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Abstract— We investigate the fractional-order (FO) control of
arbitrary order LTI systems. We show that, for ramp tracking
or input disturbance rejection, it is advantageous to include
an FO integrator to the open-loop if we have to increase the
order of integration further than one. With the lower phase-
loss of the FO integrator it is easier to guarantee a desired
phase margin. Furthermore the flat phase response around
the crossover-frequency (iso-damping property) can be achieved
for a wider frequency range such that the closed-loop is more
robust wrt. amplitude and phase margins.

The drawback of the FO approach is the increased imple-
mentation effort and the algebraic decay, which slows down the
transient response for larger times. The algebraic decay can
be reduced by placing the fractional closed-loop poles to the
corresponding integer-order poles. The remaining FO transfer
zeros are compensated by an additional filter. We acheieve a
more efficient implementation by reducing the memory needed
by a direct discretization of the Grünwald-Letnikov definition.
As the controller design is done in the frequency domain, we
investigate the effect of the different memory truncations. All
strategies are demonstrated by simulation.

I. INTRODUCTION

Since the late seventies fractional-order (FO) approaches

gained increasing attention to control SISO systems. Gen-

eralizing the PID controller to the FO domain allows to

introduce additional constraints to controller design, e.g. the

iso-damping property increases the robustness against gain

variations. Many papers concern the tuning of such con-

trollers, see [1], [2], [3]. In [4] the pole-placement technique

is used with an additional filter. Other two degree of freedom

approaches to FO control are given in [5], [6], [7].

Although the increased adjustability of the controllers is

enormous, these controllers show two main drawbacks: First,

the implementation requires large memory. Secondly, the

algebraic decay of the introduced FO operators slows the

closed-loop response for large times even for large gains.

We discuss the advantages of the FO control over integer-

order (IO) approaches in the case of open-loop shaping.

The slow convergence is, however, still limiting the system

performance. Therefore we discuss the possibility to use the

pole-placement approach to introduce IO dynamics to the

close-loop, despite the FO dynamics of the open loop.

The required memory for implementation is reduced using

modified memory weights of the Grünwald-Letnikov (GL)

discretization. We investigate the effect of the different
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memory truncations and compare the results to standard

methods, e.g. higher-order IO approximations [2].

The paper is organized as follows. Section II holds defini-

tions of FO derivatives and FO LTI system stability criteria.

Section III describes FO controller design for ramp tracking,

for open-loop design and the 2-DOF structure with pole-

placement to IO poles and pre-filter shaping. The real-

time memory implementation of the discrete GL version is

given in Section IV, along with frequency and time response

comparisons. Simulations of the implemented controller are

detailed in Section V, followed by conclusions in Section VI.

II. PRELIMINARY RESULTS AND DEFINITIONS

A. Fractional-Order Derivatives

There are different approaches to generalize the IO deriva-

tive to the non-IO case. An intuitive approach is the gener-

alization of the difference quotient leading to the definition

of Grünwald and Letnikov [8]

G
t0Dα

t f(t) = lim
h→0

1

hα

�(t−t0)/h�∑
k=0

(−1)k
(
α

k

)
f(t− kh) (1)

with α ∈ R, the floor integer part �·� and the generalized

binomial coefficient given by Euler’s Gamma function, i.e.(
α

k

)
=

Γ(α+ 1)

k!Γ(α− k + 1)
. (2)

This definition gives a natural approach to implement FO

derivatives in a discrete time setting. However, it is difficult

to use, so differently defined operators are of interest. In [8]

it is shown, that for f ∈ C1 the GL approach coincides with

the definition of Riemann and Liouville:

R
t0Dα

t f(t) =
dm

dtm

(
1

Γ(m− α)

∫ t

t0

f(t)

(t− τ)α−m+1
dτ

)
. (3)

For engineering praxis, yet Caputo’s FO derivative [2], [8]

is used very often. It is given by

t0Dα
t f(t) =

1

Γ(m− α)

∫ t

t0

f (m)(t)

(t− τ)α−m+1
dτ, (4)

where α ∈ R
+ is the differentiation order and m is an integer

with m− 1 < α < m. The initial conditions of this operator

have a similar interpretation as in the classical IO case. The

Laplace transform with F (s) = L{f(t)}, see [8], [2], is

L{
R
0 Dαf(t)

}
= sαF (s)−

m−1∑
k=0

sk
[
R
0 Dα−k−1f(t)

]
t=0

, (5)

L{0Dαf(t)} = sαF (s)−
m−1∑
k=0

sα−k−1f (k)(0). (6)
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Hence the operators only lead to similar results if the initial

conditions are zero. If we are only considering transfer

functions, any of the presented operators can be applied.

Due to available numerical tools ([9]) we refer to Caputo’s

operator for simulation studies, and show an approximation

of the GL operator for real-time implementation.

Due to the contained FO integral with its integration limits,

the online evaluation of an FO controller needs the complete

past of the controller input, i.e. f(t) for t ∈ [t0, t]. As this

is not possible, only the recent past is taken into account by

applying the short-memory principle [8] and reducing the

time interval to t ∈ [t − L, t]. This leads to the following

error bound for |f(t)| ≤ M , L < t < t1:

ε(t) = |t0Dαf(t)− t−LD
αf(t)| ≤ MLα

Γ(1− α)
. (7)

B. Fractional-Order LTI System

The FO SISO LTI system using Caputo’s operator with

t0 = 0 is given by

ΣFO :

{ Dαx(t) = Ax(t) +Bu(t) , x(0) = x0

y(t) = Cx(t) +Du(t)

with the (pseudo) state x(t) ∈ R
n, input u(t) ∈ R, output

y(t) ∈ R, order of differentiation α ∈ (0, 1] and real-

valued matrices A,B,C and D of matching dimensions. The

solution of this initial value problem can be formulated in

terms of the Mittag-Leffler Function Eα,β(·), i.e.

x(t) = Eα,1(Atα)x0+

∫ t

0

τα−1Eα,α(Aτα)Bu(t− τ)dτ (8)

with Eα,β (z) =
∞∑
k=0

zk

Γ(αk + β)
. (9)

Note that the scalar Mittag-Leffler Function converges with

an algebraic decay, i.e. for t → ∞ with α ∈ (0, 1) we have

Eα,1(−tα) ∼ t−α/Γ(1− α) [8].

Theorem 1 (FO-LTI System Stability [10]). The origin of
the system Σ is asymptotically stable iff

|arg (λi)| > α
π

2
, ∀i = 1, 2, . . . , n, (10)

where λi denotes the i-th eigenvalue of A.

For α < 1 the suitable region for pole-placement is

enlarged compared to IO systems, because eigenvalues with

positive real part are possible. This region however is not

convex any more. For zero initial conditions (x(t) = 0, ∀t <
t0) its transfer function is given by

G(s) = C (sαI −A)
−1

B +D =
BG(s

α)

AG(sα)
(11)

with the pseudo-polynomials

AG(s
α) = ans

nα + an−1s
(n−1)α + · · ·+ a1s

α + a0 (12)

BG(s
α) = bns

nα + bn−1s
(n−1)α + · · ·+ b1s

α + b0. (13)

Theorem 2 (BIBO Stability of FO-LTI systems [10]).
The fractional-order system with transfer function G(s) =
BG(s

α)/AG(s
α) and commensurate order α is bounded-

input-bounded-output stable iff

| arg(pi)| > α
π

2
∀pi ∈ C AG(pi) = 0

with p = sα and pi the roots of AG(p).

III. CONTROLLER DESIGN

A. Improved Robustness using FO Loop-Shaping

F (s) C(s) G(s)
r̃(t)r(t) e(t) u(t) y(t)

−

Fig. 1: Controller structure including the prefilter F (s).

We consider the regulator design problem as shown in

Fig. 1 (with F (s) = 1 in this section). We will compare

simple IO and FO controller designs to shape the open-loop,

based on the crossover frequency ωs, phase margin ΦR and

iso-damping property [2]:

d

dω
arg (C(jω)G(jω))

∣∣∣∣
ω=ωs

= 0. (14)

We require more than one free integrator in the open-loop

design, such that increasing signals (ramps) can be tracked or

compensated. Furthermore the additional integrating action

increases the robustness against input-disturbances if the pro-

cess already shows a free integrator. The open-loop transfer

function can be parametrized as

L(s) = C(s)G(s)=V
N(s)

sρD̃(s)
, N(0) = D̃(0) = 1, (15)

with ρ ∈ R. For tracking ramp-shaped reference signals, e.g.

r(t) = t, the open loop L(s) = C(s)G(s) has to contain

more than one free integrator. This is evident by investigating

the error e(t) for large times. Assuming a stable closed-loop,

we apply the final value theorem of the Laplace transform

lim
t→∞ e(t) = lim

s→0
sE(s) = lim

s→0
s(R(s)− Y (s))

with the closed-loop T (s) = L(s)/(1 + L(s)) and the ramp

R(s) = k
s2 . We end up with

lim
t→∞ e(t) = lim

s→0
s

R(s)

1 + L(s)
= lim

s→0
s

sρD̃(s) R(s)

sρD̃(s) +N(s)

=

(
0ρ−1D̃(0)

0ρD̃(0) +N(0)

)
k,

which is only zero if ρ > 1. For IO controllers this is

problematic due to the loss of phase with each integrator.

In order to stabilize the closed-loop, the phase-loss has to

be compensated by introducing minimum phase zeros to

the controller C(s). There are methods like the symmetrical

optimum, but bandwidth is limited and the performance

might be poor, especially for non-minimum phase systems.

If we consider FO integrators in the open-loop, however,

we can reduce the initial phase loss, because the phase of

the fractional-order operator scales with its order, hence

arg
(
(jω)−α

)
= −α

π

2
. (16)
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Fig. 2: Bode plot of the integer- and fractional-order open-

loops, for ωs = 0.3 rad s−1.

So for 1 < ρ < 2 − ε we have less phase loss and require

less additional transfer-zeros.

Example 1. We consider the IO non-minimum phase plant

G(s) = V
−s+ s0

s(s+ sp,1)(s+ sp,2)
(17)

with s0 < sp,1 < sp,2. The IO controller for ramp track-
ing needs to compensate the non-minimum phase zero to
maintain a phase of −180°. For a positive phase margin, an
additional lead-lag part is needed. Yet, we have to limit the
center frequency of this additional pole-zero pair to maintain
a monotonically decreasing amplitude response of the open
loop. The overall controller with s̃0 < s0 is given by

CIO(s) = K
(s+ s̃0)

s
(18)

where gain K is adapted to the required crossover frequency.
The FO approach, however, starts with a higher phase

for the low frequency-range. With an order α close to zero,
the tracking performance is sluggish, for α close to one, the
phase loss is too drastic. Therefore we shall choose α in a
reasonable range: α ∈ [ 13 ,

2
3 ]. Note that an additional FO

(pseudo) zero (sα−s0) can be placed arbitrarily, since it only
increases the slope of the amplitude response by 20α dB. An
additional-fractional-order lead-lag pair with β < 1−α can
be added in order to increase the controller bandwidth. The
resulting fractional-order controller is given by

CFO(s) = K
(sα + s0)

sα
(τ1s

β + 1)

(τ2sβ + 1)
. (19)

The results of this tuning approaches are illustrated in Fig. 2
with the parameter set given in Section V. Both controllers
are tuned to have a crossover frequency of ωs = 0.5 rad s−1

and a phase margin of ΦR = 45°. We can see that the
FO approach leads to a better phase response for the lower
frequency range. The phase is almost constant (iso-damping
property), therefore this controller is more robust against
variations of the closed-loop gain than the IO controller.
Fig. 3 shows the step responses of both closed-loop systems.
The FO approach can reduce the overshooting and its perfor-
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Fig. 3: Step responses of both controllers: nominal gain (solid

line), wrong gain (dashed line).

mance is not disturbed by the variation of the stationary gain
of 50 %, Ṽ = V

2 . The overshooting only changes slightly.

Remark 3. Note that in the FO loop shaping we are also
able to partially compensate non-minimum phase zeros [11],
by the FO decomposition in pseudo zeros, e.g. we can rewrite
the positive zeros at s0 = 1 with α = 1

2 as per

(s− 1) = (sα + 1)(sα − 1).

Remark 4 (Discrete time implementation). For small orders
α the controller’s pseudo zero/pole s∗ should not be chosen
too fast, since its corner frequency in the bode plot is shifted
by the order, i.e.

ω∗ = |s∗| 1
α , (20)

which leads to oscillations and instability, if the sampling
frequency is not taken into account.

All in all we see that the FO integrators have an advantage

in the open loop. Yet, they introduce an algebraic decay to the

closed loop response, even for IO processes to be controlled.

B. Pole-Placement to Integer-order poles

FO systems show an algebraic decay, which reduces

the performance for large times. The stationary behavior

seems like a stationary deviation. This effect is counteracted

increasing the controller gains. But this is limited due to

stability, input saturation and noise amplification. To avoid

this slow algebraic convergence, the memory reset of the

FO controller is proposed in [12]. This method, however,

still is limited by the initial design of the FO controller.

Furthermore, the processes need to be integer.

In the following section we explore the possibility to

design the controller based on a pole-placement approach

in order to increase the controller bandwidth and reduce the

effect of the algebraic convergence.

Similar to [4], we propose the output measurement based

pole-placement for commensurate Fo systems with the aim

of increasing the convergence. In [4] a slightly different con-

troller structure is applied and the computed controllers show



a negative relative degree which restricts the implementation

to higher-order approximations.

The basic idea of the pole-placement is to reduce the

FO dynamics to an IO one. In [13] the connection of

the eigenvalues of an IO system and its FO representation

is discussed. Using a pole-placement approach we set the

pseudo poles wrt. the closed-loop transer function

T (sα) =
PT (s

α)

QT (sα)
(21)

such that the remaining pseudo polynomial is reduced to an

ordinary polynomial.

We consider the FO system given by its transfer function

(11) with the commensurate order α. We can rewrite the

pseudo polynomials AG(s
α) and BG(s

α) as polynomials in

p by substituting sα = p. With the controller of appropriate

order and the same commensurate order α we have

C(s) =
P (sα)

Q(sα)
=

P (p)

Q(p)
(22)

and are left to solve the Diophantine equation in p to place

the poles of the closed-loop with the desired polynomial QT :

QT (p) = A(p)Q(p) +B(p)P (p). (23)

For these problem we can use standard methods to place the

poles of the closed-loop, e.g., algebraic methods based on

the Silvester’s matrix. For the order of these pole-placement

compensator nc there are in general two options [14]. With

nc = n + κ, the controller is strictly proper. The controller

order is increased by κ which reflects the number of FO

integrators contained in the controller. The minimal order

nc = n+κ−1 typically is bi-proper. Hence, there is a choice

to adjust the order m = n + nc of the desired denominator

of the closed-loop transfer funtion, i.e.

QT (p) = cmpm + ...+ c1p+ c0. (24)

We propose to choose the poles such that all the coefficients

of non-integer power of s vanish. For α−1 ∈ N, for the

desired poles we have

λIO = λ
1/α
FO , (25)

where each IO pole λIO leads to α−1 corresponding FO

pseudo poles λFO.

Note that the order m has to match the order of differen-

tiation α such that

mα = (n+ nc)α ∈ N, (26)

otherwise not all FO pseudo poles can be moved to their IO

counterparts.

If the order of the process n and the commensurate order

α−1 ∈ N do not match, the controller needs to fix a number

of additional open-loop pseudo poles nadd in advance, i.e.

(n+ 2nadd + nc)α ∈ N. (27)

Altogether there are three possibilities to match the orders.

First of all, we can chose a full or minimal order compensa-

tion structure. In addition, we can split the additional pseudo

poles between the integrator constraints κ and additional

filters added to the plant nadd. For controlling IO systems

with α = 1
2 with a minimal controller order aiming for

nc = n, we can chose κ = 1 and nadd = 0 resulting in

nc = 2n + 1 − 1 and m = 4n. For α = 1
3 , however, we

might also choose κ = 0 and nadd = 2.

Solving the pole-placement problem leads to a closed-loop

denominator of (21) which is IO, but the numerator is still

fractional. The remaining FO zeros slow down the input-

response of the system, as the solution is still given by the

Mittag-Leffler function with its algebraic decay. Hence, the

controller structure is extended by a prefilter F (s) (see Fig. 1)

shaping the reference, such that the effect of the FO transfer

zeros is canceled (c.f. Fig. 4). Thus, we split the numerator

PT (s
α) into a minimum and non-minimum phase part

PT (s
α) = PTb(s

α) · PTg(s
α) (28)

with PTb(λi) = 0, | arg(λi)| < απ/2 and PTg(λi) =
0, | arg(λi)| ≥ απ/2. The part PTg can be easily compen-

sated while the components of PTb can only be moved to

its IO non-minimum phase counterparts. Additional IO poles

Qadd(s) are needed to guarantee the causality of the filter

F (s) =
NF (s)

DF (s)
=

P̄Tb(s
α)

PTg(sα)Qadd(s)
. (29)

Finally, the input response of the closed-loop decays expo-

nentially since the control removes any FO memory effect:

Y (s)

R(s)
= F (s)T (s) =

PTb(s
α)P̄Tb(s

α)

QT (s)Qadd(s)
. (30)

Example 2. Consider the non-minimum phase FO process

G(s) =
−0.2sα + 1

s+ 2sα + 1
, α =

1

2
(31)

and set the closed-loop poles to λIO = −2± j. This results
in the closed-loop given by

T (s) =
−1.06s3α + 4.89s2α + 0.94sα + 5

s4α + 0s3α + 4s2α + 0sα + 5
. (32)

The numerator shows one nonminimum-phase pseudo zero
at sα0 = 5 which cannot be compensated. Therefore the filter
is extended by an additional pseudo zero s̄α0 = −5 such that
the filter F (s) is given by

F (s) =
0.94737sα + 4.7368

5s2α + 1.8421sα + 4.7368
. (33)

Finally all FO coefficients are are removed from the closed-
loop input-output behavior, i.e.

F (s)T (s) =
−0.2s+ 5

s2 + 4s+ 5
. (34)

Fig. 4 shows the step responses of the FO process G(s),
the closed-loop with IO poles T (s) and filtered version
F (s)T (s). The increased convergence is clearly visible. The
effect of the non-minimum phase zero is also reduced.

Note, as in all prefilter design, the performance is achieved

for reference response only. Disturbances and nonzero ini-

tial conditions slow down the decay to an algebraic one.

Therefore, the proposed methodology is suited best for Fo

processes to improve their input response. The disturbance

rejection remains fractional-order.

Remark 5 (Filter requirements for ramp tracking). A causal
prefilter introduces a delay into the filtered reference signal
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Fig. 4: Step responses of the closed-loop system with integer-

order assigned poles.

r̃(t). This leads to the tracking error ẽ(t) = r̃(t)− r(t). For
ramp-shaped references R(s) = ks−2 we hence have for
t → ∞:

lim
t→∞ ẽ(t) = lim

s→0
sẼ(s) = lim

s→0
s (1− F (s))

k

s2

= lim
s→0

(
AF (s)−BF (s)

AF (s)

)
k

s
(35)

=
(an − bn)s

nα + · · ·+ (a1 − b1)s
α + (a0 − b0)

A(s)

k

s
.

For perfect tracking we require

ai = bi for i = 0, 1, . . . , α−1 (36)

such that limt→∞ ẽ(t) = 0. This is a hard constraint, e.g.
for α = 1/2 we might have to use b1 �= 0, however, this
introduces an FO zero to the closed-loop behaviour, which
slows the system response down.

IV. REAL-TIME IMPLEMENTATION WITH REDUCED

MEMORY

A proposal for real-time implementation of discrete FO

dynamical systems and controllers oriented to minimize the

computational efforts, consists of applying the GL method

and incorporate the short-memory principle [15]

Dαf(t) ≈ t−LDαf(t), t > L. (37)

This implementation allows to select the memory length

L to approximate the FO operator. The explicit numerical

computation of the FO derivative of a sampled function f(t)
uses the approximation [15]

t0Dαf(t) ≈ 1

hα

�(t−t0)/h�∑
k=0

w
(α)
k f(t− kh) (38)

where h is the sampling interval. The recursive computation

of the coefficients w
(α)
k is given by

w
(α)
0 = 1, w

(α)
k =

(
1− α+ 1

k

)
w

(α)
k−1, k = 1, 2, ...,

L

h
.

Note that the IO integrator needs to be implemented sepa-

rately if the (38) should approximate an FO integrator:

GGL(s) =

⎧⎪⎨
⎪⎩
sα, if α ∈ [0, 1]

sα = s1+α︸︷︷︸
FO

s−1︸︷︷︸
Integrator

, if α ∈ [−1, 0[. (39)

To compute the frequency response of the GL operator, con-

sider the discrete-time state space LTI system representation

x̄(k + 1) = Āx̄(k) + B̄f(k)

ȳ(k) = C̄x̄(k) + D̄f(k)

where Ā ∈ R
L/h×L/h is a superdiagonal matrix, the state

vector x̄(k) corresponds to the operator history vector and

B =
(
0 . . . 0 1

)T
C =

(
w

(α)
L
h

. . . w
(α)
2 w

(α)
1

)
h−α D =

1

hα
=

w
(α)
0

hα
.

A. Memory extension

Adaptive time step memory methods have been suggested

to achieve efficient computation of the GL derivative with

smaller errors during numerical simulations [16], [17]. Al-

though the focus of these works are in efficiently achieve

a smaller approximation error, one should acknowledge that

the design of FO controllers is mostly based on shaping the

response in the frequency domain. Here we focus on the

effect of efficient memory methods in the phase margin of

real-time implementation of these discrete operators. Con-

sider the accumulated history of the operator output y, i.e.

y = [f(t− kh), ..., f(t− L)]
T
, k = 1, 2, ...,

L

h
. (40)

With higher sampling times and higher memory lengths,

real-time implementation of a full memory operator is not

feasible. In order to reach the same memory length L with

less required memory, we propose a memory extension

combining a short term memory and a long term memory.

This approach requires the sampling of y with Ts for the

short memory term and with higher sample time λTs for the

long memory term. The approximation is given by combining

both memory terms with the same weighting vector w
(α)
k as

hst

L

L/hst∑
k=1

w
(α)
k yhst

k +
hlt

L

L/hlt∑
k=1

w
(α)
k yhlt

k . (41)

This approach is simpler and feasible to implement in

most real-time hardware, since it requires only two different

samplings of the history vector y. For minimizing the error,

a modification where the long term memory is based on

the average instead is also considered. Adaptive memory

approaches introduced in [16] focus on efficient memory use

through geometric progressions, such as
∞∑
k=1

(2i− 1)w
(α)
k yk, (42)

and reaching a minimal adaptive memory implementation for

the power law
∞∑
k=1

(2i−1)w
(α)
k yk. (43)



The visualization of the different memory approaches is

shown in Fig. 5.

Full memory

Combined (simple)
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Fig. 5: Memory methods for GL approximation.

The magnitude and phase response of the GL operator

with adaptive memory proposed in eq. (41) for α = 0.5 is

shown in Fig. 6, in comparison with G(s) = s0.5, the full

memory, and the short memory for h1 = Ts and h2 = 10Ts

respectively. The effect of periodification is visible for the

short memory terms.
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Fig. 6: Comparison of magnitude and phase response of

combined memory approach.

For comparison, we consider Oustaloup’s recursive filter

[18], which approximates the FO operator in the frequency

range [ωb, ωh] with an continuous time IO model of order

2ν + 1, hence

Ĝ(s) = ωα
h

ν∏
k=−ν

s+ ω−
k

s+ ω+
k

, ω±
k = ωb

(
ωh

ωb

)k+ν+0.5±0.5α
2ν+1

.

(44)

The magnitude and phase response comparison between the

GL operator with adaptive memory (simple) proposed in

equation (41), its mean value modification for the long term

memory, the minimal adaptive power law equation (43) and

the Oustaloup filter equation (44) are shown in Fig. 7.

The combined memory extension shows a similar phase

response to the power law implementation and has the

advantage of only requiring two different sampling times of

the input history. The adaptive power law [16] is the most

efficient implementation but requires a non-linear sampling

of the history.

Fig. 7: Comparison of magnitude and phase response

of different memory implementations. Parameters: GL-

Implementation Ts = 1ms, Nshort = 10, Nlong = 100,

Oustaloup: ωl = 1 rad s−1, ωh = 1× 103 rad s−1, ν = 7.

Even though the Oustaloup continuous filter shows a better

approximation for sα, the disadvantage of its use is on the

online change of parameters in comparison with the GL

approach where only the history of the function is stored. The

introduced pairs of zeros of poles add additional states which

do not necessary have a physical interpretation. Furthermore,

the Oustaloup filter performs poor at high frequencies when

it is sampled.

In order to compare the different memory approaches in

terms of approximation error and computation time, let us

consider the fractional derivative of a polynomial f(t) =
tβ−1, with analytic solution given by

Dαf(t) =
Γ(β)

Γ(β − α)
tβ−α−1, β > 0. (45)

The comparison of relative error of approximation (y-axis,

in %) versus normalized computation time (x-axis) is shown

in Fig. 8, for the different memory methods. Simulations

for several memory lengths L are performed for t ∈ [0, 10]
considering β = 2, α = 0.5, h = 1ms and λ = 10.

Increasing L and decreasing h results in an improved error

of approximation at cost of increased computation times.

V. SIMULATION STUDIES

We consider the previously discussed example

G(s) =
1

2

−s+ 1

s(s+ 5)(s+ 10)
(46)

and compare the controller with α = 1
3 and β = 1

6 , i.e.

CFO = KFO
(sα + 0.2)(sβ + 0.2)

sα(sβ + 2)
(47)

with the IO compensator

CIO = KIO
(s+ 0.1)

s
. (48)
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Fig. 8: Relative approximation error (%) versus computation

time of different memory implementations: a) Total error;

b) Error inside memory window; c) Error outside memory

window.

The gains KFO = 124.25 and KIO = 27.32 are set

to achieve a crossover frequency of ωs,IO = 0.3 rad s−1,

ωs,FO = 0.7 rad s−1. The FO controller achieves a higher

bandwidth while maintaining a similar phase margin of

ΦR ≈ 60°. With the introduced integrating action, these

controllers are designed for tracking ramps.

Fig. 9 shows the tracking error achieved by each controller.

Despite the higher bandwidth of the FO controller, the IO ap-

proach performs better. In the FO case the error only decays

slowly which is caused by the algebraic decay introduced to

the closed-loop system.

Hence, a design based on pole-placement is essential to

enhance the convergence. On the one hand, we can increase

the controller gains while maintaining stability, on the other

hand we might move the dynamics back to the IO closed

loop dynamics such that the signals converge exponentially.

Since the system is IO, the pole placement technique

cannot be applied directly or would lead to an IO controller.

So an additional FO pseudo pole is introduced with α = 1
2

to partially compensate the non-minimum phase zero of

G̃(s) =
G(s)

τaddsα + 1
, τadd = 1 s−1. (49)

The resulting system shows an FO numerator such that the

pole-placement leads to an FO controller as well. As the

process already shows an IO integrator, we introduce a half-

order integrator as a constraint to the pole-placement design.

The IO poles are set to λIO = {−5 ± 0.1j,−10 ± 1j,
−10 ± 2j} resulting in the controller of order 7 (due to

the FO integrator and the additional pole to force an FO

control law). Furthermore the pre-filter cannot be designed

to achieve exponential convergence as well as the ramp

tracking capability. Therefore we set the filter to F (s) = 1.

The additional pole needed to compute the IO controller
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Fig. 9: Tracking error for open loop design.
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Fig. 10: Tracking error for pole-placement design.

with a second integrator is set to λ∗ = −5. The resulting

controller of order three with the same IO closed-loop poles

is applied to the process for comparison. Fig. 10 shows

the tracking error of the closed loop system. Compared

to the direct open-loop approach, the tracking error is

reduced, but still converges slowly. The simulation uses

the proposed discretization method, as well as a standard

implementation using an Oustaloup filter of order 16 for

ω ∈ (1× 10−2 rad s−1, 1× 103 rad s−1) with the fixed-step

solver ode3. The discrete time implementation is much

closer to the analytical solution within the full memory

window Nshort = 2000. After this time period, the extended

memory outperforms the short-memory GL implementation.

Compared to the IO the effect of the non-minimum phase

zero is also reduced. To apply the method to IO systems,

one has to balance between the reduced non-minimum phase

behaviour and a desired exponential convergence.

VI. CONCLUSIONS

An FO control strategy for IO or FO systems was investi-

gated. It has been shown that it is advantageous to include an

FO integrator to the open-loop by pole-placement in order to

partially compensate non-minimum phase transfer zeros or to

increase the order of integration further than one would need

for ramp tracking and input disturbance rejection. With this



controller structure it is easier to guarantee a desired phase

margin, due to the lower phase-loss of the FO integrator

compared to an IO integrator. In addition, the iso-damping

property is achieved for a wider frequency range, such that

closed-loop is robust against gain variations.
The control structure was extended to 2-DOF with the

addition of a pre-filter shaping the reference in such way

that FO transfer zeros are cancelled, which leads to an

exponential convergence of the input-output dynamics. This

is especially suited to control FO systems and achieve certain

convergence rates without increasing the gains too much
The effect of different memory truncations suitable for

real-time implementation of such discrete operators with

α ∈ [−1, 1] was investigated in the frequency domain.

Combined memory extension shows similar phase response

to the adaptive power law, while the last one being the most

efficient implementation, but requires non-linear sampling of

history. Approximation error due to discretization and mem-

ory truncation was also evaluated in terms of computation

effort. Control and memory truncated strategies have been

demonstrated by numeric simulations.
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