Thea, Kåre, and Rolf) volunteered as the focus group (Group A). 
The teacher describes this group as a mixed-achievement group (see Table 5.1 on 
page 129 for the grades assigned to each student). Table 5.1 also shows the 
approximate time the students used on both tasks. Table 5.2 (on page 130) shows 
the students’ different roles concerning tool usage while working on both tasks. 

Community   
The community of the activity was made up of students (the teacher and researcher 
were only visible in the introductory activity; see Section 5.3). Three groups of 
students worked together in the classroom, of which particular attention was paid 
to the focus group (Group A). The community was formed spontaneously to solve 
Tasks 1 and 2 (see Section 5.5) and then dissolved.   

Object of the activity  
The researcher assumes that the object of the activity is to solve the mathematical 
modelling tasks with digital technologies and write a report. The students confirm 
this objective at some points in their engagement with both tasks. For instance, 
Table 6.5 shows a part of the transcription aligned with codes showing a certain 
point where participants ratify their objective of solving Task 1. In Table 6.5, from 
the recorded dialogue relating to Task 1, Thea ratifies the main object of the 
activity as she points out that they need to find the best-selling price of the car to 
maximize the company’s sales revenue. Kåre supported Thea’s idea and suggested 
that the maximum revenue is above fifty people. Thea then tests their function with 
fifty people buying the car and the corresponding price at which they buy it. 
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Code Ratify the objective (Ratifying the objective of solving the mathematical 
modelling task) 

Task Task 1 
Context The students test their graph or function with 50 people to find the 

maximum company sales. They looked for the price of the car when 50 
people bought it. 

Recorded 
dialogue 

Thea: Yeah. Good, now we are going to find out when the price is erm… 
when the maximum company sell is, so….  
Kåre: I think it should be over 50 because on the 50 we have too many 
people.    
Thea: Should we try? If we try 50 [writes y = 50 on the graph, and found 
the point of intersection with the line f(x) = - x + 100], then we can find 
here [points at point B on the graph], fifty fifty 

Image 

 
Table 6.5: Sample Data Aligned with Codes (Objective of the Activity): Group A. 

Mediating artefacts/tools for the subject-object interaction  
The mediating artefacts/tools mediating the students’ activities are physical 
(digital technologies) and non-physical (group work) tools. I will first present a 
report on the digital technologies that Group A used while working on both tasks. 

Digital technologies 

Group A used GeoGebra, a calculator on a mobile phone and Google Search while 

working on Task 1 and used Google Maps and Google Search while working on 

Task 2 (see Table 6.1 on page 157). Tables 6.6 and 6.7 below show a part of the 

transcription aligned with codes, showing examples of different times when 

GeoGebra and the calculator mediated the interactions between the students and 

solving Task 1. From Table 6.6, the recorded dialogue shows that the students used 

GeoGebra to solve Task 1 after analyzing it and knowing what they needed to do. 
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In the example, the students made a linear graph with persons on the y-axis and 

the car price on the x-axis. They started with 0, equivalent to 5000 euros on the x-

axis, and 1 cm on the x-axis is equivalent to 100 euros. They also made a function ( ) = − + 100 to represent the number of people who buy the car at a given 

price. For instance, y = 70 (people) intersects the function f at x = 30. Thus, 70 

people will buy the car at 8000 euros (30 times 100 plus 5000) and later use the 

calculator to find the total revenue (e.g., 70 multiplied by 8000, see Table 6.7).  

Code Digital technology (GeoGebra: graphing and visualization) 
Task Task 1 

Context The students made a function representing the number of people buying 
the car at a given price.   

Recorded 
dialogue 

Thea: Yeah, it begins with zero.  
Kåre: At 5000.  
Thea: Yeah, it is. 
Kåre: And then it decreases by one person every 100 euros.   
Thea: Ok ... Then we need to find a graph.  
Kåre: Yeah. 
…. 
Kåre: Like this [Points to the x and y axis in GeoGebra, draws a graph with 
paper-and-pencil and writes f(x) = 100x representing the graph]  
Thea: Erm no, then you say that erm… its going down with a 1000… If 
you understand. 
Kåre: So, it will be naturally in there, right? ‘Konstantledd’ [constant 
term] or something? 
…. 
Thea: Yeah, it’s going to be on the x-axis, it’s not a constant. Do you have 
any ideas? [Thea asks Rolf if he has any idea] … If we try… I just try 
something [Draw the graph of the function f(x) = - x + 100 in GeoGebra]. 
Erm, it goes down by one person, if we just try, I don’t think this is the 
right...   
Rolf: It could be true.  
Thea: Yeah, if we think that 5000 is zero then when [writes x = 1 on the 
graph] 
Rolf: Should be 99 or something.  
Kåre: So, what you are showing here is erm… you lose one person per 
100. 
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Image 

 
Table 6.6: Sample Data Aligned with Codes (Digital Technology—GeoGebra): Group 
A. 

The students used the calculator on their phones to calculate some values 

while working on Task 1, as these values were significant and time-consuming to 

calculate by hand. In the example (from the recorded dialogue relating to the 

‘calculator’ in Table 6.7), Kåre uses the calculator on his mobile phone to calculate 

the total revenue of seventy people buying the car for 8000 euros. Again, the 

students used Google Search to seek information about some Norwegian words 

during the discussion (as English is their second language). For instance, from the 

recorded dialogue relating to Task 1 in Table 6.14 on page 177, Thea uses Google 

Translate to find the meaning of ‘konstantledd’ in English during their discussion. 

 

Code Digital technology (Calculator: solving or computing mathematical 
calculations) 

Task Task 1 
Context Thea gives the figures needed for the calculations, and Kåre uses the 

calculator on his mobile phone for the computations. 
Recorded 
dialogue 

Thea: So, 8000 multiplied with 70? 
Kåre: [Uses the calculator on his mobile phone] 560000. 

Image  
Table 6.7: Sample Data Aligned with Codes (Digital Technology—Calculator): Group 
A. 

Concerning Task 2, and from the recorded dialogue in Table 6.8, the students 

used Google Maps to locate the optimal place to build the shopping centre. In the 

example, Thea sought the approval of her group to use Google Maps to solve the 
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task. The group members agreed and mutually located the three cities on the map. 

This led to choosing an ideal location based on the three cities on the map, but 

more was needed as the task required that the optimal location should serve the 

three cities fairly.  

Code Digital technology (Google Maps: Locating the positions of the three 
cities). 

Task Task 2 
Context Thea opens Google Maps after getting approval from the group 

members. The group then located the three cities on the map.   
Recorded 
dialogue 

Thea: Yes, a moment. Should we find the map, do you agree? 
Rolf: Yes.  
Thea: [Opens Google Maps, and searches for Lillesand]. Lillesand, my 
cousin has a cabin there.  
Kåre: So, this is Kristiansand and there is Vennesla. 

Image 

 
Table 6.8: Sample Data Aligned with Codes (Digital Technology—Google Maps): 
Group A. 

To solve the issue of fairness, the students looked at the population of each 

city. That is, the students used Google Search to find the population of each city 

after locating the cities on the map. In the example (see Table 6.9), Thea and the 

other group members searched for the population of Lillesand, Vennesla and 

Kristiansand. Google Maps and Google Search as mediating artefacts encouraged 

the students to make connections to real-life experiences. For instance, Thea, while 

searching for Lillesand with Google Maps, remembers her cousin’s cabin in 

Lillesand, and this connection might have established some motivation towards 

solving this open-ended task.   
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Code Digital technology (Google Search: searching for the population of each 
city) 

Task Task 2 
Context Thea searches for the population of the cities on Google Search after 

locating each city on Google Maps. 
Recorded 
dialogue 

Thea: Yes, but if we are going to look in the population erm [Google 
Search; the population of Lillesand]   
Kåre: 7966.  
Thea: It’s not so much. 
Rolf: Its 14000 in Vennesla, isn’t it? 
Thea: Yes… they have many I think people living there in the summer 
also. 
Rolf: It’s almost 15000.  
Kåre: 14935. 
Rolf: Oh my God… 111000. 

Image 

 
Table 6.9: Sample Data Aligned with Codes (Digital Technology—Google Search): 
Group A. 

I will now present a report on the dynamics of group interaction that occurred 
in Group A’s activities.   

Group Work  
Group work is a mediational means in the student’s activities. Different interactive 
processes occurred within the students’ group work. The behaviour of one student 
is affected by that of another student in the social interactions that occur. Table 6.2 
(in Sub-Section 6.1.2) presents the number of times the different interaction 
categories or sequences occurred in the episodes of the students’ activities. From 
Table 6.2, the number of asymmetrical contingencies was seen more in the 
episodes of the Group A activities relating to Task 1 than in Task 2. In the 
asymmetrical contingencies that were identified in the student’s activities, Thea 



169 
 

was mostly leading the group through her ideas. At the same time, Rolf (not often) 
and Kåre were usually affirmative (only agreeing) and not critical (not reviewing 
and challenging). That is, Kåre and Rolf provided strong support within the group 
while much of the discussion was orchestrated by Thea. From Table 6.2, one 
episode describes reactive, and another describes mutual contingencies in the 
activities relating to Task 1. Thus, there were instances where the comments or 
ideas of each member were strongly influenced by the proceeding social stimuli 
and another instance where sense-making and conversation were mutually driven. 
In the activities relating to Task 2, four episodes describe reactive contingencies, 
and three describe mutual contingencies. A contingency of interest was where both 
pseudocontingency and asymmetrical contingency occurred within the same 
episode. Table 6.10 below shows a part of the transcription aligned with codes 
showing an example of both pseudocontingency and asymmetrical contingency 
taking place within the same episode of the students’ activities. In Table 6.10, and 
from the recorded dialogue, we see Thea engaging with Kåre in an asymmetrical 
contingency, where Kåre is supportive and affirms the ideas of Thea. On the other 
hand, Rolf was interacting with the computer and not contributing to the discussion 
between Thea and Kåre. Three interactions occurred here: the interaction between 
Thea and Kåre (asymmetrical contingency), Rolf and the computer, and Rolf – 
computer and Thea – Kåre (pseudo contingency). The interaction between Rolf – 
computer and Thea – Kåre is individualized in the sense that each pair is unwilling 
to consider the other’s suggestions for improvement or change. 

Code Asymmetrical contingency + Pseudocontingency 
Task Task 1 

Context Thea and Kåre were computing the product of 70 people and a price of 8000 
with the calculator, while Rolf tried to find a faster way of finding the product 
with GeoGebra. 

Recorded 
dialogue 

Thea: Yes, if we try something higher, like this, 8000 per car. 
Kåre: Yeah, 8000 times the people. 
Rolf: [Turns the computer towards himself and starts to write f(g) = x*y at the 
algebra section in GeoGebra and gets the feedback “Ulovlig funksjon” (illegal 
function)]. 
Thea: Multiplied with 70 because erm we find out that erm y x is 70… oh no…  
Rolf: [Tried again for f(e) = x*y and gets the same feedback] I’m so confused.  
Thea: Are you kidding.  
Kåre:  Is times 30. Try and put it on top, maybe.   
Thea: Yeah, so… but if we try the 70… then it’s going to be 70… no! no.   
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Kåre: 240000 [Uses the calculator on his mobile phone to multiply 30 by 8000], 
which is way less than if you will do it with 50. 

Image 

 
Table 6.10: Sample Data Aligned with Codes (Asymmetrical contingency + 
Pseudocontingency): Group A. 

Rules for the subject-community interaction 
The rules of the activity are sets of conditions that influence how/why the 
participants act within the activities. The rules of the activity could be explicit but 
often also implicit. Table 6.3 in Sub-Section 6.1.3 presents the explicit and implicit 
rules observed in the students’ activities. 

Explicit rule  
One explicit rule in the students’ activities was time constraints. The average time 
to solve a task during the practice phase (introductory activity) was 20 minutes. 
So, Group A was expected to use a similar time frame to solve Tasks 1 and 2. At 
a particular point in the students’ activities, it was observed how time constraints 
impeded the solution process. That is, from Except 6.3.1 (on page 173), Thea 
dismisses Rolf’s comments about using the spreadsheet to generate the data while 
working on Task 1, and the reason was that they are already close to finding the 
answer. This incident might result from time constraints (or students’ preference 
for the solution strategy). Another explicit rule was that the students were allowed 
to use any digital technology available to solve both tasks (the technology was not 
imposed on them). As such, it was observed that the students used different digital 
technologies while working on both tasks (see Table 6.1 for the kinds of digital 
technologies used by Group A while working on Task 1 and 2, respectively). 
Again, the students were expected to work in a group on a single computer and 
produce a single group report, which they did (see Appendix D.1 for the solution 
report of Group A and the other groups in School A).    



171 
 

Code Implicit rule 
Task Task 1 

Context A student thought of a faster way to find values but was unsure what to do. 
This thought triggered another student to suggest a procedure, but that did 
not materialize. The students then reverted to the previous way of finding the 
maximum price.   

Recorded 
dialogue 

Rolf: But isn’t it like a faster way to find that out. I feel like there is, but I don’t 
have any idea how to do it.   
Thea: We can make sliders, I think… We can try. 
Kåre: I don’t know.  
Thea: Erm [Makes a slider a = 100, but the slider has no effect on the graph] … 
We just try something else [writes y = 60 on the graph and found the point of 
intersection with the line f(x) = - x + 100]. Here 40 multiplied with 100, 4000 
so it’s not more. So, I think we should try ... 
Rolf: Try 100. 

Image 

      

   
Table 6.11: Sample Data Aligned with Codes (Implicit rule): Group A. 

Implicit rule 
Several implicit rules could be identified in the student’s activities. However, an 

example of an implicit rule that was observed is the dismissing of comments or 

suggestions when they do not fit into the current strategy. For instance, Table 6.11 



172 
 

shows a part of the transcription aligned with codes showing a point where new 

ideas not fitting with previous ideas were dismissed as the students solved Task 1. 

In Table 6.11, from the recorded dialogue relating to Task 1, Rolf thought of the 

fastest way to find out the maximum revenue (but was not confident enough to put 

forward his thoughts), and this triggered Thea to come up with the idea of making 

sliders (see the first image in Table 6.11; = 100). Thea made a slider, but it did 

not affect the graph as the slider was not well-defined. That is, the slider ( = 100) 

has no link with the function ( ( ) = − + 100). The students dismissed this new 

idea and reverted to the previous strategy of solving the task by testing their 

function with sixty people buying the car and the price at which they bought it (see 

the second image in Table 6.11).   

I will now present a report on the different roles adopted by the students in 

Group A’s activities.  

Division of labour for the community-object interaction   

Forms of distribution of actions and operations among the students were identified. 
The students had roles concerning tool usage that were constant throughout the 
activities (see Table 5.2). Other roles in the form of leading, opposing, suggesting, 
supporting, non-contributing, and questioning and challenging changed at 
different times during the student’s activities. Table 6.4 (on page 160) gives the 
frequency of roles taken by each member of Group A while working on both tasks. 

Roles adopted by students  
Working on Task 1, Thea mostly took the leading role (dominating in the 
communications), and the group discourse was centred around her ideas, whilst 
Kåre mostly took the supporting role. Kåre mostly agreed with Thea on her ideas 
and sometimes questioned them if they were not unclear. Rolf took the non-
contributing role in most of the episodes of the group’s activities. Although Rolf 
was not contributing, he observed the group and sometimes came in to give a 
suggestion or support an idea. There were times when Rolf’s suggestions were not 
accepted because he did not know how to put those ideas into effect, as the teacher 
describes him (under ‘subject of the activity’) as one with the highest mathematical 
understanding, and nonetheless has a little lower motivation. On the other hand, 
when Rolf knew precisely what to do or how to put his ideas into effect, the student 
dominating the group did not accept those ideas. In the build-up to this situation, 
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Thea started with a problem-solving strategy that she was comfortable with, thus 
starting with graphical representation and later analyzing patterns of numbers and 
observing the increment in revenue. Rolf came in with an idea to efficiently 
generate the data, but Thea had personalized the problem-solving strategy; see the 
example below: 

Rolf: Oh! we could have done all of it with the ‘regneark’(spreadsheet). 

Thea: Yeah, that’s right. 

Rolf: And then just try with the 

Thea: We didn’t think about it. 

Rolf: Or we just… I mean we can do it now; it might take a shorter time.   

Thea: Do you think? 
Rolf:  I think so.   

Thea: But we are already done, though.   

Excerpt 6.3.1 
 
From Excerpt 6.3.1, Thea dismissed Rolf’s comments. She returned to the existing 

idea, thinking they were already close to the answer (which might also be a time 

factor, described under ‘rules for the subject-community interaction’ on page 170). 

Subscribing to Rolf’s suggestions might have helped the group generate their data 

with the spreadsheet and find a function representing it. The features of GeoGebra 

allow multiple problem-solving strategies. However, the approach used by the 

group depends on the representational choice of the student taking the leading role, 

especially when they think they are close to finding the answer. Working on Task 

2, Thea mostly took the leading role and sometimes opposed the input of other 

group members. Kåre and Rolf mostly supported the ideas of Thea and sometimes 

made some suggestions during the group interactions. 

Before presenting Group A’s report on ‘student’s mathematical modelling 

activities’, I presented a tabular data analysis overview (see Section 6.1) 

corresponding to the first research questions. I will similarly present a data analysis 

overview corresponding to the second and third research questions. After this 

overview, I will present Group A’s report. I will first start with the report on the 

emerging modelling actions and the role digital technologies play in these actions. 
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6.3.2 Emergence of modelling actions and the role of digital technologies  

The report here corresponds to RQ2a and RQ2b (see Section 1.4). Drawing on 
CHAT (Leont’ev’s three hierarchical layers of an activity, Sub-Section 4.1.2), I 
analyze the modelling actions emerging within the episodes of the students’ 
activities. From a CHAT perspective, solving mathematical modelling tasks using 
digital technologies is seen as a combination of actions and operations. Actions 
and operations are identified from the empirical data in the form of students’ 
utterances, writings with paper-and-pencil, and engagement with digital 
technologies. The actions of the students are divided into categories. These 
categories are coded in Table 9.6 in Appendix E.2. 

Tables 6.12 and 6.13 present the summary of results relating to the modelling 
actions (RQ2a) and the role of digital technologies (RQ2b) that emerged in the 
episodes of Group A, as they work on Task 1 and 2, respectively. The tables are 
presented in the form that characterizes students’ mathematical modelling 
processes, just as Ärlebäck (2009) and Albarracin et al. (2019) used Modelling 
Activity Diagrams (MAD) to characterize students’ choices and actions in a 
mathematical modelling activity. The presentation of the tables in this section 
follows the same structure. Thus, the first part of the table shows the modelling 
actions emerging within the episodes, and the second part shows the role of digital 
technologies within the modelling actions that emerged. The digital technologies 
identified under this subsection are the same ones listed in Sub-Section 6.1.1, but 
the focus here is on their role in the emerging modelling actions. In each table, I 
use the same colour (X or sometimes both X and X when there are different actions 
and corresponding roles of tools) to represent the modelling action and the 
corresponding role of digital technology. I also use X to represent the modelling 
action without any corresponding role of digital technology. The spaces marked 
by a dash (-) in the tables show that neither modelling actions nor the role of digital 
technology were identified in the particular episode. I will further explain Tables 
6.12 and 6.13 with some excerpts from the video recording transcriptions and 
screen recordings as evidence. 
Modelling actions Episodes of the students’ activity 

1 2 3 4 5 6 7 8 9 10 11 12 
Breaking the task into 
manageable parts 

 
X 

 
X 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

Searching for a model X X - - - - - - - - - - 
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Finding a solution for 
the model 

- - X X X X X X X X X X 

Explaining the results in 
real terms 

- - - - - - - - - - - X 

Checking the results for 
adequacy 

 
- 

 
- 

 
- 

 
- 

 
X 

 
X 

 
X 

 
X 

 
- 

 
X 

 
- 

 
X 

Role of digital 
technologies 

 

Calculating (Mobile 
phone calculator) 

- - - - - - X X X X X X 

Researching 
(Google Search) 

- X  - - - - - - - - - 

Experimenting/Changing 
(GeoGebra) 

- - X X X X X X X - X X 

Geometric construction 
(Geogebra) 

 
- 

 
X 

 
- 

 
- 

 
- 

 
- 

 
X 

 
X 

 
- 

 
- 

 
- 

 
- 

Table 6.12: The modelling actions that emerged in Group A’s activities (regarding Task 
1) and the role of the digital technologies. 

 
Modelling actions Episodes of the students’ activity 

1 2 3 4 5 6 7 8 9 
Breaking the task into 
manageable parts 

X 
 

X 
 

- 
 

X 
 

- 
 

X 
 

X 
 

- 
 

- 
 

Searching for a model X 
 

- - - - - - - - 

Finding a solution for the 
model 

- X 
 

X - X X 
 

X 
 

X X 

Explaining the results in real 
terms 

- - - - - - - - X 
 

Checking the results for 
adequacy 

 
- 

 
X 

 
X 

 
- 

 
- 

 
X 

 
- 

 
- 

 
X 

Role of technological tools  
Researching 
(Google Search & Maps) 

 
X 

 
- 

 
- 

 
X 

 
- 

 
- 

 
X/X 

 
- 

 
- 

Measuring 
(Google Maps) 

- - - - - X X - - 

Visualizing 
(Google Maps) 

- -  - - X X - - 

Table 6.13: The modelling actions that emerged in Group A’s activities (regarding Task 
2) and the role of the digital technologies. 

I will present the analysis of the emerging modelling actions of Group A 
according to the categories in Tables 6.12 and 6.13. I repeat that these categories 
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are just names used to report or describe the students’ modelling processes, other 
than anything intrinsic in the ontology of modelling competence (see Sub-Section 
2.1.3). I have explained my use of these categories in Sub-Section 4.4.2. I will 
present each category from both tables and the role digital technology played. 
These categories are interrelated, but I linearly present them. 

Breaking the task into manageable parts   
In both Task 1 and 2, Group A broke the task into manageable parts with the goal 

of understanding the problem text (real situation) or finding meaning in what had 

been read from the problem text. Under the category “breaking the task into 

manageable parts” in Table 6.12 (relating to Task 1) and 6.13 (relating to Task 2), 

there were different times in the episodes where the students performed an action 

of breaking the task into manageable parts. In Table 6.12, it was counted in 

episodes 1 and 2 (out of 12 episodes), while in Table 6.13, it was counted in 

episodes 1, 2, 4, 6 and 7 (out of 9 episodes). This shows that Group A went back 

and forth on the problem while working on Task 2 compared to Task 1. Tables 

6.14 and 6.15 below show a part of the transcription aligned with codes showing 

specific points where participants perform the actions of breaking the tasks into 

manageable parts towards the goal of understanding or having a clearer view of 

what the task demands. 

As stated earlier (from Table 6.12), the first two episodes describe a situation 

where the students first read the problem text and simplified it as they constructed 

relations between the variables identified while working on Task 1. The students 

simplified the problem by recognizing the quantities that influence the problem 

and then constructed a relation between the identified quantities in the form of a 

graph. The students build on this in the subsequent episodes of the students’ 

solution process. In the students’ discussions in the other episodes, they had to use 

Google Search to find a word’s meaning at a certain point, as these students have 

English as their second language. Looking at the example in Table 6.14, Thea 

searched for the meaning of konstantledd (a word in Norwegian which means 

constantly articulated) as she explained the linear graph to Kåre. The digital 

technology here, which happened to be Google Search, was used to seek 

information about the word ‘konstantledd’. 
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Code Breaking the task into manageable parts   
Task Task 1 

Context The students made a function representing the number of people that 
will buy the car at a given price, and they searched for the meaning of 
‘konstantledd’, the constant variable in the linear equation. 

Recorded 
dialogue 

Thea: [Opens GeoGebra] We going to GeoGebra… Should we say erm… 
on the y-axis, it’s going to be 100 persons.  
Kåre: Like this [Points to the x and y axis in GeoGebra, draws a graph on 
paper and writes f(x) = 100x] 
Thea: Erm no, then you say that erm… its going down with a 1000… If 
you understand. 
Kåre: So, it will be naturally in there, right? ‘Konstantledd’ or something?  
Thea: Shouldn’t 100 be the ‘konstantledd’. 
Kåre: That’s the thing you begin with. 
Thea: No, erm [Google Search the meaning of konstantledd: which 
means constantly articulated]. The constantly articulated is the last thing 
[meaning the constant variable in the linear equation].    
Kåre: You right, that’s what I meant, which is the last thing. So, we just 
need to find what we gonna write in there. 

Image 

 
Table 6.14: Sample Data Aligned with Codes (Breaking the task into manageable 
parts): Group A—Task 1. 

In the example in Table 6.15 relating to Task 2 below, the students were 

searching for the positions of the three cities on Google Maps in the act of 

recognizing quantities and simplifying the problem text. The students constructed 

a relation as Rolf pointed out that the cities’ positions form a triangle. The students 

build on this idea as they analyze the positions of the three cities on Google Maps 

in the other episodes. In the other episodes of Group A’s activities, the students 

perform new operations of seeking information and recognizing new quantities to 

better understand the demands of the problem situation. For instance, searching for 

the population of the three cities and the time of travel between the cities.   
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Code Breaking the task into manageable parts   
Task Task 2 

Context The students suggested the optimal location after reading the 
mathematical modelling task. The students also located the three cities 
on Google Maps. 

Recorded 
dialogue 

Kåre: [Reads Task 2 aloud]. I don’t think it is supposed to be Lillesand.  
Thea: Yeah, it’s far away [laughs].  
Kåre: Yeah, so it should be like above Vennesla somewhere. Can you show 
me where Lillesand is on the map? 
Thea: Yes, a moment. Should we find the map, do you agree? 
Rolf: Yes.  
Thea: [Opens Google Maps, and searches for Lillesand]. Lillesand, my 
cousin has a cabin there.  
Kåre: So, this is Kristiansand and there is Vennesla [Pointing to the map].  
Thea: We save it [Saves Lillesand on Google Maps]. 
Rolf: It’s like a triangle then.  
Thea: Yes, it is [Searched and saved the locations Vennesla and 
Kristiansand on Google Maps]. 

Image 

 
Table 6.15: Sample Data Aligned with Codes (Breaking the task into manageable 
parts): Group A—Task 2. 

Role of digital technology 

Regarding Task 1, Group A used Google Search to seek information about a word 

(konstantledd) in their discussion. Regarding Task 2, Group A used Google Maps 

and Google Search to seek information about the identified variables.   

I will now present the next category, ‘searching for a model’, that emerged in 

the activities of Group A. 

Searching for a model 

The students set up a mathematical model by translating a suitably simplified real 
situation into a mathematical form, such as equations, functions, diagrams, and 
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others. Group A performed an action of searching for a model with the goal of 
setting up a mathematical model. The students performed this action in one or two 
of the episodes in the activities. In Table 6.12 (relating to Task 1), it was counted 
in both episodes 1 and 2 (out of 12 episodes), while in Table 6.13 (relating to Task 
2), it was only counted in the first episode (out of 9 episodes). This shows that the 
students did not come back to search for a new model or update their model but 
went ahead with the initial model they searched for. Working on Task 1, Group A 
translated the problem text or situation into a mathematical problem and then 
represented the mathematical problem in the technological world. Thus, the 
students represented the mathematical problem in GeoGebra by drawing a function 
for the number of people buying the car at a given price. Drawing the function can 
be likened to searching for a model, which is directed towards the goal of setting 
up a mathematical model. See, for instance, the dialogue in Table 6.6 (on page 
166). Thea suggested a function representing the number of people that buy the 
car, and the peers agreed with her suggestion. The suggested function was used in 
the model creation, and the students worked with this function in the subsequent 
episodes. On the other hand, the model that the students set up for Task 2 is 
described in Table 6.15 above. From the dialogue in Table 6.15, the students used 
Google Maps to set up their model by researching the positions of the three cities 
(which form a triangle). In the subsequent episodes, the students later analyzed the 
optimal place to build the shopping mall based on the positions of these cities. 

Role of digital technology 
Relating to Task 1, Group A used GeoGebra for geometric construction (a 
graphical representation of a function or equation) as they performed the action of 
searching for a model. Regarding Task 2, Group A used Google Maps to seek 
information about the positions of the three cities.   

The following presentation is the report on the category ‘finding a solution for 

the model’ that emerged in Group A’s activities. 

Finding a solution for the model 

The students work mathematically as they apply heuristics strategies in the form 

of operations as they find a solution for the model they set up. Finding a solution 

for the model is an action that is directed towards the goal of solving the 

mathematical questions within the model or solving the model mathematically. 

The students performed this action in several of the episodes in the activities. In 
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Table 6.12 (relating to Task 1), it was counted in 10 episodes (out of 12 episodes), 

while in Table 6.13 (relating to task 2) it was counted in 7 episodes (out of 9 

episodes). This shows that many students’ actions were about finding a solution 

for their model. Tables 6.16 and 6.17 below show a part of the transcription aligned 

with codes showing examples where participants find solutions for the model 

towards the goal of solving the mathematical questions within the model. 

To find the highest revenue of the car-selling company, Group A used the trial-

and-error method by analyzing patterns of numbers after finding a function that 

represent the number of people buying the car. Looking at the example in Table 

6.16, Thea suggested they try 80 people buying the car to see if that gives them the 

maximum revenue. They found the corresponding price of the car to be 7000 euros 

and later multiplied that by the number of people using the calculator. 

Code Finding a solution for the model 
Task Task 1 

Context The students test their function with 80 people buying the car and later 
compute the total revenue (the product of the number of people and the 
price of the car). 

Recorded 
dialogue 

Thea: Its lower, so we should try 80 [writes y=80 in GeoGebra] for example. 
Kåre: Yeah. 
Thea: Do you agree with the way we are doing it? 
Rolf: Yeah. 
Thea: Its 20, so erm 7000  
Kåre: Times?  
Thea: Erm times 80.  
Kåre: [Uses a calculator on mobile phone to compute 80*7000] it’s the same.  
Thea: It’s the same! Is it?  
Kåre: I think it is. 
Thea: So, if we try 85 

Image 
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Table 6.16: Sample Data Aligned with Codes (Finding a solution for the model): Group 
A—Task 1. 

In working on Task 2, the students solve the mathematical questions within 

the model through the analysis of the model by reconciling their model with reality 

to arrive at a better model. The students did not solve the mathematical questions 

within the model in Task 2 by observing the effects of parameters on the graph or 

computing mathematical operations as they did in Task 1. They did so by analyzing 

the model while considering and comparing distances, travel time and the 

environment around the three cities. Looking at the example in Table 6.17 (relating 

to Task 2), the students considered the environment around the chosen optimal 

place, not just the geographical middle of the three cities. The students then settled 

on two optimal locations. 

Code Finding a solution for the model 
Task Task 2 

Context The students analyzed the position of the optimal place for the shopping 
mall on Google Maps. They also switch to the satellite on Google Maps 
to visualize their choice of the optimal place. 

Recorded 
dialogue 

Thea: But if we are trying to look at this task, I think we should not have… 
I don’t think we should place it in the middle geographic, because here 
[Point at the area close to Kjevik] its very many woods and things like that 
and Tveit is here [pointing to the place between Ryen and Dønnestad].  
Rolf: You can turn on the satellite.  
Thea: Yeah [Switched to the satellite mode] … So, almost no one is living 
here [Points at the area around Kjevik].  
Kåre: Yeah. 

Image 

 
Table 6.17: Sample Data Aligned with Codes (Finding a solution for the model): Group 
A—Task 2. 
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Role of digital technology 

Relating to Task 1, Group A used GeoGebra to experiment/change the numbers as 

they looked for the maximum revenue whilst using the calculator to compute the 

product of the number of people and the corresponding car price. Regarding Task 

2, Group A used Google Maps to research the three cities, visualize the 

environment, and measure the distances between the cities. The students also used 

Google Search to research the population of all the cities.   

Explaining the results in real terms 

Interpreting the mathematical results in real situations involves translating the 

mathematical solution into the real solution. In this case, students might take the 

mathematical aspects or results and re-evaluate them regarding the real-world 

problem. Explaining the results in real terms is an action directed towards the goal 

of interpreting the mathematical results in a real situation, and the students 

performed this action once in the activities. In Tables 6.12 and 6.13 (regarding 

Tasks 1 and 2, respectively), the category ‘explaining the results in real terms’ was 

counted in the last episode (out of 12 and 9 episodes, respectively). This shows 

that the students performed this when they were sure of their mathematical results. 

Tables 2.18 and 6.19 below show a part of the transcription aligned with codes 

showing examples where participants explained their results in real terms. 

In finalizing their results, Group A wrote a report where they interpreted the 

mathematical results in real terms. From the recorded dialogue in Table 6.18, Thea 

wrote a report with input from her peers. Group A explained that the maximum 

revenue would be 562500 euros if the car-selling company sold the car at 7500 

euros for 75 people. Group A further explained how they arrived at the result by 

showing the linear graph they used. On the other hand, from Table 6.19 (regarding 

Task 2), the students reconcile their results with reality, giving meaning to their 

results. They explained their analysis of how they chose the optimal location based 

on the distance, travel time, and not just the geometrical centre of the three cities. 

Ultimately, the students settled on two optimal locations, giving some reasons. 
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Code Explaining the results in real terms 
Task Task 1 

Context The students verified their answers after finding that the company gets the 
maximum revenue if 75 people buy the car at 7500. They also wrote a final 
report after their findings. 

Recorded 
dialogue 

Thea: Yeah, we can try one higher and one lower to be absolutely sure [changes 
y = 74 at the algebra section], erm 26, erm 7600 multiplied with 74.  
Kåre: [Uses the calculator on his mobile phone] its just 100 less.  
Thea: Yes, and one higher [changes y = 76 at the algebra section]. 
Kåre: How much? 
Thea: Its… 24 erm…   
Rolf: 7400  
Thea: Yeah, thanks. 
Kåre: Times?  
Thea: Erm 76 
Kåre: [Uses the calculator on his mobile phone].  
Thea: Its lower, so that’s the best, the price is 7500 and its 75 people buying it, 
then the company is getting most money out of this price…... Should we go to 
the next one? 
Kåre: Yeah 
Thea: [Writes the report for Task 1] 

Image 

 
Table 6.18: Sample Data Aligned with Codes (Explaining the results in real terms): 
Group A—Task 1. 

Below is the written text by Group A in Table 6.18 (the ‘image’ section): 

The text under the graph  

The maximal revenue would be if the company sold each car for 7500£ for 75 

people and the end income would be 562 500£. 
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We found out of this when we made a linear graph, ( ) = − + 100. On the x-

axes was the 0, 5000£ and then when x is 1 it meant that we multiplied 1 by 100£ 

and then pluses 5000£ with 100£. And the y-axes were people. 

 
Code Explaining the results in real terms 
Task Task 2 

Context The students were discussing their final ideas about the position of the 
optimal place. They also wrote a report after agreeing on where to place 
the shopping centre.   

Recorded 
dialogue 

Thea: Is very center. But should we put it closer to Lillesand?   
Rolf: No, Lillesand can just chill up there.   
Kåre: Why shouldn’t we put it there [Pointing at the area around Kjevik 
on the map].  
Thea: Because it’s very much sound from the airport.   
Rolf: We should place the airport somewhere else.  
Kåre: Right [laughs].  
Thea: [Saves two possible locations in yellow on the map]. 
Rolf: [Writes the final report with input from peers]. 

Image 

 
Table 6.19: Sample Data Aligned with Codes (Explaining the results in real terms): 
Group A—Task 2. 

Below is the written text by Group A in Table 6.26 (the ‘image’ section): 

The text under the map 

Our first location is on the mega center that already exist which is Sørlandssenteret. 

The center is located good in terms of population. It is easy to drive to the 

Sørlandssenteret from all the cities. It seems far away from Lillesand, but the 
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highway (I mean E18) makes it much easier for drivers to come to our new mega 

center. If we don’t have the opportunity to place it on a location where a mega 

center already exist, then we would have placed it near where Kjevik is. We located 

our mega center at the other side of Kjevik so that people will not get disturbed by 

the noises of the airplanes from the airport. There is also a camping place and a 

beach nearby. People from these camping places can visit the mega center easily 

which will help the tourism to grow faster in Agder. It is also easy to find where 

Kjevik is because of the airport which is popular. 

 
Role of digital technology 

Regarding Tasks 1 and 2, Group A wrote their final report on a Word Document 

(not included in the list of digital technologies). The other groups that worked 

alongside Group A also wrote their final report in a Word Document (see Appendix 

D.1 for the solution reports of all the groups in School A). 

I will now present the final category, ‘checking the results for adequacy’, that 

emerged in the activities of Group A. 

Checking the results for adequacy 

The solution validation involves checking the results in the situation model for 
adequacy, which is done within the solution process and/or at the end of the 
solution process. To check the results for adequacy, the students might reflect on 
other ways of solving the problem and critically check their final results. Checking 
the results for adequacy is an action directed towards validating the solution. The 
students performed this action in several of the episodes in the activities. In Table 
6.12 (relating to Task 1), it was counted in 6 episodes (out of 12 episodes), while 
in Table 6.13 (relating to Task 2) it was counted in 4 episodes (out of 9 episodes). 
This indicates that at different times (relating to both Task 1 and 2) in the activities, 
the students checked their results (either initial or final results). For instance, from 
the recorded dialogue in Table 6.18 (regarding Task 1) above, for Group A to be 
sure of their answer, Thea suggested they try a number higher and another lower 
than the number that yielded the maximum revenue. There were also instances 
where Rolf, a member of Group A, suggested other ways or strategies of solving 
the task after reflecting on the group’s initial strategy (for example, see Excerpt 
6.3.1 on page 173 or the dialogue in Table 6.10). Concerning Task 2, there were 
instances in Group A’s activities where the students critically reflected on the 
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optimal locations suggested by their peers. For instance, looking at the dialogue in 
Table 6.17, the students had to switch to the satellite on Google Maps to view the 
surroundings of the proposed optimal location before drawing any conclusion. 

Role of digital technology 
Regarding Task 1, Group A used GeoGebra to experiment/change the numbers 
whilst using the calculator to compute the product of the number of people and the 
corresponding car price as they validated their results. Group A also used 
GeoGebra to construct a new function geometrically after critically reflecting on 
the solution strategy. 

I will now present a report on the affordances and constraints of the digital 
technologies that emerged in the activities of Group A. As I did with the emergence 
of modelling actions, I will similarly present a data analysis overview 
corresponding to the third research question before presenting the report.   

6.3.3 Emergence of technological, mathematical and socio-cultural 
affordances and constraints    

The report here corresponds to RQ3 (see Section 1.4). The frequency of actualized 
technological, mathematical and socio-cultural affordances and constraints that 
emerged in Group A’s activities regarding Tasks 1 and 2 are presented in Table 
6.20 and 6.21, respectively. I analyze the affordances and constraints emerging 
within the students’ activities by drawing on CHAT (Leont’ev’s three hierarchical 
layers of an activity, Sub-Section 4.1.2). Solving mathematical modelling tasks 
with digital technologies is seen as a combination of actions and operations from 
CHAT perspective. Actions and operations are identified from the empirical data 
in the form of students’ utterances and engagement with digital technologies. 

Tables 6.20 and 6.21 present the summary of results relating to the frequency 
(or number of counts) of actualized technological, mathematical and socio-cultural 
affordances and constraints that emerged in the episodes of Group A, as they work 
on Task 1 and 2, respectively. The presentation of tables in this section follows the 
same structure. The first part of the tables presents the technological affordances 
and constraints, the second part presents the mathematical affordances and 
constraints, and the third and final part presents the socio-cultural affordances and 
constraints. The technological affordances identified under this subsection are 
listed in Tables 6.12 and 6.13 (roles of digital technologies). However, the 
narrative of the results is done in the Affordance Theory perspective. The 
categories of affordances and constraints emerging are coded in Table 9.7 (in 
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Appendix E.3) for the analysis. The spaces marked by a dash (-) in the tables show 
the technological, mathematical and socio-cultural affordances and constraints that 
are not actualized in Group A’s activities. I will further explain Tables 6.20 and 
6.21 with some excerpts from the video recording transcriptions and screen 
recordings as evidence. 
 

Affordances & 
Constraints 

Digital Technologies 
GeoGebra Excel Calculator Google 

search 
Google 
maps 

Technological 
Affordances 

 

Calculating - - 10 - - 
Researching - - - 1 - 
Geometric construction 4 - - - - 
Experimenting/Changing 11     
Mathematical 
Affordances 

 

Clarification -  - 1 - 
Linking representations   4 - - - - 
Regularity and 
variations   

11 - - - - 

Arithmetic and statistics - - 10 - - 
Socio-cultural 
Affordances 

 

Common focus   7     
Observing and 
improving strategies    

 
3 

 
- 

 
- 

 
- 

 
- 

Authority of the digital 
technology 

1 - - - - 

Table 6.20: The frequency of actualized technological, mathematical, and socio-
cultural affordances that emerged in Group A’s activities regarding Task 1. 

 
 

Affordances & 
Constraints 

Digital Technologies 
GeoGebra Excel Calculator Google 

search 
Google 
maps 

Technological 
Affordances 

 

Researching - - - 2 7 
Measuring - - - - 3 
Visualizing - - - - 2 
Mathematical 
Affordances 
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Analyzing - - - 2 9 
Socio-cultural 
Affordances 

 

Common focus - - - 1 4 
Table 6.21: The frequency of actualized technological, mathematical, and socio-
cultural affordances that emerged in Group A’s activities regarding Task 2. 

I will present the analysis of Group A’s emerging affordances and constraints 
according to the categories listed in Table 6.20 and 6.21. These categories are just 
names that report or describe emerging affordances and constraints. I have 
explained these categories in Sub-Sections 4.3.1 and 4.3.2. Again, the categories 
are interrelated, but I linearly present them. 

Technological affordances and constraints   
The operations performed by the students are characterized by the usability 

features of the digital technologies, and these operations are done at the 

subconscious level (see Sub-Sections 4.3.3 and 4.1.2). Digital technologies afford 

the students different ways in their solution processes as they interact with the 

digital technologies while working on Tasks 1 and 2. The leading digital 

technologies Group A used while working on Task 1 were Google Search, 

GeoGebra and a calculator on the mobile phone. Group A also used Google Maps 

and Google Search while working on Task 2 (see Table 6.1). From Tables 6.20 

and 6.21, the technological affordances and constraints recorded are researching, 

measuring, visualizing, geometric construction, experimenting/changing, data 

entry and generation (ø – representing unidentified categories in the students’ 

activity), and calculating. Affordances do not happen in isolation; they go along 

with constraints (see Section 4.3). The categories listed above appear to be 

affordances, but I consider them both affordances and constraints. For instance, 

GeoGebra affords a construction of a function and also has the constraint that an 

undefined function cannot be constructed. That is, GeoGebra can construct a 

function if one can define this function. I will now present each of the categories 

of technological affordances and constraints (the argument here also applies to 

mathematical and socio-cultural affordances and constraints in this section and 

elsewhere):   
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Researching. Google Search used in Task 1 allows retrieving information on the 

internet for one of the variables in the proposed equation. From Table 6.14 (on 

page 177), Thea searched the meaning of ‘konstantledd’ as Kåre thought the 

equation should be ( ) = 100 . Thea then used the translation retrieved from 

Google Search to explain that the constant value should be 100 and, therefore, the 

last variable in the equation (that is, ( ) = − + 100). Regarding Task 2, Google 

Search and Maps allow the retrieval of information about the population and 

position of the cities, respectively (see Tables 6.9 and 6.15, on pages 168 and 178, 

respectively). Thus, Group A used Google Maps to search for the position of the 

three cities and Google Search to retrieve information about the cities’ population. 

 
Measuring. Google Maps afforded the measuring of time of travel between the 

cities, and the dialogue in Table 6.22 below shows how Thea measures the time of 

travel between Lillesand and Kristiansand. These measurements influenced Group 

A’s choice of the optimal position for the shopping centre.   

Code Technological affordances 
Task Task 2 

Context The students measured the travel time between the cities as they 
analyzed the best position for the shopping centre. 

Recorde
d 

dialogue 

Thea: Its faster… I think it is not so long to go from Lillesand to 
Kristiansand with the new highway [Searched for the minutes and 
distance of travel between Lillesand and Kristiansand and records it].   
Kåre: 26 minutes. 
Rolf: Its nothing, you can just drive there.  
Kåre: It is just above what it will take from Vennesla to Kristiansand.   

Image 

 
Table 6.22: Sample Data Aligned with Codes (Technological affordances): Group A—
Task 2. 
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Visualizing. Google Maps afforded Group A the visualization (see the dialogue in 

Table 6.17 on page 181) of the location of the three cities as they turn on the 

satellite. With this functionality of Google Maps, the students could access the 

environment surrounding their choice of the optimal place for the shopping centre. 

 
Geometric construction. GeoGebra afforded the drawing of a function from the 

identified variables while Group A worked on Task 1. Thea drew the function ( ) = − + 100 with GeoGebra, representing the number of people buying the 

car. Based on this function, they found the maximum revenue for the car-selling 

company (see the dialogue in Table 6.6 on page 166). In other instances, GeoGebra 

affords the drawing of functions. However, these functions did not materialize as 

they did not yield the expected results, although the students perceived there could 

be a function that could give them a much faster result. For instance, in the 

recorded dialogue in Table 6.10 (on page 170), Rolf tried to key in the function ( ) = ∗  but got an ‘illegal function’ feedback, meaning he had to key in the 

function g before there could be a result. It is impossible to draw an undefined 

function in GeoGebra; that is a constraint. This constraint helps the students find 

ways to define a function properly to attain a desired result. The students perceived 

that they could find the product of the number of people buying the car and the 

selling price of the car. However, that did not materialize as they could not define 

the function. GeoGebra could afford the drawing of the function if the students 

could key in the correct variables. At another point, they keyed in the correct 

variables for the function that defines the car’s selling price. However, they still 

did not attain the desired results. From the recorded dialogue in Table 6.23 below, 

Rolf keyed in function = 100 + 5000 as he taught about the car’s selling price. 

However, he did not attain the desired results as no function was defined to 

combine the two functions ( ) − + 100 and = 100 + 5000.   

Code Technological affordances 
Task Task 1 

Context A student suggested a function for the price of the car but did not know 
how to combine the function with the function that describes the 
number of people who buy the car. 
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Recorded 
dialogue 

Rolf: [Writes the function y = 100x + 5000 in the algebra section and 
reduces the size of the graph]. 
Thea: So, we should go over 50 and… or between 100 people and 50 
people applies …What have you done? 
Rolf: I just wanted to draw a new graph so that we can maybe take 
erm… I don’t think it’s right, cos… it can be over the border, I mean go 
over 100. There might be more money… I just forgot it actually.  
Thea: I don’t understand the graph.   

Image 

 
Table 6.23: Sample Data Aligned with Codes (Technological affordances): Group A—
Task 1. 

 
Experimenting/Changing. GeoGebra afforded the students the changing of 

parameters of the function ( ( ) = − + 100) as they observed its effects while 

working on Task 1. The students tried out different numbers while finding the 

maximum company revenue. The students often used this ‘experimenting’ 

procedure with different numbers to find the maximum company revenue. In one 

instance, from the recorded dialogue in Table 6.11 (on page 171), the students 

could not find a slider as an efficient way of finding the correct value instead of 

keying the numbers one after the other, even though they perceived that the 

features of GeoGebra could afford them that. This was because there was no clear 

definition for the slider they made; hence, it did not affect the function as supposed. 

 
Data entry and generation. This category was not identified in the student’s 

activities in both tasks. 

 
Calculating. The calculator on the students’ mobile phones afforded the 

calculation of the product of the number of people and the corresponding price of 
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the car (concerning Task 1). From the recorded dialogue in Table 6.16 (on page 

181), Kåre calculates the product of 80 people buying the car at a selling price of 

7000 euros using the calculator on his mobile phone. Group A used this process 

repeatedly until they arrived at the desired value. That is, changing the values in 

GeoGebra and computing the product of the values with a calculator. 

I will now present the report on the mathematical affordances and constraints 

that emerged in the activities of Group A.    

 
Mathematical affordances and constraints    

The technological affordances and constraints of the digital technologies at the 
operational level support the mathematical affordances emerging at the action 
level, which are done at a conscious level. Several mathematical affordances 
emerged as the students interacted with digital technologies while working on 
Tasks 1 and 2. Technological affordances and constraints provide support for the 
mathematical affordances and constraints; that is, students’ actions in the solution 
process are conditioned by the features of the digital technologies at the operational 
level. From Tables 6.20 and 6.21 (on pages 187 and 188), the mathematical 
affordances and constraints are clarification, analyzing, simulating and visualizing 
(ø), linking representations, regularity and variations, and arithmetic and statistics.   
  
Clarification. From the recorded dialogue relating to Task 1 in Table 6.14 (on page 
177), Thea uses the translation of ‘konstantledd’ retrieved from Google Search to 
explain the terms in the equation that was put forth. The retrieving of information 
or the meaning of a mathematical term during a group interaction might help bring 
out the understanding of a mathematical concept in a mathematics discourse. 
 
Analyzing. The primary mathematical task level affordance that emerged during 
the solution process of Task 2 was analyzing. To create a model, the students used 
Google Maps to locate all three cities. The position of the three cities on the map 
forms the basis of the analysis (see Table 6.8 on page 167). The students also 
considered the distances and travel time between the cities during the analysis. 
Thus, the time of travel played a significant role as they chose the optimal place to 
build the shopping centre. Another factor considered in the analysis in deciding on 
the optimal place was the number of people living within the cities. Google Search 
allows the students to search for factual information about the number of people 
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living within the cities (see Table 6.9 on page 168). With this information, the 
students decided on the city to which the optimal place should be close.   
 
Simulating and visualizing. This category was not identified in the student’s 
activities in both tasks. 
 
Linking representations. Working on Task 1, the students moved between a 
function/equation and a graphical representation (see Table 6.6 on page 166). In 
the graphical representation view in GeoGebra, the students saw the increasing and 
decreasing features of the function as they searched for the maximum revenue of 
the car-selling company. In another case (see Table 6.23 on page 191), they moved 
between an algebraic equation and a graphic representation of this equation (as 
they constructed a new function). The constraint here was that the students could 
not connect the previous function ( ( ) = − + 100) and the new function ( =100 + 5000) or manipulate them, although GeoGebra can afford them that, but 
they did not perceive it. Again, GeoGebra gives feedback, which, if followed 
carefully, could help derive or form the desired function. Looking at Table 6.10 
(on page 170), the students got the feedback ‘illegal function’ when they tried to 
find the product of the number of people and the selling price of the car. Following 
the feedback, another instruction was that one of the variables should be defined. 
Drawing students’ attention to such instructions might help manipulate 
functions/equations and foster mathematical thinking in mathematical discourse. 
 
Regularity and variations. The students explored the regularity and variations in 
the solution model by experimenting with their functions with different numbers. 
That is, the students observed the effect of the changed parameters on the graph as 
they searched for the maximum revenue of the car-selling company (see Table 6.16 
on page 181). This step was repeated until they found the desired result. In another 
instance, during the solution process, the students use sliders in GeoGebra to vary 
the parameters to see the effects on the graph (see Table 6.11 on page 171). This 
could have been an effective way of observing the changes in value compared to 
the keying of numbers, one after the other. However, the slider did not have a clear 
definition and did not affect the graph. 
 
Arithmetic and statistics. The calculator on the students’ mobile phones at the 
mathematical task level afforded numerical computations such as multiplication. 



194 
 

The students could compute numerical computations manually when the numbers 
are small but use the calculator for more significant numbers (see Table 6.16 on 
page 181). 

I will now present the report on the socio-cultural affordances and constraints 
that emerged in the activities of Group A.    
 

Socio-cultural affordances and constraints    
At the activity level, socio-cultural affordances emerged in the joint mathematical 
discourse or interactions that occur through group collaboration. The interaction 
between the students and the digital technologies induced affordances at a 
collective level. The digital technologies stimulated cooperation between the 
students as they worked on the mathematical modelling tasks. The socio-cultural 
affordances that emerged or actualized in the students’ activity were common 
focus (in both Task 1 and 2), observing and improving strategies (only in Task 1), 
and authority of the digital technology (only in Task 1) (see Tables 6.20 and 6.21 
on pages 187 and 188, respectively).    
 
Common focus. Working on Task 1, the students shared the same computer and 
had the facility to look at the same thing and point at what was presented on the 
computer. The students negotiated and agreed on the function ( ( ) = − + 100) 
and its graphical representation. They agreed on a shared goal through a flow of 
turn-taking, dialogue and action. To visually demonstrate their reasoning to one 
another, they used GeoGebra as a reference tool by looking at the coordinate axis 
and sketching with paper-and-pencil ( ( ) = 100 ) in relation to the coordinate 
axis (see Table 6.6 on page 166). To respond to one another, they needed to 
interpret and evaluate the visualized ideas, which Thea came up with the idea that 
100 should be the constant value. Thea, responding to the initial function proposed 
by Kåre, used GeoGebra for reference in anchoring her proposition by suggesting 
the function ( ) = − + 100. Rolf and Kåre accepted by discussing and 
evaluating the proposed function (see Table 6.6). Similar dialogue was observed 
in some of the episodes of the students’ collaborative work, and the students used 
GeoGebra for reference to visualize their reasoning during the mathematical 
discourse. Working on Task 2, the students used both Google Search and Google 
Maps as they analyzed the population, distance and time of travel between the 
cities. These digital technologies helped the students in creating a shared goal. For 
instance, in Table 6.9 (on page 168), we see Thea searching for the population of 
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Lillesand and Kåre communicating the search results. That is, the technology 
created a platform for the students to look at the same thing and communicate 
about it. Again, Google Maps served as a reference tool as the students analyzed 
the positions of the three cities. From Table 6.15 (on page 178), we see Thea 
searching for the position of the cities on the map, Kåre pointing at the cities on 
the screen, and Rolf visualizing his reasoning by joining the points of the cities by 
hand and concluding that it will form a triangle. 
 
Observing and improving strategies. Digital technologies could be used to 
maintain and improve shared knowledge and ideas at a collective level. There were 
instances where the students found themselves in a situation where they wanted to 
find an efficient way of finding the maximum revenue of the company instead of 
going through the numbers or values one after the other. In one example (see the 
recorded dialogue in Table 6.11 on page 171), Rolf thought of the fastest way to 
find out the maximum revenue, which made Thea come up with the idea of making 
sliders. The students made a slider, but this did not materialize as GeoGebra has 
the constraint that the slider must be well-defined to affect the function. Their 
solution strategy could have changed if the students could define this slider. The 
students had similar dialogue in other instances where they tried to make a new 
function (but it was not well-defined). At a time when the function was well 
defined, they were not able to manipulate or put together the two functions (see 
Table 6.23 on page 191). There was no divergence in the students’ solution 
process. However, their solution needed improvement to be more efficient. Thus, 
the students did not get into a situation marked by uncertainty or diverging from 
their strategy in the solution process, where they might need the digital technology 
to verify knowledge or settle disagreements by performing some tests with the 
technology.     
 
Authority of the digital technology. From Excerpt 6.3.1 (page 173), Rolf proposes 
using Excel/spreadsheet to generate the data efficiently. At the same time, Thea 
continues with the previous or existing strategy as she has personalized the 
problem-solving strategy. Thea’s strategy starts with a graphical representation 
and later analyses patterns of numbers and observes the car-selling company’s 
revenue increment. Thea dismisses Rolf’s comments and goes back to the strategy 
described above, thinking they are already close to the answer (which might also 
be a time factor, as discussed under ‘Rules for the subject-community interaction’ 
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on page 170). Subscribing to Rolf’s suggestions might have helped the group 
generate their data with the spreadsheet and possibly find a function representing 
this data. The features of GeoGebra allow multiple problem-solving strategies. 
However, the approach used by the group depends on the representational choice 
of the students taking the leading role (discussed under ‘Division of labour for 
community-object interaction’ on page 172), especially when they think they are 
close to finding the answer. 

In summary, I have reported on the activities of Group A along three themes. 
That is, the students’ (or Group A’s) mathematical modelling activities, the 
modelling actions emerging in Group A’s activity and the role digital technology 
plays, and the affordances and constraints of the digital technologies emerging in 
Group A’s activities. In the following sections, I will present the case study reports 
of the other groups (Group B, C and D). For the reader, I repeat that in the 
following sections, I will only present issues different from Group A (since the 
report on Group A is a detailed report). I will not repeat some expressions used in 
Group A’s report in the other reports. For instance, the expression “activity system, 
hereafter referred to as activity” (see the first paragraph in Sub-Section 6.3.1 on 
page 163). In chronological order, I will first begin with Group B’s report.     

6.4 Case study report: Group B (Emil, Thor, Ella and Tore) 
This section describes the second school’s case study report (Group B; see Sub-
Section 3.4.2). The narrative is presented in an order as highlighted in Section 6.2. 
Group B consists of first-year upper secondary school students (Grade 11). Group 
B comprises four students aged between 16 and 17 years. The reports in Sub-
Sections 6.4.1, 6.4.2 and 6.4.3 correspond to RQ1, RQ2a & RQ2b and RQ3 
respectively. I will first start the report on the students’ (Group B’s) mathematical 
modelling activities.   

6.4.1 Students’ mathematical modelling activities 

Details about Group B are presented in Sub-Section 3.4.2. I will present each of 
the components of the activity system (see Sub-Section 4.1.3 and Section 4.2). 

Subject of the activity   
Four students (Emil, Thor, Ella and Tore) volunteered as the focus group (Group 
B). The teacher describes this group as mixed-achievement (see Table 5.1 for the 
grades assigned to each student). Table 5.1 also shows the approximate time the 
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students used in solving Tasks 1 and 2. The four students adopted different roles 
concerning tool usage while working on both tasks (see Table 5.2 on page 130). 

Community   
The community of the activity was made up of students. Seven groups worked 
together in the classroom (see the group reports of all the groups in Appendix D.2), 
of which particular attention was paid to the focus group (Group B). The 
community was formed spontaneously to solve Tasks 1 and 2 and then dissolved.  
  

Code Ratify the objective (Ratifying the objective of solving the mathematical 
modelling task) 

Task Task 2 
Context The students in this episode made lines to connect the three points 

representing the three cities in GeoGebra as they discussed the optimal 
location.   

Recorded 
dialogue 

Tore: Now put like a line around, like a [pointing to the figure below] … like last 
time, so we know that which one it closest.   
Emil: Uuh ok. Do you wanna make it like a triangle [connecting the points in 
the figure below by hand], or?  
Thor: Erm triangle, maybe not.  
Emil: No, that’s not what we need.  
Tore: Like we did something last time, like put a… 
Thor: No but those are with four points.   
Emil: I don’t fully understand the question, what do we need to find.   
Thor: We need a mega store. 
Emil: Aha.  
Thor: We have a mega store; we need to place it in the optimal place. 
Emil: Aha, the optimal place, ok, sounds good. 

Image 

 
Table 6.24: Sample Data Aligned with Codes (Objective of the Activity): Group B. 
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Object of the activity  
The researcher assumes that the object of the activity is to solve the mathematical 

modelling tasks with digital technologies and write a report. The students 

confirmed this objective at some points in their engagement with both tasks. For 

instance, Table 6.24 above shows a part of the transcription aligned with codes 

showing a certain point where participants ratify their objective of solving Task 2. 

In Table 6.24 (from the recorded dialogue), Thor ratifies the main object of the 

activity as he points out that they need to find an optimal position to place the mega 

shopping centre, for which the other group members agreed. 

Mediating artefacts/tools for the subject-object interaction  
The mediating artefacts or tools mediating the students’ activities are physical 
(digital technologies) and non-physical (group work) tools. I will first present a 
report on the digital technologies Group B used while working on both tasks 

Digital technologies 
Group B used GeoGebra and a calculator device while working on Task 1 and used 
Google Maps, Google Search, GeoGebra and a calculator device while working 
on Task 2 (see Table 6.1 on page 157). Table 6.25 below shows a part of the 
transcription aligned with codes showing examples of different times GeoGebra 
and a calculator device mediated the interactions between the students and solving 
Task 1. The recorded dialogue in Table 6.25 is partitioned into three sections/parts 
(separated by ……). The first part shows the students using the spreadsheet view 
of GeoGebra to present their data after analyzing the task and knowing what they 
need to do (see Image 1 in Table 6.25). The second part of the dialogue shows the 
students constructing a function from their data set (see Image 2 in Table 6.25). 
Thus, the students made a linear graph, ( ) = −0.01 + 150, with persons on the 
y-axis and the price of the car on the x-axis. In this case, if the car is sold at =5000 then the number of people that buy the car will be (5000) = 100. The 
third part of the dialogue shows the students trying out some numbers with the 
function they made (see Image 3 in Table 6.25). Thus, the students inserted =50 in the graph and found the corresponding value (the price of the car), =10000. The students then used a calculator to compute the product of these values 
(i.e., 50 × 10000 = 500000).    

Concerning Task 2, Tables 6.26 and 6.27 below show a part of the 
transcription aligned with codes showing examples of different times Google 
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Maps, Google Search, GeoGebra, and a calculator device mediated the interactions 
between the students and solving Task 2. Table 6.26 shows the students searching 
for the three cities on Google Maps and transferring the coordinates of each city 
into GeoGebra for further analysis. The students also searched for the population 
of each city using Google Search (on a mobile phone).   

 
Code Digital technology (GeoGebra & Calculator) 
Task Task 1 

Context The students first put the information gathered into the spreadsheet view in 
GeoGebra. The students then made a linear graph representing their data. The 
students inserted some values in their function as they searched for the 
maximum company sales revenue. 

Recorded 
dialogue 

Emil: [Completes the values in the spreadsheet]. Now we highlight this, go 
here… “two variable regression analysis” [highlights the values and selects 
regression in GeoGebra, see Image 1]. And now these are the points.   
Thor: Which one will fit best? I think… try linear first. 
Emil: I think linear might look like… let’s find out [Selects the linear of best fit 
for the points]. 
Tore: Yeah.  
Thor: Erm export that to GeoGebra or the graphic sheet. 

…….. 
Emil: [Draws a new function, see Image 2] It’s still decreasing over here. 
Thor: Yeah, but it seems more of a erm manageable rate.     
Emil: Yeah.  
Thor: So, we need to find the optimal price. 
Emil: Ok, at a 100 people this top point is a 5000 [points to the top point in 
Image 2], and then every... so the x-axis is the… 

………. 
Thor: Profit is more important than the people. So, let’s look at 50 people, y 
equals to 50.    
Emil: 50 people, ok. I will just change this one to 50 [Changes y = 1 into y = 50, 
see Image 3]. 
Tore: I think that will be 10000.  
Thor: So, that’s 10000 times [writes the calculations on paper].  
Tore: 50.  
Emil: 50 people will buy the car for 10000.  
Thor: 1000 times 50 [Use a calculator for the calculation], that would be…   
Ella: 500000. 
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Image 

 
Image 1 

 
Image 2 

 
Image 3 

Table 6.25: Sample Data Aligned with Codes (Digital Technology—GeoGebra & 
Calculator): Group B—Task 1. 

 
Code Digital technology (Google Maps & Google Search) 
Task Task 2 

Context The students searched for the population and position of the three cities 
with Google Search and Google Maps, respectively. The students also 
copied the coordinates from Google Maps into GeoGebra. 

Recorded 
dialogue 

Emil: Ok, Google Maps [Search Kristiansand in Google Maps see the 
image below] and [copies the coordinates from Google Maps into 
GeoGebra, see the image in Table 6.25].  
 Ella: Now go to Lillesand and find the coordinates.  
Emil: [Repeat the same process for Lillesand and Vennesla].  
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Thor: Do you think we can use our phones for like erm… while we are 
doing that as well, just to multitask.   
Emil: What do we use it for?  
Thor: For calculation.  
Emil: Oh yeah, that should be fine.  
Thor: Ok [search for the population of Kristiansand with Google Search 
on phone]. 

Image 

 
Table 6.26: Sample Data Aligned with Codes (Digital Technology—Google Maps & 
Search): Group B—Task 2. 

The recorded dialogue in Table 6.7 is partitioned into two sections/parts 
(separated by ……). The first part of the dialogue shows the students searching for 
Point D (the middle point of the three cities) and discussing the fairness of the 
placement of this point (see Image 1 in Table 6.27). The second part of the dialogue 
shows students searching for another point (Point M) that connects the three cities 
(see Image 2 in Table 6.27) and discussing the best position of this point. They did 
so by calculating the median of distances between the three cities and Point M. At 
the end of their analysis, the students transferred the coordinates of Point M into 
Google Maps and located the position of Point M on the map.    

Code Digital technology (GeoGebra & Calculator) 
Task Task 2 

Context The students copied the coordinates of the position of the three cities from 
Google Maps and inserted them into GeoGebra. They then searched for the 
middle point as the optimal point for the shopping centre. 

Recorded 
dialogue 

Thor: That’s not the point we gonna put it but it is close.  
 Ella: Point D has the coordinates 58.23 and 8.06 [see Image 1].  
Thor: But  
Tore: I thought D right now is the point that is closest to all of them, like fair.  
Thor: It is, but  
Emil: No, I would say this is false because this… like from D to V is definitely 
shorter than D to L. 
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Tore: Yeah, but it needed to be like that.  
Thor: Yeah, but L is smaller than V. 
Emil: Exactly. 

………. 
Ella: Now it’s in the middle [see point M in Image 2] 
Thor: What is the middle erm…   
Tore: I think to the left, maybe. 
Thor: We need to find the median.  
Emil: Median of? 
Thor: 0.183 
Emil: Ooh, yeah.  
Thor: Plus [uses the calculator to add 0.183, 0.124, and 0.287, and divide by 3].  
Emil: But we are keeping… It sounds like we wanted it closer to Kristiansand.  
Thor: Yeah. 

Image 

 
Image 1 

 
Image 2 

Table 6.27: Sample Data Aligned with Codes (Digital Technology—GeoGebra & 
Calculator): Group B—Task 2. 

Group work 
Table 6.2 (on page 158) presents the number of times the different interaction 
categories or sequences occurred in the episodes of the students’ activities. From 
Table 6.2, 6 out of 7 episodes describe asymmetrical contingency in the activities 
relating to Task 1, whilst 1 out of 8 episodes describe this contingency in the 
activities relating to Task 2. That is, the interaction that took place in the activities 
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of Task 1 was more supportive, affirming, non-challenging, and non-critical than 
the activities relating to Task 2. Again, 0 out of 7 and 1 out of 7 episodes describe 
respectively reactive and mutual contingencies in the activities relating to Task 1, 
and 5 out of 8 and 2 out of 8 episodes describe respectively reactive and mutual 
contingencies in the activities relating to Task 2. That is, the interaction that took 
place in the activities of Task 2 was more critical and demonstrated tentative ideas 
being offered and debated compared to the activities relating to Task 1.   

Rules for the subject-community interaction 
Table 6.3 in Sub-Section 6.1.3 presents the explicit and implicit rules observed in 
the students’ activities. 

Explicit rule 
One explicit rule in the students’ activities was that they worked in a group (or as 
a group and produced a single group report), and they were allowed to use any 
digital technology available to solve both tasks (the technology was not imposed 
on them). Table 6.1 shows the different digital technologies that Group B (and the 
other groups) used while working on Tasks 1 and 2. Another explicit rule was time 
constraints. The average time used in solving a single task during the practice 
phase (introductory activity) was 20 minutes. So, Group B was expected to use a 
similar time frame to solve Tasks 1 and 2. At a particular point in the students’ 
activities (relating to Task 2), it was observed how time constraints impeded the 
solution process. For example, see Excerpt 6.4.1 below: 

Ella:                Yeah, and we are thinking the wrong way because the question is fair 
and that’s certainly not fair.   

Thor:               We try to do it as fairly as possible.  

Tore:               We failed, so 

 Ella:               As fairly as possible? 

Thor:               We couldn’t, this is mathematically the fairest 

 Ella:               If don’t think about the (fucking) road… 

Thor:               We mess up, we didn’t do it correctly, but we could do this erm more 
thoroughly and more correct if we had more time, which we do not 
have right now.   

Emil:               [Writes the report with the support of peers]. 

Excerpt 6.4.1 
 

From Excerpt 6.4.1, Thor points out that the group accepts the optimal location 
they found (mathematically, the fairest). In contrast, another group member (Ella) 
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argues that they must consider the roads before making the final decision. 
However, the group went on to write the final report due to time constraints 
(although they used 40 minutes to solve the task). 

Implicit rule 
Several implicit rules could be identified in the student’s activities (relating to both 
Task 1 and 2). However, an example of an implicit rule observed is dismissing 
comments or suggestions (which do not fit in the current strategy) without further 
analysis. For instance, Excerpt 6.4.2 below shows a part of the transcription 
showing a certain point where a new idea was dismissed without analyzing it as 
the students solve Task 1: 

Thor:               Because you can think of this like say f is 5000 first… 5000 times 100 
[writes the calculations 5000*100 = 500000 on paper].   

Emil:               I was thinking like we could do a ratio too, if we say like, ok let’s have 
car prices on the left and the people on the right. We know the ratio is 
5000 to 100 [writes 5000 : 100 on paper].  

Thor:               I don’t know if that works, but maybe.   

Ella:                Try it your way [referring to Thor].  

Thor:               Ok, we will try it my way. So, this is like the lowest price we can go, 
that’s erm 500000, that will be the revenue. So, let’s go to the lowest 
turning point, highest price lowest selling point. Where y = 1, so one 
person will buy the car.   

Emil:               Ok. 

Excerpt 6.4.2 
 

From Excerpt 6.4.2, Thor comes up with multiplying the number of people 
buying the car with the price at which they buy the car. Emil also suggested that 
the group look at the ratio between the number of people buying the car and the 
price of the car. However, Ella rejects Emil’s suggestion without trying it out, so 
the group turns to Thor’s initial idea (or the strategy they began with).   
 

Division of labour for the community-object interaction   
The students had roles that were constant throughout the activities (see Table 5.2 
on page 130). Other roles in the form of leading, opposing, suggesting, supporting, 
non-contributing, and questioning and challenging changed at different times 
during the student’s activities. Table 6.4 in Sub-Section 6.1.4 gives the frequency 
of roles taken by each member of Group B as they worked on Tasks 1 and 2. 

Roles adopted by students 
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From Table 6.4, relating to Task 1, Thor mostly took the leading role (about five 
times in the episodes and Emil only once in the episodes), whilst the others mostly 
took the supporting role. Relating to Task 2, Thor took the leading role only once 
in the episodes, and this change might be due to the nature of both tasks. Again, 
members of Group B were recorded opposing each other during the activities 
relating to Task 2, except for Tore (the student assigned the lowest grade within 
the group). This also applies to ‘questioning & challenging’, where each of the 
members at least took this role either in Task 1 or 2 (or both), except Tore (same 
with the ‘suggesting role’, where Tore only took this role once in the episodes 
relating to Task 2 compared to the other group members). Once, in the episodes 
relating to Tasks 1 and 2, Ella (the only female in the group) took the non-
contributing role.   

I will now present a report on the modelling actions of Group B that emerged, 
and the role digital technologies played in these actions. This report corresponds 
to RQ2a and RQ2b.    

6.4.2 Emergence of modelling actions and the role of digital technologies  

The students’ actions are divided into categories, coded in Table 9.6 in Appendix 
E.2. I will present the analysis of the emerging modelling actions of Group B 
according to the categories in Tables 6.28 and 6.29 below. The description of 
Tables 6.28 and 6.29 is similar to Tables 6.12 and 6.13 (see the second paragraph 
on page 174). I will further explain Tables 6.28 and 6.29 with some excerpts from 
the video recording transcriptions and screen recordings as evidence. 

 
Modelling actions 

Episodes of the students’ 
activity 

1 2 3 4 5 6 7 
Breaking the task into manageable parts X X - - - - - 
Searching for a model - X X - - - - 
Finding a solution for the model - - X X X X X 
Explaining the results in real terms - - - - - - X 
Checking the results for adequacy - - - - - - X 
Role of technological tools  
Calculating (Calculator device) - - - - X X X 

Experimenting/Changing (GeoGebra) - - X X X X X 
Geometric construction (Geogebra) - X X - - - - 

Table 6.28: The modelling actions that emerged in Group B’s activities (regarding Task 
1) and the role of the digital technologies. 



206 
 

Modelling actions Episodes of the students’ activity 
1 2 3 4 5 6 7 8 

Breaking the task into manageable parts X - - - - - X - 
Searching for a model X X - - - - - - 
Finding a solution for the model - X X X X X X X 
Explaining the results in real terms - - - - - - - X 
Checking the results for adequacy - - - - - X X X 
Role of technological tools  
Calculating 
(Calculator device) 

- - - - - X - - 

Researching 
(Google maps and search) 

X - - - 
 

- - X - 

Experimenting/Changing 
(GeoGebra) 

- X X - X - - - 

Geometric construction 
(Geogebra) 

X - - - - - - - 

Visualizing 
(GeoGebra) 

- - - X - - - - 

Table 6.29: The modelling actions that emerged in Group B’s activities (regarding Task 
2) and the role of the digital technologies. 

I will present each category in Tables 6.28 and 6.29 and the role of digital 
technology. 
 

Breaking the task into manageable parts   
Under the category “breaking the task into manageable parts” in Table 6.28 
(relating to Task 1) and 6.29 (relating to Task 2), there were different times in the 
episodes where the students performed an action of breaking the task into 
manageable parts. In Table 6.28, it was counted in episodes 1 and 2 (out of 7 
episodes), while in Table 6.29, it was counted in episodes 1 and 7 (out of 8 
episodes). This shows that Group B started their activities relating to Task 1 by 
breaking the task into manageable parts, but relating to Task 2, the students then 
went back to this category after working on the task for some time. Thus, Group B 
searched for extra information to understand the task demands better. For example 
(see Excerpt 6.4.3 on page 209), Ella searched for the travel distance as extra 
information while the group analyzed their proposed optimal position. 

Role of digital technology 
Regarding Task 1, Group B did not use any digital technology under this category; 
the students only discussed the task and wrote down the variables needed to make 
a model (see the first episode in Table 6.28). Regarding Task 2, Group B used 
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Google Maps and Google Search to seek information about the identified variables 
(see Table 6.26 on page 201).      

I will now present the next category, ‘searching for a model’, that emerged in 
the activities of Group B. 

Searching for a model 
The students performed the action of searching for a model in one or two of the 
episodes in the activities. In Table 6.28 (relating to Task 1), it was counted in both 
episodes 2 and 3 (out of 7 episodes), while in Table 6.29 (relating to Task 2), it 
was only counted in both episodes 1 and 2 (out of 8 episodes). From these results, 
the students searched for a model after breaking the task into manageable parts. 
The students also did not come back to search for a new model or update their 
model but went ahead with the initial model they searched for. Working on Task 
1 (see Table 6.25 on page 200), Group B translated the problem text or situation 
into a mathematical problem and then represented the mathematical problem in the 
technological world. Thus, the students represented the mathematical problem in 
GeoGebra by inserting some data points (in the spreadsheet view) and drawing a 
function (in the graphic view) that represents these data points. Working on Task 
2 (see Table 6.26 and 6.27 on pages 201 and 202), the students looked for the 
positions of the three cities on Google Maps and transferred the coordinates of 
these positions into GeoGebra. Later, in the subsequent episodes, the students 
searched for the optimal position by manipulating the points in GeoGebra.    

Role of digital technology 
Relating to Task 1, Group B used GeoGebra for geometric construction (a 
graphical representation of a function or equation) as they performed the action of 
searching for a model. Regarding Task 2, Group B used GeoGebra for a geometric 
construction (a graphical representation of the position of the three cities). That is, 
using Google Maps to search for the position of the three cities and transferring 
the coordinate points into GeoGebra.   

The following presentation is on the report on the category ‘finding a solution 
for the model’ that emerged in Group B’s activities. 

Finding a solution for the model 
In the activities, the students performed this action in several of the episodes 
(compared to other categories of modelling actions). In Table 6.28 (relating to Task 
1), it was counted in 5 episodes (out of 7 episodes), while in Table 6.29 (relating 
to task 2) it was counted in 7 episodes (out of 8 episodes). This shows that many 
students’ actions were about finding a solution for their model. Considering the 
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activities relating to Task 1, Group B used the trial-and-error method by analyzing 
patterns of numbers after finding a function that represents the number of people 
buying the car. Thus, the students inserted a number in the function and found the 
corresponding value, for which they computed the product of these two values 
using the calculator (see, for example, the dialogue in Table 6.25). In working on 
Task 2, the students inserted the coordinate points of the three cities into GeoGebra 
(forming a triangle) and searched for the middle point (Point M; see the dialogues 
in Table 6.26 and 6.27). Group B used the ‘median of a triangle (centroid)’ 
approach to construct the centre of the triangle. Thus, they first searched for the 
midpoint of each side of the triangle and then connected these midpoints to the 
point (one of the three cities) opposite the corresponding midpoint (for instance, A 
– L, B –V, and C – K in Image 1 of Table 6.27). The segments (A, L), (B, V) and 
(C, K) meet at point D, and the students considered this point as the midpoint 
(optimal point) of the triangle. The students later made a duplicate point (Point M) 
for point D and then transferred this point from GeoGebra back to Google Maps 
and searched for the position of this point on the map. Although the students 
considered point M/D the optimal point, if you construct a circle with point M/D 
as the centre, the circle will not pass through all the corner points of the triangle.    

Role of digital technology 
Relating to Task 1, Group B used GeoGebra to experiment/change the number as 
they looked for the maximum revenue whilst using the calculator to compute the 
product of the number of people and the corresponding car price. Regarding Task 
2, Group B used GeoGebra to search for the middle point by changing (or 
experimenting) points and the calculator to compute the median of the distances 
between the middle point and the points representing the three cities. Again, the 
students used GeoGebra to visualize the coordinates of the middle point.    

The following presentation is on the report on the category ‘explaining the 
results in real terms’ that emerged in Group B’s activities. 

Explaining the results in real terms 
In Table 6.28 (relating to Task 1) and 6.29 (relating to Task 2), the category 
‘explaining the results in real terms’ was counted in the last episode (out of 7 and 
8 episodes, respectively). This shows that the students performed this action when 
they were sure about their mathematical results. In finalizing their results, Group 
B wrote a report where they interpreted the mathematical results in real terms (see 
Group B’s report in Appendix D.2). From this report (relating to Task 1), Group B 
explained that the optimal selling price per car is 7500 euros, increasing the 
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company’s sales revenue by 62500 euros if they sell 75 cars (instead of 100 cars). 
On the other hand (relating to Task 2), Group B chose Dønnestad as the optimal 
place (the mathematical central area) to build the shopping mall. The students also 
pointed out that this place might not be the most optimal location, and with more 
resources and time, they might find a fairer place for all three cities.     

Role of digital technology 
Regarding Tasks 1 and 2, Group B wrote their final report in a Word Document. 
The other groups that worked alongside Group B also wrote their final report in a 
Word Document (see Appendix D.2 for the solution reports of all the groups in 
School B).   

I will now present the final category, ‘checking the results for adequacy’, that 
emerged in the activities of Group B. 

Checking the results for adequacy 
The students checked the results for adequacy in some of the episodes. In Table 
6.5 (relating to Task 1), it was counted in the last episode (out of 7 episodes), while 
in Table 6.9 (relating to Task 2), it was counted in episodes 6, 7 and 8 (out of 9 
episodes). This shows that the students performed this action at the end of the 
activities relating to Task 1 and then closer to the end (both initial and final results) 
of the activities relating to Task 2. For instance, Excerpt 6.4.3 shows a part of the 
transcription showing a certain point where the students checked their results for 
adequacy as they worked on Task 2: 

Ella:            Yeah, and I am checking how long to drive [Searched for the time of 
travel between the optimal place and Vennesla on Google maps]. Its 
8 minutes from Vennesla to drive, and…  

Emil:             To where?  

 Ella:             To that location [Referring to the marked location on the map].   

 Ella:             And for Kristiansand it’s 17.  

Thor:            Ok, that’s pretty far.   

 Ella:             And for Lillesand it’s 31.  

Thor:            [laughs] maybe they got some good stores. 

Excerpt 6.4.3 
 

From Excerpt 6.4.3, Ella searched for the travel distance between the optimal place 
for the shopping centre and the three cities. The students then discussed the optimal 
position (on the issue of fairness) by acknowledging the travel time from the cities 
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to this position/place. However, due to time constraints, the students settled on this 
position at the end of their discussion (see Excerpt 6.4.1 on page 203).    

Role of digital technology 
Relating to Task 1, Group A used GeoGebra to experiment/change the numbers 
whilst using the calculator to compute the product of the number of people and the 
corresponding car price, validating their results. Regarding Task 2, Group B used 
Google Search to seek information on the travel time between the optimal position 
and the three cities. 

I will now present a report on the affordances and constraints of the digital 
technologies that emerged in the activities of Group B, and this corresponds to 
RQ3.    

6.4.3 Emergence of technological, mathematical and socio-cultural 
affordances and constraints    

The frequency of actualized technological, mathematical and socio-cultural 
affordances and constraints that emerged in Group B’s activities regarding Tasks 
1 and 2 are presented in Table 6.30 and 6.31, respectively. I will present the 
analysis of Group B’s emerging affordances and constraints according to the 
categories listed in Tables 6.30 and 6.31. The description of Tables 6.30 and 6.31 
is similar to Tables 6.20 and 6.21 (see the last paragraph on page 186). I will further 
explain Tables 6.30 and 6.31 with some excerpts from the video recording 
transcriptions and screen recordings as evidence. 
 

Affordances & 
Constraints 

Digital Technologies 
GeoGebra Excel Calculator Google 

search 
Google 
maps 

Technological 
Affordances 

 

Calculating - - 4 - - 
Geometric construction 2 - - - - 
Experimenting/Changing 6 - - - - 
Mathematical 
Affordances 

 

Linking representations   2 - - - - 
Regularity and 
variations   

6 - - - - 

Arithmetic and statistics - - 4 - - 
Socio-cultural 
Affordances 
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Common focus   6 - - - - 
Authority of the digital 
technology 

2 - - - - 

Table 6.30: The frequency of actualized technological, mathematical, and socio-
cultural affordances that emerged in Group B’s activities regarding Task 1. 

 
 

Affordances & 
Constraints 

Digital Technologies 
GeoGebra Excel Calculator Google 

search 
Google 
maps 

Technological 
Affordances 

 

Calculating - - 1 - - 
Researching - - - 3 3 
Measuring - - - - 1 
Geometric construction 1 

 
- - - - 

Experimenting/Changing 5 - - - - 
Visualizing 1 - - -  

Mathematical 
Affordances 

 

Analyzing - - - 3 4 
Simulating and 
visualizing   

1 - - - - 

Linking representations   1 - - - - 
Regularity and 
variations   

5 - - - - 

Arithmetic and statistics   - - 1 - - 
Socio-cultural 
Affordances 

 

Common focus 5 - - - 1 
Table 6.31: The frequency of actualized technological, mathematical, and socio-
cultural affordances that emerged in Group B’s activities regarding Task 2. 

I will now start with a presentation on technological affordances and 
constraints emerging in the activities of Group B. 
 

Technological affordances and constraints   
The digital technologies Group B used while working on Task 1 were GeoGebra 
and a calculator device. Group B also used Google Maps, Google Search, 
GeoGebra and a calculator device while working on Task 2 (see Table 6.1). From 
Tables 6.30 and 6.31, the technological affordances and constraints recorded are 
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researching, measuring, visualizing, geometric construction, 
experimenting/changing, data entry and generation (ø) and calculating. 
 
Researching. Regarding Task 2, Google Maps and Google Search afford the 
retrieval of information about the cities’ position/location and population, 
respectively, as the students interact with these technologies (see Table 6.26 on 
page 201).   
 
Measuring. Relating to Task 2, Google Maps affords the measure of time of travel 
between the cities and the optimal place for the shopping centre. For instance, the 
dialogue in Excerpt 6.4.3 (on page 209) shows how Ella measures the travel time 
between Dønnestad (the optimal location) and Vennesla. 
 
Visualizing. Regarding Task 2, GeoGebra allowed Group B to visualize a point in 
the graphic view. Thus, the students made a duplicate (Point M in Image 2 in Table 
6.27 on page 202) of the middle point (Point D in Image 1 in Table 6.27). The 
students then showed (making it visible) the coordinate points of the duplicate 
point in the graphic view of GeoGebra.    
 
Geometric construction. GeoGebra afforded the drawing of a function from the 
identified variables while Group B worked on Task 1. From Table 6.25 (on page 
200), the students drew the function ( ) = −0.01 + 150 with GeoGebra, 
representing the number of people buying the car. To draw this function, the 
students inserted some data points and then generated an equation representing 
these data points. The students then found the maximum revenue for the car-selling 
company based on this function. Again, from Table 6.27, the students constructed 
a figure (see Image 3) representing the optimal location connected to the three 
cities.     
 
Experimenting/Changing. GeoGebra afforded Group B the changing of 
parameters of function ( ( ) = −0.01 + 150) as they observed its effects while 
working on task 1. In this case, the students tried out different numbers while 
finding the maximum company revenue. For instance, the third part of the recorded 
dialogue in Table 6.25 shows the students trying out their function with = 50 
(that is, 50 people buying the car). Relating to Task 2, the students first inserted 
the coordinates points of the cities into GeoGebra, and they searched for the middle 



213 
 

point that connects the three cities. The students did so by experimenting or 
changing the coordinate points several times until they were satisfied with the 
optimal point (see Table 6.27).      
 
Data entry and generation. This category was not identified in the student’s 
activities in both tasks. 
 
Calculating. Relating to Task 1, the calculator device afforded the calculation of 
the product of the number of people and the corresponding price of the car (see the 
third part of the recorded dialogue in Table 6.25). Relating to Task 2, the calculator 
device afforded the calculation of the median of the distances between the optimal 
point and the cities (see the second part of the recorded dialogue in Table 6.27). 
 

Mathematical affordances and constraints   
From Tables 6.30 and 6.31, the mathematical affordances and constraints recorded 
are clarification (ø), analyzing, simulating and visualizing, linking representations, 
regularity and variations, and arithmetic and statistics.   
 
Clarification. This category was not identified in the student’s activities in both 
tasks. 
 
Analyzing. Group B reconciled their model with reality (relating to Task 2). They 
did so by inserting the coordinates of the optimal point in GeoGebra into Google 
Maps. The students also compared the time of travel between the optimal location 
and the three cities, as well as the population of these cities (see Tables 6.26 and 
2.27). 
 
Simulating and visualizing. Working on Task 2, the students made duplicates of 
points. They moved (or manipulated) these points dynamically to see the changes 
in the distances between the optimal location and the three cities (see Table 2.27).  
   
Linking representations. Working on Task 1, the students moved between 
numeric, equations and graphical representation. That is, the students inserted 
some data points in the spreadsheet view and constructed a graph representing 
these data points in the graphical view in GeoGebra, and the algebraic view also 
presented a function that represents both the data points and the graph (see Table 
2.25). Relating to Task 2, the students could represent the coordinates (from 
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Google Maps) of the three cities in a graphical view in GeoGebra (see Table 6.26 
and 6.27). 
 
Regularity and variations. Relating to Task 1, The students explored the regularity 
and variations in the solution model by experimenting with their function with 
different numbers. That is, the students observed the effect of the changed 
parameters on the graph as they searched for the maximum revenue of the car-
selling company. This step was repeated until they found the desired result (Table 
6.25). Similarly, relating to Task 2, the students manipulated or changed the 
coordinate points in the graphical view in GeoGebra several times until they were 
satisfied with the optimal point (see Table 6.27).     
 
Arithmetic and statistics. At the mathematical task level, the calculator device 
allows numerical computations such as multiplication (in Task 1) and 
average/median of a set of numbers (Task 2). 
 

Socio-cultural affordances and constraints   
The socio-cultural affordances and constraints that emerged or actualized in the 
students’ activity were common focus (in both Task 1 and 2), observing and 
improving strategies (ø) and authority of the digital technology (only in Task 1) 
(see Table 6.30 and 6.31).     
 
Common focus. The students shared the same computer and had the facility to 
look at the same thing and point at what was presented on the computer. For 
instance, to visually demonstrate their reasoning to one another, the students used 
GeoGebra as a reference tool by looking at the three points in the graphical view 
and sketching a triangle by hand gesture (see Table 6.24 on page 197).   
 
Observing and improving strategies. This category was not identified in the 
student’s activities in both tasks. 
 
Authority of the digital technology. From Excerpt 6.4.2 (on page 204), Emil came 
up with the idea of finding the ratio between the number of people buying the car 
and the price of the car. At the same time, Ella suggested that the group continue 
with the existing strategy (proposed by Thor). In this case, the other group 
members (except Emil) had personalized the problem-solving strategy and had not 
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considered other strategies. A similar situation occurred towards the end of the 
activities relating to Task 1; see Excerpt 6.4.4 below: 

Thor:              That’s more profit than that.   

Ella:               Try 70 then.  

Emil:              Oh, you know what we can do.  

Thor:             Yeah. 

Emil:               We can make a function to find out the revenue.  Can we do like erm…   

Thor:             We could. 

Ella:               Try 70 first. 

Excerpt 6.4.4 
From Excerpt 6.4.4, Emil came up with the idea of making a function 

representing the revenue. However, Ella insisted they continue with the ongoing 
strategy (although Thor, taking the leading role, was interested in this new idea). 
There might be a possibility of Ella insisting the group continue with the ongoing 
strategy if she thinks they are close to finding the answer. From this narrative, it 
appears that the features of GeoGebra allow multiple problem-solving strategies. 
However, the approach used by the group depends on the strategy with which some 
students are comfortable (or fits with the existing strategy). 

In summary, I have reported on the activities of Group B along three themes. 
That is, Group B’s mathematical modelling activities, the modelling actions 
emerging in Group B’s activity and the role digital technology plays, and the 
affordances and constraints of the digital technologies emerging in Group B’s 
activities. In the following sections, I will present the case study reports of Groups 
C and D. As stated earlier (before Section 6.4), I noted that I will only present 
issues different from Group A while presenting the report of Group B (and the 
other groups). In the same way, I will only present issues different from Groups A 
and B while writing the report for Groups C and D. 

6.5 Case study report: Group C (Nils, Anna and Jørn) 

This section offers a description of the case study report of the third school (Group 
C; see Sub-Section 3.4.3). The narrative is presented in an order as highlighted in 
Section 6.2. Group C is made up of first-year upper secondary school students 
(Grade 11). Group C comprises three students aged between 16 – 17 years. The 
reports in Sub-Sections 6.5.1, 6.5.2 and 6.5.3 correspond to RQ1, RQ2a & RQ2b 
and RQ3 respectively. I will first start the report on the students’ (Group C’s) 
mathematical modelling activities.        
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6.5.1 Students’ mathematical modelling activities 

Details about Group C are presented in Sub-Section 3.4.3. I will present each of 
the components of the activity system (see Sub-Section 4.1.3 and Section 4.2). 

Subject of the activity   
Three students (Nils, Anna and Jørn) volunteered as the focus group (Group C). 
The teacher describes this group as a same-achievement group (see Table 5.1 for 
their assigned grades). Table 5.1 also shows the approximate time the students used 
in solving Tasks 1 and 2. The three students adopted different roles concerning 
tool usage while working on both tasks (see Table 5.2 on page 130).   

Community   
The community of the activity was made up of students. Five groups worked 
together in the classroom (see the group reports of all the groups in Appendix D.3), 
of which particular attention was paid to the focus group (Group C). The 
community was formed spontaneously to solve Tasks 1 and 2 and then dissolved.   

Object of the activity  
The researcher assumes that the object of the activity is to solve the modelling 
tasks with digital technologies and write a report. The students confirmed this 
objective at some points in their engagement with both tasks. There are also 
instances where the students have to re-read the problem and remind themselves 
of the objective/goal of solving the task; for example, see Excerpt 6.5.1 below: 

Nils:                Yep, you can check the populations.   

Jørn:              [reads a part of the second task] so that the needs of the three towns   
are served in a fair way. So, what’s fair?  

Nils:                I would say is a place closer to the more densely populated area. 

Excerpt 6.5.1 
 

From Excerpt 6.5.1, Nils suggests the group checks the population of three cities 
as they discuss the optimal position. Jørn then re-read a part of the problem text, 
reminding the group of the goal of the task (raising the question about fairness).   

Mediating artefacts/tools for the subject-object interaction  
The mediating artefacts or tools mediating the students’ activities are physical 
(digital technologies) and non-physical (group work) tools. I will first present a 
report on the digital technologies that Group C used while working on both tasks. 

Digital technologies 
Group C used Excel/spreadsheet while working on Task 1 and used Google Maps, 
Google Search and GeoGebra while working on Task 2 (see Table 6.1). Table 6.32 
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below shows a part of the transcription aligned with codes, showing examples of 
different times Excel/spreadsheet mediated the interactions between the students 
and solving Task 1. The recorded dialogue in Table 6.32 is partitioned into two 
sections/parts (separated by ……). The first part shows the students using 
Excel/spreadsheet to present their data after analyzing the task and knowing what 
to do. At one point, one student suggested using GeoGebra, but the students 
continued with the initial tool. The second part of the dialogue shows the students 
generating their data in Excel/spreadsheet. Thus, the students drag down the 
selected few points or data to generate complete data representing the problem. 

Code Digital technology (Excel/spreadsheet) 
Task Task 1 

Context The students first put the information gathered into Excel. The students then 
generated their entire data by dragging down the selected points or initial 
data. 

Recorded 
dialogue 

Nils: [Reads the first task aloud].  
Anna: Erm… we could make a graph,  
  Nils: Yeah. 
Anna: Or we could make an Excel [opens Excel on the computer, see Image 
1]. We kind of make a function in Excel… because it would have to be 
recursive. Right?    
  Nils: Erm, not necessary, because the thing is that we need to… erm 
because 5000 euros and 100 people will buy, if it is 5100 euros 99 people 
will buy it. That means that you lost… you lost on customers gain erm like     
Anna: Ok  
  Nils: So, basically you need to find the function where that doesn’t reward 
anymore, so then we need to figure out 
Anna: I don’t really understand how you would be able to like make a 
function in GeoGebra though [opens GeoGebra on the computer].   
  Nils: We could try… try Excel… because then it will be… 

…….. 
Anna: And you could just drag that one.  
  Nils: Yeah [drags C2 down, see Image 2]. You can drag that down until the 
final break point where it doesn’t make money anymore.   
Anna: [selects A3, B3, and C3 and drags them down, see Image 2], so as you 
see… I need to drag it all the way down [selects A24, B24, and C24 and 
drags them down, see Image 3]. Erm, I did… erm it would be 75 customers 
for 7500 euros per car. 
  Nils: Yeah, so that is  
Anna: And beyond that the revenue starts declining.  
  Nils: Yep. So, again this is recursive function, so we can’t do it in 
GeoGebra.   
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Anna: Erm.   
Image 

 
Image 1 

 
Image 2 

 
Image 3 

Table 6.32: Sample Data Aligned with Codes (Digital Technology—Excel): Group C—
Task 1. 

Concerning Task 2, Tables 6.33 and 6.34 below show a part of the 

transcription aligned with codes, showing examples of different times Google 

Maps, Google Search, and GeoGebra mediated the interactions between the 

students and solving Task 2. The recorded dialogue in Table 6.33 is partitioned 

into two sections/parts (separated by ……). The first part shows the students 

searching for the three cities and saving them on Google Maps. The second part of 

the dialogue shows the students searching for the population of the three cities 

using Google Search. Table 6.34 shows the students searching for a theoretical 

optimal position using GeoGebra. Thus, the students imported the saved location 

from Google Maps into GeoGebra and constructed the middle point representing 

the theoretical optimal position. 
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Code Digital technology (Google Maps & Google Search) 
Task Task 2 

Context The students first searched for the positions of the three cities on Google 
Maps. The students also searched for the population of each city with Google 
Search. 

Recorded 
dialogue 

Anna: [Reads the second task aloud].  
  Nils: You have to pull up the Google Maps then  
Anna: Erm we can go to Google Maps [opens Google Maps, and search for 
Kristiansand, see Image 1] and then Kristiansand. 
  Nils: Lillesand 
Anna: Erm Lillesand [search for both Lillesand and Vennesla and save them 
on the map, see Image 1] ….. 

……… 
Jørn: [reads a part of the second task] so that the needs of the three towns are 
served in a fair way. So, what’s fair?  
  Nils: I would say is a place closer to the denser populated area.  
Anna: [search with Google Search, the population of Vennesla] it will be 
14000. 
Nils: And then erm Lillesand.  
Anna: [search with Google Search, the population of Lillesand].   
  Nils: 10000, Lillesand is smaller.  
Anna: Yep, but if we do that [search with Google Search, the population of 
Kristiansand, see Image 2]  
  Jørn: Kristiansand is not that big.   
  Nils: It’s not that many but it feels 10 times as much as the others [laughs].  
  Jørn: Yeah.   

Image 

 
Image 1 

 
Image 2 

Table 6.33: Sample Data Aligned with Codes (Digital Technology—Google Maps & 
Search): Group C—Task 2. 
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Code Digital technology (GeoGebra) 
Task Task 2 

Context The students finally constructed a theoretical optimal position with 
GeoGebra. 

Recorde
d 

dialogue 

Nils: Yeah, but the thing is that if you just have a hypothetical optimal 
place.   
Anna: Erm 
  Nils: So right now, we have one based on pre-existing road networks 
erm pre-existing locations but if you just put the map erm into GeoGebra 
we can make a theoretical best location.  
Anna: [marks the three cities on Google Maps and exports the image into 
GeoGebra and find the center of the three cities (with the help from Nils), 
see Image 3]. 
  Nils: That will be the [laughs] ideal location if you do just based on…  
Anna: If we do not factor in population or roads.   
  Nils: Yeah, if you don’t factor in population and roads, that will be the 
ideal location.   
Anna: If everyone can just fly [writes the final statement of the report with 
the help of peers]. 

Image 

 
Table 6.34: Sample Data Aligned with Codes (Digital Technology—GeoGebra): Group 
C—Task 2. 

Group Work 
Table 6.2 (on page 158) presents the number of times the different interaction 
categories or sequences occurred in the episodes of the students’ activities. From 
Table 6.2, 0 out of 2 episodes describes asymmetrical contingency in the activities 
relating to Task 1, whilst 1 out of 5 episodes describes this contingency in the 
activities relating to Task 2. Again, 0 out of 2 and 2 out of 2 episodes describe 
respectively reactive and mutual contingencies in the activities relating to Task 1, 
and 2 out of 5 and 2 out of 5 episodes describe respectively reactive and mutual 
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contingencies in the activities relating to Task 2. Thus, the interactions were more 
critical and demonstrated tentative ideas being offered. This might result from the 
nature of the students (high-performing students). 

Rules for the subject-community interaction 
Table 6.3 (on page 158) presents the explicit and implicit rules observed. 

Explicit rule 
The students worked in a group, and the technology used was not imposed on them; 
as such, Table 6.1 shows the different digital technologies used by Group C as they 
worked on both tasks. Another explicit rule was time constraints. From Table 5.1, 
Group C spent less time on both tasks. Thus, the students used 8 minutes on Task 
1 and 31 minutes on Task 2 (because they finished early on the first task and used 
the remaining time on the next task). 

Implicit rule 
No implicit rules were observed or recorded in the activities of Group C. This 
might result from the fact that this group is made up of high-performing students 
working together. 

Division of labour for the community-object interaction   
The students had roles that were constant throughout the activities (see Table 5.2). 
Other roles in the form of leading, opposing, suggesting, supporting, non-
contributing, and questioning and challenging changed at different times during 
the students’ activities. Table 6.4 (on page 160) gives the frequency of roles taken 
by each member of Group C as they worked on both tasks. 

Roles adopted by students 
From Table 6.4, relating to Tasks 1 and 2, all members of Group C took suggesting 
and supporting roles at some time. None of the students took the opposing role in 
either of the activities, and Nils only took the leading role in one of the episodes 
relating to Task 2. This might result from the characteristics of the students (high-
performing students). There were a few instances where Anna (in one episode) and 
Jørn (in three episodes) took the questioning and challenging role in the activities 
relating to Task 2. Jørn was the only member who, on some occasions, took the 
non-contributing role in both activities, although he is a high-performing student 
(like the others). 

I will now present a report on the modelling actions of Group C that emerged, 
and the role digital technologies played in these actions. This report corresponds 
to RQ2a and RQ2b.     
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6.5.2 Emergence of modelling actions and the role of digital technologies  

The student’s actions are divided into categories (coded in Table 9.6 in Appendix 
E.2). I will present the analysis of the emerging modelling actions of Group C 
according to the categories in Table 6.35 and 6.36 below. The description of Tables 
6.35 and 6.36 is similar to Tables 6.12 and 6.13 (see the second paragraph on page 
174). I will further explain Tables 6.28 and 6.29 with some excerpts from the video 
recording transcriptions and screen recordings as evidence. 

 
Modelling actions 

Episodes of the students’ 
activity 

1 2 
Breaking the task into manageable parts X - 
Searching for a model X - 
Finding a solution for the model - X 
Explaining the results in real terms - X 
Checking the results for adequacy - - 
Role of technological tools  
Data entry and generation (Excel/Spreadsheet) X X 

Table 6.35: The modelling actions that emerged in Group C’s activities (regarding Task 
1) and the role of the digital technologies. 

 
 

Modelling actions 
Episodes of the students’ 

activity 
1 2 3 4 5 

Breaking the task into manageable parts X X X - - 
Searching for a model X - - - - 
Finding a solution for the model - X X X X 
Explaining the results in real terms - - - X X 
Checking the results for adequacy - - - X - 
Role of technological tools  
Researching 
(Google Search, Google Maps) 

 
X 

 
- 

 
X 

 
- 

 
- 

Measuring 
(Google Maps) 

- X X - - 

Geometric construction 
(Geogebra) 

 
- 

 
- 

 
- 

 
- 

 
X 

Table 6.36: The modelling actions that emerged in Group C’s activities (regarding Task 
2) and the role of the digital technologies. 

I will present each category in Tables 6.35 and 6.36 and the role of digital 
technology. 
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Breaking the task into manageable parts   
Under the category “breaking the task into manageable parts” in Table 6.35 
(relating to Task 1) and 6.36 (relating to Task 2), there were different times in the 
episodes where the students performed an action of breaking the task into 
manageable parts. In Table 6.36, it was counted only in the first episode (out of 2 
episodes), while in Table 6.36, it was counted in episodes 1, 2 and 3 (out of 5 
episodes). This shows that Group C started their work on Tasks 1 and 2 by breaking 
the task into manageable parts. However, relating to Task 2, the students perform 
this action in the next two episodes. In this case, the students searched for extra 
information to understand the task demands better. For example, in the second part 
of the dialogue in Table 6.33 (on page 219), the students searched for the 
population of the three cities as extra information for their analysis. Thus, the 
students searched for extra information by re-reading a part of the problem text. 

Role of digital technology 
Regarding Task 1, Group C did not use any digital technology under this category; 
the students only discussed the task and agreed on the variables needed to make a 
model (see the first part of the dialogue in Table 6.32 on page 218). Regarding 
Task 2, Group C used Google Maps and Google Search to seek information about 
the identified variables (see Table 6.33). 

I will now present the next category, ‘searching for a model’, that emerged in 
the activities of Group C. 

Searching for a model 
The students performed the action of searching for a model in one of the episodes 
in the activities. In Table 6.35 (relating to Task 1), it was counted in the first 
episode (out of 2 episodes), while in Table 6.36 (relating to Task 2), it was only 
counted in the first episode (out of 5 episodes). From these results, the students 
searched for a model after breaking the task into manageable parts. The students 
also did not come back to search for a new model or update their model but went 
ahead with the initial model they searched for. For instance, Group C presented 
their initial variables in Excel/spreadsheet and later looked for the optimal location 
by generating all the data from the initial variables (see the first part of the dialogue 
in Table 6.32). On the other hand, the model that the students set up for Task 2 is 
described in Table 6.33. In Table 6.33, the students used Google Maps to set up 
their model by researching the positions of the three cities (which form a triangle). 
In the subsequent episodes, the students later analyzed the optimal place to build 
the shopping mall based on the positions of these cities. 
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Role of digital technology 
Regarding Task 1, Group C inserted their initial variables in Excel/spreadsheet and 
later generated the entire data. Relating to Task 2, Group C used Google Maps to 
seek information about the positions of the three cities.   

The following presentation is on the report on the category ‘finding a solution 
for the model’ that emerged in Group C’s activities. 

Finding a solution for the model 
In the activities, the students performed this action in several of the episodes 
(compared to other categories of modelling actions). In Table 6.35 (relating to Task 
1), it was counted in the second episode (out of 2 episodes), while in Table 6.36 
(relating to Task 2), it was counted in 4 episodes (out of 5 episodes). This shows 
that many students’ actions were about finding a solution for their model. 
Regarding Task 1, the students generated their entire data set from the initial data 
(or variables) using Excel/spreadsheet (see the second part of the dialogue in Table 
6.32). In working on Task 2, the students measured the travel distances between 
the three cities and the proposed optimal location. The students also factored in the 
population of the cities in their analysis (see Table 6.33). Again, the students 
constructed a circumcircle/circumcenter of a triangle (with the three cities as the 
triangle’s vertices) without considering the roads and other factors (see Table 6.34 
on page 220). Thus, the students constructed a perpendicular bisector of each side 
of the triangle (where the corner points represent the three cities) and then searched 
for the point of intersection (optimal point) of these perpendicular bisectors. The 
students constructed a circle with the point of intersection as the centre point, and 
the circle passes through all the triangle’s corner points (or vertices).     

Role of digital technology 
Regarding Task 1, Group C used Excel/spreadsheet to generate the entire data 
(through which they found their answer). Regarding Task 2, Group C used Google 
Maps to seek information about the positions of the three cities and to measure the 
distances between these cities. They also used Google Search to seek information 
about the population of each city for their analysis. The students also used 
GeoGebra to construct a geometric shape representing the cities and looked for the 
geometric middle point. 

The following presentation is on the report on the category ‘explaining the 
results in real terms’ that emerged in Group C’s activities. 

Explaining the results in real terms 
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In Table 6.35 (relating to Task 1), the category ‘explaining the results in real terms’ 
was counted in the second episode (out of 2 episodes), while in Table 6.36 (relating 
to Task 2), this category was counted in the last two episodes (out of 5 episodes) 
where Group C performed the action of explaining the results in real terms. This 
shows that the students performed this action when they were sure about their 
mathematical results. In finalizing their results, Group C wrote a report where they 
interpreted the mathematical results in real terms (see Group C’s report in 
Appendix D.3). From this report (relating to Task 1), Group C explained that the 
total revenue would be at its highest at 75 customers buying the car for 7500 euros. 
Regarding Task 2, Group C concluded that the shopping centre should be located 
in Kjevik (the hypothetical best location), which is fairly placed based on the 
population of the three cities. In this case, the travel time is shorter for the larger 
populated city (which might result in less carbon dioxide—CO2 emissions). Again, 
Group C constructed a general optimal location (theoretical best location) without 
considering the roads and population of the cities (see Table 6.34).    

Role of digital technology 
Related to both Tasks 1 and 2, Group C wrote their final report on a Word 
Document. The other groups that worked alongside Group C also wrote their final 
report in a Word Document (see Appendix D.3 for the solution reports of all the 
groups in School C). Group C also used GeoGebra to construct the theoretical best 
location without considering other factors, as they explain their results.    

I will now present the final category, ‘checking the results for adequacy’, that 
emerged in the activities of Group C. 

Checking the results for adequacy 
The students checked the results for adequacy in one of the episodes concerning 
Task 2. In Table 6.35 (relating to Task 1), this category was not counted in any of 
the episodes, while in Table 6.36 (relating to Task 2), it was counted in episode 4 
(out of 5 episodes). This shows that the students were satisfied with the results 
(relating to Task 1) from the generated data in Excel/spreadsheet without further 
analysis. Concerning Task 2, the students performed this action close to the end of 
the activities. 

Role of digital technology 
Regarding Task 1 and 2, Group C did not use any digital technology under this 
category; the students only discussed the results they had. 
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I will now present a report on the affordances and constraints of the digital 
technologies that emerged in the activities of Group C, and this report corresponds 
to RQ3.    

6.5.3 Emergence of technological, mathematical and socio-cultural 
affordances and constraints   

The frequency of actualized technological, mathematical, and socio-cultural 
affordances and constraints that emerged in Group C’s activities regarding Tasks 
1 and 2 are presented in Table 6.37 and 6.38, respectively. I will present the 
analysis of the emerging affordances and constraints of Group C according to the 
categories of affordances and constraints listed in Tables 6.37 and 6.38. The 
description of Tables 6.37 and 6.38 is similar to Tables 6.20 and 6.21. I will further 
explain Tables 6.37 and 6.38 with some excerpts from the video recording 
transcriptions and screen recordings as evidence. 
 

Affordances & 
Constraints 

Digital Technologies 
GeoGebra Excel Calculator Google 

Search 
Google 
Maps 

Technological 
Affordances 

 

Data entry and 
generation 

- 2 - - - 

Mathematical 
Affordances 

 

Arithmetic and 
statistics 

- 2 - - - 

Socio-cultural 
Affordances 

 

Common focus - 2 - - - 
Table 6.37: The frequency of actualized technological, mathematical, and socio-
cultural affordances that emerged in Group C’s activities regarding Task 1. 

 
 

Affordances & 
Constraints 

Digital Technologies 
GeoGebra Excel Calculator Google 

Search 
Google 
Maps 

Technological 
Affordances 

 

Researching - - - 3 2 

Measuring - - - - 5 



227 
 

Geometric 
construction 

2 - - - - 

Mathematical 
Affordances 

 

Analyzing - - - 3 7 
Linking 
representations   

2 - - - - 

Socio-cultural 
Affordances 

 

Common focus 1 - - 1 2 
Table 6.38: The frequency of actualized technological, mathematical, and socio-
cultural affordances that emerged in Group C’s activities regarding Task 2. 

I will now start with a presentation of technological affordances and 
constraints emerging in the activities of Group C. 

Technological affordances and constraints   
The digital technology Group C used in Task 1 was Excel/spreadsheet. Group C 
also used Google Maps, Google Search and GeoGebra while working on Task 2 
(see Table 6.1). From Tables 6.37 and 6.38, the technological affordances and 
constraints recorded are researching, measuring, visualizing (ø), geometric 
construction, experimenting/changing (ø), data entry and generation, and 
calculating (ø).    
 
Researching. Regarding Task 2, Google Maps and Google Search provided 
information about the cities’ position/location and population as the students 
interacted with these technologies (see Table 6.33).   
 
Measuring. Relating to Task 2, Google Maps affords the measure of travel time 
between the cities and the optimal place for the shopping centre. 
 
Visualizing. This category was not identified in the student’s activities in both 
tasks. 
 
Geometric construction. Relating to Task 2, GeoGebra afforded the construction 
of a figure (triangular shape) that represents the positions of the three cities. 
GeoGebra also afforded the construction of the triangle’s geometric middle point, 
which connects the three cities (see Table 6.34). 
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Experimenting/changing. This category was not identified in the student’s 
activities in both tasks. 
 
Data entry and generation. Relating to Task 1, Excel/spreadsheet allowed 
entering the set of values (or variables) in the spreadsheet and generating the entire 
data set. Thus, the students keyed in a few data sets and then selected and dragged 
these data to obtain the entire data (see Table 6.32).   
 
Calculating. This category was not identified in the student’s activities in both 
tasks. 
 

Mathematical affordances and constraints  
From Tables 6.37 and 6.38, the mathematical affordances and constraints recorded 
are clarification (ø), analyzing, simulating and visualizing (ø), linking 
representations, regularity and variations (ø), and arithmetic and statistics. 
 
Clarification. This category was not identified in the student’s activities in both 
tasks. 
 
Analyzing. Group C reconciled their model with reality (relating to Task 2). They 
did so by factoring the roads (measuring the time of travel) and the population of 
each city in their discussions, and based on these factors, they found a hypothetical, 
optimal location for the shopping centre. The students also constructed a 
theoretical optimal location with GeoGebra, which they compared with the 
hypothetical optimal location (see Table 6.33 and 6.34). 
 
Simulating and visualizing. This category was not identified in the student’s 
activities in both tasks. 
 
Linking representations. Regarding Task 2, the students could represent the 
coordinates (from Google Maps) of the three cities in a graphical view in 
GeoGebra (see Table 6.34). 
 
Regularity and variations. This category was not identified in the student’s 
activities in both tasks. 
 
Arithmetic and statistics. At the mathematical task level, Excel/spreadsheet 
affords numerical computations such as multiplication (see Table 6.32). 
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Socio-cultural affordances and constraints   
The socio-cultural affordances and constraints that emerged or actualized were 
common focus (in both Task 1 and 2; see both Table 6.37 and 6.38), observing and 
improving strategies (ø), and authority of the digital technology (ø).      
 
Common focus. The students shared the same computer and had the facility to 
look at the same thing and point at what was presented on the computer. 
 
Observing and improving strategies. This category was not identified in the 
student’s activities in both tasks. 
 
Authority of the digital technology. This category was not identified in the 
student’s activities in both tasks. 

In summary, I have reported on the activities of Group C along three themes 
(listed in Section 6.2). In the next section, I will present the case study report of 
Group D. As stated earlier (in previous sections), I noted that I will only present 
issues that are different from the already presented group reports while presenting 
the report of the current group. In the same way, I will only present issues different 
from Group A, B and C while writing the report of Group D.   

6.6 Case study report: Group D (Olga, Hege and Lena) 
This section offers a description of the case study report of the third school (Group 
D; see Sub-Section 3.4.4). The narrative is presented in an order as highlighted in 
Section 6.2. Group D are second-year lower secondary school students (Grade 9). 
Group C comprises three students aged between 14 – 15 years. The reports in Sub-
Sections 6.6.1, 6.6.2 and 6.6.3 correspond to RQ1, RQ2a & RQ2b and RQ3 
respectively. I will first start the report on the students’ (Group D’s) mathematical 
modelling activities.         

6.6.1 Students’ mathematical modelling activities 

Details about Group D are presented in Sub-Section 3.4.4. I will present each of 
the components of the activity system (see Sub-Section 4.1.3 and Section 4.2). 

Subject of the activity   
Three students (Olga, Hege and Lena) volunteered as the focus group (Group D). 
The teacher describes this group as mixed-achievement (see Table 5.1 on page 129 
for the grades assigned to each student). Table 5.1 also shows the approximate time 
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the students used in solving both tasks. The three students adopted different roles 
concerning tool usage while working on both tasks (see Table 5.2 on page 130).     

Community   
The community of the activity was made up of students. Six groups worked 
together in the classroom (see the group reports of all the groups in Appendix D.4), 
of which particular attention was paid to the focus group (Group D). The 
community was formed spontaneously to solve both tasks and then dissolved.   

Object of the activity  
The researcher assumes that the object of the activity is to solve Tasks 1 and 2 with 
digital technologies and write a report. The students confirmed this objective at 
some points in their engagement with both tasks. 
 

Code Digital technology (Calculator, GeoGebra & Excel/spreadsheet) 
Task Task 1 

Context The students first use a calculator on the computer to solve the task. The 
students then use GeoGebra after using the calculator for a few 
computations. The students finally used Excel/spreadsheet to generate 
their data.   

Recorded 
dialogue 

Hege: We have to use the computer. 
Lena: Oh yes  
Olga: Erm [Open calculator on the computer].  
Lena: Erm take erm 
Olga: Say we have 5500, then it will be 95 times it, multiply 95 [Enters 
5500 times 95 on the calculator, see Image 1]. 
Hege: Yes. 
Lena: Ok, we must write it there [Pointing to the question paper], write it 
here…  

…….. 
Hege: What if we write the points in… 
Olga: 50. 
Lena: Yeah. 
Hege: In GeoGebra, and… 
Olga: Yes yes yes 
Hege: And then just look at the graph.  
Lena: Oh yeah, you are so smart.  
Olga: [Open GeoGebra on the computer, see Image 2]. So, it generates it 
for us, erm … 

……… 
Hege: What if we use regneark (spreadsheet)? 
Olga: Actually, we should use regneark (spreadsheet) for this 
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Hege: Okey. 
Lena: Go to regneark (spreadsheet). 
Olga: Yes, I try, Okey [Goes to Google platform and select 
Excel/spreadsheet]. Actually, we should have gone into the classroom 
thing.   
Hege: Okey, we can just throw it in afterwards.  
Lena: Oh yes. Can we…. where we….  
Olga: New regneark (spreadsheet) [Opens spreadsheet on the computer, see 
Image 3] 

Image 

 
Image 1 

 
Image 2 

 
Image 3 

Table 6.39: Sample Data Aligned with Codes (Digital Technology—Calculator, 
GeoGebra & Excel): Group C—Task 1. 

Mediating artefacts/tools for the subject-object interaction  
The mediating artefacts or tools mediating the students’ activities are physical 
(digital technologies) and non-physical (group work) tools. I will first present a 
report on the digital technologies that Group D used while working on both tasks. 

Digital technologies 
Group D used GeoGebra, a calculator on the computer and Excel/spreadsheet 
while working on Task 1 and used Google Maps and GeoGebra while working on 
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Task 2 (see Table 6.1). Table 6.39 above shows a part of the transcription aligned 
with codes showing examples of different times GeoGebra, calculator and 
Excel/spreadsheet mediated the interactions between the students and solving Task 
1. The recorded dialogue in Table 6.39 is partitioned into three sections/parts 
(separated by ……). The first part shows the students using a calculator on the 
computer to compute the product of the number of people that buy the car and the 
price of the car. The students repeated this procedure for some data sets and then 
moved on to a new tool. The second part of the dialogue shows the students using 
GeoGebra to generate their data set. Thus, they plotted some points in the graphic 
view in GeoGebra and tried searching for a method that would help in generating 
their data (but they were unsuccessful). Finally, the third part of the dialogue shows 
the students generating their data in Excel/spreadsheet. 

Code Digital technology (Google Maps & GeoGebra) 
Task Task 2 

Context The students first searched for the positions of the three cities on Google 
Maps. They then inserted the picture from Google Maps into GeoGebra 
and connected the three points with the line segment. The students finally 
searched for the middle point of the triangle, representing the optimal 
position. 

Recorde
d 

dialogue 

Hege: This one is like the helicopter one yesterday. 
Olga: Yes, which is easy. I know how to do that. Google … [Opens 
Google maps] 
Hege: I read it, [Reads the second question aloud].  
Olga: Do we count Kristiansand as Lund, or do we count Kristiansand as 
Kristiansand town? 
Lena: Kristiansand town.  
Olga: We take Kristiansand Kommune [Searches for Kristiansand 
Kommune and saves it on Google maps, see Image 1] 

……… 
Olga: No, it is a triangle. Shall we have a triangle? 
Hege: [Selects polygon from the menu bar and tries to join the three cities 
in the form of polygon in GeoGebra]. 
Olga: No, don’t touch in the circle, have to take it in the middle. No, you 
are not supposed to have a point there [Moves the computer to herself]. 
You have the point on the wrong place. It is actually very annoying. You 
have to have a point there, at that thing. Okey? There, yes [Joins the three 
cities together in a triangular polygon form, see Image 2].  
Hege: Okey. 

………. 
Olga: Yes, but if we first have a point in the middle.   
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Lena: Okey.  
Olga: We have to make that circle [Selects circle with center through 
point from the menu bar]. How big a circle do we want?  
Lena: You can’t take it so big.  
Olga: But look at that [Make a circle through the three cities, see Image 
3]. Like this.  
Lena: Say, the …   
Olga: Now it is equally long, is it not? 
Hege: Yes, just put it in. 

Image 

 
Image 1 

 
Image 2 

 
Image 3 

Table 6.40: Sample Data Aligned with Codes (Digital Technology—Google Maps & 
GeoGebra): Group C—Task 2. 

Concerning Task 2, Table 6.40 above shows a part of the transcription aligned 
with codes showing examples of different times Google Maps and GeoGebra 
mediated the interactions between the students and solving Task 2. The recorded 
dialogue in Table 6.40 is partitioned into three sections/parts (separated by ……). 
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The first part shows the students searching for the three cities and saving them on 
Google Maps. The second part of the dialogue shows the students connecting the 
three points (representing the three cities) with line segments, forming a triangle. 
The students did this by taking a screenshot on Google Maps and inserting it into 
GeoGebra for further analysis. The third and final part of the dialogue shows the 
students constructing a geometric middle point for the triangle. 

Group Work 
Table 6.2 (on page 158) presents the number of times the different interaction 
categories or sequences occurred in the episodes of the students’ activities. From 
Table 6.2, 1 out of 6 episodes describes asymmetrical contingency in the activities 
relating to Task 1, whilst 1 out of 4 episodes describes this contingency in the 
activities relating to Task 2. Again, 3 out of 6 and 2 out of 4 episodes describe 
respectively reactive and mutual contingencies in the activities relating to Task 1, 
and 0 out of 4 and 3 out of 4 episodes describe respectively reactive and mutual 
contingencies in the activities relating to Task 2. Thus, the interactions in the 
students’ activities were more critical and demonstrated tentative ideas being 
offered. This might result from the level of the students (lower secondary level) 
instead of their assigned grades or performance (mixed achievement group). 

Rules for the subject-community interaction 
Table 6.3 (on page 158) presents the explicit and implicit rules observed. 

Explicit rule 
The students worked in a group, and the technology used was not imposed on them; 
as such, Table 6.1 shows the different digital technologies used by Group C as they 
worked on both tasks. Another explicit rule was time constraints. Group D’s 
activities were not affected by time constraints as they solved both tasks within the 
expected time (see Table 5.1).   

Implicit rule 
No implicit rules were observed or recorded in the activities of Group D. 

Division of labour for the community-object interaction   
The students had roles that were constant throughout the activities (see Table 5.2). 
Other roles in the form of leading, opposing, suggesting, supporting, non-
contributing, and questioning and challenging changed at different times during 
the students’ activities. Table 6.4 (on page 160) shows the number of roles each 
member of Group D took as they worked on both tasks.   

Roles adopted by students 
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From Table 6.4, relating to Tasks 1 and 2, all members of Group D took suggesting 
and supporting roles at some time. Olga was the only member of Group D who 
took the leading role in one episode of each activity. This might result from the 
level of the students (lower secondary level) as these students were actively 
involved throughout the activities. As such, none of the students took the non-
contributing role in both activities. Hege took the opposing role once in the 
activities relating to Task 2, whilst Olga took this same role once in the activities 
relating to Task 1. On the other hand, Lena took the opposing role twice in the 
activities relating to Task 1 and once in the activities relating to Task 2. Hege was 
the only member of Group D who took the questioning and challenging role twice 
in the activities relating to Task 1.         

I will now present a report on the modelling actions of Group D that emerged, 
and the role digital technologies played in these actions. This report corresponds 
to RQ2a and RQ2b.         

6.6.2 Emergence of modelling actions and the role of digital technologies  

The student’s actions are divided into categories (coded in Table 9.6 in Appendix 
E.2). I will present the analysis of the emerging modelling actions of Group C 
according to the categories in Tables 6.41 and 6.42 below. The description of 
Tables 6.41 and 6.42 is similar to Tables 6.12 and 6.13. I will further explain 
Tables 6.41 and 6.42 with some excerpts from the video recording transcriptions 
and screen recordings as evidence. 

 
Modelling actions 

Episodes of the students’ activity 
1 2 3 4 5 6 

Breaking the task into manageable parts X - - - - - 
Searching for a model X X X X - - 
Finding a solution for the model - X X X X - 
Explaining the results in real terms - - - - - X 
Checking the results for adequacy - - - - - X 
Role of technological tools  
Calculating 
(Computer calculator, GeoGebra, Excel) 

 
- 

 
X 

 
X 

 
X 

 
- 

 
- 

Geometric construction (GeoGebra)  
- 

 
- 

 
X 

 
- 

 
- 

 
- 

Data entry and generation 
(Excel/Spreadsheet) 

 
- 

 
- 

 
- 

 
X 

 
X 

 
 

Table 6.41: The modelling actions that emerged in Group D’s activities (regarding Task 
1) and the role of the digital technologies. 
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Modelling actions 

Episodes of the 
students’ activity 

1 2 3 4 
Breaking the task into manageable parts X - - - 
Searching for a model X X - - 
Finding a solution for the model - X X X 
Explaining the results in real terms - - X X 
Checking the results for adequacy - - X X 
Role of technological tools  
Researching (Google maps) X - - - 

Measuring 
(GeoGebra) 

- - X - 

Geometric construction 
(Geogebra) 

 
- 

 
X 

 
X 

 
- 

Table 6.42: The modelling actions that emerged in Group D’s activities (regarding Task 
2) and the role of the digital technologies. 

I will present each category in Tables 6.41 and 6.42 and the role of digital 
technology. 

Breaking the task into manageable parts   
Under the category “breaking the task into manageable parts” in Table 6.41 
(relating to Task 1) and 6.42 (relating to Task 2), there were different times in the 
episodes where the students performed an action of breaking the task into 
manageable parts. In Table 6.41, it was counted only in the first episode (out of 6 
episodes), while in Table 6.42, it was counted only in the first episode (out of 4 
episodes). This shows that Group D started their work on both tasks by breaking 
the task into manageable parts. Thus, the students identified their variables in the 
first episode and worked with these initial variables in the subsequent episodes. 

Role of digital technology 
Regarding Task 1, Group D did not use any digital technology under this category; 
the students only discussed the task and agreed on the variables needed to make a 
model. Regarding Task 2, Group D used Google Maps to search for the positions 
of the three cities (see the first part of the dialogue in Table 6.40). 

I will now present the next category, ‘searching for a model’, that emerged in 
the activities of Group D. 

Searching for a model 
The students performed the action of searching for a model in some of the episodes 
in the activities. In Table 6.41 (relating to Task 1), the category ‘searching for a 
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model’ was counted in the first four episodes (out of 6 episodes), while in Table 
6.42 (relating to Task 2), this category was counted in the first two episodes (out 
of 4 episodes). From these results, the students searched for a model after breaking 
the task into manageable parts. Regarding Task 1, the students tried different 
methods (or solution strategies) as they searched for a model. Thus, the students 
used a calculator to compute their initial variables and then used another tool to 
generate their data (for which they were unsuccessful). The students finally used 
Excel/spreadsheet as they searched for a model (see Table 6.39). Regarding Task 
2, the students took a screenshot on Google Maps (capturing the positions of the 
three cities) and inserted it into GeoGebra for further analysis (see the first and 
second part of the dialogues in Table 6.40).   

Role of digital technology 
Regarding Task 1, Group D used three different tools to search for the model. They 
started with a calculator (for multiplication operations) and then moved on to 
GeoGebra (for constructing a function and multiplication operation). They finally 
used Excel/spreadsheet to compute the product between the number of people and 
the car price and generate the entire data set (see Table 6.39). Relating to Task 2, 
Group D used Google Maps to search positions of the cities and GeoGebra to 
construct a line segment connecting these cities (see Table 6.40). 

The following presentation is on the report on the category ‘finding a solution 
for the model’ that emerged in Group D’s activities. 

Finding a solution for the model 
The students performed this action in several of the episodes (compared to other 
categories of modelling actions). In Table 6.41 (relating to Task 1), it was counted 
in 4 episodes (out of 6 episodes), while in Table 6.42 (relating to Task 2) it was 
counted in 3 episodes (out of 4 episodes). This shows that many students’ actions 
were about finding a solution for their model. Relating to Task 1, the students 
started with the computation of their initial variables using a calculator. The 
students opted for another strategy as they thought the initial strategy might take 
longer. As such, the students went back to the action of ‘searching for a model’ by 
plotting their initial variables in GeoGebra. The students tried to find another point: 
the product of the number of people buying the car and the price at which they 
bought the car, but were unsuccessful after some attempts (unsuccessful action of 
finding a solution for the model). The students then inserted their initial variables 
in Excel/spreadsheet. With this tool, the students could generate all the data 
representing the problem situation (see Table 6.39). In working on Task 2, Group 
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D constructed a figure (a triangle) representing the three cities and constructed a 
circumcircle/circumcenter of this triangle. Thus, the students constructed a 
perpendicular bisector of each side of the triangle (where the corner points 
represent the three cities) and then searched for the point of intersection (optimal 
point) of these perpendicular bisectors. The students constructed a circle with the 
point of intersection as the centre point, and the circle passed through all the corner 
points of the triangle (see Table 6.40). The students also measured the distances 
between the cities (vertices of the triangle) and the optimal point to ensure their 
answer (see Table 6.43 on page 240).    

Role of digital technology 
Regarding Task 1, Group D used a calculator on the computer for computations 
and GeoGebra for geometric construction (although not successful) and 
calculations. Again, Group D used Excel/spreadsheet to calculate and generate 
their entire data set. Relating to Task 2, Group D used GeoGebra for a geometric 
construction of a figure (in this case, a triangle) that represents the positions of the 
three cities. The students used GeoGebra to locate the geometric middle point of 
this figure and again measured the distances between this point and the three cities.   

The following presentation is on the report on the category ‘explaining the 
results in real terms’ that emerged in Group D’s activities. 

Explaining the results in real terms 
In Table 6.41 (relating to Task 1), the category ‘explaining the results in real terms’ 
was counted in the last episode (out of 6 episodes), while in Table 6.42 (relating 
to Task 2), this category was counted in the last two episodes (out of 4 episodes). 
This shows that the students performed this action at the end of the activities 
relating to Task 1 and then closer to the end of the activities relating to Task 2. It 
also shows that the students performed this action when they were sure about their 
mathematical results. In finalizing their results, Group D wrote a report where they 
interpreted the mathematical results in real terms (see Group D’s report in 
Appendix D.4). From this report (relating to Task 1), Group D explained that the 
optimal price of the car is 7500 euros when 75 people buy the car. The maximum 
revenue will be 562500 euros. Regarding Task 2, Group D concluded that the 
optimal location has the same distance to all three cities (they did not consider 
actual roads). The students also searched for this optimal location on Google Maps 
(which happens to be Dragsholtvatnet – a lake close to Tveit).    

Role of digital technology 
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Related to both Tasks 1 and 2, Group D wrote their final report on a Word 
Document. The other groups that worked alongside Group D also wrote their final 
report in a Word Document (see Appendix D.4 for the solution reports of all the 
groups in School D). 

I will now present the final category, ‘checking the results for adequacy’, that 
emerged in the activities of Group D. 

Checking the results for adequacy 
The students checked the results for adequacy in one of the episodes concerning 
Task 1. In Table 6.41 (relating to Task 1), the category ‘checking the results for 
adequacy’ was counted in the last episode (out of 6 episodes), while in Table 6.42 
(relating to Task 2), this category was counted in the last two episodes (out of 4 
episodes). This shows that the students performed this action at the end of the 
activities relating to Task 1 and then closer to the end of the activities relating to 
Task 2. Excerpt 6.6.1 shows a part of the transcription where the students discussed 
going down with the price after finding the price that generates the maximum 
revenue (relating to Task 1): 

Hege:              Now we are going to explain why that price, is the best price. 

Olga:               But we have not tried to go down. I cannot understand how we can go 
down. That is what I wondered.  

Hege:              What do you mean by down? 

Olga:               You started in the beginning to go down instead of going up.  

Hege:              Yes, I think more people who buy it. I don’t think it means anything.   

Lena:               But it is not allowed, it is not allowed.  

Olga:               I don’t believe it is allowed either. 

Excerpt 6.6.1 
 

From Excerpt 6.6.1, Olga suggested they try to go down with the price, but 
the peers agreed on the final results instead of discussing this new idea further. The 
outcome could be exciting if the students tried out this new idea and compared it 
to their initial strategy (or final solution). Table 6.43 below shows a part of the 
transcription aligned with codes, showing examples of Group D checking the 
results for adequacy while working on Task 2. From Table 6.43, Lena insisted the 
group measures the distances between the optimal location and the three cities, 
even though Olga explained that the distances are equal since the circle goes 
through all three points.   

Role of digital technology 
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Regarding Task 1, Group D did not use any digital technology under this category; 
the students only discussed the results they had. Regarding Task 2, Group D used 
GeoGebra to measure the distances between the optimal location and the three 
cities (see Table 6.43). 

Code Checking the results for adequacy  
Task Task 2 

Context The students measured the distances between the optimal point and the 
three cities (in GeoGebra) to be sure these distances were equal.   

Recorded 
dialogue 

Olga: Now you can see it is equally long between all points.  
Lena: We can measure.  
Hege: [Searches for the distance between each city and the middle point, 
see the image below].  
Olga: Why are you measuring? It is the same length. Aha! It is not as long 
as that, is it? That is the fairest.  
Hege: Oh, yeah [Finished measuring the lengths, see the image below]. 
Lena: Yes.  
Olga: To have it there, are we certain?  
Hege: Yeah. 

Image 

 
Table 6.43: Sample Data Aligned with Codes (Checking the results for adequacy): 
Group D. 

I will now present a report on the affordances and constraints of the digital 
technologies that emerged in the activities of Group D (corresponds to RQ3).    

6.6.3 Emergence of technological, mathematical and socio-cultural 
affordances and constraints    

The frequency of actualized technological, mathematical, and socio-cultural 
affordances and constraints that emerged in Group D’s activities regarding Tasks 
1 and 2 are presented in Table 6.44 and 6.45, respectively. I will present the 
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analysis of Group D’s emerging affordances and constraints according to the 
categories listed in Tables 6.44 and 6.45. The description of Tables 6.44 and 6.45 
is similar to Tables 6.20 and 6.21. I will further explain Tables 6.44 and 6.45 with 
some excerpts from the video recording transcriptions and screen recordings as 
evidence.  
 

Affordances & 
Constraints 

Digital Technologies 
GeoGebra Excel Calculator Google 

search 
Google 
maps 

Technological 
Affordances 

 

Calculating 1 1 2 - - 

Geometric 
construction 

2 - - - - 

Data entry and 
generation 

- 2 - - - 

Mathematical 
Affordances 

 

Linking 
representations   

2 - - - - 

Arithmetic and 
statistics 

1 2 2 - - 

Socio-cultural 
Affordances 

 

Common focus 1 2 1 - - 
Table 6.44: The frequency of actualized technological, mathematical, and socio-
cultural affordances that emerged in Group D’s activities regarding Task 1. 

 
 

Affordances & 
Constraints 

Digital Technologies 
GeoGebra Excel Calculator Google 

search 
Google 
maps 

Technological 
Affordances 

 

Researching - - - - 3 
Measuring 1 - - - - 
Geometric 
construction 

2 - - - - 

Mathematical 
Affordances 

 

Analyzing - - - - 3 

Linking 
representations   

2 - - - - 
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Arithmetic and 
statistics   

1 - - - - 

Socio-cultural 
Affordances 

 

Common focus 2 - - - 1 
Authority of the 
digital technology 

1     

Table 6.45: The frequency of actualized technological, mathematical, and socio-
cultural affordances that emerged in Group D’s activities regarding Task 2. 

 
Technological affordances and constraints   

The digital technologies Group D used while working on Task 1 were GeoGebra, 
a calculator on the computer and Excel/spreadsheet. Group D also used Google 
Maps and GeoGebra while working on Task 2 (see Table 6.1). From Tables 6.44 
and 6.45, the technological affordances and constraints recorded are researching, 
measuring, visualizing (ø), geometric construction, experimenting/changing (ø), 
data entry and generation, and calculating.   
 
Researching. Regarding Task 2, Google Maps allows retrieval of information 
about the position/location of the cities as the students interact with this technology 
(see the first part of the dialogue in Table 6.40).   
 
Measuring. Relating to Task 2, GeoGebra affords the measure of distances 
between the cities and the optimal place for the shopping centre. Thus, the students 
measured these distances to be sure they were equal (see Table 6.43). 
 
Visualizing. This category was not identified in the student’s activities in both 
tasks. 
 
Geometric construction. Regarding Task 1, the students used GeoGebra to 
construct a function that would represent their initial variables and again to 
generate the rest of the data through this function (but they were unsuccessful). For 
example, Table 6.46 below shows a part of the transcription aligned with codes 
showing examples of Group D constructing a function with GeoGebra while 
working on Task 1. That is, the students perceived GeoGebra could afford them 
the drawing of a function or generate their entire data if they key in their initial 
variables. The students could not achieve this, as they needed the corresponding 
value to have a pair of points for C (i.e., C = (5000, 500000) representing the 
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price of the car and the total revenue at that price), which is a constraint. Relating 
to Task 2, GeoGebra afforded the construction of a figure (triangular shape) that 
represents the positions of the three cities. GeoGebra also afforded the construction 
of the triangle’s geometric middle point, which connects the three cities (see the 
second and third part of the dialogues in Table 6.40).   

Code Technological affordances and constraints (Geometric construction) 
Task Task 1 

Context The students in this episode made lines to connect the three points 
representing the three cities in GeoGebra.   

Recorded 
dialogue 

Olga: Shall we see how much we earn in total or how much we are going to 
charge for it?  
Hege: I will try something.  
Olga: Now, look at me.   
Lena: Are we going to write 98? 
Hege: Erm  
Olga: Write 100 
Hege: [writes the product of 100 and 5000 in the algebra section, see the 
image below]. 
Olga: 100 and 5000 are, yeah. 
Hege: 100 is not correct  
Lena: Yes, it is good, it’s good. 
Hege: There will be no point  
Olga: There is no graph. It is only to add one zero, two zeros [moves the 
computer to herself].  
Hege: Ouch 
Olga: Damn 

Image 

 
Table 6.46: Sample Data Aligned with Codes (Technological affordances and 
constraints): Group D.  
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Experimenting/changing. This category was not identified in the student’s 
activities in both tasks. 
 
Data entry and generation. Relating to Task 1, Excel/spreadsheet allowed the 
students to enter the set of values (or variables) in the spreadsheet and generate the 
entire data set. Thus, the students keyed in a few data sets and then selected and 
dragged these data to obtain the entire data set (see the third part of the dialogue in 
Table 6.39).   
 
Calculating. Relating to Task 1, the calculator on the computer and 
Excel/spreadsheet afforded the calculation of the product of the number of people 
and the corresponding price of the car (see the first and third part of the dialogues 
in Table 6.39). Similarly, GeoGebra also afforded this sort of calculation (see 
Table 6.46). 
 

Mathematical affordances and constraints   
From Tables 6.44 and 6.45, the mathematical affordances and constraints recorded 
are clarification (ø), analyzing, simulating and visualizing (ø), linking 
representations, regularity and variations (ø), and arithmetic and statistics. 
 
Clarification. This category was not identified in the student’s activities in both 
tasks. 
 
Analyzing. Group D reconciled their model with reality (relating to Task 2). They 
did so by locating the optimal point (constructed in GeoGebra) in Google Maps. 
Thus, after constructing it in GeoGebra, the students returned to Google Maps to 
locate the optimal location on the map (see Group D’s report in Appendix D.4).   
 
Simulating and visualizing. This category was not identified in the student’s 
activities in both tasks. 
 
Link representations. Regarding Task 1, the students moved between numeric and 
graphical representation but were unsuccessful in their approach (see Table 6.46). 
Relating to Task 2, the students could represent the coordinates (from Google 
Maps) of the three cities in a graphical view in GeoGebra (see the second and third 
part of the recorded dialogue in Table 6.40). 
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Regularity and variations. This category was not identified in the student’s 
activities in both tasks. 
 
Arithmetic and statistics. At the mathematical task level, Excel/spreadsheet, a 
calculator, and GeoGebra allow numerical computations such as multiplication 
(see Table 6.39). 
 

Socio-cultural affordances and constraints   
The socio-cultural affordances and constraints that emerged or actualized were 
common focus (in both Task 1 and 2), observing and improving strategies (ø), and 
authority of the digital technology (only in Task 2) (see Table 6.44 and 6.45).   
 
Common focus. The students shared the same computer and had the facility to 
look at the same thing and point at what was presented on the computer. 
 
Observing and improving strategies. This category was not identified in the 
student’s activities in both tasks. 
 
Authority of the digital technology. From the recorded dialogue in Table 6.43 (on 
page 240), Olga pointed out that the distances between the middle point (optimal 
location) and the three cities are equal since the circle passes through all the points. 
Lena suggested that they still measure these distances. In this case, Lena would 
rather accept the answer (outcome) from the digital technology than her peers or 
go through the operation of measuring these distances to ensure their final results.   

In summary, I have reported on the activities of Group D along three themes 
(listed in Section 6.2). In the next section, I will present the cross-case analysis of 
all the groups together. 

6.7 Cross-case analysis  

This section presents the cross-case analysis of the cases (or reports) in Sections 
6.3, 6.4, 6.5 and 6.6. The section highlights significant similarities and differences 
between the case study reports. Khan and VanWynsberghe (2008) argue that cross-
case analysis is a research method that facilitates the comparison of commonalities 
and differences in the events, activities and processes of the different cases. For 
instance, themes appearing in each case were tabulated (see Section 6.1) to 
facilitate a cross-case comparison. The case study reports of each case (or group) 
follow a particular structure (see Section 6.2) that helps address the research 
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questions, but I will follow a different structure for this section. In this case, I will 
only present the significant similarities and differences in the activities of the 
groups. The discussion of the cross-case analysis follows a structure that helps to 
facilitate the discussion of the significant issues arising from the research study 
(see Section 7.2). The similarities and differences in the activities of the groups 
presented in this section follow the structure, interaction sequences, roles adopted 
by the students and students’ solution strategies. Although the structure above will 
help to facilitate the discussion of significant issues arising from the research, there 
are instances where I will refer to aspects of this structure while addressing the 
research questions. For instance, aspects that concern the solution strategies of the 
groups. I will first present the cross-case analysis of the interaction sequences 
followed by roles adopted by the students and students’ solution strategies. These 
items are interrelated, but I present them in a linear manner. 

6.7.1 Interaction sequences 

Table 6.2 presents the interaction sequences recorded in Groups A, B, C (upper 
secondary school students) and D (lower secondary school students) activities 
relating to Tasks 1 and 2. From Table 6.2, the interaction sequences recorded were 
asymmetrical contingency, reactive contingency, mutual contingency, and the 
combination of asymmetrical and pseudocontingency: 

Asymmetrical contingency  
In this contingency, the response of Student A to Student B’s comments/ideas 
within a group interaction is affirmative, non-critical and non-challenging, and in 
this contingency, a high-achiever or performing student often dominates in the 
activities (Peter-Koop, 2002; Esmonde, 2009). This type of contingency was 
recorded in several episodes (especially Groups A and B) relating to the activities 
of Task 1 as compared to Task 2 across the groups. That is (see Table 6.2), 7 out 
of 12 episodes describe asymmetrical contingencies in the activities of Group A 
relating to Task 1, while 2 out of 9 episodes describe asymmetrical contingencies 
concerning Task 2. Similarly, 6 out of 7 episodes describe an asymmetrical 
contingency in the activities of Group B relating to Task 1, while 1 out of 8 
episodes describes an asymmetrical contingency concerning Task 2. In the case of 
Groups C and D (about Task 1), 0 out of 2 and 1 out of 6 episodes describe an 
asymmetrical contingency, respectively, and about Task 2, 1 out of 5 and 1 out of 
4 episodes describe asymmetrical contingencies, respectively. 
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The nature of both tasks might be a contributing factor to this development. 
Thus, Task 1 contains more information in connection with given numbers in the 
task, which must be added by applying mathematical formulas. For instance, the 
students might develop a function from the given information. In such a situation, 
the student who dominates the group might propose a strategy for developing a 
function (which the other members might follow). If the other members follow the 
dominant student’s proposed function, then the interaction sequence might likely 
be an asymmetrical contingency. Task 2, conversely, does not have numerical 
values in its presentation but requires extra-mathematical knowledge (the result of 
experience, see Sub-Section 5.5.2). In this case, much of the discussion depends 
on the student’s experiences and not just on applying mathematical formulas (as 
in Task 1). Again, taking a closer look at the group dynamics (as presented above), 
asymmetrical contingency was more prevalent in the episodes of Group A and B 
relating to Task 1, as compared to Group C and D. If we relate this to the 
characteristics of the students, then it is reasonable that this type of contingency is 
diminished in the activities of Group C (a group of same-achievement students); 
as the students in this group are high performing students. On the contrary, the 
contingency discussed here is also diminished among Group D, although this 
group is made up of mixed-achievement students. Regarding the activities of Task 
1, Groups A and B (made up of mixed-achievement students) record asymmetrical 
contingencies in most of their respective episodes compared to Group D (also 
made up of mixed-achievement students). The differences between Groups A, B 
and D, in this case, might be the level of the students. Thus, Group A and B are in 
the upper secondary school, whilst Group D is in the lower secondary school. 

Reactive contingency 
In this contingency, a group member considers and critically reviews another 
member’s ideas, which leads to improved decision-making or content. Each 
individual’s response is almost entirely dependent on the preceding response of 
the other. Reactive contingency was recorded in several episodes regarding Task 
2 compared to Task 1 across the groups. That is (see Table 6.2), 1 out of 12 
episodes describes reactive contingency in the activities of Group A relating to 
Task 1, while 4 out of 9 episodes describe reactive contingencies concerning Task 
2. In the activities of Group B, 0 out of 7 episodes describe a reactive contingency 
relating to Task 1, while 5 out of 8 episodes describe a reactive contingency 
concerning Task 2. In the case of Groups C and D (about Task 1), 0 out of 2 and 3 
out of 6 episodes describe a reactive contingency, respectively. Concerning Task 
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2, 2 out of 5 and 0 out of 4 episodes describe reactive contingencies, respectively. 
From the description above, if we take a critical look at Task 1, fewer reactive 
contingencies were recorded in the episodes of Groups A and B. On the contrary, 
there are more reactive contingencies relating to Task 2 in Groups A and B’s 
episodes. However, these groups are made up of mixed-achievement students (yet 
still, the students were able to review each other’s ideas critically). Comparing 
Groups A and B to Group D (another mixed-achievement group), reactive 
contingency was recorded more in the episodes of Group D regarding Task 1. No 
reactive contingency was recorded in the episodes of Group D regarding Task 2. 
However, more mutual contingencies (3 out of 6, see Table 6.2) were recorded. 

Mutual contingency 
In this contingency, different perspectives are acknowledged and synthesized into 
a collective response. That is, sense-making and conversations are mutually 
driven. This contingency was recorded in several episodes (especially for Groups 
A and B) regarding Task 2 compared to Task 1 across the groups. That is (see 
Table 6.2), 1 out of 12 episodes describes mutual contingency in the activities of 
Group A regarding Task 1, while 3 out of 9 episodes describe mutual contingency 
regarding Task 2. In the activities of Group B, 1 out of 7 episodes describes a 
mutual contingency regarding Task 1, while 2 out of 8 episodes describe a mutual 
contingency regarding Task 2. In the case of Groups C and D (about Task 1), 2 out 
of 2 and 2 out of 6 episodes describe a mutual contingency, respectively, and about 
Task 2, 2 out of 5 and 3 out of 4 episodes describe mutual contingencies, 
respectively. From the description above, Group C (same-achievement and high-
performing students) recorded more mutual contingencies (similarly reactive 
contingency) in its episodes. Groups A and B recorded more mutual contingencies 
in the episodes relating to Task 2 than in Task 1, although these groups are made 
up of mixed-achievement students. Conversely, Group D is also made up of mixed-
achievement students (just like Groups A and B). However, many mutual 
contingencies were recorded in both Task 1 and 2. 

Pseudocontingency 
In this contingency, students’ responses are individualized, and group members 
might be unwilling to consider other suggestions for improvement or change. This 
contingency was recorded only in Group A’s activities regarding Task 1. From 
Table 6.2, 3 out of 12 episodes of Group A’s activities regarding Task 1 show the 
combination of asymmetrical contingency and pseudocontingency. In these three 
occasions (see Table 6.10 for an example), three students working on Task 1 with 



249 
 

one computer, the interaction between two of the students depicts asymmetrical 
contingency, whilst the interaction between the other student (interacting with the 
computer alone) and these two students describe a pseudocontingency. Thus, the 
two students might discuss a particular strategy for solving the task while the other 
student might try a different strategy on the computer. 

I will present a cross-case analysis of the roles adopted by the students in the 
following subsection. 

6.7.2 Roles adopted by students 

Table 6.4 presents the frequency of roles adopted by each member of the groups. 
From Table 6.4, the roles adopted by the students were leading, opposing, 
suggesting, questioning and challenging, supporting and non-contributing. The 
teacher or researcher did not assign these roles but are characterizations of the 
observed patterns of students’ participation in the group activity (see Section 2.4). 

Leading 
This role describes a student dominating the communications within group 
interactions, leading the group through his/her ideas. From Table 6.4, the activities 
of Group A (the first block in grey) regarding Task 1 and under the ‘leading’ role, 
Thea led the group 11 times while Rolf led the group only once in the episodes. 
Thea was assigned the same grade as Rolf, but their teacher emphasized that Thea 
performs higher than Rolf within the attainment band (see the last paragraph in 
Sub-Section 3.4.1). The number of leading roles regarding Task 2 reduces in the 
activities of Group A. Thus, Thea led the group 5 times as the group worked on 
Task 2. Similarly, Thor led Group B 5 times while Emil led the same group a single 
time in the episodes (see in Table 6.4, the activities of Group B in the second block 
in white regarding Task 1—under the leading role); even though Emil was 
assigned grade 5 and Thor was assigned grade 4. Thus, not all high-achieving 
students necessarily dominate in group interactions. The number of leading roles 
regarding Task 2 was reduced in Group B. Specifically, Thor only led the group 
once as the group worked on Task 2. In the narrative so far (considering Groups A 
and B—a mixed-achievement group), high-achieving students are often dominant 
in group interactions regarding Task 1 and less often dominant in the activities 
regarding Task 2. Group D is a mixed-achievement group. However, it was 
recorded once in the episodes in both Task 1 and 2, where a student (Olga) leads 
the group (see in Table 6.4, the activities of Group D in the last block in white 
relating to Task 1—under the leading role). 
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Questioning and challenging 
This role describes a student questioning another student’s idea(s) to understand 
his/her thinking, and the response to the question might also be seen as an attempt 
to clarify, elaborate, evaluate, or justify one’s thinking. From Table 6.4 (see 
‘questioning & challenging’ column for Group A and Task 1), Kåre (the student 
with the lowest score within the group) questioned and challenged the idea(s) of 
the peers three times within the episodes. In the case of Group B, Emil questioned 
and challenged his peers’ idea(s) twice in the episodes, although he scored the 
highest within the group. Considering Group D, Hege (the student assigned the 
average grade between the other two students) questioned and challenged the 
idea(s) of the peers two times in the episodes. All the groups mentioned above are 
mixed-achievement groups, and it was recorded in the episodes that a member (one 
that was assigned either a low, average or high grade) within the group questioned 
and challenged the idea(s) of peers concerning Task 1. However, none of Group C 
members (same-achievement) was seen questioning and challenging the idea(s) of 
peers in the episodes regarding Task 1 (see ‘questioning & challenging’ column 
for Group C and Task 1 in Table 6.4). Against this, some members of Group A 
(Kåre & Rolf), Group B (Thor, Emil & Ella) and Group C (Anna & Jørn) 
questioned and challenged the idea(s) of peers in the episodes corresponding to 
Task 2 (see ‘questioning & challenging’ column for Group A, B & C and Task 1 
in Table 6.3). However, none of the Group D members was seen questioning and 
challenging the idea(s) of peers in the episodes regarding Task 2. 

Opposing 
In this role (unlike questioning and challenging), students do not agree to or accept 
their peers’ comments (or idea/s) and/or introduce their ideas/solutions while 
solving a common task. There are instances where students opposed peers’ idea(s) 
while working on Tasks 1 and 2. For instance (see ‘opposing’ column concerning 
Group A and Task 1 in Table 6.4), Thea and Kåre in Group A opposed (once within 
the episodes) the idea(s) of peers as they worked on Task 1. Meanwhile, in Task 
2, Thea, Kore, and Rolf opposed (3 times for Thea and a single time for the others 
within the episodes) the idea(s) of peers as they collaboratively worked together. 
In Group B, only Ella opposed (once within the episodes) the idea(s) of others 
while working on Task 1. However, in Task 2, Thor, Emil and Ella (2 times each 
within the episodes) opposed the idea(s) of peers. The least performing student (or 
the student who was assigned the lowest grade) within Group B (Tore) did not 
oppose the idea(s) of peers while working on either Task 1 or 2. In Group D, Olga 



251 
 

and Lena opposed the idea(s) of peers while working on Task 1, whereas Hege and 
Lena opposed the ideas of peers while working on Task 2. Considering Group A, 
B and C (mixed-achievement students), it was recorded in the episodes that 
one/two student/s opposed the idea(s) of peers regarding Task 1, while two/three 
students opposed the idea(s) of peers as they worked on Task 2. Against this, it 
was recorded in the episodes that none of Group C members (same-achievement 
students) opposed the idea(s) of peers while working on both Task 1 and 2 (see 
‘opposing’ column for Group C and Task 1 & 2 in Table 6.4). In the next 
paragraph, I will present both supporting and suggesting roles and within these 
roles, I will compare the frequency of students’ roles within these two roles.   

Supporting and suggesting 
A student only agrees to comments in the supporting role without adding anything 
new or critically assessing it. In contrast, in the suggesting role, a student typically 
recommends an idea to assist (or add up to) the idea(s) of the other student. From 
Table 6.4, the ‘supporting’ and ‘suggesting’ columns for Group A (mixed-
achievement students) and both Task 1 and 2, Thea did not adopt the supporting 
role in Task 1 but adopted this role once in the episodes while working on Task 2. 
Again, Thea adopted a suggesting role once in both Task 1 and 2 episodes. The 
frequency here was low compared to her peers. For instance, it was recorded in the 
episodes that Kåre adopted supporting roles 9 and 6 times in Task 1 and 2, 
respectively. Regarding the ‘suggesting’ role, Kåre once adopted this role in both 
Task 1 and 2. Thus, Kåre mostly supported the idea(s) of peers in both tasks and 
only added up to the idea(s) of peers in very few instances. One possible 
explanation of this pattern is that Thea performed higher (or was assigned a higher 
grade) than Kåre and led the group. On the other hand, it was recorded in the 
episodes that Rolf adopted supporting roles 3 and 5 times in Task 1 and 2, 
respectively. Rolf adopted a suggesting role 4 times and once in Task 1 and 2, 
respectively. Although Rolf adopted supporting roles in several episodes 
(regarding Task 1 and 2), he was assigned the same grade as Thea (although there 
are differences between the attainment bands).  

From Table 6.4, ‘supporting’ and ‘suggesting’ columns for Group B (mixed-
achievement students) and both Task 1 and 2, Thor (the student who was assigned 
grade 4) and Emil (the student who was assigned grade 5) adopted a supporting 
role 2 and 5 times in Task 1, respectively. It was recorded that Thor and Emil 
adopted a suggesting role 7 times each in the episodes of Task 2. Considering the 
‘suggesting’ role, Thor and Emil adopted this role 4 and 2 times within the episodes 
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of Task 2. Emil (and not Thor) adopted a suggesting role 4 times in the episodes 
of Task 1. This might result from Thor taking the leading role in Task 1. The two 
other students (Ella and Tore) mostly supported the idea(s) of peers rather than 
adding up to the idea(s) of peers. Thus, Tore (the student assigned grade 1) adopted 
the supporting role 7 times in both the episodes of Task 1 and 2 and the 
‘suggesting’ role only once in the episodes of Task 2. Similarly, Ella (the student 
assigned grade 3) adopted a supporting role 5 times in Task 1 and 2 and 
‘suggesting’ roles 2 and 3 times in Task 1 and 2, respectively.  

From Table 6.4, the ‘supporting’ and ‘suggesting’ columns for Group C 
(same-achievement students) and D (mixed-achievement students) and both Task 
1 and 2, there is a balance between these adopted roles. In Group C (specifically 
Nils), it was recorded in the episodes that Nils adopted a supporting role 2 and 4 
times in Task 1 and 2, respectively. Similarly, Nils adopted a suggesting role 2 and 
4 times within the episodes of Task 1 and 2, respectively. For example, in Group 
D (specifically Hege), it was recorded in the episodes that Hege adopted a 
supporting role 5 and 4 times in Task 1 and 2, respectively. Similarly, Hege 
adopted a suggesting role 5 and 3 times within the episodes of Task 1 and 2, 
respectively. Although there is a balance between the adopted roles in Group D, a 
student in the group primarily supported rather than suggested within the group 
interactions. That is, it was recorded in the episodes that Lena (the student assigned 
the lowest grade in Group D) adopted a supporting role 6 and 4 times in Task 1 
and 2, respectively, and a suggesting role 2 and 1 times in Task 1 and 2, 
respectively. This pattern is similar to the group members assigned the lowest 
grades in Groups A and B. To explain the balance (in general) between the 
supporting and suggesting roles adopted by Group C, this balance occurred as 
Group C was made up of high-performing students. On the other hand, there is a 
balance between the two adopted roles in Group D, although it was a group of 
mixed-achievement students. However, these students were in the lower secondary 
school compared to the other groups (upper secondary school).    

Non-contributing  
In this role, the student does not contribute entirely to the group work or contributes 
at some point but remains silent most of the time. This role was recorded in some 
of the episodes of Groups A, B and C (students at the upper secondary school). 
From Table 6.4 (see ‘non-contributing’ column for Group A and in both Tasks 1 
and 2), it was recorded in the episodes that Rolf was non-contributing 5 and 2 times 
in Tasks 1 and 2, respectively. Rolf was assigned the same grade as the student 
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who took the leading role (Thea); however, Rolf did not contribute to the 
discussions in some episodes. The teacher corresponding to Group A described 
Rolf as one who has little motivation within the group (see the last paragraph in 
Sub-Section 3.4.1), which could contribute to the non-contributing role. In the case 
of Group B, it was recorded in the episodes that Ella (an average-performing 
student) adopted a non-contributing role once in both tasks. Lastly, in the case of 
Group C (same-achievement students), it was recorded in the episodes that Jørn 
adopted a non-contributing role 2 times in Task 1 and once in Task 2. That is, Jørn 
did not participate in the activities relating to Task 1, as Task 1 only had 2 episodes 
(see Table 9.3). This also shows that a student who does not contribute to group 
discussions is not necessarily a low-performing student. How do we then address 
the issue that Jørn is a high-performing student among a same-achievement group 
and non-contributing in Task 1? Group C (among other groups) was randomly 
formed (see Section 5.2), so a student might not actively involve him/herself in the 
activities if the student is not comfortable with the other group members. In the 
case of Group C, the corresponding teacher pointed out that the students have 
known each other since the start of Autumn 2021 (see the second paragraph in 
Sub-Section 3.4.3), and the study was conducted in October/November 2021 (see 
Table 5.3). Contrarily to this, none of the students in Group D (lower secondary 
students) adopted a non-contributing role in the episodes of both tasks. 

I will present a cross-case analysis of the students’ solution strategies in the 
following subsection. 

6.7.3 Students’ solution strategies 

In this subsection, I will present the students’ solutions for Tasks 1 and 2. From 
Table 6.1, the groups used several digital technologies while working on both 
tasks. The groups’ solution strategies shared some similarities and differences. 

Task 1 
Groups A and B used the trial-and-error method by analyzing patterns of numbers 
after searching for a function that represents the number of people buying the car 
and the price at which they buy it. In the case of Group B, the students drew the 
function ( ) = −0.01 + 150 with a set of points in GeoGebra, which 
represents the number of people who will buy the car at a specific price (see Table 
6.25). Afterwards, Group B inserted some numbers in the function and found the 
corresponding values, for which they computed the product of these two values 
using a calculator device. Group B continued with this procedure until they arrived 
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at an answer. Similarly, Group A drew the function ( ) = − + 100 with 
GeoGebra, representing the number of people buying the car at a specific price 
(see Table 6.6). Group A inserted some numbers in the function and found the 
corresponding values, for which they computed the product of these two values 
using a calculator device (see Table 6.16). At one point, Group A made sliders to 
find the total revenue instead of inserting numbers (see Table 6.11). Group A made 
a slider ( = 100), but it had no link with the function ( ( ) = − + 100), and 
as such, they returned to their initial strategy. This could have been effective if the 
students had inserted the function ( ) = − + 100 in the algebra view in 
GeoGebra with =  (forming a slide = 1 and an equation eq1: = 1). Then, 
intersecting the function ( ) and the equation eq1 with the intersection point A 
(i.e., A = Intersect ( , eq1, 1)) might help to regulate the number of people 
buying the car and the price at which they buy the car (using the slider). At another 
point, Group A keyed in the function ( ) = ∗  which provided an ’illegal 
function’ feedback (meaning there should be a proper definition for ) (see Table 
6.10). In this case, the students should have keyed in the function  to obtain a 
result. Again, Group A keyed in the correct variables for the equation = 100 +5000 of the car’s selling price. However, they still did not achieve the desired 
results (see Table 6.23). Since the students could not combine ( ) = − + 100 
and = 100 + 5000. In the end, Group A returned to the initial strategy they 
began with. Group C decided to make a function in Excel/spreadsheet instead of 
GeoGebra as they thought the generated data would be recursive (see Table 6.32). 
Group C generated their data with Excel/spreadsheet and looked for the maximum 
revenue. Group D first started solving the problem with a calculator on the 
computer and later realized it would take them longer to compute all the values 
(see Table 6.39). Group D decided to plot some points and find the graph with 
GeoGebra; as such, they plotted two points and searched for the product of one of 
the points. However, no corresponding graph appeared on the graphical view in 
GeoGebra (see Table 6.46). Group D finally used Excel/spreadsheet to generate 
their data and found the best-selling price (see Table 6.39). 

Task 2 
Groups A, B and C used Google Maps to locate the positions of the three cities 
and Google Search to find the population and travel time between the three cities. 
In the case of Group A, using Google Search and Google Maps, the students found, 
analyzed and discussed the optimal position for building the shopping centre (see 
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Tables 6.9, 6.15 and 6.17). In the case of Group B, the students looked for the 
positions of the three cities on Google Maps and, transferred the coordinates of 
these positions into GeoGebra (forming a triangle) and searched for the middle 
point (using the median of a triangle or centroid approach) (see Tables 6.26 and 
6.27). Group B transferred the coordinates of the found middle point back to 
Google Maps to locate the optimal position. Similar to Groups A and B, Group C 
also used Google Maps to locate the three cities and Google Search to search the 
population of cities (see Table 6.33). Later, Group C used GeoGebra to find the 
best theoretical location without considering the roads or population. Thus, Group 
C took a screenshot from Google Maps, inserted it in GeoGebra and searched for 
the middle point (using the circumcircle/circumcenter of a triangle approach) (see 
Table 6.34). On the other hand, Group D started their work by locating the 
positions of the three cities using Google Maps. However, Group D did not 
consider other factors, such as the roads and population of the cities. Like Group 
C, Group D also found the best theoretical location using GeoGebra without 
considering the roads or population. Thus, Group D also took a screenshot from 
Google Maps, inserted it in GeoGebra and searched for the middle point (using the 
circumcircle/circumcenter of a triangle approach) (see Table 6.40). Group D 
further measured the distances between the cities (vertices of the triangle) and the 
optimal point (circumcenter) to be sure of their answer (see Table 6.43). 

6.8 Summary of the chapter  
I have in this chapter presented the analysis of results that helps in addressing the 
research questions in the next chapter. I first presented an overview of data analysis 
in tabular form. That is, a tabular presentation on different digital technologies the 
students used while working on Task 1 and 2, the interaction sequences and the 
roles adopted by the students as they worked in a group, the emergence of 
modelling actions and the role digital technology played, and the emergence of 
technological, mathematical, and socio-cultural affordances and constraints 
recorded in the students’ activities. The presentation in this tabular form helped to 
facilitate a cross case comparison among the cases (or groups). Secondly, I 
presented a structure for reporting the case study reports. This structure was 
designed in such a way that helps in addressing the research questions. Thirdly, I 
presented the case study reports of each group following the same structure as 
mentioned above. Finally, I presented the cross case analysis of the groups. This 
cross-case analysis follows a structure that will facilitate the discussion of 
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significant issues arising from the research study (which I will discuss in the next 
chapter). 

Having presented the results of this research study, I will, in the next chapter 
(Chapter 7), present the discussion of the study. In the discussion, I will address 
the research questions and discuss significant issues arising from the research that 
I consider having the potential to contribute to mathematics education research. 
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7 Discussion   
In this chapter, I address the research questions and discuss significant issues 
arising from the research that I consider to have the potential to contribute to 
mathematics education research. The research questions are addressed in Section 
7.1, where I organize the research questions around the three main themes of the 
research. This is followed by a discussion of significant issues arising from the 
research in Section 7.2. In Section 7.3, I reflect on theoretical perspectives and 
their link with the findings. The chapter ends with a summary in Section 7.4. 

7.1 Addressing the research questions  
The three research questions are organized around the themes, students’ 
mathematical modelling activities, the emergence of modelling actions and the role 
of digital technologies, and the emergence of technological, mathematical, and 
socio-cultural affordances and constraints. These themes formed the structure of 
the group reports in Section 6.2. In the first theme, I discuss the components of the 
activity system (concerning the sub-questions of the first research question) 
interacting with each other in the context of the students’ modelling activities. In 
the second theme, I discuss five categories of modelling actions that emerged in 
the student’s activities and the role digital technologies played within the 
modelling actions that emerged. Finally, in the third theme, I discuss three 
categories of affordances and constraints of the digital technologies that emerged 
in the students’ activities. The categories in the second and third themes are just 
names used to report or describe the students’ modelling processes and their use 
of digital technologies. I have respectively defined and explained these categories 
in Sub-Sections 2.1.3 and 4.4.2 (concerning modelling actions) and in Section 4.3 
and Sub-Section 4.4.1 (concerning affordances and constraints).   

7.1.1 Students’ mathematical modelling activities 

I repeat, for the reader, the first research question:  
RQ1: How do students solve mathematical modelling tasks with the aid of digital 
technologies? 
RQ1a: What digital technologies did the students use in solving the two 
mathematical modelling tasks? 
RQ1b: What contingencies were shown in the student interactions when solving 
the two mathematical modelling tasks with the aid of digital technologies? 
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RQ1c: What are the rules that mediate students’ mathematical modelling activities 
when solving the two mathematical modelling tasks with the aid of digital 
technologies? 
RQ1d: What roles did the students adopt in the student interactions when solving 
the two mathematical modelling tasks with the aid of digital technologies? 

From a CHAT perspective, the first research question explores how secondary 
students solve mathematical modelling tasks using digital technologies. Empirical 
data were collected through recorded conversations (video recordings) and 
computer activities (screen capture software) to address the research questions 
above. I analyzed the research questions from CHAT perspective (activity system).  
The activity system (or unit of analysis) in this study is a group of students solving 
mathematical modelling tasks with the aid of digital technologies. The components 
of the activity system are subject, community, object, mediating artefacts/tools 
(RQ1a & RQ1b), rules (RQ1c) and division of labour (RQ1d). The subject and 
community were framed by the methodology, and these are not results. As such, I 
will only discuss the components with the results emerging from the data.    

Object of the activity  
The researcher assumes that the object of the activity is to solve the mathematical 
modelling tasks with the aid of digital technologies and write a report. The students 
ratified this objective at different points while working on both tasks through their 
utterances and engagement with each other. Klang et al. (2021) argue that “solving 
a problem is a matter of goal-oriented reasoning”. This goal-oriented reasoning 
starts “from understanding the problem to devising its solution by using known 
mathematical” strategies (ibid., p. 4). In this study, the student’s objectives in 
solving both tasks guided them throughout the activities. In some instances, the 
students had to re-read the problem text and remind themselves of the objective or 
goal of solving the task when they were unsure of their strategy while working on 
the task. For instance, from Excerpt 6.5.1 (on page 216), Nils suggests the group 
checks the population of the three cities as they discuss the optimal location, while 
Jørn re-reads a part of the problem text to remind the group of the goal of the task. 
DiNapoli (2019) argues that students re-read the problem multiple times to figure 
out what they need to know, and re-reading might be classified as a cognitive 
learning strategy (Di Leo et al., 2019).          

Digital technologies (RQ1a) 
The tasks given to the students allow the use of several digital technologies. Thus, 
the students’ mathematical modelling activities were technology-enabled, which 
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included using multiple digital technologies to solve a single mathematical task 
(Abramovich, 2022). For instance, Monaghan (2016a) demonstrates how several 
tools could be used in working on a single mathematics task (see Sub-Section 
2.2.2). In this study, all the groups used several digital technologies while working 
on both tasks. Table 6.1 (on page 157) presents the digital technologies the groups 
used while working on Tasks 1 and 2. Hegedus et al. (2017) argue that the features 
of digital technology might support individual preferences and approaches while 
working on a task. From Sub-Section 6.7.3 (regarding Task 1), the students used 
the calculator (Groups A, B and D) for the calculation of large numbers and 
GeoGebra for visual representation and drawing of functions (Groups A, B and D) 
(Flehantov & Ovsiienko, 2019; Flehantov et al., 2022). In the case of Groups A 
and B, the calculator complimented GeoGebra as the students used the calculator 
to calculate large values/numbers produced from the graph in GeoGebra (e.g., see 
Group A’s activities in Table 6.16). On the other hand, the students used an 
Excel/spreadsheet for numerical calculations and representation of numerical 
results in tables (Groups C and D) (Flehantov & Ovsiienko, 2019; Flehantov et al., 
2022). Before Group D used an Excel/spreadsheet, they switched between tools 
when the initial tool did not give them the desired results (see Table 6.39). 

Regarding Task 2, the students used Google Maps (all groups), Google Search 
(Groups A, B and C) and GeoGebra (Groups B, C and D) (see Table 6.1). There 
are several reasons and factors behind students’ selection or switching between 
digital technologies whilst working on mathematical tasks (Geiger et al., 2002; 
Owens-Hartman, 2015; Anastasakis et al., 2017; Hillesund, 2020), which I will 
further discuss in Sub-Section 7.2.4. Another thing to note is that digital 
technologies were not imposed on the students; they were allowed to choose which 
technology suits them best. This brought about some dynamics in the students’ 
solution processes (see Sub-Section 6.7.3). Jacinto and Carreira (2017) argue that 
different ways of tackling a problem might be revealed if students can choose 
digital technologies. The nature of the digital technologies gave the students 
options while working on both tasks. In this case, the tool allowed mathematics to 
be explored in diverse ways from different perspectives (Hoyles, 2018). For 
instance, Group A drew a direct function in GeoGebra whilst Group B plotted 
some points and then made a graph representing these points (see Sub-Section 
6.7.3). Hoyles (2018) points out that students might easily be aware of what varies 
and what does not through reflection and manipulating a sketch on a graph. For 
example, in Group A’s activities, the students noticed that making a slider might 
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help them reach the desired answer quickly and were aware that the slider does not 
affect the function as they dragged it (see Table 6.11). Drawing students’ attention 
to manipulating the sliders to fit with the function might help their learning (as 
GeoGebra offers the platform for such mathematical relations to be expressed). 

In summary, the students used several tools while working on Tasks 1 and 2. 
Their use of tools depends on factors such as one tool complimenting the other or 
switching to another tool when the first one does not give the desired results. 
Students also select one tool over the other based on the demands of the tasks. I 
will discuss why students select or switch to another tool in Sub-Section 7.2.4. 

Group interactions (RQ1b) 
Different opinions and ideas emerge as the students work on the tasks together. 
These different opinions and ideas help to improve the students’ solution 
strategies. For instance, from Table 6.34, one student suggests that the group 
consider a generalized model that does not factor the population and roads in their 
analysis. Goos et al. (2002, p. 218) argue that interactions in group work shape 
problem-solving outcomes as challenges eliciting clarification and justification of 
strategies stimulate further monitoring, which might lead to errors being noticed 
or fruitful strategies being endorsed. Different interaction sequences emerged in 
the groups’ activities (see Table 6.2). Table 6.2 (on page 158) presents the 
interaction sequences that emerged within the students’ activities. These 
interaction sequences were pseudo, asymmetrical, reactive and mutual 
contingencies. I have presented an analysis of these contingencies in Sub-Section 
6.7.1. There are several reasons for the type of contingency observed, which could 
be the strategy adopted by the students, the nature of the task, and the 
characteristics of the students, among others. For instance, asymmetrical 
contingency was counted in most of the episodes of the activities of upper 
secondary and mixed-achievement groups (Groups A and B) regarding Task 1 
compared to Task 2. However (concerning these same groups), reactive and 
mutual contingencies were counted in most episodes regarding Task 2 compared 
to Task 1. On the other hand, regarding both tasks, reactive and mutual 
contingencies were counted in most episodes of the activities of Group C (upper 
secondary and high-performing students) and Group D (lower secondary and 
mixed-achievement students). One possible reason for these dynamics could be 
the task’s nature and the students’ characteristics, which I will discuss in Sub-
Section 7.2.1. On the nature of the task, Clark et al. (2014) suggest that the problem 
type might lead to effective group interaction and activity, whilst Brady and Jung 
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(2022) add that the choice of tasks stimulates students’ interest in solving the 
problem. Concerning the characteristics of students, Peter-Koop (2002) asserts that 
predominantly in mixed-ability groups, the high-performing students frequently 
dominate the group (asymmetrical contingency). Esmonde (2009) adds that high-
achieving students tend to dominate group interactions. Lowrie (2011) argues that 
in such situations, the responses of others are generally influenced by the ideas and 
strategies that the dominant person has formulated. Another contingency observed 
in the data is the combination of pseudo and asymmetrical contingency, which 
occurs when the interaction between student—student and student—computer is a 
pseudocontingency, whilst the student—student interaction is an asymmetrical 
contingency (see Table 6.10).    

Rules (RQ1c) 
The rules for the activity are both explicit and implicit. These rules influence 
how/why students might act within the activity. Table 6.3 (on page 158) presents 
the explicit and implicit rules observed in the students’ activities.   

Explicit rule 
There was no restriction on digital technologies in the student’s activities; the 
groups used different digital technologies while working on Tasks 1 and 2 (see 
Table 6.1). The students first analyzed the problem and then selected a particular 
digital technology to solve the problem. For instance, Group C selected 
Excel/spreadsheet instead of GeoGebra as they thought their data was recursive 
(see the first part of the dialogue in Table 6.32). Santos-Trigo (2019) points out 
that using digital technologies might demand that students analyze and discuss 
what problem-solving strategies appear essential while working on a task. Thus, 
the students know what they are looking for and how digital technology can help 
them achieve that. Jacinto and Carreira (2017) emphasize that choosing a particular 
digital technology does not only involve students’ skills but also the interplay 
between mathematical skills and the perception of the affordances and constraints 
of the digital technology (I will further discuss the affordances and constraints of 
digital technologies in Sub-Section 7.1.3). Another explicit rule recorded in Table 
6.3 is time constraint. This was recorded in Groups A (regarding Task 1) and B 
(regarding Task 2). Concerning Task 1, there were instances within Group A’s 
activity where new ideas were dismissed due to time constraints. For instance, a 
student dismissed another student’s suggestions of using the spreadsheet to 
generate their data because they were already close to finding the answer (see 
Excerpt 6.3.1 on page 173). This incident might result from time constraints or the 
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student’s preference for the solution strategy. Concerning Task 2, there were 
instances where conclusions drawn were accepted without further analysis. For 
instance, members of Group B went on to write the final report, although one 
member argued that they needed to consider the roads before making the final 
decision (see Excerpt 6.4.1 on page 203). Caviola et al. (2017) argue that time 
constraints interfere with decision-making as they alter the selection of a strategy 
in problem-solving (ibid., p. 7). Again, time constraints in a problem-solving 
situation might affect performance. Heinze et al. (2009) point out that open 
problems might give room for flexible or adaptive use of strategies in mathematics, 
and Rieskamp and Hoffrage (2008) emphasize that leaving a considerable amount 
of time to complete a task enables students to get a more significant amount of 
information. Caviola et al. (2017) add that students get enough information (given 
sufficient time) by focusing attention on essential task features, ultimately 
selecting an optimal strategy. In the case of Group B, the students spent 40 minutes 
(20 minutes more than the expected time) but could not draw the desired 
conclusion. The students might have spent much time on other parts of the task. 

Implicit rule 
From Table 6.3, the only implicit rule observed was dismissing comments or 
suggestions. This was mainly observed in Groups A (relating to Task 1) and B 
(Relating to Task 1 and 2). In the case of Group A, the students first accepted the 
new idea and rejected it after trying it out, and it did not yield any better results 
(see Table 6.11 on page 171). Thus, students dismiss comments or suggestions 
when they do not fit the current strategy. Group B, on the other hand, rejected the 
new idea without trying it out (see Excerpt 6.4.2 on page 204). Thus, the students 
only listened to the explanation of the one that suggested this idea and continued 
with their initial strategy without trying out this new idea. In these two scenarios, 
there is a possibility that students (in a group activity) might accept new ideas and 
work on them (and when they are unsuccessful, they return to the initial strategy) 
or reject them without working on them. It is usual for a group member to suggest 
new ideas or strategies in problem-solving, which might be evaluated by other 
members (Goos & Galbraith, 1996). Esmonde (2009) argues that when group 
members critically examine new suggested ideas/strategies, and these 
ideas/strategies are not quickly accepted or rejected, it shows effective 
collaboration in group work. Hence, Levenson and Molad (2022) point out that 
rejecting an idea might constrain fluency in collaborative group work. On the other 
hand, Hernandez-Martinez and Harth (2015) argue that new ideas are of little use 
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if they are not specific or have no connection with the current groups’ 
understanding of the problem in group interactions. Hernandez-Martinez and 
Harth (2015) further gave a reason for the rejection, which is because these new 
ideas are communicated without confidence or they are not sufficiently clear to 
connect with the group’s current thinking, even though the new ideas might have 
steered the group’s thinking in the right direction.   

Division of labour (RQ1d) 
In the modelling activities, students had different roles. The roles concerning tool 
usage were constant throughout the activities (see Table 5.2 on page 130). From 
Table 5.2, students assigned the highest grade (high-performing) were mainly 
responsible for the computer activities. Other roles, such as leading, opposing, 
suggesting, questioning and challenging, supporting and non-contributing, 
changed during students’ activities (see Table 6.4). Table 6.4 (on page 160) 
presents the roles taken by each group member while working on Tasks 1 and 2. 
From Table 6.4 (and Sub-Section 6.7.2), the high-performing students in the 
mixed-achievement group (see Table 5.1) often took the leading role while 
working on Task 1 (Groups A and B). However, this role was counted less in the 
activities relating to Task 2. The leading role was also counted less in the activities 
of same-achievement (high-performing students—Group C) and mixed-
achievement (lower secondary—Group D) groups relating to both tasks. This 
suggests that the student’s characteristics and the nature of the task could 
determine the frequency of the leading role counted in the episodes. Questioning 
and challenging roles are mostly seen among upper secondary students compared 
to lower secondary students. The supporting and suggesting roles were counted 
more in the activities of all the groups. The opposing role was seen among the 
mixed-achievement groups (Groups A, B and D). However, this role was not 
counted among the high-achievement group (Group C). There were also a few 
instances where some students took non-contributing roles in the activities of 
Group A (Rolf), B (Ella) and C (Jørn). Some reasons for the non-contributing role 
might be that: the student in Group A was described as one with the highest 
mathematical understanding and nonetheless appeared to have a slightly lower 
motivation among the peers; the student in Group B was the only female among 
three male students in the group; and the student in Group C does not see the others 
as best friends as the group was formed spontaneously and dissolved after the 
activities (I will further discuss students’ roles in Sub-Section 7.2.2). 

In summary, I have discussed how CHAT helps describe the interactions in 
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the students’ activity in new ways. The elements of CHAT, the subject 
(characteristics of each student), the community (group of secondary school 
students), the object (solving Task 1 and 2), mediating artefacts/tools (digital 
technologies—RQ1a and group interactions—RQ1b), the rules (time constraints, 
availability of digital technologies, implicit rules—RQ1c), and the division of 
labour (roles adopted by the students—RQ1d) are seen as a whole, or as collective 
system interacting with each other, in contrast to cognitive approaches focusing on 
heuristics and modelling processes. Again, from CHAT perspective, the student-
student interactions are intertwined with (or directed by) the individual’s 
engagement with the digital technology, influencing the activity’s outcome. In the 
following subsection, I will address the second research question (RQ2a & RQ2b).         

7.1.2 Emergence of modelling actions and the role of digital technologies  

In this subsection, I assume modelling actions exist, and I have discussed this in 
detail in Sub-Sections 2.1.3 and 4.4.2. From a CHAT perspective, I consider 
activities in modelling to be performing actions and operations towards an object 
(solving mathematical modelling tasks/ developing a technology-based 
model/solution). These actions and operations are specific to the context of the 
task. The interpretations of the goals behind the students’ actions are only from the 
researcher’s observations (since the students were not asked for the reasons for 
their actions). Again, I subscribe to Niss and Blum’s (2020) top-down approach, 
which is an overarching entity (called the modelling competency) in the singular, 
for which sub-competencies are derived (secondary objects) (see Sub-Section 
2.1.3). The actions and operations of the students are viewed through the lens of 
the modelling process (see Table 9.6 in Appendix E.2 for categories of modelling 
actions used in this study).    
I repeat, for the reader, the second research question: 
RQ2a What modelling actions emerge during the mathematical modelling 
activities of the students? 
RQ2b What part do the uses of digital technologies play within the modelling 
actions that emerge? 

From a CHAT perspective, the second research question explores the 
modelling actions that emerge within the students’ activities and the role of digital 
technologies in these emerging actions. Empirical data were collected through 
recorded conversations (video recordings) and computer activities (screen capture 
software) to address RQ2a and RQ2b. The discussion is centred around the second 
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structure (or theme) for the case study reports of the groups (see Section 6.2). Thus, 
the findings regarding RQ2a and RQ2b are discussed around the categories: 
breaking the task into manageable parts; searching for a model; finding a solution 
for the model; explaining the results in real terms; and checking the results for 
adequacy. The sequence above does not mean the students solve the tasks linearly 
(following the same structure order). Recall that the unit of analysis is a group of 
students solving mathematical modelling tasks with the aid of digital technologies 
(see Sub-Section 5.1.3). The focus of RQ2a and RQ2b is on how group modelling 
actions develop and the role of digital technologies in these group actions. I do not 
discuss individual actions at each stage of the categories but group actions to gain 
a broader picture of modelling actions emerging in the students’ activities. 
Although individual actions affect the interactions taking place in the group 
activities, I will discuss these individual actions at the collective level. Below is a 
discussion of each of the categories of modelling actions emerging, and the 
discussion relates to both Tasks 1 and 2, where significant aspects that deal with 
each task are highlighted.    

Breaking the task into manageable parts 
Breaking the task or problem into manageable parts is seen as an action where 
students perform operations such as making assumptions and simplification, 
constructing relations, seeking information, and recognizing quantities that 
influence the problem situation. Breaking the task into manageable parts is done 
to understand the problem or have a clearer view of the task demands. The actions 
are done on a conscious level, whilst the operations are done on a more 
subconscious level (not always the case, as some operations can be done at a 
conscious level). Furthermore, some of the operations were completed with digital 
technologies. 

Regarding Task 1 (see Tables 6.12, 6.28, 6.35 and 6.41) and 2 (see Tables 
6.13, 6.29, 6.36 and 6.42), it was observed that the first action the students 
performed was to break the task or problem into manageable parts, and they did 
that to have a clearer view of what the task demands (from the researcher’s 
perspective). Regarding the initial solution process of Task 1, the students 
recognized variables such as the number of people buying the car, the price at 
which they buy the car, and the maximum revenue of the car-selling company. 
Similarly, the students recognized variables regarding Task 2, such as the positions 
of the three cities and discussed the issue of fairness. Again, except Group D (lower 
secondary school students), the other groups (upper secondary school students) 
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recognize variables such as the population of the cities and the distances and time 
of travel between the cities (see Task 2 in Sub-Section 6.7.3). In an example of the 
‘lunch problem’, Garfunkel and Montgomery (2016) argue that students in the 
lower grades might only count the number of items whilst those in the higher 
grades might take more sophisticated information into account. Working on a task 
in group activities, students read the problem text together, with one member 
reading it out loud (Albarracin et al., 2019). This activity is easy to identify by 
researchers in the recordings; for instance, see the dialogue in Table 6.15 (on page 
178), where Kåre (a member of Group A) reads the second task aloud. The students 
then discussed the problem (after reading) to understand or have a clearer view of 
the task’s demands. Polya (2004) argues that the first step to problem-solving is 
understanding the problem.  Thus, the problem text must be understood so that the 
students can point out the problem’s principal parts, the unknown, and the 
available conditions, amongst other factors.  Yimer and Ellerton (2010) adds that 
understanding the problem (engagement) can be described as the initial 
confrontation and making sense of the problem (initial understanding, analysis of 
information, and reflecting on the problem) (Rott et al., 2021).  The argument 
above relates to problem-solving but can also be used to explain the initial 
activities in the modelling process.  Understanding the problem text is subjective 
as it might depend on the nature of the task and the characteristics of the students, 
among others. Students sometimes solve problems correctly without 
understanding them (Reusser, 1988); for instance, they might focus on what to do 
with the numbers in the problem situation if the problem text has some numeric 
elements (Verschaffel et al., 2000). An example in this study was Group D’s 
activities relating to Task 2.  From the first part of the dialogue in Table 6.40 (on 
page 233), Hege pointed out that the task is similar to the helicopter task (see Task 
A in Appendix B); they worked on a day before the current/main activity.  In this 
case, Group D did not consider other factors (e.g., actual travel time or distance) 
but instead considered the air distance in their analysis (which makes sense in the 
case of the helicopter but not with cars).  From this scenario, it appears that the 
students’ modelling actions (or so to say, modelling competences) might not be 
carried on from one task to the other.  Thus, these modelling actions (or modelling 
competences) are not seen as a general manifestation, but rather, these actions are 
specific to the task context. Regarding Task 1, almost all the first two episodes of 
the students’ activities show the students breaking the task into manageable parts.  
Concerning Task 2, it was counted sometimes in other episodes (aside from the 



267 
 

first two) that the students in Groups A, B and C (upper secondary students) sought 
extra information to understand better what the task demanded.  These groups 
sometimes seek extra information (when they feel the information they have is not 
enough) by re-reading the problem text (Albarracin et al., 2019; DiNapoli, 2019).  
For instance, the second part of the dialogue in Table 6.33 (on page 219) shows a 
member of Group C re-reading a part of the problem text.   

Role of digital technology 
What role do digital technologies play under the category ‘breaking the task into 
manageable parts’ that emerged in the students’ activities? Different digital 
technologies were used by the students in the process of breaking the task into 
manageable parts. At a certain point where the members of Group A were looking 
for variables, the conditions available, and constructing a relation for the identified 
variables in the problem situation, the students used Google Search (translate) to 
seek information about a word (konstantledd) in their discussions (see Table 6.14). 
This happened as the students are Norwegians and have English as their second 
language. Klock and Siller (2020) report that students might struggle to understand 
the problem text written in a foreign language. Working on Task 2, Groups A, B 
and C used Google Maps and Google Search to seek information about the 
identified variables, whilst Group D only used Google Maps (see Table 6.1). This 
could be because the students in Groups A, B, and C are upper secondary school 
students and might take more sophisticated information into account while 
working on Task 2 (compared to Group D, lower secondary school students). 
Greefrath and Siller (2017) emphasize that the role of digital technologies, as 
described in the activities of the groups above, is ‘researching’ (that is, researching 
information on the internet).    

Searching for a model 
The students perform the modelling action “searching for a model” after breaking 
the task or problem into manageable parts. In this case, the students put the pieces 
together (the manageable parts) to form a model, which they later solved. 
Searching for a model is seen as an action where students perform operations such 
as translating the real problem into a mathematical problem, representing the 
mathematical problem in the technological world (digital technology), and 
simplifying the model, among others. In the students’ activity, they first put their 
identified variables together to form a mathematical problem and then represented 
the mathematical form in the technological world (digital technology). The action 
of searching for a model was done towards the goal of setting up a mathematical 
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model. Albarracin et al. (2019) point out that the activity ‘developing the model’ 
is a category that collects all instances regarding the creation of a mathematical 
model, either when approaching the problem more generally by discussing aspects 
related to a potential real-life model or when elaborating the actual mathematical 
model (ibid., p. 219). The category ‘searching for a model’ was counted in at least 
the first, second or third episodes of the students’ activities (see Tables 6.12, 6.13, 
6.28, 6.29, 6.35, 6.36 and 6.42), except Group D’s activities relating to Task 1 (see 
Table 6.41). The students generally searched for a model and later looked for a 
solution. Again, the groups identified the same variables but set up different 
models (see Sub-Section 6.7.3). Setting up the model for both tasks depended on 
the students’ information after breaking the task into manageable parts. The action 
of finding a solution to the model shows how efficient the model is. For instance, 
in the case of Group D, the students searched for another model when they 
encountered a problem in finding a solution for the model (see Table 6.39). 

Role of digital technology 
What role do digital technologies play under the category ‘searching for a model’ 
that emerged in the students’ activities? In Task 1, to translate the problem 
situation into a mathematical problem, Groups A and B used GeoGebra to 
construct or create the function representing their data (see Table 6.12 and 6.28, 
respectively). Groups C and D also used Excel/spreadsheet to set up their model 
(see Table 6.35 and 6.41, respectively). However, before Group D settled on using 
Excel/spreadsheet to set up the model, they tried using a calculator on their 
computer and GeoGebra. In summary, GeoGebra was used for geometric 
construction, and Excel/spreadsheet was used for data entry and generation. 
Regarding Task 2, the groups used Google Maps to seek information about the 
positions of the three cities and GeoGebra (only Group B, C and D) to construct a 
geometrical shape representing the position of these cities (see Tables 6.13, 6.29, 
6.36 and 6.42). The results above reinforce the findings by Greefrath and Siller 
(2017), which point out (in a diagram about modelling paths and digital technology 
use) that digital technologies might be used to investigate (researching or seeking 
information), construct, and draw in the translation between the real model or the 
problem situation and the mathematical model.        

Finding a solution for the model 
Finding a solution for the model is seen as an action directed towards solving the 
mathematical questions within the model. The students performed this action in 
several of the episodes in the activities (see Tables 6.12, 6.13, 6.28, 6.29, 6.35, 
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6.36, 6.41 and 6.42). Thus, many students’ actions were about finding a solution 
for their model. To solve the mathematical questions within the model, the students 
worked mathematically as they applied heuristics strategies in the form of 
operations like observing the effect of parameters on the graph, mathematical 
manipulations and computations, and analyzing, amongst others. The students 
found a mathematical solution to their model using different strategies. Under this 
category, I will address the question, ‘How do the students solve the mathematical 
questions in the model they set up?’. Using the Modelling Activity Diagram 
(MAD, see ‘modelling frameworks/cycle’ in Sub-Section 2.1.1), Albarracin et al. 
(2019) put the category above into two different activities: estimating and 
calculating. An estimating activity describes the moments when the students made 
estimates as they discussed what values to assign to specific quantities needed to 
complete a calculation, whilst a calculating activity describes situations where the 
students perform calculations either with a device or metal calculations (ibid.). In 
this study, I consider the activities of estimating and calculating to be operations 
under the category ‘finding a solution for the model’. In Sub-Section 6.7.3, I 
showed how the groups solved Tasks 1 and 2. Groups A and B used the trial-and-
error method by analyzing patterns of numbers after searching for a function that 
represents the number of people buying the car and the price at which they buy it. 
At some point, the student tried other methods (e.g., introduced a new equation—
see Table 6.23 on page 191) but was unsuccessful. The difficulty here was the 
manipulation of two functions/equations, that is, putting the two functions together 
to represent the total revenue of the car-selling company. This difficulty is 
consistent with the report by Pedersen (2015), which points out that Norwegian 
upper secondary school students do not perform well enough on items that place 
high demands on symbol manipulation. He further emphasizes that these students’ 
strengths are in items requiring text comprehension in which the students 
formulate the mathematical expressions needed to find the solution. In the case of 
Group A, the students formulated mathematical expressions for the situations 
described in Task 1 but had difficulties manipulating these mathematical 
expressions. Groups C and D used Excel/spreadsheet to generate their data. 
Concerning Task 2, I further introduced a sub-category, analyzing (defined in 
Table 9.6 in Appendix E.2), to describe the students’ activities. This sub-category 
characterizes how the students solve the mathematical questions within the model. 
This sub-category was observed in the activities when the students reconciled their 
model with reality, which was done by performing operations such as comparing 
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the population of different cities, distances and time of travel between cities, 
discussing the positions of the cities on Google Maps, importing of images from 
Google Maps or other images into GeoGebra and manipulating the geometric 
figure/shape of the image, among others. All groups (except Group D—lower 
secondary students) factored the roads, time of travel and population of the cities 
in their analysis. Garfunkel and Montgomery (2016) emphasize that students in 
higher grades might take more sophisticated information into account while 
solving mathematical modelling tasks compared with lower grades. The case of 
Group D could also be their prior experience with the previous task, as they worked 
on the ‘rescue helicopter task’ (see Task A in Appendix B), where they considered 
the air distance and not the road distance or time of travel on Google Maps.   

Role of digital technology 
What role do digital technologies play under the category ‘finding a solution for 
the model’ that emerged in the students’ activities? Relating to Task 1, to solve the 
mathematical questions within the model, it was observed that some students 
(Group A and B) used GeoGebra to change the values of the function and the 
calculator for calculating the product of larger values (see Table 6.12 and 6.28 
respectively). Other students (Groups C and D) also used Excel/spreadsheet to 
generate their data (see Table 6.35 and 6.41, respectively). In Task 2, it was 
observed that the students used Google Maps to seek information about the 
positions, distance, and travel time between the cities. The students used Google 
Search to seek information about the population of the three cities. Again, the 
students used GeoGebra to experiment/change and visualize the geometrical shape 
of the three cities (I will further discuss this in Sub-Section 7.1.3). Greefrath and 
Siller (2017) point out in a diagram about modelling paths and digital technology 
use that digital technologies might be used to investigate (researching or seeking 
information), construct/draw, measure, and experimentalize the process between 
the mathematical model and the mathematical results.    

Explaining the results in real terms 
Students performed an action of explaining the results in real teams after finding 
an answer to the mathematical questions in the model. Before the students 
interpreted their results, they sometimes checked their results and then found 
another solution to the model if there was a problem with the answer they checked. 
Explaining the results in real terms is seen as an action directed towards the goal 
of interpreting the mathematical results in real situations. In this case, the students 
perform operations such as highlighting the meaning of the results and 
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generalizing the model to fit other situations, among others (see the category 
‘explaining the results in real terms’ in Table 9.6 in Appendix E.2). These 
operations are done on a more subconscious level as Boromeo Ferri (2006) asserts 
that the transition between mathematical results and real results ‘is often not done 
with awareness by the’ students (ibid.). At the end of the activities, the students 
linked the mathematical results obtained in the model to the real problem (and this 
became the real result). The students wrote a report and explained their 
mathematical results (see Appendix D for the solution reports for Groups A, B, C 
and D and the other groups in the same classroom with them). Regarding Task 1, 
all the groups settled on selling the car for 7500 euros for 75 people and generating 
a maximum revenue of 562500 Euros. Although the groups had the correct answer, 
they did not construct a representation for the maximum revenue in their 
interpretations. Thus, a representation that fits the situation described in Task 1 
(which can also be used in other situations). The students might have seen no point 
in going further if they had an answer to the problem. Regarding Task 2, the 
students wrote a report explaining their choice of the optimal position for the 
shopping centre. That is, the students reconcile their mathematical results with 
reality. Especially the students in the upper secondary school (Group A, B and C) 
did not only choose the geometric middle (either a circumcircle/circumcenter or 
the centroid of a triangle) of the three cities but also considered the roads, distance 
between the cities, time of travel, the population, the environment, among others 
(see Task 2 in Sub-Section 6.7.3). To solve a task such as Task 2, the students’ 
opinions influence the kind of answer they give, and this is seen in the 
interpretations of the students’ solutions. In this case, linking reality and the 
mathematics the students did. Garfunkel and Montgomery (2016) view the 
computations of a modelling task as one aspect and comment that students have to 
think about making decisions in the face of uncertainty, which is doing the 
mathematics and reconciling the results with reality, making the mathematics more 
relevant and exciting. Interpreting the results involves considering how the model 
could be adapted for other situations. Group C acknowledged this aspect by using 
GeoGebra to construct the geometric middle of the three cities 
(circumcircle/circumcenter) when roads and other factors are not considered (see 
Table 6.34).          

Role of digital technology 
What role do digital technologies play under the category ‘explaining the results 
in real terms’ that emerged in the students’ activities? Relating to Task 2, in an 
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action of explaining the mathematical results in real terms, at one point, the 
students (Group C) used GeoGebra to construct the geometric middle 
(circumcircle/circumcenter) of the three cities, to generalize their model (while not 
considering factors that affect the model in reality). Although the example of 
modelling path and digital tool use described by Greefrath and Siller (2017) did 
not describe the use of digital technologies in the process between the 
mathematical results and the real results/situation. However, Greefrath and Siller 
(2017) point out that digital technology might be used to construct and experiment 
for the purposes described in the activities of Group C above.   

Checking the results for adequacy 
Validation of a mathematical modelling solution involves checking the real results 
in the situation model for adequacy, sometimes done within (partial results) or near 
the end (final results) of the students’ activities. Checking the results is seen as an 
action in which the students reflect on other ways of solving the problem and 
critically examine the results to validate their solution. In the activities regarding 
Task 1, it was observed that most students (Groups A, B, and C) reflected on and 
criticized their results and the strategies used in solving the task (see Tables 6.12, 
6.28, 6.35 and 6.41). In one example, a member of Group A suggested the group 
use an Excel/spreadsheet to generate their data instead of changing the values of 
the function, one after the other (see Excerpt 6.3.1 on page 173). In another 
example, Group A (and Group B) chose a number below and above the ideal 
number of people that maximizes the company’s revenue to verify their answer 
(see Table 6.18 on page 183). In this case, the students were aware of their actions, 
which Boromeo Ferri (2006, p. 93) describes as ‘knowledge-based validation’. 
Thus, the students agree or disagree with their results based on their extra-
mathematical knowledge. In this study, Groups A and B, with their extra-
mathematical knowledge, agreed on the results after verifying with a number 
above and below the ideal number. Group C did not check their results for 
adequacy (see Table 6.35). Thus, the students in Group C were convinced of their 
results after they looked through the data set they generated with 
Excel/spreadsheet. Group D also generated their data set with Excel/spreadsheet, 
but they discussed their final results further. In this case, the students in Group D 
discussed going down with the price of the car to see what happens (but that 
suggestion was later rejected) (see Excerpt 6.6.1 on page 239). The outcome could 
be exciting if the students tried and compared this new idea to their initial strategy 
(or final solution). However, the group agreed on their final solution instead of 
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going further with the task. Albarracin et al. (2019) point out validations can 
happen when the group agrees. In the activities regarding Task 2, it was observed 
that the students reflected on and/or criticized their results and the strategies used 
in solving the task in some of the episodes (see Tables 6.13, 6.29, 6.36 and 6.42). 
Task 2 is an open task and does not have a single answer. However, the students 
had to reconcile their answers with reality. In the activities of Groups A, B and C 
regarding Task 2, the students did not directly verify their results (compared to the 
activities of Task 1) (see Task 2 in Sub-Section 6.7.3). They verified their results 
by arguing about factors like distance, time of travel, population, and the 
environment, among others, that affect the results. Another explanation is that the 
students were not quite sure of the results as they were with Task 1, although they 
considered some factors in reality. Boromeo Ferri (2006, p. 93) describes another 
validation called ‘intuitive validation’ (opposite to the earlier validation 
described), which is a situation where students might find out that their results 
could be wrong for reasons they cannot explain. In the case of Groups A, B and C, 
I would say that the validation is both knowledge-based and intuitive in the sense 
that the students have knowledge about the factors affecting their optimal choice 
and at the same time, they felt that their results were not adequate (not confident 
in the results). It might be the case that the students usually solve tasks with a 
single straight answer, affecting their judgment of the results of Task 2. Group D 
only searched for the theoretical optimal location, not the hypothetical one (see 
Table 6.40). Group D verified their results of Task 2 by measuring the distances 
between the middle point and the three cities (see Table 6.43). Furthermore, with 
this measurement, they were sure that the optimal location has an equidistance to 
the cities. 

Role of digital technology 
What role do digital technologies play under the category ‘checking the results for 
adequacy’ that emerged in the students’ activities? Relating to Task 1, to validate 
the results, some students (Group A and B) used GeoGebra to change the values 
of the function (that is, choosing numbers above and below the ideal number) and 
the calculator for calculating the product of these selected numbers/values (see 
Table 6.12 and 6.28). Regarding Task 2, it was observed that some students (Group 
D) used GeoGebra to measure the distances between the optimal location and the 
cities. Greefrath and Siller (2017) point out that digital technology might be used 
to experiment, calculate, and measure within the above activities. 

In summary, the discussion in this subsection shows how CHAT helps 
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describe the students’ activities, particularly their mathematical modelling 
processes. That is, I analyzed the modelling processes the students engaged in by 
identifying the modelling activities in terms of their actions. Most modelling 
processes follow descriptions of the modelling cycle from a cognitive perspective 
(Boromeo Ferri, 2006). In this case, much attention is given to the transitions 
between the modelling phases or nodes of the modelling cycle. The normative 
description of the modelling process is considered ideal; however, the empirical 
descriptions differ from the normative description (see Sub-Section 2.1.1). Cai et 
al. (2014) argue that a modelling cycle might not show most students’ actual work 
in a mathematical activity. Thus, there might be some difficulties in the qualitative 
identification of the stages of the modelling process corresponding to each episode 
of students’ work (Ärlebäck, 2009; Czocher, 2016; Albarracin et al., 2019). As 
such, Albarracin et al. (2019) use the components of Modelling Activity Diagrams 
(MAD: reading, making model/modelling, estimating, calculating, validating and 
writing) to characterize the modelling processes of students. These activities in 
MAD might help qualitatively identify the stages of the modelling processes. 
However, it does not include the role played by digital technologies in these 
activities. This research study (in a different way) presents students’ modelling 
processes as emerging actions (from a CHAT perspective) and considers the role 
of digital technologies in these emerging actions. 

The empirical description of the modelling processes discussed in this 
subsection is considered in view of the ontology of CHAT, which emphasizes that 
modelling processes are not ideal but instead develop within an activity. For 
instance, the categories of modelling actions discussed above are different 
concerning the nature of the task and the characteristics of each group, among 
others. That is, the student’s approach towards Task 1 differs from their approach 
towards Task 2. Again, the approach towards a particular task differs among the 
groups. Concerning the characteristics of the students, the different roles adopted 
by the students or the forms of interactions taking place within the student’s 
modelling activities (as addressed in Sub-Section 7.1.1) might also help in 
understanding the differences in the modelling actions that emerged across the 
groups. The categories of modelling actions discussed above clearly show the work 
pattern of the students. From a methodological point of view, I argue that 
characterizing the different activities the students engage in when solving a 
mathematical modelling task is more straightforward and more apparent in terms 
of the categories of the modelling actions. In conclusion, from a CHAT 
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perspective, I consider students’ activities in modelling as performing actions and 
operations towards an object (solving a mathematical modelling task/developing a 
technology-based model/solution). The categories of modelling actions help 
qualitatively identify the stages of the modelling processes. The role digital 
technologies played in the emerging modelling actions was also observed in the 
students’ activities. That is, some of the operations done by the students were 
completed with digital technologies. The tendency to use specific digital 
technologies for a particular operation depends on the student’s approach towards 
the tasks and others (more of students’ tendency of using particular digital 
technologies to come in Sub-Section 7.2.4). 

I will address the third research question (RQ3) in the following subsection.           

7.1.3 Emergence of affordances and constraints of digital technologies in 
mathematical modelling activities 

In this section, I assume technological, mathematical, and socio-cultural 
affordances and constraints exist, and I have discussed these in Section 4.3 and 
Sub-Section 4.4.1. I also acknowledge that affordances perceived and actualized 
are two distinct things; nonetheless, in most instances, affordances are perceived 
before being actualized. However, for this discussion, I will focus on the actualized 
affordances (the action itself) emerging in the students’ interactions with digital 
technologies. One should note that affordances arise from the students—digital 
technology relation and not just the digital technology. For instance, GeoGebra 
can afford the bisection of an angle, which is meaningful only if the students can 
use the ‘Angle Bisector’ feature in GeoGebra.   
I repeat, for the reader, the third research question: 
RQ3 What affordances and constraints of the digital technologies emerge as the 
students develop a technology-based model/solution? 
 

From a CHAT and Affordance Theory perspective, RQ3 explores the 
affordances and constraints that emerge within the students’ activities as the 
students interact with digital technologies. Empirical data were collected through 
recorded conversations (video recordings) and computer activities (screen capture 
software) to address RQ3. The findings regarding RQ3 are discussed considering 
the categories of technological, mathematical, and socio-cultural affordances (see 
Sub-Section 4.3.4). Recall that the unit of analysis is a group of students solving 
mathematical modelling tasks with the aid of digital technologies (see Sub-Section 
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5.1.3). As such, I will centre the discussion on the affordances and constraints of 
the digital technologies emerging in group activities around shared affordances 
and not focusing on individual or collective affordances (see Sub-Section 4.3.4). 
Shared affordances might come into play when the students share one common 
working space (using only one computer). At the same time, collective affordances 
might come into play when the students use their individual computers while 
working on the task. In one of the principles for using Affordance Theory, Volkoff 
and Strong (2017) state that one should recognize social forces that affect 
affordance actualization. That is the social context in which these affordances are 
actualized. Bloomfield et al. (2010) argue that the affordances of digital 
technologies, practically, cannot be easily separated from the arrangement through 
which they are actualized, as Volkoff and Strong (2017) point out that one needs 
to consider how the presence of other people using the same digital technology for 
similar or related purposes might affect an actor’s behaviour. As such, I discuss 
the shared affordances of the groups in the social context. That is, the combination 
of CHAT and Affordance Theory helps address the affordances of digital 
technologies and the activities mediated by digital technologies. This combination 
does not separate the affordances of digital technologies from the activities 
mediated by these digital technologies. I will discuss the emerging categories of 
affordances and constraints below (where the discussion is situated around Tasks 
1 and 2); however, significant aspects that deal with each task are highlighted.  

Technological affordances and constraints  
The operations performed by the groups are characterized by the usability features 
(see Sub-Section 4.3.4) of the digital technologies. Digital technology provided 
the students with specific functional opportunities while working on Tasks 1 and 
2. Furthermore, these functional opportunities become meaningful if the students 
can use/reach them. Technological affordances are properties of digital technology 
linked to usability in such a way that the digital technology allows for the 
accomplishment of a set of tasks efficiently and effectively that satisfies the user 
(Kirschner et al., 2004). Table 6.1 presents the digital technologies each group used 
while working on both tasks. Thus, the students used at least one of the digital 
technologies (GeoGebra, calculator, Google Search, and Excel/spreadsheet) while 
working on Task 1, and at least two of the digital technologies (GeoGebra, 
calculator, Google Search and Google Maps) while working on Task 2. These 
digital technologies supported students’ perceived ease of researching, measuring, 
visualizing, geometric construction, experimenting/ changing, data entry and 
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generation, and calculating (codes for analyzing technological affordances and 
constraints, and well documented in Table 9.7 in Appendix E.3). Table 6.20, 6.21, 
6.30, 6.31, 6.37, 6.38, 6.44 and 6.45 presents the counts of the actualized 
technological affordances and constraints that emerged in the episodes of the 
activities of the groups. The students used different approaches while working on 
both tasks (see Sub-Section 6.7.3). As such, there were differences in the 
affordances and constraints that emerged. The technological affordances and 
constraints are the same as the role of digital technologies in the emerging 
modelling actions presented in Sub-Section 7.1.2. I will now discuss each of the 
technological affordances and constraints in the order presented in Section 6.2:   

Researching 
Regarding Task 1, Google Search afforded the retrieving of information on the 
internet of one of the variables in the proposed equation of the students (only in 
the activities of Group A, see Table 6.14). Regarding Task 2, Google Search 
afforded the retrieving of information about the population of the three cities as 
the students (Groups A, B and C) analyzed the optimal location where the shopping 
centre would be built. On the other hand, Group D (students at the lower 
secondary) could not use/reach this affordance of Google Search as they did not 
perceive it. One possible explanation could be the students’ strategies for solving 
Task 2. The characteristics of Group D also played a part. Thus, students at the 
higher level might take more sophisticated information into account while solving 
a modelling task compared with students at the lower level (Garfunkel & 
Montgomery, 2016). Again, Google Maps allowed the groups to retrieve 
information about the cities’ positions. 

Measuring 
Regarding Task 1, the category ‘measuring’ was not identified in the student’s 
activities. Regarding Task 2, Google Maps afforded Groups A, B, and C the 
measuring of distances between the cities. These groups did not only look for the 
cities’ positions but also the actual distances between these cities (and the time of 
travel). These measurements influenced the students’ choice of the optimal 
position for the shopping centre. Similarly, as discussed under ‘researching’ above, 
Group D could not use/reach the affordance ‘measuring’ as they did not perceive 
it even though they could retrieve information about the positions of the three cities 
on Google Maps. GeoGebra afforded Group D the measure of distances between 
points when the students verified the equidistance between the optimal location 
and the three cities (see Table 6.43). 
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Visualizing 
Regarding Task 1, the category ‘visualizing’ was not identified in the students’ 
activities. Regarding Task 2, Google Maps afforded Group A the visualization (see 
Table 6.17) of the location of the three cities as they turned on the satellite in 
Google Maps. With this functionality of Google Maps, the students could access 
the environment surrounding their choice of the optimal place for the shopping 
centre. GeoGebra afforded Group B the visualization of a point in the graphic view. 
In this case, Group B made a duplicate (Point M in Image 2 in Table 6.27) of the 
middle point (Point D in Image 1 in Table 6.27). The students then made the 
coordinates of the duplicate point visible in the graphic view of GeoGebra.   

Geometric construction 
Regarding Task 1 (see Task 1 in Sub-Section 6.7.3), GeoGebra afforded Groups 
A (see Table 6.6) and B (see Table 6.25) the drawing of a function. The students 
also perceived that GeoGebra could afford them the drawing of a function, but they 
could not reach that. For instance, a member in Group A perceived that GeoGebra 
could afford an efficient way of finding the maximum revenue but could not reach 
it (see Table 6.10 on page 170). Thus, the function keyed in GeoGebra needed to 
be correctly defined. GeoGebra has a constraint that it is impossible to draw an 
undefined function, and this constraint might help the students find ways to define 
a function properly to attain the desired result. GeoGebra could afford the drawing 
of a function if the students could key in the correct variables. In another instance, 
in Group A’s activity, the students keyed in the correct variables for the equation 
representing the car’s selling price; however, they still did not achieve the desired 
results (see Table 6.23 on page 191). One reason could be that the students could 
not combine the initial and new functions. On the other hand, Group D perceived 
that GeoGebra could afford the drawing of the function/graph if they inserted some 
points, but they could not reach it (see Table 6.46 on page 243). Regarding Task 
2, GeoGebra afforded Group B (see Table 6.27), C (see Table 6.34) and D (see 
Table 6.40) the construction of geometric shapes or figures (see Task 2 in Sub-
Section 6.7.3). Thus, the students constructed a geometric middle point 
(circumcircle/circumcenter or centroid) of a triangle that connects the three cities. 

Experimenting/Changing 
Regarding Task 1, GeoGebra afforded Groups A and B experimenting/changing 
of parameters in the functions they drew. Thus, the students used the trial-and-
error approach with different numbers while finding the maximum revenue of the 
car-selling company (see Task 1 in Sub-Section 6.7.3). At one instant, a member 
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of Group A perceived that GeoGebra could afford them an efficient way of finding 
the maximum revenue instead of trying out numbers, one after the other. This 
influenced another member to suggest they use sliders, but the slider they made 
did not affect the function since it had no link with the function (see Table 6.11). 
Drawing students’ attention to such constraints might help them improve their 
problem-solving strategies. Regarding Task 2, GeoGebra afforded Group B 
experimenting/changing in the process where the students were looking for the 
geographic middle point of the triangular shape (see Table 6.27). The students 
arrived at the middle (optimal) point by experimenting or changing the coordinate 
points several times until they were satisfied with the optimal point.      

Data entry and generation 
Regarding Task 1, Excel/spreadsheet afforded Groups C and D entry and 
generation of data. In the case of Group C, the students perceived that 
Excel/spreadsheet could afford data entry and generation because their data set is 
recursive, and they thought they could not use GeoGebra (see Table 6.32). 
Practically, the spreadsheet view in GeoGebra could afford them data entry and 
generation, but this was not meaningful as the students could not use it. In the case 
of Group D (see Table 6.39), the students first used a calculator on the computer 
to compute the values and then shifted to GeoGebra for efficiency. The students 
did not actualize what they perceived GeoGebra could afford them. Group D 
finally perceived that Excel/spreadsheet could afford them data entry and 
generation, and in the end, they were able to actualize that. Regarding Task 2, the 
category ‘data entry and generation’ was not identified in the students’ activities. 

Calculating 
Regarding Task 1, the use of a calculator afforded Groups A (see Table 6.16), B 
(see the third part of the recorded dialogue in Table 6.25) and D (see the first part 
of the dialogue in Table 6.39) numeric calculations. The students used the 
calculator to calculate larger values (thus, the product of the number of people and 
the corresponding price of the car). Regarding Task 2, only Group B used a 
calculator in their working processes. In this case, the calculator device afforded 
the calculation of the median of the distances between the optimal point and the 
three cities (see the second part of the recorded dialogue in Table 6.27). 

I will now discuss the emergence of mathematical affordances and constraints 
in the students’ activities. The discussion below is linked to the discussion above, 
as technological affordances and constraints are prerequisites for mathematical 
affordances and constraints. I will use the same examples under technological 
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affordances and constraints in the discussion below. 
Mathematical affordances and constraints 

The technological affordances and constraints of digital technologies at the 
operational level support the mathematical affordances and constraints emerging 
at the action level. That is, students’ actions in the solution processes are 
conditioned by the features of digital technologies at the operational level. Several 
mathematical affordances and constraints emerge as students interact with digital 
technologies while working on mathematical modelling tasks. The mathematical 
affordances and constraints of the digital technology that emerged were 
clarification, analyzing, simulating and visualizing, linking representations, 
regularity and variations, and arithmetic and statistics (codes for analyzing 
mathematical affordances and constraints, and well documented in Table 9.7 in 
Appendix E.3). Table 6.20, 6.21, 6.30, 6.31, 6.37, 6.38, 6.44 and 6.45 presents the 
counts of the actualized mathematical affordances and constraints that emerged in 
the episodes of the activities of the groups. I will now discuss each of the 
mathematical affordances and constraints in the order as presented in Section 6.2 
(with the corresponding technological affordances and constraints in brackets): 

Clarification (researching) 
Regarding Task 1, Google Search afforded Group A clarification (or meaning) of 
a mathematical term during a mathematics discourse (see Table 6.14). Retrieving 
information or searching for the meaning of a mathematical term during a group 
interaction might help bring out the understanding of a mathematical concept in a 
mathematics discourse. Regarding Task 2, the category ‘clarification’ was not 
identified in the student’s activities. 

Analyzing (researching, measuring and visualizing) 
Regarding Task 1, the category ‘analyzing’ was not identified in the student’s 
activities. Regarding Task 2, one primary mathematical affordance and constraint 
that emerged was analyzing. In creating a model, the students (especially Groups 
A, B and C) used Google Search to retrieve information about the population of 
the three cities, as they thought about fairness. Furthermore, with this information, 
they were able to analyze the situation. The features of Google Maps afforded all 
the groups several technological opportunities (as highlighted above), and these 
opportunities created the platform for the students to analyze their solutions. That 
is, by locating the cities’ positions (all groups), distances between the cities, and 
the time of travel between the cities (only Group A, B and C). With these facts and 
figures retrieved from Google Maps, the students could make a mathematical 
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comparison as they looked for the optimal position for the shopping centre. 
Simulating and visualizing (visualizing) 

Regarding Task 1, the category ‘simulating and visualizing’ was not identified in 
the students’ activities. Regarding Task 2, GeoGebra afforded Group B simulation 
and visualizing as the students explored the behaviour of the geometric object to 
see what happens. Thus, the students first made duplicates of points and moved (or 
manipulated) these points dynamically to see the changes in the distances between 
the optimal location and the three cities. This activity echoes previous research 
highlighting that specific dynamic geometry simulations might allow students to 
visualize some mathematical problems (for instance, area optimization problems) 
(Pierce & Stacey, 2010).    

Linking representations (geometric construction) 
Regarding Task 1, GeoGebra afforded Group A (see Table 6.6) the movement 
between function/equation and graphical representation. GeoGebra also afforded 
Groups B (see Table 6.25) and D (see Table 6.46) the movement between numeric 
and graphical representation (but Group D were not successful in their approach). 
GeoGebra enhanced students learning by linking representations, and the choice 
of representations could also result from the strategy the students adopted (I will 
discuss this point in detail in Sub-Section 7.2.3 and 7.2.4). Zbiek et al. (2007) draw 
attention to the role that cognitive tools (see Section 2.2), in our case GeoGebra, 
play in mathematical activity through externalizing representations. Externalizing 
representations describe the display on the screen’s surface that is visible to the 
students, which can be shared and discussed with others. Digital technology acts 
as a mediator between the user and the outcome of the mathematical representation 
(desired by the user). In this case, the digital technology performs specific 
mathematical actions (such as creating external mathematical representation) at the 
students’ command. Pierce and Stacey (2010, p. 8) point out that “theories of 
multiple representations propose that a key to students’ understanding is their 
ability to link representations and gain representational fluency, where they can 
interpret mathematical ideas in distinct representations”. Regarding Task 2, Group 
B (see Table 6.27), C (see Table 6.34) and D (see Table 6.40) were able to 
represent the coordinates (from Google Maps) of the three cities in the graphical 
view in GeoGebra. These groups constructed a geometric figure (i.e., a triangular 
shape). Pierce and Stacey (2010) argue that incorporating dynamic geometry into 
some digital technologies might add to the possibility of linking geometric 
representations. The students discussing the positions of the three cities on Google 
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Maps could be a discussion resulting from their internal mental representation, and 
displaying this idea on the surface of the screen (concerning GeoGebra) could form 
an externalized representation (Zbiek et al., 2007) easing the sharing and 
discussion of ideas in a mathematics discourse. These students went on to find the 
middle point of the constructed triangle by dragging the corners of the triangle, 
using the perpendicular bisector, and drawing a circle (done by Groups C and D) 
that passes through all three cities. 

Regularity and variations (experimenting/changing) 
Regarding Task 1, GeoGebra allowed Groups A and B to explore the regularity 
and variations in the solution model as they changed the values in the constructed 
function. That is, the students observed the effect of the changed parameters on the 
graph as they searched for the maximum revenue of the car-selling company, and 
this step was repeated until they found the desired result. At some point, Group A 
tried making a slider to vary the parameter to see the effect on the graph of their 
function, but that was not actualized as the slider did not have a clear definition 
and subsequently had no effect on the graph (see Table 6.11). Regarding Task 2, 
the students in Group B manipulated or changed the coordinate points in the 
graphical view in GeoGebra several times until they were satisfied with the optimal 
point. For instance, Group B first created a centre point (initial optimal point) using 
the median of a triangle or centroid approach and later searched for another point 
by changing the position of the initial optimal point (see Table 6.27).      

Arithmetic and statistics (calculating, data entry and generation) 
Regarding Task 1, the calculator afforded Groups A and B numerical computation, 
such as multiplication. Thus, the students used the calculator to compute the 
product of larger values. Using a calculator improves speed and accuracy, as Pierce 
and Stacey (2010) argue that calculations done with paper-and-pencil could be 
error-prone or time-consuming. However, depending on the nature of the task, 
using a calculator could also be time-consuming. For instance, in the case of Group 
D, the students used a calculator on the computer to compute the product of the 
number of people and the price at which they bought the car (see Table 6.39). This 
approach was inefficient for Group D; hence, the students shifted to GeoGebra and 
later to Excel/spreadsheet. On the other hand, Excel/spreadsheet afforded the 
students (Groups C and D) technology-generated statistical data sets (Pierce & 
Stacey, 2010). In this case, the students could drag and extend their data after 
entering a few data sets derived from the problem. As stated earlier, calculations 
done by hand are error-prone and time-consuming (calculator use could also be 
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time-consuming, as seen in Group D’s activities); using Excel/spreadsheet could 
resolve this issue. Another thing is that Excel/spreadsheet could afford the students 
the representation of the data set through the generation of histograms, functions, 
and regression analysis, among others. However, the students did not perceive 
these, so they did not actualize them. A possible reason might be that the students 
were only interested in the answer and did not need some form of representation 
(e.g., a function or equation) to report their answer. Regarding Task 2, the 
calculator afforded Group B numerical computation, such as the median of the 
distances between the ideal optimal location and the three cities. 

I will now discuss the emergence of socio-cultural affordances and constraints 
in the students’ activities. 

Socio-cultural affordances and constraints 
At the activity level, socio-cultural affordances and constraints emerge in joint 
mathematical discourse or interactions that occur through collaboration within 
group activities. Socio-cultural affordances and constraints, in our case, are social 
affordances described as the properties of digital technology acting as social-
contextual facilitators relevant to the student’s social interaction (Kirschner et al., 
2004). An example could be that when a group member steps onto the social stage 
and solves a task with a unique strategy, the properties of the digital technology 
might invite, allow, encourage, or even guide another member to initiate or suggest 
another strategy to either repair divergences or improve previous strategy in the 
course of social interaction. The digital technologies stimulate cooperation 
between the students as they work on mathematical modelling tasks. The 
interaction between the students and the digital technologies induces affordances 
at a collective level (my use of collective here is not the same as ‘collective 
affordances’ as defined in Sub-Section 4.3.4). Tables 6.20, 6.21, 6.30, 6.31, 6.37, 
6.38, 6.44 and 6.45 present the counts of the actualized socio-cultural affordances 
and constraints that emerged in the groups’ activity episodes. The socio-cultural 
affordances that emerged or actualized in the students’ activities were common 
focus (in both Task 1 and 2), observing and improving strategies (only in Task 1), 
and authority of the digital technology (in both Task 1 and 2). These categories 
were codes for analyzing socio-cultural affordances and constraints and are well 
documented in Table 9.7 in Appendix E.3. I will now discuss each of the socio-
cultural affordances and constraints in the order as presented in Section 6.2: 

Common focus 
The students shared the same computer and had the facility to look at the same 
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thing and point at what was presented on the computer (except those that used a 
calculator device or their mobile phone), and this helped the students to create a 
shared goal as they had the facility to look at and follow the same thing in their 
interactions. Regarding Task 1, the affordance common focus emerged in Groups 
A, B, C and D’s activities as they agreed on a shared goal through a flow of turn-
taking, dialogue, and action. In Tables 6.20, 6.30, 6.37 and 6.44, the affordance 
common focus emerged as the groups interacted with GeoGebra, Excel/spreadsheet 
and a calculator (software on the computer). Several examples of common focus 
emerged in the groups, which were similar but in a different context; as such, I will 
only discuss an example from Group A’s activity. Thus, to visually demonstrate 
an individual’s reasoning to another member, the students used GeoGebra as a 
reference tool by looking at the coordinate axis and sketching with paper-and-
pencil ( ( ) = 100 ) in relation to the coordinate axis (see Table 6.6 on page 
166). In responding to one another, the students had to interpret and evaluate the 
visualized ideas and then give a response. In this situation, Thea (a member of 
Group A) responded to the initial function proposed by Kåre (another member of 
Group A). She used GeoGebra for reference in anchoring her proposition by 
suggesting the function ( ) = − + 100. Again, common focus only emerged in 
the activities of the group (Group D) that used a calculator on the computer but not 
the groups that used a calculator on a device or mobile phone. Thus, there was no 
social affordance in the interaction of the students who used a calculator device, 
as the individuals had the device to themselves. Regarding Task 2, the affordance 
common focus emerged in Groups A, B, C and D activities as they agreed on a 
shared goal through a flow of turn-taking, dialogue and action while engaging with 
Google Maps, Google Search and GeoGebra. Several examples of common focus 
emerged in the group, which were similar but in a different context; as such, I will 
only discuss an example from Group A’s activity. Thus, in an example of Group 
A’s activities, Thea was searching for the position of the cities on the map, Kåre 
pointing at the cities on the screen, and Rolf visualizing his reasoning by joining 
the points of the cities by hand and concluding that it will form a triangle (see 
Table 6.15 on page 178). This kind of interaction might not be possible if the 
students were using their individual computers within a group setting, and 
collective affordances might instead come into play in this setting.   

Observing and improving strategies 
Regarding Task 1, the affordance observing and improving strategies emerged 
only in the activities of Group A (see Table 6.20). In this case, Group A did not 
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get into a situation marked by uncertainties or diverging from their initial strategy 
in the solution process. Instead, they needed to improve their strategy for efficiency 
(see Table 6.11). Thus, a member of Group A perceived that GeoGebra could 
afford them sliders; however, it was not actualized as the tool has a constraint that 
the slider must be well-defined to affect the function. The students had similar 
dialogue in other instances where they tried to make a new function (but it was not 
well defined). At a time when the function was well defined, they were not able to 
manipulate or put together the two functions (see Table 6.23). This narrative shows 
that digital technologies might be used to maintain and improve shared knowledge 
and ideas at a collective level (although the students might not always be successful 
with the new idea/s introduced). Regarding Task 2, the category observing and 
improving strategies was not identified in the student’s activities. 

Authority of the digital technology 
Regarding Task 1, the affordance authority of the digital technology emerged only 
in Groups A and B activities (see Table 6.20 and 6.30, respectively). In Group A’s 
situation, a member (Rolf), after observing the solution strategy, suggests using a 
spreadsheet to efficiently generate the data as another member (Thea) maintains 
that the group should continue with the previous or existing strategy as she had 
personalized the problem-solving strategy (see Except 6.3.1 on page 173). Thea’s 
strategy starts with a graphical representation and later analyzes patterns of 
numbers and observes the car-selling company’s revenue increment. Thea 
dismisses Rolf’s comments and returns to the strategy described above, thinking 
they are already close to the answer (which might also be a time factor). However, 
subscribing to Rolf’s suggestions might have helped the group generate their data 
with the spreadsheet and find a function representing the data. That is, the features 
of GeoGebra allow multiple problem-solving strategies. However, the approach 
used by the group depends on the representational choice of the students taking the 
leading role, especially when they think they are close to finding the answer. 
Similar issues occurred as Group B worked on Task 1 but in a different context 
(see Excerpt 6.4.4 on page 215). From Excerpt 6.4.4, Emil came up with the idea 
of making a function representing the revenue. However, Ella insisted they 
continue with the ongoing strategy (although Thor, taking the leading role, was 
interested in this new idea). There might be a possibility of Ella insisting the group 
continue with the ongoing strategy if she thinks they are close to finding the 
answer. Regarding Task 2, the affordance authority of the digital technology 
emerged only in the activities of Group D (see Table 6.45). In this case, a member 
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of Group D pointed out that the distances between the middle point (optimal 
location) and the three cities are equal since the circle passes through all the points 
(with the middle point as the centre point). Another member suggested that they 
still measure these distances. Thus, this member would rather accept the answer 
(outcome) from the digital technology than her peers or perform the operation of 
measuring these distances to ensure their final results (see Table 6.43 on page 240).   

In summary, affordances and constraints of digital technologies emerge as 
students develop a technology-based model/solution. These affordances and 
constraints depend on the characteristics of each group, the nature of the task, and 
what is perceived in the use of digital technology, among others. Again, 
affordances and constraints emerge at all three levels in Leont’ev’s model of 
activity. At the operational (technological affordances) level, digital technologies 
provided the students with specific functional opportunities such as calculating, 
researching, measuring, geometric construction, visualizing, data entry and 
generation, and experimenting/changing while working on the tasks. The 
technological affordances of digital technologies at the operational level support 
the mathematical affordances emerging at the action level. Thus, at the action 
level, digital technologies afford clarification in a mathematics discourse, 
analyzing, linking mathematical representations, simulation and visualizing, 
regularity and variations, and arithmetic and statistics. Finally, at the activity or 
collective level, digital technologies induce specific social affordances as the 
students engage with the technology in social interactions. These social 
affordances could be the common focus, observing and improving strategies and 
authority of digital technology (more of this to come in Sub-Section 7.2.3).   

Some relevant issues must be discussed further after addressing the research 
questions; in the next section, I will discuss four significant issues arising from the 
study with existing literature. 

7.2 Discussion of significant issues arising from the research    

In this section, I discuss four significant issues from the research with existing 
literature. The findings discussed in this section have the potential to contribute to 
mathematics education research and suggest new insights into students’ 
mathematical modelling with the aid of digital technologies. The study’s results 
discussed in this section (and elsewhere) are only meant to be suggestive and 
cannot be generalized. Furthermore, the evidence provided are counts; thus, the 
number of times this evidence was counted/recorded in the student’s activities. In 
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addition, these counts are episodes (a category created by the researcher and has 
no intrinsic mathematical property; see Sub-Section 5.7.2) describing the students’ 
activities concerning Task 1 and 2. This section is divided into four subsections 
that discuss each significant issue. Although these four significant issues (or 
subsections) are interrelated, I linearly present them. In Sub-Section 7.2.1, I 
explore the distinctions between the different interaction sequences concerning 
Tasks 1 and 2. I further explore in Sub-Section 7.2.2 the consistency of students’ 
roles within group interactions. In Sub-Section 7.2.3, I identify and discuss the 
influence of digital technologies on group interactions. Lastly, in Sub-Section 
7.2.4, I discuss students’ tendency to select or use a particular digital technology. 

7.2.1 Interaction sequences and task design 

While a substantial number of studies have investigated how group activities 
connect with mathematical task design or the dynamics within group interactions 
with the tasks the students work with, fewer have sought to develop categorizations 
of interaction sequences about the type of mathematical modelling tasks. Sahlberg 
and Berry (2003) proposed an example of such a categorization. Sahlberg and 
Berry presented types of mathematical tasks and their corresponding types of 
exchange models (see Sub-Section 2.4.2). In the case of mathematical modelling 
tasks (in general), they argued that there are several opportunities for rich, equal 
exchange within collaborative student group work. Alternatively, Peter-Koop 
(2002) and Lowrie (2011) categorized the interaction sequences of a group of 
students (based on the framework by Jones and Gerard (1967)) as they work on 
mathematical tasks (see Sub-Section 2.4.1). Peter-Koop (2002) analyzed the 
interaction process of a group of students as they worked on open real-world 
problems. Similarly, Lowrie (2011) also analyzed the interaction process of a 
group of students as they worked on real-world problems using genuine artefacts. 
In the two scenarios, Sahlberg and Berry’s (2003) work gives a connection 
between a mathematical modelling task and its corresponding type of exchange in 
a general sense, while both the work by Peter-Koop (2002) and Lowrie (2011) 
focused on the types of interaction sequences emerging and not the distinction 
between the tasks. These categorizations provide helpful descriptions of the type 
of exchange model associated with a mathematical modelling task and the 
dynamics of interaction sequences as a group of students solve a real-world 
problem. However, neither of these studies appears to acknowledge the 
distinctions within interaction sequences concerning the type of mathematical 
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modelling task and the characteristics of the students. This research study 
addresses this gap. Analysis of students’ activities provides evidence for 
developing a categorization that addresses this research gap. My main claim in this 
subsection is: 
Not all mathematical modelling tasks produce rich equal exchange within a 
collaborative students’ group work. 

The backing I provide for this claim is the frequency of interaction sequences 
recorded from the students’ activities involving Tasks 1 and 2, as well as the 
characteristics of the students. To discuss the claim (in italics) above in the 
subsequent paragraphs, I will first briefly describe the nature of Tasks 1 and 2 (see 
Section 5.5) and the characteristics of the students (see Table 5.1) in this study (I 
repeat this for the reader). Task 1 is a closed-ended task (or an open-ended task, 
depending on the approach the students take) with a realistic context (see Sub-
Section 2.3.1) and contains more information in connection with given numbers in 
the task, which has to be added through inner-mathematical knowledge (e.g., 
application of some mathematical formulas). At the same time, Task 2 is an open-
ended task with an authentic context (see Sub-Section 2.3.1) but has no number in 
its presentation and might require extra-mathematical knowledge (resulting from 
experience). Both tasks link school mathematics tasks with real-life experiences. 
The characteristics of the students about the frequency of interaction sequences are 
based on their performance or attainment in the exam. That is, Groups A, B (Grade 
12 and 11, respectively) and D (Grade 9) consist of students with different 
attainments (mixed-achievement). In contrast, Group C (Grade 11) consists of 
students with the same attainment (same-achievement) or a group of high-
performing students (see Table 5.1 on page 129). Consistent with the 
methodological approach outlined in Chapter 5, data collection and analysis were 
conducted, and video and audio recordings, screen capture software, and fieldnotes 
provided data that supported the processes of category creation, confirmation, and 
refinement concerning distinctions between the interaction sequences recorded in 
the student’s activities. Table 6.2 (on page 158) presents the frequency of the 
different group interactions recorded concerning Task 1 and 2: asymmetrical 
contingency, reactive contingency, mutual contingency and pseudocontingency. I 
have presented an analysis of Table 6.2 in Sub-Section 6.7.1. 

Asymmetrical contingency. From Sub-Section 6.7.1, I presented that 
asymmetrical contingency was recorded in most of the episodes regarding Task 1 
compared to Task 2, and the nature of the task could be a factor. Thus, this 
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contingency was recorded less in Task 2, irrespective of the student’s 
characteristics. Again, this contingency was recorded mostly among mixed-
achievement students (Groups A and B) compared to same-achievement and high-
performing students (Group C) concerning Task 1. What could be the differences 
between Groups A, B and D (mixed-achievement groups)? The differences in 
levels in these groups might suggest that how students are treated in these levels 
might contribute to the increase of asymmetrical contingency among students at 
the upper secondary level. For instance, Markussen et al. (2011) argue that students 
(transiting from the lower secondary school) are treated as if they could cope with 
the demands of upper secondary education. Moreover, this treatment could also 
result from teachers’ beliefs and practices in mathematics teaching at both levels 
(Nilsen, 2010). Another interpretation of the differences between the levels 
(Groups A, B and D) could be competition among the students. Thirty-five years 
ago, Feldlaufer et al. (1988) conducted a longitudinal study investigating the 
relation between changes in classroom and family environment across four 
domains (mathematics, English, social interactions and physical activities) and 
highlighted ‘competition among students’ as one of the differences in the 
classroom environment in a transition between two levels (for instance the 
transition between elementary school and junior high school). Their results showed 
that students see their pre-transition classrooms as more competitive than their 
post-transition classrooms, although observer reports indicate no difference in 
competition (ibid.). To explain this further, Feldlaufer and colleagues pointed out 
that as students become more self-conscious, they might avoid overt competition, 
or there could also be a possibility that students are more likely to compete with 
students they come to know well across academic and social domains (ibid., p. 
152). The study by Feldlaufer and colleagues was in the American context (with 
students in Grade 6-7), but this might also apply in the Norwegian context 
(although further research is needed). In the Norwegian context (specifically, this 
study), students in Group A (Grade12) and B (Grade 11) in this study have known 

each other for 1  years and  year (or one semester) respectively. In contrast, 

students in Group D (Grade 9 students) have known each other since Grade 5 (see 
the field notes on the teacher’s report in the second paragraphs in Sub-Sections 
3.4.1, 3.4.2 and 3.4.4). This might explain students’ engagement with each other. 
From the discussion above, it could be conjectured that once students reach Grade 
11 (upper secondary school), they tend to be treated differently than they were in 
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Grade 9 (lower secondary), and they start to act differently as well. Again, students 
at the lower secondary are competitive with one another compared to students at 
the upper secondary level. That is, students in the upper secondary might be more 
supportive of one another within group interactions.  

Reactive contingency. In Sub-Section 6.7.1, I presented that reactive 
contingency was recorded in most of the episodes regarding Task 2 compared to 
Task 1 across the groups. In Peter-Koop’s (2002) studies, most interaction 
sequences found throughout their entire data set (in both mixed ability and among 
low achievers) were characterized by reactive contingency. However, a different 
pattern was recorded in this study based on the description of reactive contingency 
(see Sub-Section 2.4.1). Again, reactive contingency was recorded in more 
episodes of Group D (lower secondary and mixed-achievement) compared to 
Groups A and B (upper secondary and mixed-achievement) concerning Task 1. 
The explanation under asymmetrical contingency might also apply here. 

Mutual contingency. In Sub-Section 6.7.1, I presented that mutual 
contingency was overall counted in more of the episodes in the activities of Groups 
A and B regarding Task 2 compared to Task 1. On the other hand, the count of this 
contingency was much similar in the activities of Group C (same-achievement and 
high-performing students), irrespective of the task. This supports Peter-Koop’s 
argument that mutual contingencies are infrequent in students’ activities and tend 
to occur when high-achievement students work together. Contrarily to this, Groups 
A and B record more mutual contingencies in the episodes regarding Task 2 than 
in Task 1, although these groups consist of mixed-achievement students. Again, 
Group D consists of mixed-achievement students, but many mutual contingencies 
were recorded in the episodes concerning Tasks 1 and 2. We could explain the 
dynamics in the activities of Group D compared to Groups A and B from the 
perspective of ‘competition among students’ (as described under asymmetrical 
contingency). Again, mutual contingency was primarily recorded in the activities 
relating to Task 2 (compared to Task 1), irrespective of the characteristics of the 
students. Thus, the nature of the task plays a vital role in the mutual contingency 
observed in the students’ activities and not only the characteristics of the students. 
These results expand Sahlberg and Berry’s (2003) results, adding that not all 
mathematical modelling tasks produce rich equal exchange (e.g., mutual and 
reactive contingencies) within a collaborative group work.     

Pseudocontingency. In Sub-Section 6.7.1, I presented that 
pseudocontingency was only counted in the episodes of Group A regarding Task 
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1. This contingency is a limited case of social interaction (Jones & Gerard, 1967). 
However, it was recorded (in this study) together with other contingencies within 
the episodes. Thus, the interaction between Student A and B depicts asymmetrical 
contingency, while the interaction between Student C (interacting with the 
computer alone) and Students A and B describes a pseudocontingency. To achieve 
a mutual (or reactive) contingency form of interaction in such a situation, the 
students must discuss one strategy together at a time (before discussing another 
strategy). Panselinas and Komis (2009) argue that students (focusing on one 
object) can come together with different skills and scaffold each other. Thus, the 
students might complement each other based on their unique skills (ibid.). In such 
situations, students might stimulate each other with ideas at the edge of their 
knowledge, understanding and skills (Sahlberg & Berry, 2003), and this might not 
happen if students turn to concentrate on their ideas, neglecting others.    

In summary, there is evidence (though inconclusive) that not all mathematical 
modelling tasks produce rich equal exchange within a collaborative students’ 
group work, which adds to Sahlberg and Berry’s (2003) earlier suggestion. 
Considering the dynamics of interaction sequences within the students’ activities, 
both reactive and mutual contingencies were primarily recorded in the episodes 
relating to Task 2 compared to Task 1 (although they are both mathematical 
modelling tasks). On the other hand, asymmetrical contingencies were recorded 
more in the episodes of the activities relating to Task 1, where the groups (Group 
A and B) were made up of mixed-achievement students or high-performing 
students dominating in the activities (as suggested by Peter-Koop (2002) and 
Lowrie (2011)). On the contrary, asymmetrical contingency was recorded less in 
the episodes (relating to Task 1) in Group D’s (also consists of mixed-achievement 
students) activities. However, more reactive and mutual contingencies were 
recorded. This might result from ‘competition among students’, which is more 
between students at the lower secondary level (Group D) and less between students 
at the upper secondary level (Group A and B). The nature of the task also plays a 
vital role in the dynamics of the interaction sequences recorded in this study. The 
results discussed here are only meant to be suggestive but not conclusive. 

I have so far discussed, in general, the dynamics within interaction sequences 
as the students worked on Task 1 and 2, and a further discussion on the roles 
students adopt within group interactions might help to understand these dynamics 
within the interaction sequences. In the following subsection, I will discuss the 
consistencies of students’ roles within group interactions.                                           
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7.2.2 Consistency of students’ roles within group interactions   

In the previous subsection, I discussed the dynamics within the interaction 
sequences recorded within the students’ activities; that is, looking at the interaction 
sequences without the roles the students adopted. In this subsection, I zoom into 
the interaction sequences and discuss the roles adopted by the students (or the 
consistencies of the students’ roles) while working on Tasks 1 and 2. Table 5.1 
presents the characteristics of each group member, which is helpful in the 
discussion in this sub-section. Several studies have investigated the roles students 
adopt, either assigned by the teacher (Smith, 1996; Rosser, 1998; Crawford, 2001) 
or by the students themselves (Radinsky, 2008), depending on their characteristics, 
in both collaborative and cooperative group work; while fewer have sought to 
develop categorizations of the role students adopt in both collaborative and 
cooperative group work as students work on mathematical modelling tasks. I will 
limit the discussion to collaborative group work as this study’s group activity is 
described as collaborative, see Section 2.4. For instance, much of the discussion is 
centred around the students who adopt the leading or questioning and challenging 
roles (Goos et al., 2002; Peter-Koop, 2002; Esmonde, 2009). However, alongside 
these roles, other roles emerged in this study (opposing, supporting, suggesting 
and non-contributing). Table 6.4 (on page 160) presents the analysis of the 
frequency of roles adopted by each member of the groups recorded about Tasks 1 
and 2. I have presented an analysis of Table 6.4 in Sub-Section 6.7.2. 

Leading. The leading role was more prevalent among members of Groups A 
and B (mixed-achievement students) compared to Group C (same-achievement 
and high-performing students) (see Sub-Section 6.7.2). A number of literature 
emphasize that high-achieving students often dominate group interactions (Peter-
Koop, 2002; Esmonde, 2009). The leading role was counted less in Group D’s 
episodes, even though the group is a mixed-achievement group. Applying a similar 
argument from the discussion under asymmetrical contingency (see Sub-Section 
7.2.1), I argue that the competition among students (Feldlaufer et al., 1988) might 
play a role in the dynamics of the leading role adopted concerning Groups A, B 
and D. That is, as the competition among students is higher at the lower secondary 
than in the upper secondary, there might be a possibility that all students within 
the group would want to talk through their ideas instead of one/two individual/s 
leading. The nature of the task also played a role, as the number of leading roles 
adopted decreased in the activities involving Task 2 (compared to Task 1).         
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Questioning and challenging. This role is seen as one of the factors in group 
interaction success (Goos et al., 2002; Paterson & Watt, 2014). Challenging each 
other’s thinking might help develop new concepts within group interactions 
(Sahlberg & Berry, 2003). In Sub-Section 6.7.2, I presented that questioning and 
challenging the idea(s) of peers within group interactions is seen among mixed-
achievement groups (both upper and lower secondary level) concerning Task 1. 
Again, concerning Task 2, questioning and challenging the idea(s) of peers is seen 
among upper secondary school students (either mixed- or same-achievement 
group) compared to students at the lower secondary school.        

Opposing, supporting, suggesting and non-contributing. In Sub-Section 
6.7.2, I presented the dynamics of opposing, supporting, suggesting and non-
contributing roles. These roles might further help categorize students’ roles while 
working on mathematical modelling tasks aside from leading and questioning and 
challenging roles. In Sub-Section 6.7.2, I presented that opposing ideas were not 
recorded among same-achievement and high-performing students (Group C) 
regarding Tasks 1 and 2. The students assigned the lowest grade (among the 
mixed-achievement students) usually adopted the supporting role. In contrast, the 
others assigned the highest grade mostly adopted the suggesting role (Groups A, 
B and C). A non-contributing role was recorded among upper secondary students 
compared to lower secondary students; this might be due to the competition among 
students, as Feldlaufer et al. (1988) suggested (or other factors).     

These characterizations above contribute to understanding students’ adopted 
roles in mathematical modelling activities related to Tasks 1 and 2. So far, I have 
discussed, in general, the roles students adopt within group interactions while 
working on Task 1 and 2; I have not discussed the technologies the students used 
in these adopted roles and interaction sequences. This does not mean the 
technology is separated from the students’ activities; it is an integral part (Borba 
& Villarreal, 2006). As such, in the following subsection, I will discuss the 
influence of digital technologies on group interactions.                                        

7.2.3 Influence of digital technologies on group interactions  

An extensive number of studies have investigated the use of digital technologies 
in learning mathematics (Goos et al., 2003). Different frameworks (instrumental 
approach, co-action with digital technologies, co-construction of tools, and others) 
describe processes for the formation of a tool and students’ use of tools in a 
mathematics classroom environment (Trouche, 2005; Moreno-Armella et al., 
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2008; Doerr and Zangor, 2000. See Section 2.2). These frameworks do not outline 
the role of digital technologies as mediating tools for social interaction among 
peers (in transforming an artefact into a tool). The availability of digital 
technologies alone does not ensure the development of collaborative practices 
(such as small-group interactions) in the learning environment (Goos et al., 2003; 
Geiger et al., 2010). However, the interactions between students (group 
interactions) in collaborative learning depend on the digital technology used and 
the mathematical task (Geiger & Goos, 1996; Geiger et al., 2010). In Sub-Section 
7.2.1 and 7.2.2, I discussed the interactions recorded in the students’ activities 
regarding Tasks 1 and 2 and the consistency of students’ roles within group 
interactions. In these subsections, I pointed out how the interaction sequences 
recorded are linked to the task’s nature and the students’ characteristics. Geiger et 
al. (2010) argue that a task focusing on process (rather than product) might 
encourage collaborative discussion. Although both Tasks 1 and 2 focus on the 
process (producing a form of collaborative discussion) there is still a distinction in 
the interaction sequences emerging as the students work on these tasks.    

Significant bodies of literature support the premise that digital technologies 
play a role in mediating collaborative learning processes (Geiger et al., 2010). For 
instance, Goos et al. (2003) investigated the ‘perspective on technology-mediated 
learning in secondary school mathematics classroom’, and their result showed how 
technology might facilitate collaborative inquiry in small group interactions and 
whole class discussions. Thus, Goos and colleagues illustrate four roles (master, 
servant, partner and extension of self, see Section 2.2) of technology concerning 
teaching and learning interactions (ibid.). Again, Geiger et al. (2010, p. 54) 
addressed the question, “How can CAS (Computer Algebra Systems) mediate and 
support productive social interactions between students?” in a mathematical 
modelling activity. Their results showed that CAS-enabled technologies have a 
role to play as provocateurs of productive student-student-teacher interaction. That 
is, unexpected output on the CAS-equipped devices (e.g., Nspire handhelds) 
influenced the students’ activities by confronting students with an unanticipated 
result, which (in turn) provoked the rethinking of their original assumption (ibid.). 
These examples focus on teachers and students in a secondary school mathematics 
classroom. In contrast, in this study, I only focus on the students (i.e., student-
student-technology interactions) (see Section 1.3). The findings of this study 
expand on previous studies (e.g., Goos et al., 2003; Geiger et al., 2010) about the 
influence of digital technologies in group interactions. That is, looking at the 
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influence of digital technologies in group interactions in a mathematical modelling 
activity from an Affordance Theory perspective.                 

In Sub-Section 7.1.3, I addressed the issue of affordances and constraints of 
digital technologies emerging as groups of students develop a technology-based 
model/solution in a mathematical modelling activity. These affordances and 
constraints were grouped under technological, mathematical and socio-cultural. 
However, for this subsection, I will discuss socio-cultural affordances and 
constraints (in an attempt) to address the influence of digital technologies in group 
interactions. The presence of other students using the same digital technology for 
similar or related purposes might affect a student’s behaviour (Volkoff & Strong, 
2017). In this case, how a student uses digital technologies within group 
interactions (in mathematical modelling activity) might affect another student’s 
behaviour. The students used different digital technologies in solving both tasks 
(see Table 6.1 on page 157), and the socio-cultural affordances and constraints 
were categorized as common focus (creating a shared goal), observing and 
improving strategies (Roschelle & Teasley, 1995; Granberg & Olsson, 2015) and 
authority of the digital technology (personalizing of problems in group situations) 
(Lowrie, 2001) (see the last paragraph on page 108). I have already discussed these 
categories in Sub-Section 7.1.3, but for this subsection, I will highlight certain 
instances addressing the influence of digital technologies in group interactions. 

Common focus describes the situation where the students have the facility to 
look at the same thing within group interactions as they share the same source. For 
instance, students in Group A agreed on a shared goal through a flow of turn-
taking, dialogue and action (see Table 6.6). In this case, GeoGebra was used as a 
reference tool to visualize one’s reasoning during a mathematical discourse 
(Granberg & Olsson, 2015). Thus, to visually demonstrate their reasoning to one 
another, one student used GeoGebra as a reference tool by pointing to the 
coordinate axis and sketching with paper-and-pencil ( ( ) = 100 ) in relation to 
the coordinate axis, while another student responding to this used GeoGebra to 
demonstrate her suggested function ( ) = − + 100 visually.  

Observing and improving strategies describes the use of digital technology in 
maintaining shared knowledge and ideas through verifying ideas or settling 
disagreements by performing tests, among others. For instance, GeoGebra could 
be used to maintain and improve shared ideas in group interactions (Granberg & 
Olsson, 2015). In this study (especially in the activities of Group A—see Sub-
Section 6.7.3), one student observed the solution strategy and felt there was the 
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fastest way to find the maximum revenue but could not visually demonstrate his 
ideas (see Table 6.11). This could be that the student was not confident enough to 
express his thoughts. However, this triggered another student to come up with the 
idea of making slides. Even though this student made a slider, it did not affect the 
graph as the slider has no link with the function. The group then returned to the 
initial strategy they began with. There was no divergence in the strategy they began 
with, as the strategy adopted only needed improvement to be more efficient. In this 
situation, GeoGebra might offer the possibility of observing and repairing 
divergences or improving solution strategies in group interactions if the function 
and the slider under construction are mathematically linked.   

Authority of the digital technology describes situations where students only 
accept an answer from the digital technology as the correct answer and/or 
personalize the problem based on one’s interest, which can be the type of 
mathematical representation offered by the digital technology. For instance, a 
member of Group D would only accept an answer from the digital technology than 
her peers (see Table 6.43). In another instance, a student in Group A comes up 
with an idea to generate their data efficiently after observing the group’s initial 
strategy (see Excerpt 6.3.1). However, the student who took the leading role had 
personalized the problem-solving strategy. Thus, she dismissed the comments and 
returned to the existing idea, thinking they were already close to the answer. 
Subscribing to the suggestions might have helped the group generate their data 
with the spreadsheet and find a function representing the data. From this narrative, 
I argue that the features of GeoGebra allow multiple problem-solving strategies, 
and the approach used by the group depends on the representational choice of the 
member taking the leading role (see Sub-Section 7.2.2), especially when they think 
they are close to finding the answer. This echoes previous research that points out 
that personalizing problems might hinder the potential for sophisticated sense-
making (in a group activity/interaction) that could lead to a better activity outcome 
(Lowrie, 2011). Thus, the more personalized the students might want the problem 
to be, the more likely these students might complete aspects of the problem 
individually (and not consider the ideas of others) (Lowrie, 2011). Drawing 
students’ attention to not personalizing the problem-solving strategy and 
considering input from peers might benefit students’ learning and achievement in 
mathematical modelling with digital technologies. Hernandez-Martinez and Harth 
(2015) argue that new ideas introduced in group interaction are of little use if they 
are not specific and/or have no connection with the groups’ understanding of the 
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problem; one of the reasons for rejecting a new idea could be that the new ideas 
are either communicated without confidence or not clear enough to connect with 
the group’s current thinking. Alternatively, as in one of the cases in this study (see 
Excerpt 6.3.1), a new idea would involve restarting when a solution was imminent.      

From previous research in mathematical modelling activities, digital 
technologies have a role to play as provocateurs of productive student-student-
teacher interaction (Goos et al., 2003; Geiger et al., 2010), and this current study 
adds to this body of work that digital technologies might also serve as a reference 
tool to visually demonstrate one’s ideas while creating a shared goal (common 
focus). Granberg and Olsson (2015) point out that digital technologies might be 
used for observing and repairing divergences and misconceptions in group 
activities. Thus, at some point in the students’ activities, they might find 
themselves in a situation marked by uncertainty, divergence or misconception, 
where these students might use digital technology to verify knowledge or settle 
disagreements by performing tests. However, it was found in this study that digital 
technologies might provide a platform for observing and improving strategies 
within group interactions in a mathematical modelling activity. Thus, the students 
were sure about their solution processes, and their strategies were not divergent. 
However, these students needed a more efficient way of solving the problem, and 
digital technology provided the platform for observing and improving strategies. 
Another influence of digital technologies in group interactions is personalizing a 
problem (authority of the digital technology) resulting from the type of 
mathematical representation offered by the digital tool and the characteristics of 
the students (e.g., working style or choice of mathematical representation). 

In the following subsection, I will discuss students’ tendency to select or use 
a particular digital technology, having discussed the influence of digital 
technologies on group interactions.   

7.2.4 Students’ tendency to select or use a particular digital technology 

Generally, there are several reasons behind students’ tendency to select or use a 
particular digital tool regularly (Margaryan et al., 2011) in a mathematical activity 
(see Sub-Section 2.2.2). These reasons could be the experience of the students with 
digital technology (Owens-Hartman, 2015; Jacinto & Carreira, 2017; Gueudet & 
Pepin, 2018) or familiarity with the operations of digital technology (Geiger et al., 
2002), goal-oriented based on the demands of the task (Anastasakis et al., 2017), 
simplicity and efficiency of the digital technology (Hillesund, 2020), among 
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others. The studies above (and others elsewhere) mostly touch on digital 
technologies in mathematical problem-solving activities and not necessarily in 
modelling activities. Furthermore, in the activities of the studies above, the 
students were either allowed or instructed to use specific digital technologies in 
classroom observation, and empirical data were collected through video 
recordings, interviews, and others. In general, there is a limited literature base 
related to the issue of students’ selection and/or switching between digital 
technologies when learning or doing mathematics (Geiger et al., 2002). This 
current study seeks to extend knowledge in this domain through the analysis of 
video recordings and screen capture software that targeted students’ selection 
and/or switching between different digital technologies in a mathematical 
modelling activity, where the students are allowed to use any tool (no restriction 
of digital technology use). Allowing the students to choose freely brought about 
some dynamics in the students’ solution process (see Sub-Section 6.7.3). Thus, the 
students use different technologies while working on Tasks 1 and 2 (see Table 6.1). 
The discussion in this subsection is based on the observation (video recording and 
screen capture software) of the students as they work on both tasks. I will discuss 
the reasons behind students’ tendency to select or switch between digital 
technologies while solving Tasks 1 and 2, respectively: 

Task 1. From Sub-Section 6.7.3, the problem-solving strategies of Groups A 
and B could be described as a function representation where the students start with 
a graphical representation (in GeoGebra) and analyze patterns of numbers (using 
a calculator for larger values) (Yerushalmy, 2000). Thus, the students used a 
calculator for numerical calculations and GeoGebra for visual representation and 
drawing of a function (Flehantov & Ovsiienko, 2019; Flehantov et al., 2022). The 
problem-solving strategy here might have influenced the students to use GeoGebra 
and the calculator while working on Task 1. In one instance, a member of Group 
A suggested another strategy that would involve using another tool 
(Excel/spreadsheet), but the other students rejected this idea. The reason could be 
that a new idea would involve restarting when a solution is imminent. In this 
situation, the students will prefer continuing with the first tool (GeoGebra) instead 
of using another tool (Excel/spreadsheet), which would involve restarting. Group 
A also used Google Search to find the meaning of specific terms during their 
mathematical discourse, as the student’s first language is Norwegian. Group C 
selected Excel/spreadsheet instead of GeoGebra as they thought their generated 
data would form a recursive function and that they could not use GeoGebra. The 
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students might prefer Excel/spreadsheet over GeoGebra, maybe because they use 
Excel/spreadsheet often or are more familiar with its operations (Geiger et al., 
2002) in dealing with situations described in Task 1. The students’ problem-
solving strategy might have also influenced their choice of digital technology. For 
instance, Flehantov and Ovsiienko (2019) and Flehantov et al. (2022) argue that 
students use Excel/spreadsheet for numerical calculations and represent numerical 
results in tabular form. It could also be the simplicity and efficiency (Hillesund, 
2020) of using Excel/spreadsheet over GeoGebra in this situation. Group D 
switched between a calculator, GeoGebra and Excel/spreadsheet. Firstly, Group 
D’s selection of a calculator might be due to the nature (or demands) of the task 
(Anastasakis et al., 2017). Thus, they saw some numbers in the task and decided 
to compute them, but they later saw that it would take them some time. Secondly, 
it might also be the inefficiency of using a calculator that made Group D choose 
GeoGebra (Hillesund, 2020). The working style of the students also played a role 
here. Thus, they moved from a numerical (solving the task arithmetically) to a 
graphical representation (plotting a set of points). Group D switched to 
Excel/spreadsheet when they could not find the graph with GeoGebra. The 
simplicity of Excel might have influenced their choice. Thus, the students switched 
back to a numerical representation when they struggled with the graphical 
representation. Switching back to the numerical representation, the students did 
not go back to using a calculator but rather Excel for simplicity and efficiency.      

Task 2. From Sub-Section 6.7.3, Groups A, B and C used Google Maps to 
locate the positions of the three cities and Google Search to find the population 
and the travel time between the three cities. The students might have chosen these 
tools due to the nature (or demands) of Task 2 (Anastasakis et al., 2017). Group B 
also used GeoGebra, and one reason could be the manipulation of points. Thus, 
transferring the location points from Google Maps into GeoGebra and performing 
certain operations like inserting new points, dragging points, and measuring 
distances between points, among others. Again, Group C used GeoGebra to find 
the theoretical best location without considering the roads or population. In this 
case, the students might have chosen GeoGebra to generalize the optimal position 
without considering some factors. Group D also used GeoGebra while searching 
for the theoretical best location (after locating the positions of the three cities on 
Google Maps). The students might have chosen Google Maps and GeoGebra due 
to their prior experience (Owens-Hartman, 2015; Jacinto & Carreira, 2017; 
Gueudet & Pepin, 2018). For instance, Group D’s approach to solving Task A, 
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“Rescue helicopters” (see Appendix B), is similar to how they solved Task 2. Thus, 
the students only considered the air distance, not the actual roads.         

In summary, previous research has shown that students might choose certain 
digital tools based on their experience with the digital technology, familiarity with 
a particular digital tool, the demands of the tasks, simplicity and efficiency of the 
digital tool and others. This current study adds to this body of work that students 
might choose certain digital tools while working on Task 1 based on the adopted 
problem-solving strategy, familiarity with the operations of the digital tool, the 
nature of the task, rejecting other tools and keeping the current tool when the 
solution is imminent and a new idea/s (using other tools) would involve restarting, 
switching between tools for simplicity and efficiency. Again, students might 
choose certain digital tool while working on Task 2 based on the nature of the task, 
ease of manipulating a set of points, generalization of a solution and prior 
experience. Affordance Theory helped detect or capture the students’ activities 
with tools. That is, the narrative in this subsection is based on the affordances and 
constraints of the digital tools that emerged during the students’ mathematical 
modelling activities (see Sub-Section 7.1.3). 

So far, I have discussed four significant issues arising from the research with 
existing literature. In the next section, I will present some reflections on using 
theoretical perspectives and their link with the research findings. That is, I will 
reflect on the possible consequences of the different frameworks adopted and the 
research methods used concerning the findings of this research study. 

7.3 Reflection on the use of theoretical perspectives and their link with 
the research findings   
In this section, I present a discussion of my reflection on the consequences of the 
different theoretical frameworks adopted and the methodology used concerning 
the findings of this study. CHAT was adopted as an overarching theoretical 
framework with Affordance Theory as a supplementary theory. CHAT also 
provided an analytical framework through the expanded mediational triangle 
(Engeström, 2001) and the three-level hierarchy of an activity (Leont’ev, 1977). 
At the same time, Affordance Theory offered an analytical framework through 
three levels of affordances and constraints developed in mathematics education 
(Hadjerrouit, 2019). Combining these frameworks helped focus on different 
aspects of the student’s activities. The combination of CHAT and Affordance 
Theory pointed towards the necessary dimensions to consider for conducting a 
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research study on students’ mathematical modelling with the aid of digital 
technologies. These theories also allow the adoption of multiple methods to 
research a particular phenomenon (Nardi, 1996). As such, my choice of 
methodology for this study corresponded to the adopted theories (Radford, 2008a). 
Adopting CHAT (expanded mediational triangle) allowed me to take a socio-
cultural perspective where I considered multiple data sources that added to this 
research study’s epistemological foundations. For instance, I had data from video 
recordings, screen capture software, fieldnotes and students’ worksheets in my 
findings regarding the first research question (RQ1). If I had not considered these 
data sources, I could not have come up with the present conclusions about 
relationships among the aspects of the student’s activity. One example is the 
relationship between the characteristics of the students (grades assigned to them 
and their level—either lower or upper secondary) and the interaction sequences 
recorded, with data sources from fieldnotes and video recordings, respectively. In 
this case, the individual data sources only partially viewed the students’ activity. 
Thus, using one data source, such as video recordings, helped describe the 
students’ actions and discourse without a proper account of their computer 
activities (from the viewpoint of the collective activity system).   

To study the students’ mathematical modelling processes, I zoomed into the 
students’ activity and considered the mathematical aspect of the student’s activity. 
CHAT (in this case, the expanded mediational triangle) does not offer a 
characterization of students’ mathematical modelling processes. However, with 
Leont’ev’s three-level hierarchy of an activity, I redefined the students’ activity in 
mathematical modelling as modelling actions, operations, and activity. I then used 
the modelling competence framework to characterize the modelling actions and 
operations within the students’ activity. To achieve this purpose, I first viewed 
mathematical modelling as a mathematical activity in the sense of CHAT. 
Secondly, I viewed modelling competence as a process and not a product by 
presenting the ontology and epistemology of modelling competence from a CHAT 
perspective. This framework complemented existing research (mainly done from 
a cognitive perspective) in the sense that it added digital tools dimensions and 
environmental dimensions to the analysis of the modelling actions and operations 
(characterized by the modelling competence framework). I also considered 
multiple data sources while looking at this aspect of the study. That is, in my 
findings relating to the second research questions (RQ2a & RQ2b), I had data from 
video recordings, screen capture software, fieldnotes and students’ worksheets. 
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I further zoomed into the students’ activity and considered the relationship 
between the students and the digital technology used. The three levels of 
affordances and constraints allowed me to characterize students’ relations with 
digital technologies in mathematical modelling activities. Affordance Theory 
helped in understanding how students within the group utilized (or took advantage 
of) the affordances and constraints of digital technologies to perform their 
contribution in a group activity. This did not consider the social aspect of the 
student’s activity. As such, using CHAT (Leont’ev’s three-level hierarchy of an 
activity) in combination with Affordance Theory allowed me to view the socially 
mediated aspects of group work (e.g., group activities mediated with digital 
technologies) and how the student(s) within the group took advantage of the 
environment (affordances and constraints of digital technologies) to perform their 
activities (Kuswara et al., 2008). Again, I considered multiple data sources while 
looking at this aspect of the study. Thus, in my findings relating to the third 
research question (RQ3), I had data from video recordings, screen capture software 
and fieldnotes. Despite the advantages of the adopted theoretical perspectives 
discussed above, I have addressed some associated limitations in Section 8.3.         

7.4 Summary of the chapter   
In this chapter, I revisited the research questions organized around three themes. 
These themes were students’ mathematical modelling activities, emergence of 
modelling actions and the role of digital technologies, and emergence of 
affordances and constraints of digital technologies in mathematical modelling 
activities. All the themes combined helped to view students’ mathematical 
modelling with digital technologies holistically. The chapter also addresses four 
significant issues arising from the research regarding existing literature. These 
issues are the relation between interaction sequences and task design, the 
consistency of students’ roles within group interactions, the influence of digital 
technologies on group interactions, and students’ tendency to select or use a 
particular digital technology while working on Tasks 1 and 2. The findings helped 
understand students’ mathematical modelling with digital technologies from 
different perspectives. The findings also had the potential to contribute new 
insights into these research areas and add to the growing literature on mathematical 
modelling with digital technologies from the student’s perspective. To end the 
chapter, I reflected on the consequences of the different theoretical frameworks 
adopted and the methodology used concerning the findings of this study.  
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8 Conclusion and Implications   
This chapter is the final chapter of this research study, where the themes pursued 
in each of the preceding chapters and associated findings are synthesized. This 
chapter is divided into five sections. Section 8.1 brings together the whole 
dissertation and addresses the research questions. Section 8.2 presents a reflection 
on the quality of the thesis. Section 8.3 presents the limitations of this research. In 
Sections 8.4 and 8.5, I highlight the implications of the research to the field of 
mathematics education and propose issues for future research, respectively.   

8.1 Summary 
Digital technologies in mathematical modelling activities are receiving increased 
attention in curriculum and policy documents in Norway and internationally. 
Implementing pedagogical reforms associated with these areas raises many 
questions and issues to explore in Norwegian and international contexts (Bakken 
& Andersson-Bakken, 2021; Berget, 2022). An issue that has emerged from 
different interests in technology and students’ mathematical modelling activities is 
the different forms of interaction within students’ mathematical modelling 
activities with the aid of digital technologies in group settings. While most of the 
research literature in technology-mediated activities in mathematical modelling is 
now significant, much of the research in this area is often done from a cognitive 
perspective focusing on heuristics and modelling processes. Aside from the 
cognitive aspects, other dimensions or aspects are needed in the ongoing 
discussions in this area (Vos & Frejd, 2022). This study has taken a socio-cultural 
perspective that places interaction and activity between students and digital 
technologies in mathematical modelling activities at the centre. 
The main goal and sub-goals of this research study are listed as follows:  

 To explore how secondary school students solve mathematical modelling 
tasks with the aid of digital technologies.       

o To examine the various forms of interactions taking place within 
the students’ activity.  

o To investigate the students’ working processes in the students’ 
activity. 

o To examine students’ interactions with digital technologies in the 
students’ activity. 
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The main goal and sub-goals were stated previously in Section 1.3 (on page 6). To 
research into these goals, three research questions were formulated (see Section 
1.4 on page 7): 
 

RQ1: How do students solve mathematical modelling tasks with the aid of 
digital technologies? 
RQ1a: What digital technologies did the students use in solving the two 
mathematical modelling tasks? 
RQ1b: What contingencies were shown in the student interactions when solving 
the two mathematical modelling tasks with the aid of digital technologies? 
RQ1c: What are the rules that mediate students’ mathematical modelling 
activities when solving the two mathematical modelling tasks with the aid of 
digital technologies? 
RQ1d: What roles did the students adopt in the student interactions when 
solving the two mathematical modelling tasks with the aid of digital 
technologies? 
 
RQ2a: What modelling actions emerge during the mathematical modelling 
activities of the students? 
RQ2b: What part do the uses of digital technologies play within the    modelling 
actions that emerge? 
 
RQ3: What affordances and constraints of the digital technologies emerge as 
the students develop a technology-based model/solution? 

 
The direction of this thesis has been guided by the research questions stated above. 
The theoretical framework shaped these questions and operationalized them via 
the research design. This study was framed within a qualitative research paradigm 
based on an activity theorist epistemology and ontology. Two theories were 
combined to form the theoretical framework for justifying the appropriateness and 
usefulness of chosen constructs under investigation: Cultural-Historical Activity 
Theory (CHAT) and Affordance Theory. The combination of CHAT and 
Affordance Theory highlighted the necessary dimensions to consider for 
conducting a research study on students’ mathematical modelling using digital 
technologies. 

Adopting CHAT (Engeström’s expanded mediational triangle) allowed me to 
take a socio-cultural perspective where I considered multiple data sources that add 
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to the epistemological foundations of this research study. To study the students’ 
mathematical modelling processes, I zoomed in on the activity system and 
considered the mathematical aspect of the student’s activity. In this zooming-in, 
CHAT (in this case, Engeström’s expanded mediational triangle) does not offer a 
characterization of students’ mathematical modelling processes. However, with 
Leont’ev’s three-level hierarchy of an activity, I redefined the students’ activity in 
mathematical modelling as modelling actions, operations, and activity. I further 
zoomed into the activity system and considered the relationship between the 
students and the digital technology used. The three levels of affordances and 
constraints (technological, mathematical and socio-cultural) allowed me to 
characterize students’ relation with digital technologies in mathematical modelling 
activities. Affordance Theory helps in understanding how students within the 
group utilize (or take advantage of) the affordances and constraints of the digital 
technologies to perform their contribution in a group activity. However, it does not 
consider the social aspect of the students’ activity. As such, I used CHAT 
(Leont’ev’s three-level hierarchy of an activity) in combination with Affordance 
Theory, which allowed me to view the socially mediated aspects of group work 
(e.g., group activities mediated with digital technologies), and how student(s) 
within the group took advantage of the environment (affordances and constraints 
of digital technologies) to perform their activities. 

An ethnographical case study research design was adopted in this research 
study. The study involved four secondary schools in southern Norway, and in each 
school, participants were randomly selected from among the students who 
volunteered. Empirical data were collected in Autumn 2021 through video 
recordings (recorded conversations and actions of students), screen capture 
software (computer activities), fieldnotes, and students’ worksheets. A 
combination of inductive and deductive approaches was used in the data analysis. 
I will now discuss the main findings of this doctoral research study. 

Firstly, the findings reveal that the elements of CHAT, that is subject 
(characteristics of  each secondary school student), the community (group of 
secondary school students), the object (solving mathematical modelling tasks), 
mediating artefacts/tools (digital technologies—RQ1a and group 
work/interaction—RQ1b), the rules (time constraints, availability of digital 
technologies, implicit rules—RQ1c), and the division of labour (roles adopted by 
the students within the group—RQ1d) are seen as a collective system interacting 
with each other, in contrast to cognitive approaches focusing on heuristics and 
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modelling processes. From a CHAT perspective, the student-student interactions 
are directed by individuals’ engagement with the digital technology, which 
influences the outcome of the activity. 

Secondly, the findings show that students’ activities in mathematical 
modelling can be considered as performing actions (modelling actions) and 
operations (modelling operations) towards an object (solving a mathematical 
modelling task) from a CHAT perspective, where digital technologies played an 
essential role within the modelling actions that emerged. In the action of breaking 
the task into manageable parts, digital technologies (e.g., Google Maps and Google 
Search) were used to seek information (researching) about identified variables. 
Breaking the task into manageable parts (which involves operations like reading 
the problem text, seeking information, and others) was recorded as the first action 
of the students while working on the tasks. Digital technologies (e.g., GeoGebra, 
Excel/spreadsheet and Google Maps) were also used for geometric construction, 
data entry and generation, and seeking information, among others, while searching 
for a model. In the action of finding a solution for the model, digital technologies 
(e.g., GeoGebra, Excel/spreadsheet, calculator, Google Maps and Google Search) 
were used for changing/experimenting, calculating, visualizing, data entry and 
generation and seeking information. The action of finding a solution for the model 
was the central part of the students’ activity as the majority of the episodes of the 
students’ activity describes this action. In the action of explaining the results in 
real terms, digital technologies (e.g., GeoGebra) were used for geometric 
construction (in the case of generalizing the solution). Finally, in the action of 
checking the results for adequacy, digital technologies (e.g., GeoGebra) were used 
for changing/experimenting and measuring. These modelling actions emerging are 
not a general manifestation in the students’ activities but depend on the 
characteristics of each group, and the nature of the tasks, among others.    

Thirdly, the findings highlight technological, mathematical and socio-cultural 
affordances and constraints of the digital technologies that emerged in students’ 
mathematical modelling activities with the aid of digital technologies. These 
affordances and constraints that emerged depend on each group’s characteristics, 
the nature of the task, and what is perceived of the digital technology, among 
others. At the operational (technological affordances) level, digital technologies 
provided the students with specific functional opportunities such as researching, 
measuring, visualizing, geometric construction, experimenting/changing, data 
entry and generation, and calculating while working on the tasks. The 
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technological affordances of digital technologies at the operational level support 
the mathematical affordances emerging at the action level. Thus, at the action 
level, digital technologies afford clarification in a mathematics discourse, 
analyzing, linking mathematical representations, simulating and visualizing, 
regularity and variations, and arithmetic and statistics. Finally, at the activity or 
collective level, digital technologies induce specific social affordances as the 
students engage with the technology in social interaction. These social affordances 
could be a common focus, observing and improving strategies and authority of 
digital technology. 

In the next section, I will discuss reflections on the quality of this doctoral 
dissertation.   

8.2 Reflection on the quality of the thesis 

Several studies have discussed issues on the quality of a research study (Simon, 
2004; Niss, 2010b), and the common things that these studies share on what a 
researcher needs to provide in the stages of the thesis are as follows: 

 Choice of research question  
 Quality of the research design  
 Justification of the methodology  
 Justification of the analysis of data 
 Justification of the conclusions 

Simon (2004) points out that “a research study, from questions to conclusion, can 
be thought of as the construction and presentation of a warranted argument” (ibid., 
p. 159). In this case, the quality of a thesis could be evaluated based on how the 
researcher was able to meet these warrants throughout the study. Based on the 
structure above, I will attempt to provide an argument for this. I started this 
research study with clear initial research questions and methodology but not a clear 
theoretical perspective. Adapting a set of theoretical perspectives and my literature 
review ensured that my new research questions were founded on terminology that 
was operational and provided a basic starting point for advancing the research 
field. My choice of theoretical framework, CHAT and Affordance Theory, to study 
students’ mathematical modelling with the aid of digital technologies was based 
on an interest in studying different forms of interactions within the students’ 
activities (this was elaborated and justified in Chapter 4). In Chapter 5, I provided 
an argument for my choice of research design. To address the newly formulated 
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research questions, an ethnographical case study design was used to make sense of 
the modelling actions, affordances, and constraints that emerged by observing 
students’ interactions with digital technologies while working on mathematical 
modelling tasks. Again, I considered this study as explorative as I did not look for 
definite answers according to predefined criteria but rather sought to unveil new 
qualitative insights into students’ mathematical modelling with the aid of digital 
technologies. There are some pitfalls associated with the explorative nature of this 
study, which I addressed in Sections 5.9 and 8.3. Thus, issues concerning validity 
and trustworthiness.   

My choice of qualitative methodology follows from the ethnographical case 
study design chosen. Chapter 5 presents a rich context description of how the study 
was conducted. Radford (2008a) explains that a well-connected theoretical 
framework and methodology help distinguish between relevant and irrelevant data. 
As such, a researcher needs to consider the consistency between the chosen 
theoretical framework and the methods utilized to derive results from the data. The 
analysis in this study reflects these ideas. The data analyzed were authentic 
transcripts of events from classroom filming and screen capture, and the coding 
was theory-informed inductive coding (see Sub-Section 5.7.2). This coding 
strategy emerges as an interplay between the theoretical framework and the 
empirical data (an accepted methodology in qualitative research if the data is 
considered with a specific theoretical background in mind) (Patton, 2002; Braun 
& Clarke, 2006). From this perspective, I used a combined inductive and deductive 
thematic analysis technique to analyze the empirical data (see Sub-Section 5.7.3). 
In this case, connections between the codes that transpired in the data analysis were 
condensed into categories or themes that reflected the chosen theoretical 
background. The results were supported by referring to excerpts and images (taken 
from the screen capture software) from the transcripts, which adds to the 
trustworthiness of the analysis. In the end, the conclusion chapter indicated the 
study’s contributions to knowledge in mathematics education (see Section 8.4).       

In the next section, I will discuss the limitations of this research study. 

8.3 Limitations 

The issue of limitations in a research study is essential to address to evaluate the 
quality of the research conducted. As described in Section 5.1, this research has 
been conducted within a qualitative research paradigm, and the results must be 
critically evaluated from this perspective. In Section 5.9, I have elaborated on the 
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measures undertaken throughout the research process to ensure the validity and 
trustworthiness of the results and conclusions. Despite these measures and the 
present study’s contributions, some limitations are worth mentioning. 

The research reported in this thesis arises from in-depth analyses of four cases 
involving specific contextual conditions. Each case involved a small number of 
participants (3-4 students in a group) in the selected contexts. Therefore, the 
findings drawn from this research have clear contextual influences such as the 
knowledge level of the students, the nature of Task 1 and 2, the characteristics of 
the students, prior experience with digital technologies, the mathematics courses 
taken, the mathematics curriculum, and others. The participant sampling was 
random, whereas the research context was purposefully selected in the case 
studies. For this reason, the results cannot be quantitatively (or statistically) 
generalized, for instance, to all secondary school students’ activities. Thus, other 
participants might have tackled Tasks 1 and 2 differently, leading to different 
observations concerning their use of digital technologies in mathematical 
modelling activities. However, the conditions of the environment, which became 
evident in the students’ activity, can be generalized (analytical generalization, see 
Section 5.9) in the sense that these point to the significant aspects of the student’s 
mathematical modelling activity. In response to the criticism that case studies lack 
generalizability of results, Flyvbjerg (2006) points out that case studies provide a 
generalization through “the force of example”. In this case, I argue that this 
research offers an example of secondary school students’ mathematical modelling 
activities and the conditions which became evident through the research. A case 
study emphasizes the depth of study rather than the breadth and focuses on the 
particular, not the general. Accordingly, this research study aims to gain insight 
and seek to understand students' mathematical modelling with the aid of digital 
technologies rather than generalization. 

My choice of research methods for analyzing students’ modelling actions and 
the affordances and constraints that emerged have some limitations. Using video 
recordings, screen capture software, students’ worksheets and fieldnotes revealed 
extensive insights into the students’ activities. However, students’ reasons for 
using a particular digital technology or performing some modelling actions were 
not recorded. In this case, the students did not explain why they ‘broke the task 
into manageable parts’, ‘searched for a model’, or used certain digital technologies 
and others. Nonetheless, the results of this research were based on classroom 
observations. I indicated in the study that the results were only meant to be 
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suggestive as there were certain aspects where the empirical data collected was 
insufficient to draw conclusions about students’ choices. For instance, when Group 
C claimed that the data is recursive and they cannot use GeoGebra, this could have 
been taken up in a stimulated recall interview.    Stimulated recall interviews could 
have been conducted to investigate further the students’ perspectives on the actions 
and operations they performed during or after the activities. In this manner, the 
analysis could be further enriched due to the additional information from the 
students. However, stimulated recall interviews after the students’ activities might 
not guarantee that the students will give precisely what they were thinking at the 
time the particular incident happened. 

Another limitation of my research is related to the introductory activity. The 
students only solved three example questions in the introductory activity before 
the main activity (see Section 5.3), which might not be enough in terms of their 
familiarity with the task. Engaging the students in several introductory activities 
might have influenced the outcome of this study, for instance, in the situation 
where Group D used the same approach of the ‘helicopter task’ for Task 2 
(considering air distance instead of actual roads). The narrative might not be the 
same if Group D had worked on several examples in the introductory activity 
before the main activity. My limited acquaintance with the student’s native 
language (Norwegian) was a limitation in this research. The students’ activities 
would have been more beneficial and purposeful if they had used their native 
language. To reduce this effect, the students were allowed to communicate in 
Norwegian when they could not express themselves well in English. As such, there 
were instances where the students communicated in Norwegian (Group D, 
especially). Hence, I involved a native transcriber of the students’ dialogues.    

The theoretical framework adopted has some limitations. I have justified my 
choice of theoretical framework in Chapter 4 and reflected on using these 
theoretical perspectives and their link with the research findings in Section 7.3. 
However, some further limitations regarding the theoretical perspective are worth 
mentioning. The theoretical stance adopted in this study does not capture every 
aspect of the study. Addressing the social dimensions and digital technologies 
used, utilizing the categories of affordances and constraints has shown to be an 
appropriate methodological approach for exploring technological, mathematical 
and socio-cultural affordances and constraints that emerged. However, the 
approach outlined in this study is not intended to map all potential technological, 
mathematical and social affordances and constraints, but it is flexible enough to 
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capture other affordances beyond the ones presented in this study. On the other 
hand, CHAT cannot provide a complete description of students’ gains in 
conceptual understanding. Conceptual understanding is usually examined from a 
constructivist point of view (Badie, 2016). Radford (2008c) argues that the 
constructivist perspective focuses on cognition and puts the individual in the 
centre. CHAT in this study does not capture students’ construction of mathematical 
knowledge through mathematical discourse, even though the concept of modelling 
actions helps in explaining the students’ modelling processes. Commognition 
theory captures the mathematical discourse during the activities. CHAT, in this 
study, focuses on acting humans, whereas the commognition theory focuses on 
humans who communicate. Commognition is a theoretical framework developed 
by Sfard (2008) that focuses on social and individual aspects of thinking and 
learning (Ärlebäck & Frejd, 2013). In this framework, learning is seen as a change 
in discourses. According to Sfard (2008), discourse is characterized by the 
meaning and use of language. Ärlebäck and Frejd (2013) point out that to be 
engaged in the activity of modelling means to participate in a modelling discourse. 
Again, Ärlebäck and Frejd (2013) use Sfard’s commognition to analyze and decern 
discursive objects in a dialogue between students engaged in a modelling activity, 
and the results show that a variety of signifiers from different discourses come into 
play during modelling.   

Other theories capture the missing issues that cannot be captured with CHAT. 
Some of these issues are the institutional aspects of teaching and learning; 
didactical situations and the role of the milieu; body language and gestures; and 
others in the modelling context. Chevallard’s (1992) Anthropological Theory of 
Didactics (ATD) captures institutional aspects and praxeologies; Brousseau’s 
(1997) Theory of Didactical Situations (TDS) captures the milieu, didactical and 
a-didactical situations, and feedback during modelling activities with digital 
technologies; and the embodied cognition captures gestures and body language. 
Combining these alternative or supplementary theories raises the question of 
networking theories, which is a complex issue that cannot be addressed in 
sufficient detail in this study. I will further discuss this in the subsequent sections.      

In the next section, I will present the implications of this research study. Thus, 
the contributions of this research study to mathematics education research might 
suggest new insights into students’ mathematical modelling with the aid of digital 
technologies. I will also discuss the implications of this study for practice.  
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8.4 Implications  
In this section, I will consider some possible implications of this study. Based on 
the analysis and results, theoretical, methodological and practical implications are 
suggested, and I will focus on aspects relevant to lower and upper secondary 
school. 

8.4.1 Theoretical implications 

This study explored how secondary school students solve mathematical modelling 
tasks with the aid of digital technologies. The study focused on the different forms 
of interactions within the students’ activities; a fundamental aspect of this study 
has been exploring these different forms of interactions from a CHAT and 
Affordance Theory perspective (as described in Sections 4.2 and 4.4). From this 
perspective, I will present this study’s theoretical implications below. The 
discussions of these implications are put under sub-headings: Students’ 
mathematical modelling activities from a CHAT perspective; a combination of 
CHAT and Affordance Theory; an influence of digital technologies in group 
interactions; students’ tendency to select or use particular digital technology; types 
of modelling tasks and associated interaction sequences; and students’ roles in 
mathematical modelling activities.      

Students’ mathematical modelling activities from a CHAT perspective 
While the majority of the research literature in the area of technology-mediated 
activities in mathematical modelling is now significant, much of the research in 
these areas is often done from a cognitive perspective with a focus on heuristics 
and modelling processes (Cevikbas et al., 2021). This study takes a socio-cultural 
perspective, CHAT, to explore the different interactions and modelling processes 
of the students’ activities. The elements of CHAT (Engeström’s expanded 
mediational triangle) are seen as a collective system interacting with each other in 
contrast to cognitive approaches. That is, we cannot separate the students’ 
modelling processes from the digital technologies used, the nature of the tasks, the 
students’ characteristics, and the activity rules (both implicit and explicit), among 
others. Analyzing students’ mathematical modelling activities from a CHAT 
perspective gives a broader picture of how students solve mathematical modelling 
tasks with the aid of digital technologies.     

From the cognitive perspective, much of the analyses of students’ modelling 
activities are done by using a modelling cycle. Cai et al. (2014) argue that a 
modelling cycle might not show most of the actual work students do in a 
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mathematical activity. That is, there might be some difficulties in the qualitative 
identification of the stages of the modelling process corresponding to each episode 
of students’ work (Ärlebäck, 2009; Czocher, 2016; Albarracin et al., 2019). As 
such, Albarracin et al. (2019) use the components of Modelling Activity Diagrams 
(MAD: reading, making model/modelling, estimating, calculating, validating and 
writing) to characterize the modelling processes of students. These activities in 
MAD might help qualitatively identify the stages of the modelling processes. 
However, it does not include the role played by digital technologies in these 
activities. This study addresses this issue by presenting (in a different way) 
students’ modelling processes as emerging actions (in view of CHAT) and 
provides the role that digital technology plays in these emerging actions. From a 
CHAT (Leont’ev’s three-level hierarchy of an activity) perspective, I consider 
students’ activities in modelling as performing actions (modelling actions) and 
operations (modelling operations) towards an object (solve a mathematical 
modelling task) (see Table 4.2 on page 114). The categories of modelling actions 
help qualitatively identify the stages of the modelling processes. These categories 
also show the role of digital technologies in these categories (see the results in 
Tables 6.12, 6.13, 6.28, 6.29, 6.35, 6.36, 6.41 and 6.42). 

Combination of CHAT and Affordance Theory 
There have been very few studies (Albrechtsen et al., 2001; Bærentsen & Trettvik, 
2002; Martinovic et al., 2013; Fredriksen, 2021) that have combined CHAT and 
Affordance Theory to study students’ activities with technology. Finding a 
connection between these theories in mathematical modelling with the aid of 
digital technologies is essential in contributing to the theories themselves. The 
combination of CHAT and Affordance Theory helps address the affordances and 
constraints of digital technologies and the activities mediated by these digital 
technologies (see Sub-Section 4.4.1). This combination does not separate the 
affordances and constraints of digital technologies from the activities mediated by 
these digital technologies. That is, the affordances and constraints of digital 
technologies emerging in this study depend on the characteristics of each student 
group, the nature of the task, and what is perceived of the digital technology, 
among others. Affordances and constraints emerge at all three levels in Leont’ev’s 
model of activity. At the operational (technological affordances) level, digital 
technologies provided the students with specific functional opportunities such as 
calculating, researching, measuring, geometric construction, visualizing, data 
entry and generation, and experimenting/changing while working on the tasks. 
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These functional opportunities do not arise in isolation but connect with the 
activities of the students. That is, the approach the students adopt while solving a 
mathematical modelling task might determine the tool or the features of the tool to 
use. The technological affordances of digital technologies at the operational level 
provide support for the mathematical affordances that emerged at the action level. 
Thus, at the action level, digital technologies afforded clarification in mathematics 
discourse, analyzing, linking mathematical representations, simulation and 
visualizing, regularity and variations, and arithmetic and statistics. Finally, at the 
activity or collective level, digital technologies induce specific social affordances 
as the students engage with the technology in social interaction. These social 
affordances were common focus, observing and improving strategies, and 
authority of the digital technology. Although the combination of CHAT and 
Affordance Theory helps to address the affordances and constraints of digital 
technologies in the students’ activities, there are still challenges to connecting 
CHAT and Affordance Theory (e.g., on the ontological basis—Albrechtsen et al., 
2001). The connection in this study was based on the concept of emergence (see 
Sub-Sections 4.3.1 and 4.3.2). However, further research is needed in the ongoing 
discussion on the connection between CHAT and Affordance Theory.     

Influence of digital technologies in group interactions  
Different frameworks (the instrumental approach, co-action with digital 
technologies, and co-construction of tools) describe processes for the formation of 
a tool and students’ use of tools in a mathematics classroom environment 
(Trouche, 2005; Moreno-Armella et al., 2008; Doerr and Zangor, 2000. See 
Section 2.2). These frameworks do not outline the role of digital technologies as 
mediating tools for social interaction among peers. Concerning the premise that 
digital technologies play a role in mediating collaborative learning processes, there 
are significant bodies of literature that offer support for this premise (Geiger et al., 
2010). From previous research in mathematical modelling activities, digital 
technologies have a role to play as provocateurs of productive student-student-
teacher interaction (Goos et al., 2003; Geiger et al., 2010), and this current study 
adds to this body of work that digital technologies might also serve as a reference 
tool to visually demonstrate one’s ideas while creating a shared goal (common 
focus). Granberg and Olsson (2015) point out that digital technologies might be 
used for observing and repairing divergences and misconceptions in group 
activities. That is, at some point in the students’ activities, they might find 
themselves in a situation marked by uncertainty, divergence, or misconception, 
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where these students might use digital technology to verify knowledge or settle 
disagreements by performing tests. However, it was found in this study (see the 
discussion on socio-cultural affordances in constraints in Sub-Section 7.1.3) that 
digital technologies might provide a platform for observing and improving 
strategies within group interactions in a mathematical modelling activity. Thus, 
the students were sure about their solution processes, and their strategies were not 
divergent. However, these students needed a more efficient way of solving the 
problem, and the digital technology used provided the platform for observing and 
improving strategies. Another category of the influence of digital technologies in 
group interactions is the authority of digital technology. In this study, this category 
describes situations where students only accept an answer from the digital tool as 
the correct answer and/or personalizing the problem based on their interest, which 
can be the type of mathematical representation offered by the digital tool and the 
characteristics of the students. I will further discuss this in Section 8.5, where I 
connect Actor-Network-Theory to the authority of digital technology. In summary, 
the categories discussed above help identify the influence of digital technologies 
on group interactions (in mathematical modelling activities).    

Students’ tendency to select or use a particular digital technology  
This study expands on previous research by identifying students’ tendency to use 
specific digital technologies when they engage in a mathematical modelling 
activity. From previous research students might choose certain digital technologies 
based on their experience with the digital technology (Owens-Hartman, 2015; 
Jacinto & Carreira, 2017; Gueudet & Pepin, 2018) or familiarity with a particular 
digital technology (Geiger et al. (2002), goal-oriented based on the demands of the 
task (Anastasakis et al., 2017), simplicity and efficiency of the digital technology 
(Hillesund, 2020), among others. This current study adds to this body of work that 
students might choose certain digital technologies while working on mathematical 
modelling tasks based on the adopted problem-solving strategy, familiarity with 
the operations of the digital technology, the nature of the task, rejecting other tools 
and keeping the current tool when the solution is imminent and a new idea/s (using 
other tools) would involve restarting, switching between tools for simplicity and 
efficiency, for generalization of a solution, and prior experience. Affordance 
Theory helped detect or capture these students’ tendencies to use specific digital 
technologies in their activities. Thus, the affordances and constraints of the digital 
technologies that emerged during the students’ mathematical modelling activities. 
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In this case, the affordances of digital technologies determine students’ choice of 
digital technologies in mathematical modelling activities.   

Types of modelling tasks and associated interaction sequences  
The findings reveal that not all mathematical modelling tasks produce rich equal 
exchange within a collaborative students’ group work, which adds to Sahlberg and 
Berry’s (2003) earlier suggestion. Considering the dynamics of interaction 
sequences within the students’ activities in this study, both reactive and mutual 
contingencies are more associated with Task 2 than Task 1 (although they are both 
mathematical modelling tasks). Asymmetrical contingency is more associated with 
Task 1 than with Task 2. The findings in this study have revealed that not only the 
nature of the task that brings about these dynamics within interaction sequences 
but also the characteristics of the student groups contribute to this (see Sub-Section 
7.2.1). For instance, asymmetrical contingency is more linked to a group made up 
of mixed-achievement students at the upper secondary school or high-performing 
students dominating within a group (as suggested by Peter-Koop (2002) and 
Lowrie (2011)) than a similar group at the lower secondary level. 

Students’ roles in mathematical modelling activities 
A number of studies have investigated the roles students adopt, either assigned by 
the teacher (Smith, 1996; Rosser, 1998; Crawford, 2001) or by the students 
themselves (Radinsky, 2008), depending on their characteristics, in both 
collaborative and cooperative group work. Fewer studies have sought to develop 
categorizations of students’ roles in collaborative and cooperative group work as 
students work on mathematical modelling tasks (Goos et al., 2002; Peter-Koop, 
2002; Esmonde, 2009). Among these fewer studies, much of the discussion is 
centred around the students who adopt the leading or questioning and challenging 
roles. This study highlights the above roles and adds opposing, supporting, 
suggesting and non-contributing roles. The findings show that high-performing 
students in the mixed-achievement group usually adopt a leading role in the 
episodes. In contrast, within a same-achievement group (group of high-performing 
students), students do not often adopt a leading role (the same applies to the group 
at the lower secondary level, although a mixed-achievement group). Questioning 
and challenging roles were often adopted among mixed-achievement groups (both 
upper and lower secondary level); this role was adopted more often among upper 
secondary school students (either mixed- or same-achievement group) compared 
to students at the lower secondary school level. In the opposing role, none of the 
same-achievement group members opposed the idea(s) of peers, but this role was 
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present in the mixed-achievement groups. There was also a balance between 
supporting and suggesting roles among students within same-achievement groups 
and students at the lower secondary level (who were mixed-achievement students), 
compared to mixed-achievement students at the upper secondary school. Lastly, 
the non-contributing role was only adopted by some students at the upper 
secondary school within the episodes. These characterizations above contribute to 
the understanding of roles adopted by students in mathematical modelling 
activities relating to Tasks 1 and 2.     

8.4.2 Methodological implications 

There have been several studies on students’ mathematical modelling activities 
and the role of digital technologies (Goos et al., 2003; Geiger et al., 2010; Gallegos 
& Rivera, 2015; Greefrath & Siller, 2017; Greefrath et al., 2018). Other studies 
(Ärlebäck, 2009; Czocher, 2016; Albarracin et al., 2019) also present a framework 
(Modelling Activity Diagram-MAD) that might aid researchers in the analysis of 
mathematical modelling processes students engage (but the framework does not 
include the role played by digital technologies). Combining ideas from the above 
studies, this study provides a template that might aid researchers in analyzing 
students’ mathematical modelling processes (modelling actions) and the roles of 
digital technologies in these processes. That is, the framework in this study might 
help qualitatively identify the stages of the students’ modelling processes and the 
role that digital technologies play in these processes. To aid the identification of 
the interaction sequences in the students’ activities, I developed an analytical 
scheme that combined the framework by Jones and Gerard (1967) and Mercer 
(1994) and also partitioned the students’ activities into episodes. This analytical 
scheme might be employed in group interactions in other contexts (other than 
mathematical modelling activities).    

8.4.3 Implications for practice 

On the practical level, this research has raised awareness of the kinds of interaction 
sequences emerging from different mathematical modelling tasks, emerging 
modelling actions, technologies in students’ mathematical modelling activities, 
and others. This awareness might suggest to mathematics teachers, educators, task 
designers, and others in Norway and elsewhere concerning students’ mathematical 
modelling with the aid of digital technologies. The discussions that follow are put 
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under the subheadings task design, modelling actions, and technologies in 
mathematical modelling activities. 

Task Design 
The findings of this thesis suggest that not all mathematical modelling tasks 
produce rich equal exchange within collaborative students’ group work. In this 
regard, task designers and teachers must consider the kinds of mathematical 
modelling tasks given to the students. Suppose the purpose of giving the task is to 
generate reactive and mutual (contingencies) interactions within small group 
activities. In that case, the task should require extra-mathematical knowledge (e.g., 
Task 2 in this study). This applies if the target group is made up of mixed-
attainment students (at the upper secondary level). With groups of both same-
attainment students (high-performing and upper secondary students) and mixed-
attainment students (lower secondary level), the interactions that emerge might be 
reactive and mutual irrespective of the mathematical modelling tasks (e.g., Task 1 
and 2 in this study).      

Modelling actions 
Earlier in Section 3.3, I discussed one curricular issue about mathematical 
modelling tasks used in Norwegian schools. Thus, there are different perspectives 
on mathematical modelling in the curriculum, the textbook tasks, and the national 
exam (Berget, 2022). In this case, if we analyze the tasks in textbooks through the 
steps in a modelling cycle, there are some steps (such as constructing, simplifying, 
mathematizing, validating and exposing) that are missing whilst the steps present 
are working mathematically and interpreting (see for example an example task 
illustrated in Figure 3.1 on page 82). Students in this context mainly work 
mathematically on the given numbers in the task using digital technologies. 
However, the curriculum highlights all parts of the modelling process. This study 
assesses students’ mathematical modelling processes via the categories of 
modelling actions as they work on mathematical modelling tasks (Task 1 and 2). 
Table 4.2 (on page 114) shows that the steps in the modelling cycle above are 
embedded in the actions and operations of the students as they engage with the 
tasks. In this case, not only a part of the modelling process but all parts of the 
process were evident in the students’ activity (see the discussion in Sub-Section 
7.1.2), as intended by the curriculum. 

Technologies in mathematical modelling activities 
Digital technologies in mathematical modelling activities are receiving increased 
attention in curriculum and policy documents in Norway and internationally. As 



319 
 

such, there is a need to critically examine the affordances and constraints of digital 
technologies in mathematical modelling activities. These affordances and 
constraints might be opportunities for students’ learning. For instance, how 
students can make sliders to manipulate their constructed function, what students 
need to do when they get feedback (e.g., illegal function) from the digital 
technology, and how to construct function with recursive data, among others. 
Again, the findings of this study revealed that one of the key factors to the 
modelling outcome resides in the interactions within group activities generated by 
digital technologies.   

In the next section, I will present some suggestions for future research. 

8.5 Future research  

Opportunities for further research into a range of issues arise from this research 
study from both theoretical and methodological perspectives. The qualitative 
nature of my data did not allow me to statistically generalize the findings of this 
research. In this case, broadening the range of schools, classroom settings, and 
participants is warranted to investigate whether similar findings can be obtained in 
different contexts. Thus, a study that will include a broader range of attainment 
groupings, age groupings, classroom contexts, technological aracialities, among 
others. This is particularly relevant to the findings in this study that phenomena 
such as modelling actions, affordances and constraints emerge within students’ 
activities in particular contexts, communities, cultures, institutions, and others (see 
Sub-Sections 4.3.1 and 4.3.2). During the classroom observations, regarding other 
groups that were not the focus group, some students remained silent throughout 
the activities (mostly doing their own thing with their computers). Extending this 
study into settings that include such students within a group is particularly 
important to understand how they interact with their peers in mathematical 
modelling activities using digital technologies. Feldlaufer and colleagues’ (1988) 
study on ‘competition among students’ (for instance, the transition between 
elementary and junior high school) was conducted in the American context (over 
three decades ago). Similar research in the Norwegian context would be 
worthwhile in understanding the dynamics within the students’ interactions.    

As discussed in Section 8.3 above, one of the limitations of this study concerns 
the introductory activity, where the students only solved three examples in one 
lesson before the main activity. Future studies should include several periods of 
introductory activities to investigate how the interactions between students and 
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digital technologies develop over time. It would be fascinating to study the 
interactions within the students’ activities if some tasks are redesigned to have 
features of other tasks (for example, redesigning Task 1 to have features of Task 
2). The findings of this study revealed some affordances and constraints of the 
digital technologies that emerged in the students’ activities, which are essential in 
the students’ mathematics learning. The National Council of Teachers of 
Mathematics (2000) points out that technology is essential in teaching and learning 
mathematics and might influence the mathematics taught, which might also 
enhance students’ learning. In this case, monitoring how technology is used might 
benefit teaching and learning mathematics. Drijvers (2015) argues that the design 
of digital technology and the corresponding tasks and activities, the role of the 
teacher, and the educational context are some factors that need to be considered 
when integrating digital technologies into the education system. That is, the role 
of the teacher is critical in developing effective learning and teaching practices in 
mathematics classrooms (National Council of Teachers of Mathematics, 2000). 
Research is needed into how teachers deal with the affordances and constraints of 
digital technologies in students’ mathematical modelling activities. For instance, 
how teachers engage with students as they make sliders to manipulate their 
constructed function, deal with feedback (e.g., illegal function) from digital 
technology, and construct a function with recursive data, among others.   

Again, in Section 8.3, I raised concerns about the limitation of the theoretical 
framework adopted, as such. I will recommend some theoretical perspectives that 
may be used to further research mathematical modelling with digital technologies. 
An aspect that needs exploration is the concept of the “authority of digital 
technology”. Actor-Network Theory (ANT) provides a framework that explains 
that everything exists in a network of interactive relationships, including people, 
technology and non-living or inanimate objects (Callon, 1984; Law, 1992; Latour, 
2005). As such, ANT might help understand the emergence of new technologies 
in the interactions between humans and technologies. In this regard, we can further 
explore the concept of “authority of digital technology” from an ANT perspective. 
In the terminology of ANT, actors include human and non-human actors/agents. 
In this case, digital technology is not simply a tool or an artefact, but an active 
agent involved in producing knowledge. ANT proposes that human and non-
human agents are equally important and can influence the development of social-
ecological systems (Dwiartama & Rosin, 2014). Agency in ANT manifests only 
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in the relation of actors to each other; in this case, agency is distributed between 
human and non-human agents. 

Another thing to consider is tensions within the students’ mathematical 
modelling activities with digital technologies. These tensions can be caused by 
conflicting relations with the teacher or among fellow peers (Gedera, 2016). In 
CHAT, such internally co-existing opposites are termed dialectical contradictions 
(Roth & Radford, 2011). Engeström (2001) considers contradictions within the 
activity system as sources of change and development, and the dialectical 
dimension of these contradictions might be essential to investigate, as they are 
inherent features of the activity system. That is, contradictions that emerge inside 
and between elements of the activity system are vital for understanding its 
dynamics. Earlier in the discussions under limitation (see Section 8.3), I mentioned 
other theories like ATD, TDS and commognition that might capture certain aspects 
of the students’ activity that CHAT could not. Combining these alternatives or 
supplementary theories raises the question of networking theories, which can be 
dealt with in future studies. Bikner-Ahsbahs (2016) argues that network theories 
mean building relations among theories and that networking allows for explicitly 
working with different theories to benefit from their theoretical strengths (ibid., p. 
34). Radford (2008a) argues that a connection between theories can happen at the 
level of principles or as a combination/coordination of these depending on their 
compatibility (e.g., CHAT and commognition) or incompatibility (e.g., CHAT and 
constructivism or TDS) of their theoretical premises (ibid.). Networking of CHAT 
and other theories can also happen at the methodologies and research questions 
level.   

Bringing this doctoral thesis to a conclusion, I hope that a research partnership 
can be found for which I can share experiences and my growing expertise in studies 
involving students’ activities with digital technologies. Again, I hope this study’s 
findings might contribute to enhancing the ongoing discussions on students’ 
mathematical modelling with the aid of digital technologies.     
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Appendices 
 

Appendix A: Consent form 
 
 

Are you interested in taking part in the research project? 
” (The Use of Digital Technologies for Modelling Realistic Problems at the 

Secondary School Level)”? 
This is an inquiry about participation in a research project where the primary 
purpose is to investigate how secondary school students solve mathematical 
modelling tasks with the aid of digital technologies. In this letter, we will give you 
information about the purpose of the project and what your participation will 
involve. 
Purpose of the project 
The research project aims to examine the relation between the student and the 
digital technologies, and the modelling competences that will emerge during the 
modelling activities. The research study tends to address these central questions: 

1. How do secondary school students mathematize a realistic problem 
with the aid of digital technologies? 

2. What sort of modelling competence emerge during the modelling 
activities? 

a. What part do particular uses of digital technologies play as 
the students mathematize realistic problems? 

3. What affordances and constraints emerge as the students develop a 
technology-based solution/model during the modelling activities? 

The research project is part of a PhD study at the University of Agder. 
Who is responsible for the research project? 
The University of Agder (Mathematical Sciences Department) is responsible for 
the project. The researcher responsible is Obed Opoku Afram (a PhD student), but 
Professor Said Hadjerrouit and Professor John Monaghan supervise the project. 
Why are you being asked to participate? 
You have been selected because you are a student at a lower/upper secondary 
school in the Agder region. On the other hand, the program/department leader 
responsible for the mathematics subject has been contacted for his/her consent. 
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What does participation involve for you? 
The methods employed for data collection are handwritten materials, screen 
capture software, stimulated-recall interviews, video recordings and classroom 
observation (field notes). The handwritten materials are mainly about the answer 
sheets provided by the students, whilst the screen capture software gives details or 
step-by-step solutions of the students on the computer. The video recordings will 
mainly focus on the communication between the students while working on the 
tasks. The interviews will be tape-recorded. The stimulated-recall approach will 
be used to get information from the students solely based on their solution to the 
tasks and the communications between the students during the modelling activities 
(All data will be completely anonymous; there will be no link between the 
registered signatures on the consent forms and the data collected). 

 If you choose to participate in the project, you will solve a set of 
mathematical modelling tasks with the teacher's help. You will work in 
groups. It will take approximately 1 hour. This section allows you to 
familiarize yourself with the mathematical modelling tasks. I will take field 
notes during this section. No personal data is included in the field notes (I 
will only note down the processes you used in solving the tasks).    

 You will again solve mathematical modelling tasks without the teacher's 
help. You will be working in groups. It will take approximately 45 minutes. 
I will take field notes during this section. No personal data is included in 
the field notes (I will only note down the processes you used in solving the 
tasks). There will be a video recording whilst you are solving the tasks. A 
screen capture software will also get details of your work on the computer. 

 You will also participate in a 10-20-minute interview, where you talk about 
your solutions to the modelling task. A voice recorder will be used during 
the interview. 

 I will observe the participants and take notes during the preliminary and 
main sections (no personal data will be registered on the individual students 
during the observation). 

 I will also ask the teacher to give his/her reflections on the modelling 
activities, that is, the teacher’s opinion of the students’ solving the 
modelling tasks with the technological tool within the two sections. I will 
record the interview with a voice recorder. 
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Participation is voluntary 
Participation in the project is voluntary. If you choose to participate, you can 
withdraw your consent without giving a reason. All information about you will 
then be made anonymous. You will have no negative consequences if you choose 
not to participate or later decide to withdraw. It will not affect your relationship 
with the teacher or the program leader. No information or data will be recorded on 
students who do not participate in the research, especially during the observations. 
Your personal privacy – how we will store and use your personal data 
We will only use your data for the purpose(s) specified in this information letter 
and will process it confidentially per data protection legislation (the General Data 
Protection Regulation and Personal Data Act). 

 The only persons who can access the personal data are the researcher and 
supervisors at the University of Agder. 

 All necessary precautions will be taken to ensure no unauthorized persons 
can access the personal data. I will use pseudonyms to ensure your identity 
is not revealed in any part of the research project. The personal data will be 
stored on an external hard drive and the University of Agder server. 

The participants will not be recognizable in any form of publication. 
What will happen to your personal data at the end of the research project? 
The project is scheduled to end on May 24, 2023. After the research project is 
done, the personal data, including the voice recordings and video recordings, will 
be completely deleted.   
Your rights 
So long as you can be identified in the collected data, you have the right to: 

- access the personal data that is being processed about you.  
- request that your data be deleted. 
- request that incorrect personal data about you be corrected/rectified. 
- receive a copy of your data (data portability), and 
- send a complaint to the Data Protection Officer or the Norwegian Data 

Protection Authority regarding processing your personal data. 
What gives us the right to process your personal data? 
We will process your data based on your consent. Based on an agreement with the 
University of Agder (Mathematical Sciences Department), NSD – The Norwegian 
Centre for Research Data AS has assessed that the processing of personal data in 
this project is per data protection legislation. 
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Where can I find out more? 
If you have questions about the project or want to exercise your rights, contact: 

 The University of Agder (Department of Mathematical Sciences) via  
o Professor Said Hadjerrouit (Supervisor), by email: 

said.hadjerrouit@uia.no  
o Professor John Monaghan (Supervisor), by email: 

john.monaghan@uia.no  
o Obed Opoku Afram (student), by email: obed.afram@uia.no or by 

telephone: +47 40384669. 
 NSD – The Norwegian Centre for Research Data AS, by email: 

(personverntjenester@nsd.no) or by telephone: +47 55 58 21 17. 
 
Yours sincerely, 
 
Obed Opoku Afram          Prof. Said Hadjerrouit               Prof. John Monaghan                         
   (Researcher)                       (Supervisor)                                (Supervisor) 
 
 
 
 
---------------------------------------------------------------------------------------------------------- 
Consent form 
I have received and understood information about the project ‘The use of 
technological tools for modelling realistic problems at the secondary school level’ 
and have been allowed to ask questions. I give consent: 

 to participate in the group activities 
 to participate in an interview 
 to participate in the video recordings 
 for notes to be taken about my involvement during the activities 
 for the teacher to give his/her reflection about me during the modelling 
activities.  

I consent to processing my personal data until the project’s end date, 
approximately May 2023. 
 
 
---------------------------------------------------------------------------------------------------------- 
(Signed by participant, date. NB! If you are under 16, your superior must also 
sign.) 
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Appendix B: Mathematical modelling tasks 
Task A: Rescue helicopters 

In Southern Norway, one rescue helicopter is responsible for the four ski resorts 
(Bortelid Ski, Brokke Alpinsenter, Fidjeland Skitrekk As and Knaben Ski). Since 
rescue missions need to be fast and efficient, a strategic, reasonable location must 
be found for the base of the rescue helicopter. Where should the rescue helicopter 
be positioned? Explain your approach comprehensively. 

Task B: Chlorine 
You had a summer job at Scandic Sørlandet. As part of your duty, you are required 
to prepare for the summer season with a daily cleaning program, using chlorine. 
Initially, on day one, a 15-litre starting dose of chlorine is poured into the 
swimming pool. After 24 hours, 15% of the chlorine content disappeared. An extra 
litre of chlorine is poured into the pool every morning for the rest of the season. 
The hotel manager wants to buy extra chlorine and will need your suggestion. As 
the one in charge of the pool, explain to the manager what will happen with the 
chlorine in the pool over time.  
Hints: How much chlorine will be in the pool one day after adding the extra daily 
litre? How much chlorine will there be after two days? After three days? 
Formulate a recursive function describing the chlorine amount in the pool. 

Task C: The cost of having your own car 
The cost of owning a car depends on the number of kilometres travelled per month. 
A car, on average, uses 0.5 litres of gas per 10 kilometres.  The cost of owning a 
car changes linearly with distance and the cost of gas.  

1. Create a model for the total cost per distance travelled.  
2. Eirik lives in Lund and works at Vågsbygd. He drives to work from Monday 

to Friday. Assuming Eirik goes to work throughout the month, make an 
estimate of the monthly cost of the distance travelled to work. 

3. Sunniva wants to drive from Kristiansand to Trondheim and has a budget 
of NOK 600 for her car expenses. Find the maximum distance she can travel 
with this budget. Explain.   

4. Find the y-intercept in the graph of cost versus distance. How do you 
interpret it? 

Task D: Population growth 
A company in Norway needs to expand its production, considering the population 
growth in the next ten years. Figures from Statistisk Sentralbyrå show that in 2011, 
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the Norwegian population was 4.92 million, and in 2012, the number was 4.99 
million. Now, using data from the last ten years, explain to the manager the linear 
growth of the Norwegian population in the next ten years. 

Task E: Waste management 
Returkraft AS is located outside Kristiansand and operates an energy recovery 
plant that was put into operation in 2010. The plant receives and recovers residual 
waste from households and companies in the entire region. Approximately 130,000 
tonnes of residual and special waste are handled annually, and Returkraft receives 
approximately 2,708.33 tonnes of residual and special waste weekly. Returkraft 
currently has six garbage truck drivers, and in one day, each of them delivers an 
average of k tonnes of waste. 

1. Create a model for the total waste received by Returkraft daily.   
2. Estimate the total waste received by Returkraft in the first three months of 

2021. 
3. Returkraft has a total waste of approximately 43,300 tonnes. Find the 

number of days required to get this amount of waste. Explain 
Task F: Which holiday job? 

The holidays are approaching, and your best friend Kristin would like to make 
some money to purchase gifts. She found one job that would pay 20kr/hr above 
the minimum wage. Another job offers to pay half the minimum wage plus a 
commission of 20kr per item she sells. Kristin asks for your help as a 
mathematician. Which job would you advise her to take? 

Task G: Which apartment? 
Mariann got a new job at Kristiansand Kommune for five years. She must move 
from Stavanger to Kristiansand for this new job. She found two cozy apartments 
in different places. The first apartment is 400 meters from her workplace, and the 
rent is 10000 NOK with electricity included each month. The second apartment is 
6.5 km from her workplace, and the rent is 8000 NOK, excluding monthly 
electricity. Mariann does not have a car, and she only relies on public transport. 
Mariann asked for your help as a mathematician because she needed to save money 
within this period. Which apartment would you advise her to take? 

Task H: Illegal fishing task 
On a foggy November morning, the Norwegian police patrol boat sets sail from 
the safe harbour to track illegal, unregistered, and unreported fishing. The 
conditions for this are terrible because the estimated visibility is only about 500 m. 
Nevertheless, the police commander orders the boat to head Northeast. The boat 
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leaves the port at 7 a.m. At the same time, an unregistered fishing ship with a mast 
height of about 45 m sets sail toward the Southeast. As the Norwegian police patrol 
boat left the port, the unregistered fishing ship was located 7 km to the north of the 
port and 2 km to the east of the port. The Norwegian police patrol boat is one and 
a half times as fast as the unregistered fishing ship. Will the unregistered fishing 
ship be spotted? Explain your opinion. 

Appendix C: Description of episodes of the transcriptions 
In this appendix, I present the description of episodes of the transcriptions of the 
four schools. The episodes are categories the researcher created and have no 
intrinsic mathematical property (see Sub-Section 5.7.2). These categories were 
created for analysis in this study. I will present these categories in table form for 
each group under the subsections below. 

C.1: Group A  

Task Episode Description of Group A’s activities  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

1 

1 The students identified and classified the variables in the 
mathematical modelling task. They also constructed relations 
between the variables identified with paper-and-pencil. 

2 The students transferred their ideas from paper-and-pencil to 
GeoGebra. They created a function representing the number of 
people buying the car at a given price. 

3 The students tested their graph or function with 50 people to find 
the maximum company sales. They looked for the price of the car 
when 50 people bought it. 

4 The students tested their graph or function with 70 people to find 
the maximum price. They had 8000 to be the price of the car with 
this number of people. Moreover, 8000 is not enough compared 
to the 10,000 they had with 50 people, so they decided to try 
something below 70.   

5 One student thought of the fastest way to find the values but was 
unsure what to do. This thought triggered another student to 
suggest a procedure, but that did not materialize. The students 
then reverted to the previous way of finding the maximum price.   

6 The students tested their graph or function with 51 people to find 
the maximum price. They still had a value under 10000 (the price 
for 50 people). One student draws the attention of the others to 
the fact that they had not factored in the number of people buying 
the car at that price to get the total revenue. The students then 
used a calculator on the mobile phone to compute the product. 

7 The students computed the product of 70 people and a price of 
8000 with the calculator. One student tried finding the fastest way 
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to find the product with GeoGebra, while the others computed the 
product with a calculator. 

8 The students computed the total revenue if 40 people bought the 
car. A student suggested they could find the total revenue 
between 50 and 100 people based on the earlier values. Another 
student tried finding the function of the car's price but could not 
find the function of the product of the people buying the car and 
the price of the car. 

9 
 

The students computed the total revenue if 60, 80 and 85 people 
bought the car, respectively. With the values obtained, one 
student suggested that the maximum revenue would be between 
70 and 80 people. 

10 One student suggested using the spreadsheet to find all the values. 
Another dismissed the idea because she thought they were close 
to finding the maximum value. The students then continued 
calculating the product of 81 and 6900. 

11 The students computed the total revenue if 75 (the mid value 
between 70 and 80) people bought the car after realizing the 
revenue was the same if 70 or 80 people bought it. 

12 The students verified their answers after they found that the 
company gets the maximum revenue if 75 people buy the car at 
7500. They also wrote a report concerning their results and 
delivered it to the teacher at the end of the activities.   

 
 
 
 
 
 
 
 
 
 

2 

1 
 

After reading the mathematical modelling task, the students 
suggested the optimal location and located the three cities on 
Google Maps. 

2 
 

One student suggested that they should look at the population of 
each city. Another student suggested an optimal location on the 
map, but the others did not agree. 

3 
 

The students discussed that some cities have shopping centres, 
affecting their optimal location choice. 

4 The students searched for the population of the three cities with 
Google Search. 

5 The students discussed the issue of fairness regarding the 
population and the fact that some cities have shopping centres. 

6 
 

The students turned on the satellite on Google Maps as they 
looked at the driving time from Lillesand and Vennesla to 
Kristiansand. 

7 
 

The students zoomed in on the area around Kjevik on the map as 
they argued about choosing the optimal place. 

8 The students argued about placing the centre close to IKEA. 

9 The students discussed their final ideas about the placement of the 
shopping centre. After agreeing on a location, they wrote a report 
and delivered it to the teacher at the end of the activity.   

Table 9.1: A summary of Group A’s activities in Task 1 & 2 divided into episodes. 
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C.2: Group B  

Task Episode Description of Group B’s activities 
 
 
 
 
 
 

 
1 

1 The students identified and classified the variables in the 
mathematical modelling task. 

2 The students put the information gathered into the spreadsheet 
in GeoGebra. That is, one column is for the number of people 
buying the car, and another column is for the price of the car. 
They went on to draw a linear function from the data generated. 

3 The students searched for the best-selling price by analyzing the 
linear graph they drew from the generated data. They looked for 
the price of the car when 100 people bought it and when nobody 
bought it. 

4 The students looked for the maximum company’s sales revenue. 
They multiplied the number of people buying the car by the price 
of the car, doing that for both 100 people and one person. 

5 The students used the same procedure to find the revenue if 50 
people bought the car. 

6 The students looked for the total revenue for 75 people. They 
chose 75 because it is the middle number between 100 and 50 
people.  

7 The students verified their answers with the revenue for 70 and 
80 people after finding that the maximum revenue is attained 
when 75 people buy the car. They also wrote a report concerning 
their results and delivered it to the teacher at the end of the 
activities.   

 
 
 
 
 
 
 

 
2 

1 The students looked for the population of the three cities and the 
positions of the three cities using Google Search and Google 
Maps, respectively. The students moved the positions of the 
three cities from Google Maps into GeoGebra. That is, by copying 
the coordinates of the cities' positions on Google Maps and 
plotting them in GeoGebra. 

2 The students made lines to connect the three points representing 
the three cities in GeoGebra. 

3  The students deleted the lines they made in Episode 2 and 
connected the points representing the three cities with line 
segments (forming a triangle). They searched for the midpoint of 
each side of the triangle and, using the midpoints, constructed 
the median of the triangle (centroid). The students fixed a 
midpoint between the cities, claiming the centroid is the centre 
of the triangle. 

4 The students analyzed the newfound centre of the three cities. 
5 The students duplicated the centre and moved it to the desired 

point, which is fair for all the cities. 
6 The students computed the median of the distances between the 

centre and the cities. They also analysed the centre while 
considering the roads and time of travel. 
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7 The students inserted the coordinates of the centre (optimal 
location) from GeoGebra into Google Maps, saved the position of 
the centre on Google Maps, and analyzed it while considering the 
time of travel.   

8 The students debated the position of the centre on Google Maps 
concerning the time of travel. They also debated the issue of 
fairness in choosing the optimal position for the shopping centre. 
They finally agreed to write a report after the argument and 
deliver it to the teacher at the end of the activities.    

Table 9.2: A summary of Group B’s activities in Task 1 & 2 divided into episodes. 

C.3: Group C  

Task Episode Description of Group C’s activities 

 
1 

 
1 

The students identified and classified the variables in the 
mathematical modelling task. The students chose Excel/spreadsheet 
over GeoGebra and inserted their variables in Excel/spreadsheet.   

2 The students generated their data and found the maximum revenue 
for the car-selling company. They finally wrote a report concerning 
their results and delivered it to the teacher at the end of the 
activities. 

 
 
 
 

2 

1 
 

The students located the three cities on Google Maps and discussed 
the issue of fairness in the task.    

 
2 
 

The students looked for the travel time between the three cities to 
the suggested optimal place and between the cities and another 
optimal place that already has a shopping centre. 

3 
 

The students looked for the population of the three cities as they 
discussed the optimal place. 

4 The students wrote a report after their analysis. 
 

5 
The students constructed an optimal place using GeoGebra without 
factoring in the population and roads. Thus, they took a screenshot 
of the cities’ positions on Google Maps and inserted it into 
GeoGebra. The students represented the three cities with points in 
GeoGebra, forming a triangle. The students then constructed the 
circumcenter/circumcircle of this triangle. The students finally 
updated their report and delivered it to the teacher at the end of the 
activities.    

Table 9.3: A summary of Group C’s activities in Task 1 & 2 divided into episodes. 

C.4: Group D  

Task Episode Description of Group D’s activities 

 
 
 

1 
 

The students identified and classified the variables in the 
mathematical modelling task. 

2 
 

The students first used a calculator (on the computer) to compute 
the product of the number of people buying the car and its price. 
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1 

3 The students used GeoGebra because they realized using the 
calculator would take some time. They used GeoGebra to plot 
some points (the number of people on the x-axis and the price of 
the car on the y-axis). The students computed the product of the 
number of people and the price of the car in the ‘algebraic view’ 
in GeoGebra, but no representation of this computation was 
shown in the ‘graphic view’. 

4  The students decided to use Excel/spreadsheet after they were 
unsuccessful in an attempt to use GeoGebra. They used 
Excel/Spreadsheet to find the company’s maximum revenue. 
Thus, the students first computed the product of the number of 
people and the price of the car (in only one column in the 
spreadsheet), using a few data sets. 

5 The students decided to create two columns, with one column 
representing the number of people and the other column 
representing the price of the car. The students then created 
another new column representing the total revenue (product of 
people and car price). The students generated their data for the 
number of people buying the car, the price they bought the car, 
and the company's total revenue. The students then decided on 
the best price for the company to maximize revenue. 

6 The students discussed their results and finally wrote a report, 
which they delivered to the teacher at the end of the activities.    

 
 
 

2 

1 The students located the three cities on Google Maps. 
2 The students took a screenshot of the cities on Google Maps and 

inserted it into GeoGebra. The students represented the three 
cities with points in GeoGebra forming a triangle. 

3 The students constructed a circumcenter/circumcircle of the 
triangle representing the three cities and measured the distance 
between the circumcenter and the triangle’s vertices. 

4 The students analyzed the circumcenter of the triangle. They then 
looked for the circumcenter’s position on Google Maps and 
searched for the Kommune (municipality) to which the optimal 
place belonged. The students finally agreed on the optimal 
location and wrote a report concerning their results, which they 
later delivered to the teacher at the end of the activities. 

Table 9.4: A summary of Group D’s activities in Task 1 & 2 divided into episodes. 

Appendix D: Solution reports of all groups in the different schools  

In this appendix, I will present the solution report of each group within each school. 
Each school had other groups with the focus group (marked in red) that worked on 
Tasks 1 and 2. Empirical data (video recording, screen capture software, fieldnotes 
and students’ worksheets) was collected from the activities of the focus group. 
However, all other groups (including the focus group) submitted their solution 
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report after the activities. I will present the solution report of each group 
respectively under the subsections below.    

D.1: School A 

Group 1 (Focus group: Group A): 
Task 1 

 
The maximal revenue would be if the company sold each car for 7500£ for 75 
people and the end income would be 562 500£. 
We found out of this when we made a linear graph, f(x)=-x+100. On the x-axes 
was the 0, 5000£ and then when x is 1 it meant that we multiplied 1 by 100£ and 
then pluses 5000£ with 100£. And the y-axes were people. 
 
Task 2 

 
Our first location is on the mega center that already exist which is Sørlandssenteret. 
The center is located good in terms of population. It is easy to drive to the 
Sørlandssenteret from all the cities. It seems far away from Lillesand, but the 
highway (I mean E18) makes it much easier for drivers to come to our new mega 
center. If we don’t have the opportunity to place it on a location where a mega 
center already exist, then we would have placed it near where Kjevik is. We located 
our mega center at the other side of Kjevik so that people will not get disturbed by 
the noises of the airplanes from the airport. There is also a camping place and a 
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beach nearby. People from these camping places can visit the mega center easily 
which will help the tourism to grow faster in Agder. It is also easy to find where 
Kjevik is because of the airport which is popular. 
 
Group 2 
Task 1 

 

 
Her ser vi at det stiger helt fra til bilen koster 7500kr som er den prisen de kan 
sette for å tjene mest mulig. Da er det 75 personer som fortsatt vil kjøpe bilen og 
da tjener ed 62500kr mer enn utgangspunktet. 
 
Task 2 
Bygg et kjøpesenter i Vennesla 
Lillesand har et kjøpesenter har allerede et kjøpesenter og de er til og med færre 
enn oss med god rating og E18 vegen om de skal på sørlandssenteret. Det er veldig 
mange mennesker i Kristiansand, men de har allerede 3 kjøpesentre omtrent og 
god kollektiv transport. Så med tanke på sentrene som vi har fra før av så er det 
rettferdig om vi i Vennesla også får et som har en god befolkningsvekst.  
 
Hvis vi sier at det ikke finnes noen sentere fra før av tenker vi at der 
sørlandssenteret er plassert er veldig bra gjennomtenkt med tanke på at man kan 
kjøre E18 hele vegen fra Lillesand og Søgne. Vi kan kjøre Ålefjær selv om det 
kanskje er litt mer tungvint, men det er en fin veg fra alle plasser inn til 
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sørlandssenteret med cirka like lang kjøretid, hvis en ikke tenker buss/kollektiv 
transport. 
 
Group 3 
Task 1 

 
We found this task similar to some of the other tasks we have worked with earlier. 
That’s why we thought we could solve them the same way. We took it to the 
spreadsheet and wrote on the first column from 1 to 100, then on the second 
column 0 on the first row and then added 100 for each row. We made sure that the 
0 was on the same row as 100 because for every hundred euros added to the car, 
there would be one less buyer. Then, on a third row, we multiplied the ones on the 
same row like 0*100, 100*99, 200*98 and so on. After doing this till row 100, we 
got the numbers we needed. In conclusion we found out that at 50 buyers and a 
price of 10000 euros, they would have a revenue sale at 250000 euros. This is the 
maximum total they can make by thinking there would be 1 less buyer for each 
100 added. 
 

 
Task 2 
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We measured the distance between the cities, the amount of people living in the 
cities and excluded sørlandsenteret. With this we came up with what we would call 
the most optimal location, which would be Boen. This would be because it is sort 
of in the middle of all the cities and we have located it closer to Kristiansand since 
there are more citizens there which would make the senter more profitable. 

D.2: School B 

 
Group 1 
Task 1 

 
Kjære salgssjef 
Den beste salgsprisen for bilen for å maksimere selskapets salgsinntekter er 562 
500. (se blå markering) 
I et regneark, skrev vi ned fra 100 personer og under, nedover til person 1. I ruten 
ved siden i tabellen skrev vi ned 5000, og som da sank med 100 for hver person 
minus. Så ganga vi de to sammen og fant det største tallet. 
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Task 2 
Kjære ordfører 
Det bor 85 000 i Kristiansand, 10 000 i Lillesand og 14 000 i Vennesla. Det er 19 
min mellom Kristiansand og Vennesla, og 25 min mellom Kristiansand og 
Lillesand. Dette er bare 5 minutter forskjell, så det tar vi ikke hensyn til.  
Lillesand er en ganske koselig, liten by, mens Vennesla er stygt og kjedelig. Derfor 
tenker vi at det nye kjøpesenteret kan bygges rundt området ved Vennesla. Da kan 
de ha noe spennende og moderne der. 

 
 
Group 2 
Task 1 

 
By decreasing the price a bit, you increase how many people by the car thus 
increasing your income. 
 
Task 2 
Population of the three cities 
Kristiansand 85000 
Vennesla 12,816 
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Lillesand 10,106  
Distance  
Vennesla to Kristiansand-16.8km 
Lillesand to Kristiansand- 27.5km 
Time to get from x to y 
Vennesla to Kristiansand- 19 min 
Lillesand to Kristiansand- 24 min 
After looking at the data and the map we decided to put it on the X 

 
 
Group 3 
Task 1 

 
The starting point on the y-axis is the highest amount of money that by the simple 
statistic in the task says will make no one buy it. From that you can subtract 100 
euros for every person (every x) which will therefore show you how the increase 
of money will decrease the amount of people buying the car.  
 
The optimal cost for the car is xxxxxx euros. 
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The reason of this is because xxx people*xxxx euros=xxxxx euros which is the 
highest amount of money they can get for selling that model. 
 
Group 4 
Task 1 
To solve the problem and show what the optimal price of the car was, we opened 
a document in Excel. We first put in the initial numbers, a price of 5000 and 
amount of buyers being 100. Then we set up a function to calculate how they 
interacted with each other. Doing this, we found that with a price of 10000, there 
would be 50 buyers. When we had this, we put in the calculation to find total 
revenue, that being price*buyers. With this, we found that the total revenue 
stopped increasing at 75 buyers before decreasing again, 

                                                   
As shown from Excel in these pictures, Price being on the left, amount of buyers 
predicted in the middle and total revenue on the right, the price stops increasing at 
75 buyers, earning a total revenue of 562500 Euro, and then starts decreasing. With 
this, we can determine that the optimal price for the new car is 7500 Euro. 
 
Task 2 
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The first step we took was to locate the given locations on google maps. We then 
created a line connecting the three points together, which formed an isosceles 
triangle. We then find the middle of the triangle by drawing lines from each corner 
(or vertex) of a triangle to the midpoint of the opposite sides, then those three lines 
meet at a center, or centroid, of the triangle. The centroid is the triangle's center of 
gravity, where the triangle balances evenly. 
When we found the midpoint we realised that the mega-mall is going to be on the 
point where all the lines cross each other. 
 
Group 5 
Task 1 
Kjære selskapets salgssjef 
Vi satte opp alt i et regneark. Vi startet med å dra ned alle tallene fra 100 - 0. Etter 
dette tok vi 5000 i celle B2 og plusset det med den låste cellen D3 i celle B3. Etter 
dette dro vi ned tallene slik at det ble likt som 100 - 0. Tilslutt multipliserte vi celle   
A1 - B1, A2 - B2, osv. Deretter fant vi det høyeste tallet som var i celle 75. 

 

 
Svaret vårt er altså at den beste salgsprisen for bilen, for å oppnå maksimale 
salgsinntekter er: 7500 Euro 
 
Task 2 
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Kjære departementet for etablering av senter for Kristiansand, Lillesand og 
Vennesla.  
Våre medborgere og medmennesker, vi vil gjerne komme med en avgjørelse for 
vårt forslag av prosjektet angående et sentralt senter.   
Etter god undersøkelse for hvor dette skal plasseres i forhold til rettferdighet, og 
hva som kan være mest aktuelt for alle tre plasser, har vi kommet frem til at den 
beste plassen å ha senteret ville ha vært på Sørøst siden av Kjevik, I enden av 
hamrevatnet 
Grunnen for dette er, at dette er utrolig sentralt for alle disse byene, og ville derfor 
vært rettferdig med tanke på tidsbruk på veiene bort. Dette er også i nærheten av 
flyplassen Kjevik, og vil derfor være en god overgang for folk som kommer for å 
ta fly, til å kunne ha tilgang til et nærliggende senter der de kan kjøpe for sine 
behov. I nærheten er også Hamresanden, som er en stor og populær strand i 
Kristiansand. Derfra kan man sette grunnlag for en potensiell by, om dette hadde 
vært aktuelt, noe som vi absolutt synes.   
Vennlig hilsen Gruppe 5 
 
Group 6 (Focus group: Group B) 
Task 1 
Dear sales manager of solar cars, 
We have looked through the data provided from your research, and we have found 
that selling the solar power car for 5000 euros is not maximizing the sales revenue 
for your company. The optimal selling price per car is 7500 euros. This will lead 
to the company’s sales revenue increasing by 62,500 euros if you manage to sell 
75 cars. The amount of people buying is still sustainable in this plan. 
Kind regards, your advisors 
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Task 2 
Dear minister, 
Dønnestad is the best place for the mall. This would be the mathimatical central 
area for the three cities Kristiansand, Lillesand and Vennesla. This is an easy 
access mall were everyone can drive to. There are roads that people from every 
city can drive on to go to the mall, Kristiansand and Lillesand uses E18 and 
Vennesla uses 453. This might not be the most optimal location, however with 
more resources and time we can find a fair place for all the cities. 
In kind regards, your advisors 

 
 
Group 7 
Task 1 
Having 100 customers would give us 5000€ in revenue. Later we found out that 
increasing the price range at 100 decreases our audience by one customer. To find 
the formula we had to put different values into a spreadsheet and then we made a 
scatterplot out of it. Our conclusion is that the ideal selling price would be to have 
the vehicle cost 7,500€ for 75 customers. 
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Formula: -100x²+15000x

Task 2
close to tveit, Kristiansand- reason is stede er ca like avstand til det nye senteret. 
And Vennesla and Lillesand people are already used to coming to Kristiansand a 
lot already. problem- The place is a little selfish because it would be easier to get 
to the mall if you live in Kristiansand and a little harder if you live in Lillesand 
and Vennesla-
Boen-reason because from Vennesla til Boen is veien omtrent 20 min. Og fra 
Lristiansand til Boen is 18 min, og til Lillesand til Boen er 28 min. The problem 
with this is how Lillesand citizens will have to come all the way to Kristiansand 
and go off to boen from there.
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D.3: School C 

 
Group 1 
Task 1 

 
Dear sales-manager. We have figured out that the best selling price is 7 500 euros. 
This means that the company revenue is maximized at 562 500 euros. After the 
price becomes higher than 7 500, people loose interest and the income will 
decrease. Sincerely Group 1. 
 
Task 2 
To the ministry in charge of the new shopping center. We believe that the best 
location for the center will be at Dønnestad. This is because it is located almost in 
the middle of the cities, however the exact middle would be in nowhere so we 
moved it out closer to the road, therefore Dønnestad. In addition, Dønnestad is 
closest to Kristiansand with the most inhabitants, second closest to Vennesla with 
the second largest population and a bit further away from Lillesand because they 
had the fewest inhabitants. Sincerely Group 1. 
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Group 2 
Task 1 

 
We conclude that the company’s maximal revenue would be 562500 euros, with a 
unit price of 7500 euros per unit and 75 buyers. 
We came to this answer by using excel and making a table where we looked for 
the highest total price when summing up how much money the company would 
make for all the products sold. 
 
Task 2 
Firstly, we got a map of the region containing these cities. 

 
Then we found the approximate number of people living in each area and used 
those numbers to determine where we would place the supermarket. We placed it 
along the motorway because we believe it would be the fastest way of travel 
between all cities, but also because there are other supermarkets close to where we 
put ours, and we believe that customers coming from those places would also take 
a look at our supermarket. 
 
Group 3 
Task 1 
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The product has the highest profit when the price is increased by 2500euro, and 
the customer amount is 75people and decreased by 25customers. The maximized 
sales revenue is 62500eur. 

 
 
Task 2 
 

 
The shopping center should be built in Boen. Since Boen is the closest place to the 
center of the three places. (Vennesla, Lillesand and Kristiansand) 
 
Group 4 
Task 1 
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We found out that if 75 people buy the car, the company would make the most 
income by earning 7500 euros each car, which in total equals 562500 euros. 

 
75 can buy the car so that the company could make the mist income. The income 
would then be at 562 500 euros. 
 
Task 2 
we looked a google maps and found out where it would be most smart to place 
the mall compared with distance, location and roads. 

 
 
Group 5 (Focus group: Group C)  
Task 1 
Letter: 
The total revenue would be at it’s highest at 75 customers at €7500 per car, beyond 
that increasing the price wouldn’t affect the total revenue in a positive way which 
is shown in this graph. 
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We used a recursive function to figure out the optimal price for the car. 
 
Task 2 
If we put the mega shopping center in Kjevik it would be fairly placed based on 
the population and travel time of the three cities. Kristiansand has the least amount 
of travel time because Kristiansand has a larger population which constitutes that 
having the shopping center closer to Kristiansand would result in less CO2 
emissions. Vennesla also has a larger population than Lillesand which is why we 
placed the shopping center closer to Vennesla than Lillesand. 
Population numbers:  
Kristiansand: 85 983 (2014) 
Vennesla: 13 986 (2014) 
Lillesand: 10 106 (2014) 
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If we do not factor in population or pre-existing roads, then point D would be the 
ideal location for the shopping center. 

 

D.4: School D 

Group 1 
Task 1 
7500 
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We lose 1 person every time we add an extra 100 euro, but we also gain more 
money from the people that still will buy. When you add 1000 euro you lose 10 
people. So we took 15.000 euro to check how many customers we would have and 
we wouldn't have anyone left. Then we figured that if you lose all your customers 
at 15.000 euro you are gonna have the most customers at 7500 euro. You will also 
get the most money at 7500 euro. 
 
Task 2 
The shopping center should be placed where the lines are crossing, we used 
geogebra and google maps. We marked the different places then we found the 
middle point in geogebra.   

 
Group 2 
Task 1 

 



380 
 

Du bør selge bilen for mellom 7000-8000 for det er da du tjener mest. Det kan du 
se på disse bildene. 
 
Task 2 

 
Kjøpesenteret bør ligge nærme det sorte krysset, men også nærme veien så det blir 
letter å komme seg dit. Det svarte punktet er i midten (i midten av alle punktene)  
 
Group 3 
Task 1 
100 personer kjøper for 5000 = 500 000. 
75 personer kjøper for 7500= 562 500. 
50 personer kjøper for 10 000 = 500 000. 
25 personer kjøper for 12 500 = 312 500. 
75 personer kjøper for 7500= 562 500 svar 
 
Task 2 

 
Dette var så langt vi kom på denne oppgaven. 
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Group 4 
Task 1 

 
 
Task 2 
Vi fant ut at den beste plassen å plassere kjøpesenteret var i dønnestad, vi kom 
fram til dette ved at vi tok å fant midtpunktet mellom alle stedene i geogebra, men 
så var det en urealistisk plass å ha kjøpesenteret siden det var midt i skogen. Så 
derfor gikk vi inn på google maps og tok opp kjøreveiene og så hvordan man kunne 
kjøre og da fant vi ut at de som kom fra vennesla kunne kjøre en annen vei. Så vi 
plasserte det litt nærmere vennesla og litt lenger borte fra lillesand siden de er 
nærmere sørlandssenteret.   
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Group 5 (Focus group: Group D) 
Task 1 
Hei. Vi fant ut at den optimale prisen på bilen er 7500 euro. Da er det 75 folk som 
vil kjøpe bilen din. Da får du i inntekt 562500 euro. Det er den høyeste prisen du 
kan tjene ved å øke prisen. 

 
 
Task 2 
Hei. Vi mener at det er mest rettferdig hvis kjøpesenteret ligger der vi har punktet 
f det på bildet. Da er det like langt fra kristiansand, lillesand og vennesla. Vi kom 
fram til dette svaret med å først finne hvor kommunene er. Så plott vi punkter på 
hver av stedene. Etter det fant vi ut av hvor det er like langt fra hver at de til midten. 
Stedet heter Dragsholtvatnet. 
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Group 6 
Task 1 
5000 euro = 100 people buying car    
Then the company will get paid 5000 * 100 = 500000 euro 
5100 euro = 99 people buying car 
5100 * 99 = 504900 euro 
 
Task 2 
We think it should be placed in Boen, because the center of Vennesla, Lillesand 
and Kristiansand is a little east of Boen. And on the west side Vennesla and 
Kristiansand is placed so if it’s placed a little more to west it’s placed closer to 
most of the people. 

 

Appendix E: Codes for data analysis 
In this appendix, I present the codes for data analysis corresponding to the three 
research questions. This appendix is divided into three subsections, and each of the 
subsections presents the codes for data analysis in a table form. The first section 
presents the codes for data analysis corresponding to research question one (RQ1). 
The second subsection presents the codes for data analysis corresponding to 
research question two (RQ2a & RQ2b). The third section presents the codes for 
data analysis corresponding to research question three (RQ3).   

E.1: Codes for RQ1 

There are nine principal codes presented in Table 9.5 below. Each of the nine codes 
has subcodes. Seventeen of the sub-codes are theory-driven codes (the ones in 
green), and five sub-codes (the ones in blue) emerged inductively from the 
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empirical data. The theory-driven codes were modified over time to define the 
students’ activities clearly.   

First Research Question (RQ1) 
Code: Object of the activity 

Sub Code Ratify the objective (RO) 
Definition/ 
Description 

Members of the group ratify the objective of solving the 
mathematical modelling tasks. Students, at some point in the 
solution process, make known what they need to do or achieve, 
and this entails the objective of solving the task. 

Example Student A: So, what do we do here? 
Student B: Solve the tasks with GeoGebra and produce a report. 

RQ1a 
Code: Digital technology 

Sub Code GeoGebra (DTG) 
Definition/ 
Description 

Students use the GeoGebra software to solve the tasks by making 
tables, drawing graphs, and other things. 

Example Student A: Let’s go to GeoGebra [opens GeoGebra]. 
Student B: Should we say the x-axis is the people? [draws a 
function in GeoGebra with the x and y-axis representing the 
number of people and the price of the car, respectively].  

Sub Code Excel/ Spreadsheet (DTE) 
Definition/ 
Description 

Students solve the tasks with Excel by making tables, drawing 
graphs, and other things. 

Example Student A: I am unfamiliar with GeoGebra; we could use 
Excel/spreadsheet [opens Excel/spreadsheet].  
Student B: Yes, let us generate our data with Excel [enters a set 
of data points in Excel/spreadsheet]. 

Sub Code Calculator (DTC) 
Definition/ 
Description 

Students use a calculator device, a calculator on the computer or 
a mobile phone for mathematical computations. 

Example Student A: Can you check the product of the two numbers with 
the calculator? 
Student B: That gives us 24823 [multiplication with a calculator 
device]. 

Sub Code Google Maps (DTM) 
Definition/ 
Description 

Students search for places on maps and actual distances or travel 
time between cities. 

Example Student A: We should open Google Maps and locate the positions 
of the three cities [locates the three cities on Google Maps]. 

Sub Code Google Search (DTS) 
Definition/ 
Description 

Students search for information on the internet with a Google 
search engine. 
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Example Student A: We should also look for the population.  
Student B: Yes. Can you Google search the population of those 
cities? ….  

RQ1b 
Code: Pseudocontingency 

Sub Code Individualized (PCI) 
Definition/ 
Description 

Interaction that indicates possessiveness of own contribution. 
Unwilling to consider other’s suggestions for improvement or 
change. In this situation, students can follow their process or line 
of thought without contributing to other students’ ideas. A 
student can also work independently on a computer while others 
discuss different ideas or strategies. 

Example Student A: The distance between the two cities by car should be 
measured. 
Student B: No, we need the air distance instead. 
Student C: By car, it is 22 minutes and 18km. 
Student B: I would say 12km by air distance. 

Code: Asymmetrical contingency 
Sub Code Agreement/ Affirmation (ACA) 
Definition/ 
Description 

Interaction that is supportive and affirming. Non-critical. 
Agreement with what was suggested without cause to review or 
challenge. 

Example Student A: We need to consider the people living there. 
Student B: Yes, that is right. 
Student A: This city has more people, so it is here. 
Student B: Good choice. 

Sub Code Consensus/ Clarification (ACC) 
Definition/ 
Description 

Interaction that builds understanding of suggestions or ideas but 
in a non-critical, non-challenging and non-expansive way. The 
questions the students ask are for clarification and to build a 
consensus. 

Example Student A: We need to find the product of these two. 
Student B: Why the product? 
Student A: That gives us the maximum revenue. 

Sub Code Elaboration (ACE) 
Definition/ 
Description 

Questions are asked to seek further detail about how to do things 
or clarify why a partner suggests a particular course of action 
(interaction is more expansive). Elaboration is slightly different 
from consensus or clarification. In elaboration, students 
sometimes repeat the argument made by their peers in their 
understanding and, at times, ask questions for further details. 

Example Student A: This is how the linear graph will be.  
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Student B: So, you mean the graph declines when people 
increase?  
Student A: No, we have this graph when the number of people 
decreases. 

Code: Reactive contingency 
Sub Code Critical/ Constructive (RCC) 
Definition/ 
Description 

Consideration and critical review of others’ ideas in a way that 
leads to improved decision-making or content. 

Example Student A: We do not need to consider the people.  
Student B: It’s included in the question.  
Student A: How does the number of people affect the optimal 
place?  
Student B: It is about fairness. 

Sub Code Justification (RCJ) 
Definition/ 
Description 

Interaction that seeks justification of perspectives or ideas being 
offered, with a focus on how they will improve decision-making 
or output quality. Reasons for suggestions are pursued through 
probing questioning or offering alternatives. 

Example Student A: We can use the calculator for each revenue.  
Student B: That is much work. Why not GeoGebra? 
Student A: OK, let us try that, but how do we find each revenue 
with that?  
Student B: By highlighting the two columns….    

Code: Mutual contingency 
Sub Code Negotiation (MCN) 
Definition/ 
Description 

Interaction that demonstrates tentative ideas being offered and 
debated. Different perspectives are acknowledged and 
synthesized into a collective response. 

Example Student A: How do we find the revenue? 
Student B: Use the table or spreadsheet in GeoGebra.  
Student A: The first two columns represent the people and car 
prices. 
Student B: Do we use the third column for the revenue? 
Student A: We can use any for the revenue. 

RQ1c 
Code: Explicit rules 

Sub Code  Time constraint (ERT) 
Definition/ 
Description 

When students are under time pressure to complete a task, they 
either move on to the next task or quickly write a report for their 
answer. 

Example  Student A: We now know the answer. Should we present our 
answer on the graph? 
Student B: No, the answer is enough. We only have a little time. 
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Sub Code No restrictions on digital tools (ERR) 
Definition/ 
Description 

Students use one or several digital tools to solve the task.  

Example Student A: Let us start with the calculator.  
Student B: It is taking a longer time with the calculator.  
Student C: We can now use Excel. That will take less time. 

Code: Implicit rules 
Sub Code Dismissing comments/suggestions (IRD) 
Definition/ 
Description 

Students dismiss comments or suggestions from peers when they 
do not fit into the current strategy of solving the problem. 

Example Student A: Oh! I think we can solve the task with GeoGebra. We 
need a function for the data set.  
Student B: No, let us continue with Excel. We are almost there. 
Student C: Yes, I agree.  

RQ1d 
Code: Roles of Students 

Sub Code Leading role (RSL) 
Definition/ 
Description 

Students take the leading role by telling the other members what 
to do and also dominating the communications—the ones whose 
ideas are considered valuable or worthy of consideration at most 
times. 

Example  Student A: Let us devise a plan for solving this problem. OK, let 
us first find the minimum wage. It is better with this strategy. 

Sub Code Opposing role (RSO) 
Definition/ 
Description 

Student(s) do not agree with the comments or ideas of others 
compared to theirs. They oppose the ideas/solutions of others 
and/or introduce their ideas/solutions. 

Example Student A: No, you cannot do that. Let us instead multiply the 
minimum wage and the number of items sold. 

Sub Code Questioning and challenging role (RSQ) 
Definition/ 
Description 

Students question and challenge the input of other members 
when they do not fully understand those ideas. The students do 
not bring in an alternative idea but only question the ideas of 
others for clarity. 

Example Student A: I think we let f(x)=ax. 
Student B: OK, but you know a is a constant and might affect the 
graph.  
Student A: Yeah, it is a constant. That is the gradient.  
Student B: And where is the intersection? 

Sub Code Suggesting role (RSS) 
Definition/ 
Description 

Students suggest or recommend an idea to support the idea of 
another group member. This happens when the student gets 
stuck or missing something. Another thing is that it happens also 
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even though the student is not stuck, but an idea is suggested to 
add to existing idea(s) or improve existing idea(s). There are 
situations when a student tries to put their ideas on the computer 
after observing the input of peers and not necessarily engaging in 
the discussion. We can say he/she is suggesting an idea but not 
communicating it. 

Example Student A: This graph is not what we want. The numbers are too 
large.  
Student B: Maybe we have to rescale the numbers. 

Sub Code Non-contributing role (RSN) 
Definition/ 
Description 

When the students do not contribute to the group work, the 
student only observes the other members but does not put in any 
effort. 

Example Student A: I am pretty useless here, to be honest. I do not 
understand what is going on here [remains silent as the other 
members work on the task].    

Sub Code Supporting role (RSX) 
Definition/ 
Description 

When students assist other students by agreeing to their ideas 
whilst adding nothing to those ideas (different from the 
suggesting role), in this view, the students sometimes use the 
calculator to compute the values given by the other group 
members, using expressions like ‘yeah, that’s true’. When the 
discussion or interaction is mutual, and students agree to each 
other’s idea(s), we can say that each group member is taking a 
‘supporting role’. 

Example Student A: We have to find the product of the number of people 
and the price of the car. So, 80 times 7000 will be … 
Student B: That will be 560000 [uses the calculator on his mobile 
phone]. 

Table 9. 5: A description of codes for analyzing the empirical data (in addressing the 
first research question—RQ1). 

E.2: Codes for RQ2a & RQ2b 

There are six principal codes presented in Table 9.6 below. Each of the six codes 
has subcodes. Twenty-three of the sub-codes are theory-driven codes (the ones in 
green), and one sub-code (the one in blue) emerged inductively from the empirical 
data. The theory-driven codes were modified over time to define the students’ 
activities clearly.   

Second Research Questions 
RQ2a 

Code: Breaking the task into manageable parts 
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Sub Code Assumption and simplification (BAS) 
Definition/ 
Description 

Classification of the variables in the realistic problem. The 
dependent variables (thus, the variables the model seeks to 
explain) and independent variables (the remaining variables). 
Some independent variables might be neglected due to the 
relatively small effect on the model. Simplification here is also 
about knowing your variables and reducing the variables to the 
only important ones to work with. 

Example Student A: Let us assume the minimum wage is 100 NOK …. and 
that in every 1 hour, the items double.  
Student B: The key variables here are the wage and working 
time…. 

Sub Code Constructing relations (BCR) 
Definition/ 
Description 

Interrelationships of variables, that is, identifying or constructing 
the relations between the variables. There might be an 
additional simplification to hypothesize relationships between 
the variables. 

Example Student A: The minimum wage should equal the number of 
items [writes w=2t on paper]. 

Sub Code Seeking information (BSI) 
Definition/ 
Description 

When students look for available information and differentiate 
between relevant and irrelevant information, when the students 
identify relevant questions in the given realistic problem, and 
during the solution process, the students might still search for 
information to update the model with facts and figures. While 
working on the problem, the students might again look for the 
meaning of some words as they communicate their ideas to 
their peers. 

Example Student A: Let us Google Search and look up the minimum wage 
and total hours in Norway.  
Student B: The task does not require the total hours.  
Student C: Yes, only the minimum wage is essential. 

Sub Code Recognizing quantities (BRQ) 
Definition/ 
Description 

When the students recognize quantities that influence the 
situation described in the problem text by naming the quantities 
and identifying the key variables in the situation, the student 
identifies relevant questions in the given real-world situation. 

Example Student A: When we sell the car at 5000, a hundred people will 
buy it. Let x be the number of people that will buy the car. 

Code: Searching for a model 
Sub Code Translating the real problem into a mathematical problem 

(SMT) 
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Definition/ 
Description 

When the students translate the realistic problem into a 
mathematical problem, that is, from the text form into a 
mathematical form (algebraic, graphic, numeric). 

Example Student A: The relation can be written as C(x) = K + 10x 
Sub Code Representing the mathematical problem in the technological 

world (SMR) 
Definition/ 
Description 

When the students move the mathematical problem (such as 
equation, function, figure, diagram, table, term, etc.) into the 
GeoGebra software, Google Maps, and others. 

Example Student A: Now that we have the relation, let us use the 
spreadsheet in GeoGebra to create a table and a graph. 

Sub Code Simplified model (SMS) 
Definition/ 
Description 

When the students combine the relevant quantities and their 
relations to form an equation, these quantities and their 
relations are simplified. The students simplify by reducing the 
number and complexities of the relevant quantities, leading to a 
more precise model. Two or more equations can be put 
together as one model. A simplified model could also be 
constructing geometric figures or shapes with information from 
the recognized quantities and, for instance, using the positions 
of some recognized cities on Google Maps to construct a triangle 
or rectangle, among others. 

Example Student A: If we factorize the equation, we will get a precise 
relation. 
Student B: Before we factorize, let us put these two equations 
together [puts f(x) and g(x) together as one equation]. 

Sub Code Appropriate notations (SMA) 
Definition/ 
Description 

When the students choose appropriate mathematical notations 
and represent the mathematical situations graphically. 

Example Student A: Let us represent this function as f(x). 
Code: Finding a solution for the model 

Sub Code Apply mathematical knowledge (FK) 
Definition/ 
Description 

When the students apply their mathematical knowledge to solve 
the problem. Application of mathematical concepts in solving 
the problem and utilizing mathematical concepts and 
procedures. 

Example Student A: The scattered points look like an exponential 
function. And so, we can use the relation f(x) = a x + b 

Sub Code Analyzing (FA) 
Definition/ 
Description 

When the students reconcile their model with reality or analyze 
it to arrive at a better one, this could be an analysis of points on 
a graph or places on Google Maps, among others. It could also 
be the comparison of the population of different cities. Again, it 
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could be an analysis of distances while considering the travel 
time and roads. Analyzing could also be importing images from 
Google Maps (or other images) into GeoGebra and manipulating 
the image in the form of geometric figures or shapes. 

Example Student A: The four towns form a rectangular shape on the map. 
We can find the midpoint as the optimal place. 
Student B: Geographically, you are right, but that will be in the 
middle of the lake. This point could be the best place. 

Sub Code Effect of parameters (FE) 
Definition/ 
Description 

When the students observe and explore the parameters on the 
graph, they might use the sliders in GeoGebra to vary 
parameters to see the effects on the function(s) or diagram on 
the graph, new graphs or lines (for instance, x=1 or y=3) could 
be constructed, and their intersection with the main graph could 
be observed.   

Example Student A: If we show B2 (the amount of chlorine) on the graph, 
we can adjust the values.  
Student B: That is true; when we change the values of B2 using 
the slider, the amount of chlorine does not change over time. 

Sub Code Mathematical manipulations and computations (FM) 
Definition/ 
Description 

When the students dynamically manipulate mathematical 
figures and shapes to see what happens, this could also be the 
manipulation of a geometric figure in the process of finding the 
midpoint, among others. Computation here is about performing 
some calculations with the calculator. It could also be entering 
and generating data with the spreadsheet. 

Example Student A: I think we have to use “move” in GeoGebra to check 
if we keep the other points constant and move this point; the 
circle will still pass through all the points. 
Student B: The circle did not pass through the points when I did 
that. 

Code: Explaining the results in real terms 
Sub Code Appropriate mathematical language (EA) 
Definition/ 
Description 

The students might use appropriate mathematical language to 
communicate their solutions. Thus, the students might use the 
correct mathematical terms, words, expressions, etc., to 
communicate about the solution or model. 

Example Student A: In the end, we found that the distance between the 
three towns can be explained using Pythagoras’ theorem. That is 
the distance between……... 

Sub Code Generalizing the model (EG) 
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Definition/ 
Description 

The students might generalize the model or solution to the 
realistic problem. They might generalize the solution to suit a 
different context. 

Example Student A: Our model is a model for the transition from old 
telephones to modern mobile phones and power consumption. 
However, this model can also be applied to the transition from 
old television to modern television and the power consumption 
involved. 

Sub Code Meaning of results (EM) 
Definition/ 
Description 

When the students present the results obtained in the model as 
the real solution, they achieve real results. 

Example Student A: We had x = 5, meaning the chlorine level remains at 5 
litres after adding 1 litre daily.    

Code: Checking the results for adequacy 
Sub Code Check and reflect (CR) 
Definition/ 
Description 

When the students critically check and reflect on found 
solutions. That is, by reflecting on other ways of solving the 
problem and going through the modelling process if the solution 
does not fit the situation. It could also be a group member 
reflecting and/or criticizing founded answers suggested by 
another member, and the suggested answers or strategies are 
not always the final results. 

Example Student A: I think our final model will work.  
Student B: Let us apply an algebraic method and see if it will be 
the same as the graphical method we used.  
Student C: We could also review our process and see if the final 
model works.    

RQ2b 
Code: Role of digital technologies 

The yellow text codes represent the ‘technological affordances and 
constraints’ codes in Table 9.7. 
Sub Code Calculating (Calculator) (RTC) (TC) 
Definition/ 
Description 

Making calculations with a handheld device or a software-based 
computer. 

Example Student A: What is the value of 515 times 413?  
Student C: The answer is 212695; I used the calculator. 

Sub Code Researching (Google Search, Google Maps) (RTR) (TR) 
Definition/ 
Description 

Researching information on the internet about the meaning of 
some words in the problem text, the actual value of some 
variables, and finding places on the map. 

Example Student A: I do not understand the word ‘knot’. 
Student B: I just googled it, and it is the unit of speed. 

Sub Code Measuring (GeoGebra, Google Maps) (RTM) (TM) 



393 
 

Definition/ 
Description 

Finding the distances between points, the lengths of segments, 
the sizes of angles or the gradients of lines and segments. To 
find the distance between two cities on Google Maps or 
measure the travel time between two cities on the map. 

Example Student A: Should we measure the distance between Ship A and 
B? 
Student B: Yes, the distance is 5cm when the speed of Ship A is 
twice that of Ship B [measuring two points on GeoGebra].  

Sub Code Experimenting/Changing (GeoGebra) (RTE) (TE) 
Definition/ 
Description 

The students might change the parameters, conditions or 
assumptions of a drawing or functions and observe the effects. 
It could also be drawing new graphs or lines to find the 
intersection between the new graph or line with the previous 
one. To construct the midpoint of a triangle or other geometric 
figures. 

Example Student A: Let us put a set of new values in the function and see 
if it will still be constant [test the function with new values].  

Sub Code Geometric construction (GeoGebra) (RTG) (TG) 
Definition/ 
Description 

To draw graphs and functions. Drawing simple geometric objects 
into a coordinate system. Using points, lines, sections, circles, 
polygons, etc., in drawing geometric objects and diagrams. 
Drawing a function with a set of points or equations. Plotting of 
points to represent a data set. To take a screenshot of Google 
Maps, insert it into GeoGebra, and construct segments to link 
the marked places on the map. 

Example Student A:  Let us represent the three towns as three points and 
draw a line linking the points. 

Sub Code Visualizing (Geogebra, Google Maps) (RTV) (TV) 
Definition/ 
Description 

Drawing in or moving segments in order to represent previously 
found values graphically. For instance, moving points to create a 
segment of previously determined length. Switching to satellite 
on Google Maps to visualize the reality of the environment. 
Movement of points and/or attaching labels to points to see the 
point’s value. 

Example Student A: I think we should move one of the points further to 
increase the size of the triangle. 

Sub Code Advanced geometric construction (GeoGebra) (RTA) (TAG) 
Definition/ 
Description 

Drawing more complex geometric objects and configurations 
using intermediate steps or auxiliary lines. For instance, using 
angle bisectors to split an angle into two equal angles. 

Example Student A: By splitting this angle into two, we can have two 
equal sizes of this figure.  
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Student B: That is true; if the sides are equal, then we will have a 
rectangle. 

Sub Code Data entry and generation (GeoGebra, Excel/Spreadsheet) 
(RTD) (TD) 

Definition/ 
Description 

Enter a set of values or variables in the spreadsheet and 
generate the rest of the data set by selecting a few values and 
dragging them down. 

Example Student A: Label A1 and B2 as customer and revenue 
respectively.  
Student B: Yeah; enter our values and generate the rest of the 
data [selects A2, A3, B2, and B3 and drags them down]. 

Table 9.6: A description of codes for analyzing the empirical data (in addressing the 
second research questions—RQ2a & RQ2b). 

E.3: Codes for RQ3 

There are two principal codes presented in Table 9.7 below. One of the three codes 
is already presented in Table 9.6. The rest of the two codes presented in Table 9.7 
have subcodes. Eight of the sub-codes are theory-driven codes (the ones in green), 
and three sub-codes (the ones in blue) emerged inductively from the empirical 
data. The theory-driven codes were modified over time to define the students’ 
activities clearly.   

Third Research Question (RQ3) 
Code: Technological affordances and constraints 

The same codes as the codes under ‘role of digital technology’ in Table 9.6 (I 
label the codes in green text) 

Code: Mathematical affordances and constraints 
Sub Code Use real data (MU) 
Definition/ 
Description 

Work on real problems involving calculations that are error-
prone (when done by hand) and time-consuming. In this case, 
the students use actual data or values for the variables they 
identify in the realistic problems in creating the model. For 
instance, students may collect accurate data on the number of 
cars crossing a particular road in a certain period and then use 
GeoGebra or Excel to analyze this data and create a 
mathematical model. 

Example Student A: We can use the Norwegian population for the past 20 
years.  
Student B: Sure! Let us use the figures to create a linear model 
in GeoGebra. 

Sub Code Clarification (MC) 
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Definition/ 
Description 

Retrieving information on the internet of some variables (this 
often happens when students have English as their second 
language). Using the search engine to find the meaning of a 
mathematical term during group interactions. 

Example Student A: That will be a fix, ‘Konstantledd’ or something? 
Student B: [searches for the meaning of Konstantledd], the last 
number is constantly articulated. 

Sub Code Analyzing (MA) 
Definition/ 
Description 

To use accurate information or data in creating the model. 
When students use information like the position of places on 
maps, the population of different cities and the distances 
between cities/towns to analyze their model. That is, comparing 
and evaluating places using the number of people living within 
these places and the travel time between the different places. 

Example Student A: The location needs to be closer to Town M. 
Student B: [searches for the population of Town M and N], it 
should be closer to Town N since more people live there than in 
Town M. 

Sub Code Simulating and visualizing (MS) 
Definition/ 
Description 

Simulating and visualizing the mathematical concepts. When the 
students simulate and visualize the mathematical concepts to 
better understand the concepts and uncertainties in the 
mathematical concepts. For instance, manipulating or simulating 
mathematical figures and shapes dynamically to see what 
happens. 

Example Student A: I think we should move one of the points further to 
increase the size of the triangle. 
Student B: Yes, maybe the circle will pass through all the points, 
or this only applies to equilateral triangles. 

Sub Code Linking representations (ML) 
Definition/ 
Description 

Connecting mathematical representations. When the students 
connect the mathematical representations, for instance, the 
movement between geometric, numeric or table, graphic, and 
symbolic or algebraic representations. Change one 
representation and see changes in the other representation. 
This could also be the translation of coordinate points from 
Google Maps (or importing maps) to Geogebra and constructing 
a geometric figure or shape using the points on the map. 

Example Student A: Now that we have the table, let us use the ‘graphic 
view’ to see the function resulting from the table. 

Sub Code Regularity and variations (MR) 
Definition/ 
Description 

To explore the regularity and variations in the solution model. 
The students might explore the regularity and variations, which 
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is done by observing the effect of parameters on the graph. For 
instance, to use sliders in GeoGebra to vary parameters to see 
the effects on the function(s) on the graph. Drawing a new 
graph or line to observe the intersection point. Finding the 
midpoint of the translated coordinates (or the screenshot from 
Google Maps, which is in the form of a geometric figure or 
shape). 

Example Student A: If we show B2 (the amount of chlorine) on the graph, 
we can adjust the values.  
Student B: That is true; when we change the values of B2 using 
the slider, the amount of chlorine does not change over time. 

Sub Code Arithmetic and statistics (MAS) 
Definition/ 
Description 

Performing numerical computations such as addition, 
subtraction, multiplication, division, raising powers, and 
extraction of roots, among others. This is done using a 
calculator. Organizing, generating, and calculating data in a 
spreadsheet. For instance, the rows and columns in Excel can be 
used to organize data manipulations like arithmetic operations. 
The collection, analysis, interpretation, and presentation of data. 
Measuring distances between points in GeoGebra. 

Example Student A: Let us find the product of the number of people and 
the price of the car if 70 people buy it.  
Student B: That will be 70 multiplied by 6500 [uses the 
calculator]. 
Code: Socio-cultural affordances and constraints 

Sub Code Common focus (SC) 
Definition/ 
Description 

When students (in a group) solve a problem using digital 
technology, they share the same source. They have the facility 
to look at the same thing and point at what is presented on 
digital technology. This helps the students in creating a shared 
goal. For instance, GeoGebra can be used as a reference tool to 
visualize one’s reasoning during a mathematical discourse. 

Example Student A: Let us start with a straight square, like this (uses her 
hands to form a square parallel with GeoGebra’s X- and Y- axis. 
Student B: Or we could make one with a slope [he draws a tilted 
square with the mouse]. Or is it possible to create an ordinary… I 
mean… one with no slope? 
Student A: Yes, you create two parallel lines like this… and two 
vertical [draws with her finger horizontal and vertical lines 
parallel with the X- and Y-axis].  
Student B: Then, we can angle it…so that we have lines with a 
slope [draws a titled square with the mouse]. 

Sub Code Observing and repairing divergences (SOR) 
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Definition/ 
Description 

The digital technology is used as a way of maintaining shared 
knowledge and ideas. In some instances, the students might find 
themselves in a situation marked by uncertainty and 
divergences (among others), which might cause their solution 
process to cease. However, digital technology could be used to 
verify knowledge or settle disagreements by performing tests, 
referencing, etc. 

Example Student A: However, if m is negative, what way… I mean… is the 
slope up or down? 
Student B: I think down… let us try (writes y=-2x+3 at the 
algebra section of GeoGebra). 
Student A: Great. OK, downhill slope. 

Sub Code Observing and improving strategies (SOI) 
Definition/ 
Description 

The digital technology is used as a way of maintaining and 
improving shared knowledge and ideas. When students 
collectively solve a mathematical task with digital technology, a 
group member could observe the solution process and improve 
the strategy used due to the affordances of the digital 
technology perceived by him/her. This is an individual input for a 
collective purpose. In some situations, the students could 
observe and perceive an affordance but cannot actualize it, 
resulting from undefined or not well-defined functions and, for 
instance, making sliders that do not affect the graph.   

Example Student A: Let us draw the function f(x)=-x+100 [draws the 
function in GeoGebra] and erm put in the x values until we get 
the maximum price.  
Student B: I feel there is a faster way of doing it. We can find the 
sliders to control the x values so that we do not enter them one 
after the other [insert a slider x=a].   

Sub Code Authority of the digital technology (SA) 
Definition/ 
Description 

Students accept the answer from the digital tool as the correct 
answer. For instance, if students are working with GeoGebra 
and the tool gives a result opposite that of another student’s 
results, the other student believes the result from GeoGebra 
than that of the peers. This affects group interactions. At the 
individual level, the representational choice could affect the 
features of the digital technology to be used, which, in the end, 
affects group interaction at the collective level. There are also 
situations where students uphold their strategy or results from 
digital technology and do not accept other strategies when they 
think they are close to finding the results. 

Example Student A: I think the population of Vennesla is 14,000. 
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Student B: (Google search the population of Vennesla), it is 
14935. 
Student C: Yeah, that is almost 15,000. 
Student B: But we need to use 14,935.  

Table 9.7: A description of codes for analyzing the empirical data (in addressing the 
third research question—RQ3). 
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