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Abstract— The parameter estimation problem of a linear
time-invariant fractional-order system is investigated by means
of the modulating function method. Based on the assumption of
known model structure and derivative orders, the modulating
function method can be generalized to the fractional-order case
in three different ways. We show that two approaches are
identical for linear systems. This facilitates the computation
of the fractional-order derivatives of modulating functions. In
comparison to integer-order systems we have to include the
initialization of the fractional-order system. We show that the
spline type modulating function is capable of reducing the effect
of the memory on the parameter estimation. However, it is not
possible to compensate the memory initialization completely. In
contrast to these tuning principles also the robustness against
measurement noise must be considered. For this purpose we
decouple the memory and noise compensation. The adjusted
spline-type modulating functions reduce the initialization effect
and the recursive least squares estimation provides the possi-
bility to increase the numbers of equations such that the effect
of the noise is reduced.

I. INTRODUCTION

Recently the concept of non-integer order models, with so-

called fractional-order derivatives, has gained increasing at-

tention in fields like material science [1] or electro-chemistry

[2]. As the fractional-order operators are non-local, these

models include a long-term memory which can be exploited,

for example, to model viscoelastic behavior [1], [3], [4].

Since the seventies well-established algorithms to estimate

the parameters of integer-order systems have been extended

to the fractional-order domain, e.g. the subspace method [5],

[6], the instrumental variable method [7], frequency domain

algorithms [8], [9] and the modulating function approach

[10], [11], [12], [13], [14]. Some of these algorithms have

already been applied to non-academic problems, like the

parameter estimation of a lithium-ion battery [14].

Compared to integer-order systems, the identification of

fractional-order systems is more challenging, as it shows

at least two additional problems. First of all the orders of

differentiation have to be considered as unknown model

parameters, when compared to the integer-order case where

only the model order (model structure) has to be determined.

For integer-order systems this can be determined by applying

the subspace method [15] for example. So far all gener-

alizations of identification algorithms consider either the a

priori knowledge of the differentiation orders or estimate it
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separately via nonlinear and iterative optimization techniques

[16]. The second challenge is less grave, but has a huge

impact in view of the online estimation of parameters in the

time domain. The fractional-order operators contain memory

leading to additional terms in the estimation equations. This

also effects identification methods based in the frequency

domain, as the frequency domain data is usually obtained

from time domain data. Only if the systems is at rest at the

beginning of an identification cycle these terms disappear.

This is undesirable as it increases the time demand for the

identification. Especially since the memory in fractional-

order systems decays rather slowly, the system has to be

at rest for hours to reduce its effect sufficiently.

Hence, the memory has to be handled by the identification

algorithm. This has been investigated in detail in [13] and

we are going to revisit parts of this contribution and extend

it by including noise to the observation applying the ideas

presented in [12]. The main focus of this paper lies on the es-

timation of the linear parameters of an initialized fractional-

order system (assuming known orders of differentiation)

from noisy input-output data.

The paper is organized as follows. The second section re-

calls the basic fractional-order derivatives of different types,

including the left- and right-side approaches. In addition

to that, the initialization functions are revisited to motivate

the compensation of the memory within the estimation

procedure. Section III revisits three different approaches of

how the modulating function method can be extended to the

fractional-order case. We show that two of these approaches

are identical, which is one contribution of this paper. We

derive the right-side Caputo’s derivative for the spline-type

modulating function and show that it can be used to reduce

the memory effect in the estimation, although a complete

compensation is not possible. We provide tuning approaches

to find a suitable balance between the cancellation of the

memory effect and robustness against measurement noise.

Finally, we set up the parameter estimator with a single

modulating function applied on an increasing time interval

and use the recursive least squares algorithm to compute

the system parameters. This approach enables us to split the

identification task into two separate stages. The modulating

function method is applied to reduce the memory effect,

whereas the recursive least squares algorithm can reduce the

measurement noise. These results are finally illustrated with

a simulation example in Section IV.
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II. PRELIMINARY RESULTS

A. Operator Definitions

Within this work we will use a collection of fractional-

order operators to reformulate the estimation problem by

means of the modulating function method. The basis of all

these operators is the fractional-order Riemann integral for

the function f(·) : [t0, tf ] → R given by [17], [18]

t0Iα
t f(t) =

1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ)dτ, t ∈ [t0, tf ], (1)

where Γ(·) is Euler’s gamma function. In this convolution

integral, the time instant t is approached from the left side.

The right-side counterpart is given by

tIα
tf
f(t) =

1

Γ(α)

∫ tf

t

(τ − t)α−1f(τ)dτ, t ∈ [t0, tf ]. (2)

Using Fubini’s theorem one can show how these operators

change under integration [19]:∫ tf

t0

ϕ(τ)t0Iα
τ f(τ)dτ =

∫ tf

t0

f(τ)τIα
tf
ϕ(τ)dτ. (3)

Fractional-order derivatives are defined in combination with

integer-order derivatives. First of all we have the left-sided

Riemann-Liouville derivative

R
t0Dα

t f(t) =
dm

dtm

(
1

Γ(m− α)

∫ t

t0

f(τ)

(t− τ)α−m+1
dτ

)
(4)

and the left-sided Caputo’s fractional derivative [17]

C
t0Dα

t f(t) =
1

Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)α−m+1
dτ (5)

with m−1 < α < m. Note that these operators are connected

by the corresponding initial conditions [17] as per

R
t0Dα

t f(t) =
C
t0Dα

t f(t) +

m−1∑
k=0

(t− t0)
k−α

Γ(k − α+ 1)
f (k)(t+0 ). (6)

This can be shown by differentiating the Riemann definition

and applying integration by parts to Caputo’s derivative. This

connection can be exploited to adopt the system description

to the identification procedure, as shown in [12].

The corresponding right-side derivatives are given by

R
t Dα

tf
f(t) =

(−1)m

Γ(m− α)

dm

dtm

(∫ tf

t

f(τ)

(τ − t)α−m+1
dτ

)
,

C
t Dα

tf
f(t) =

(−1)m

Γ(m− α)

∫ tf

t

f (m)(τ)

(τ − t)α−m+1
dτ.

(7)

(8)

B. Initialized Fractional-Order Calculus

So far we have only given the basic definition of fractional-

order operators. They are built on the fractional-order inte-

gration, hence, these operators are non-local. To take the

past of a function into account, Lorenzo and Hartley [20]

proposed the use the so-called initialization functions Ψ(·)
to allow for history in the past, that is f(t) �= 0 for t ∈ [tp, t0]

R
t0Dα

t f(t) =
R
aDα

t f(t)− RΨ(f, α, t0, a, t),
C
t0Dα

t f(t) =
C
aDα

t f(t)− CΨ(f, α, t0, a, t).

(9)

(10)

These initialization functions depend on the history of the

function and can be derived, for example, by splitting the

convolution integral in the definition of the operator, i.e.

CΨ(f, α, t0, a, t) =
C
aDα

t f(t)− C
t0Dα

t f(t)

=
1

Γ(m− α)

∫ t0

a

f (m)(τ)

(t− τ)α−m+1
dτ . (11)

As shown in [21] these initialization functions decay if the

function respectively its derivative are bounded in the past

interval t ∈ [tp, t0] such that

|CΨ(f, α, t0, a, t)| ≤ M̄C(t− t0)
m−α−1,

|RΨ(f, α, t0, a, t)| ≤ M̄R(t− t0)
−α−1

(12)

(13)

with constants M̄C and M̄R depending on the function f(·)
in the past interval. Note that the memory associated with

the Riemann-Liouville derivative decays faster.

III. MODULATING FUNCTIONS APPROACH

The modulating function method is already well-

established for estimating the parameters for integer-order

linear [22], [23] and some nonlinear systems [22]. The

measurements of the output or input are multiplied with

the modulating function ϕ(·) and the following integration

moves the derivative from the possible noisy measurement

towards the known modulating function using integration

by parts. To eliminate any initial conditions the modulating

function ϕ(·) has to satisfy the following conditions [22].

Definition 1 (Modulating Function). The function ϕ(·) :
[t0, T ]→R is called a modulating function of order m, if

(P1:) ϕ(t) ∈ Cm, t ∈ [t0, T ],

(P2:) ϕ(i)(t0) = ϕ(i)(T ) = 0, i = 0, 1, . . . ,m− 1.

(14)

(15)

In this contribution, we consider fractional-order SISO LTI

systems of the following structure

n∑
i=0

ai
R
tpDαi

t y(t) =

m∑
i=0

bi
R
tpDβi

t u(t), (16)

where u(·) and y(·) are the input and output, respectively.

We assume ordered differentiation orders, i.e. αn > · · · > α0

and βm > · · · > β0. For causality we require αn ≥ βm. The

parameters ai and bi enter linearly and are to be determined.

Without loss of generality we assume an = 1. Note that we

do not require the system to be commensurate, i.e. αi = iγ
and βi = iγ with i ∈ N. However in order to generate well-

conditioned estimation equations these pseudo polynomials

λαn + · · ·+ a1λ
α1 + a0λ

α0 ,

bmλβm + · · ·+ b1λ
β1 + b0λ

β0

(17)

(18)

need to be coprime with respect to the highest commensu-

rable order γ. Note that in the uncommensurable case, we

require a similar concept as coprimeness, to generate lin-

ear independent equations, otherwise the internal dynamics

cannot be identified only from in- and output data.



Within this setup the system is not initialized, but the input

and measurement are only available for time t ∈ [t0, tf ]. We

assume the measured output to be corrupted by noise

ỹ(t) = y(t) + ε(t), (19)

where ε(t) is assumed to be Gaussian white noise.

In the literature various types of modulating functions

have been applied to the fractional-order case, e.g. combined

polynomials [10]

ϕ̃n(t) = tκ1+n(tf − t)κ2−n, n, κ1, κ2 ∈ N, (20)

single sided polynomials [12]

ϕ̂n(t) =

n∑
i=1

cit
i (21)

and spline-type modulating-functions [13]

ϕk,l(t) =

tf∫
t0

. . .

tf∫
t0︸ ︷︷ ︸

o=k−l-times

k∑
i=0

(−1)i
(
k

i

)
δ

(
t− i

tf
k

− th

)
dto (22)

which is a weighted sum of integrated Dirac impulses δ(·).
For the implementation of these modulating functions, we

use the integrated version

ϕk,l(t) =

k∑
i=0

(−1)i

(o− 1)!

(
k

i

)
︸ ︷︷ ︸

ai

(t− di)
o−1

σ (t− di)︸ ︷︷ ︸
ϕ̄i(t)

(23)

with di = i
tf
k + th and σ(·) representing the Heaviside

function. This description will be used later to analytically

compute the fractional-order derivatives.

Regarding fractional-order systems there are in general

three different approaches to extend this method. The first

approach [10] constructs a convolution integral, and with the

property (15), t0 = 0 and commutativity of the convolution

we have∫ tf

0

ϕ(tf − τ)R0 Dα
τ y(τ)dτ =

∫ tf

0

R
0 Dα

tf−τϕ(tf − τ)y(τ)dτ

=

∫ tf

0

R
0 Dα

τ ϕ(τ)y(tf − τ)dτ.

This approach is based on considerations in the Laplace do-

main, as the arising term sα is moved towards the modulating

function [10]. It can be extended to Caputo’s operator by

applying either (6) or including the estimation of the initial

conditions separately. Note that in this case we can drop the

right-side boundary condition on the modulating function.

The second method uses the so-called fractional integra-

tion by parts formula [24], arising from Fubini’s theorem∫ tf

0

ϕ(τ)R0 Dα
τ y(τ)dτ =

∫ tf

0

C
τ Dα

tf
ϕ(τ)y(τ)dτ−

m∑
j=0

[
R
τ Dm−1−j

tf
ϕ(τ)Rτ Dα+j−m

tf
y(τ)

]
. (24)

Applying Condition (15) leads to∫ tf

0

ϕ(τ)R0 Dα
τ y(τ)dτ =

∫ tf

0

C
τ Dα

tf
ϕ(τ)y(τ)dτ. (25)

Note that the left-side Riemann derivative changes to the

right-side Caputo derivative. This approach allows to include

nonlinear terms in the identification.

Remark 2. We can show that this approach leads to similar
results if the modulating functions are symmetric within
the observation interval, i.e. ϕ(t) = ϕ(tf − t) or point
symmetrical ϕ(t) = −ϕ(tf − t). Thus, we consider the left-
side Riemann derivative of the flipped modulating function
ϕ(tf − t). For zero initial conditions we can apply (6) and
directly use Caputo’s left-side definition

R
0 Dα

t ϕ(t) =
C
0 Dα

t ϕ(t) =
1

Γ(m− α)

∫ t

0

ϕm(τ)

(t− τ)α−m+1
dτ.

Flipping time t → tf − t and substituting τ̄ = tf − τ yields

1

Γ(m− α)

∫ tf−t

0

ϕm(τ)

(tf − t− τ)α−m+1
dτ =

1

Γ(m− α)

∫ tf−t

0

ϕm(tf − τ̄)

(τ̄ − t)α−m+1
dτ̄ .

(26)

Including the symmetry assumptions on the modulating func-
tions leads to the right-side Caputo derivative (including a
sign change). For ϕ(t) = ϕ(tf − t) we have

R
0 Dα

tf−tϕ(tf − t) = (−1)−m C
t Dα

tf
ϕ(t) (27)

and for ϕ(t) = −ϕ(tf − t) the sign changes

R
0 Dα

tf−tϕ(tf − t) = (−1)1−m C
t Dα

tf
ϕ(t). (28)

Hence, it is also possible to compare both approaches by
investigating the corresponding flipped modulating function.

The third method applies the classical integer-order inte-

gration by parts [25], such that a fractional-order integration

of the measurement signal remains within the integral, i.e.

for α ∈ (0, 1) we have with ϕ(0) = ϕ(T ) = 0 that∫ T

0

ϕ(τ)R0 Dα
τ y(τ)dτ = −

∫ T

0

ϕ̇(τ)0I1−α
τ y(τ)dτ. (29)

This method allows to use advanced modulating functions

since only integer-order derivatives are required, which can

be provided completely analytically. However, the fractional-

order integration of the measurement signals might be com-

putationally intense, especially if the differentiation order is

unknown and has to be estimated by nonlinear optimization.

A. Memory Compensation

The compensation of the memory effects (unknown mea-

surements of past input- and output data, respectively) has

been discussed in [13]. Although the theoretical results are

sound, its final conclusions have to be extended.

The basic idea is to move the lower limit of the integration

from tp to t0. We consider that the input and output mea-

surements are only available on the time interval t ∈ [t0, tf ].



Taking this into account, we assume that the modulating

function ϕ(·) is zero within the past interval t ∈ [tp, t0],
leading to∫ tf

tp

ϕ(τ)RtpDαi
τ y(τ)dτ =

∫ tf

t0

ϕ(τ)RtpDαi
τ y(τ)dτ. (30)

This equality, however, does not hold for the result of the

fractional-order integration by parts and some error E occurs:∫ tf

tp

ϕ(τ)RtpDαi
τ y(τ)dτ =

∫ tf

tp

C
τ Dαi

tf
ϕ(τ)y(τ)dτ

=

∫ tf

t0

C
τ Dαi

tf
ϕ(τ)y(τ)dτ + E(t0).

(31)

In order to compensate the memory, the modulating function

has to fulfil the additional property [13]

(P3) C
t Dγ

tf
ϕ(t) = 0, ∀t ∈ [tp, t0] and γ ∈ {αi, βi}.

(32)

The authors in [13] state that the spline-type modulating

functions satisfy this condition. However, this is only true

in the integer-order case. We compute the right-side Caputo

derivative by inserting ϕ̄i from (23) into Definition (8) with

m− 1 < α < m:

C
t Dα

tf
ϕ̄i(t) =

1

Γ(m− α)

∫ tf

t

(−1)m

(τ − t)α−m+1
ϕ̄
(m)
i (τ)dτ

=

∫ tf

t

Γ−1(m− α)

(τ − t)α−m+1

(−1)m(o−1)!

(o−m−1)!︸ ︷︷ ︸
c

σ (τ − di)

(τ − di)
−o+1+m dτ

= c̃

∫ tf

max(t,di)

(τ − t)m−α−1 (τ − di)
o−1−m

dτ

with c̃ = c
Γ(m−α) . Substituting τ̄ = τ − di and t̄ = t− di in

the integral leads to

C
t Dα

tf
ϕ̄i(t) = c̃

∫ tf−di

max(t−di,0)

(
τ̄ − t̄

)m−α−1
τ̄o−1−mdτ̄ .

Applying the Binomial theorem as in [12] yields

C
t Dα

tf
ϕ̄i(t) =

c̃

tf−di∫
max(t−di,0)

(
τ̄ − t̄

)m−α−1
o−1−m∑
q=0

(
o−1−m

q

) (
τ̄ − t̄

)q
t̄−o+1+m+q

dτ̄ .

Going back to the original coordinates we have (33), see the

next page. This fractional-order derivative is non-zero for t ∈
[tp, t0] for the fractional-order case. An illustration is given

in Figure 1. Only in the integer-order case the derivative

vanishes. But we may notice that the magnitude decays for

t → −∞. Hence we can reduce the resulting error E, see

(31), by minimizing the right-side fractional-order derivative

for t < t0.

Note the difficulty here: If other candidates of modulating

functions are to be considered, then the right-side Caputo

derivative has to be zero on an entire interval and for

the various differentiation orders αi and βi. As the spline

type modulating function at least satisfies these conditions

in the integer-order case, we may use (33) to tune the

spline modulating function so as to reduce the effect of the

unknown memory on the estimation.

Remark 3 (Tuning of the Modulating Functions). The basic
tuning parameters to explore are the length tf of the time
interval, the starting time th of the impulses and the order
difference o = k − l. With a higher integration order o the
algebraic decay for t → −∞ is increased, e.g. in [13] the
order o = 20 is used. However, such high orders reduce the
numerical robustness and increase the sensitivity with respect
to measurement noise. By increasing the starting time th we
shift the modulating function (and its derivative) towards the
end of the time interval. Hence, the information of the recent
past may be weighted higher in the integral.

B. Equation Generation for Parameter Estimation

In order to determine the np = m+n+1 parameters, we

have to generate at least this number of equations. The mod-

ulating function approach offers two ways to construct these

equations. First of all a set of N > np linearly independent

modulating functions on a specified time interval can be used

(see e.g. [10], [13]). The parameters can be estimated with

the pseudo inverse of the measurement matrix.

The problem with this approach is the lack of robustness

against measurement noise. This can be improved by increas-

ing the number of equations, but increases the numerical

demands drastically.

The second approach uses a single modulating function

with a changing time horizon tf = κT as shown in [12].

This leaves us with

Y (κ) = M(κ)θ(κ) (34)

with θ̂ =
(
ân−1 . . . â0 b̂m . . . b̂0

)�
and

Y (κ) =

∫ κT̄

t0

C
τ Dαn

κT̄
ϕ(τ)y(τ)dτ

M(κ) =
(−My,n−1 . . . −My,0 Mu,m . . . Mu,0

)
My,i =

∫ κT̄

t0

C
τ Dαi

κT̄
ϕ(τ)y(τ)dτ, i = 0, . . . n− 1

Mu,i =

∫ κT̄

t0

C
τ Dβi

κT̄
ϕ(τ)u(τ)dτ, i = 0, . . .m.

(35)

(36)

(37)

(38)

For a fixed estimation horizon ΔT the lower limit in the

upper integrals has to be changed to t0 := κT̄ −ΔT .

The resulting algebraic equation can be solved recursively

without the necessity to compute inverses of large matrices.

Advanced continuous-time algorithms can be used, see [26].

We applied the standard recursive least squares estimator

[27] given by the following regression

γ(κ) =
P (κ− 1)M�(κ)

1 +M(κ)P (κ− 1)M�(κ)
P (κ) = P (κ− 1)− γ(κ)M(κ)P (κ− 1)

θ̂(κ) = θ̂(κ− 1) + γ(κ)(Y (κ)−M(κ)θ̂(κ− 1))

(39)

(40)

(41)



C
t Dα

tf
ϕ̄i(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
c̃
o−1−m∑
q=0

(
o−1−m

q

)(
t− di

)o−1−m−q

m− α+ q

(
tf − t

)m−α+q
, t > di

c̃

o−1−m∑
q=0

(
o−1−m

q

)(
t− di

)o−1−m−q

m− α+ q

[(
tf − t

)m−α+q − (di − t)
m−α+q

]
, t < di.

(33)

Fig. 1. Illustration of the normalized spline-type modulating function and
its normalized integer- and fractional-order derivatives. Only the integer-
order derivative is zero on the interval t ∈ [tp, t0].

with the initialization

θ̂(0) = Λ−1
(
1 1 . . . 1

)�
, P = ΛI, (42)

where Λ is chosen relatively large.

IV. EXAMPLE

We consider the academic example motivated by [12]

R
0 Dα2

t y(t) + a1
R
0 Dα1

t y(t) + a0y(t) = b0u(t) (43)

with a1 = 2
3 , a0 = 1

3 , b0 = 4
3 and the orders of

differentiation α1 = 0.4 and α2 = 0.8. We use the

input given in Figure 2 because the series of steps excites

a broad range of frequencies. This is necessary as the

fractional-order system is infinite dimensional in regard of

the non-local derivative operators. For simulation we use

the solver fde12.m presented in [28]. Since this solver

is only designed for fractional-order differential equations

with Caputo’s definition, we set the initial conditions to

zero, following (6). This solver is only suitable to simulate

fractional-order differential equations without memory ini-

tialization (besides the integer-order initial conditions related

to Caputo’s operator), therefore the effect of the initialization

is included by starting not at the initial time. The noisy

observation is shown in Figure 3. The sampling time is set

to Ts = 10ms and the estimation interval starts at t0 = 5 s,
T̄ = 0.5 s and tf (κ = 0) = 20 s. As the output data

0 20 40 60 80 100
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5

10

Fig. 2. Input signal.

is corrupted by noise, different simulation techniques, like

Oustaloup filters [17], will lead to comparable data sets.

We use the spline modulating function ϕ8,1(t) with th =
15 s and normalize it such that the maximum derivative is

one.

The estimation results for a growing estimation window

tf ∈ [20 s, 100 s] are shown in Figure 5. The final parameter

estimations for different noise levels are listed in Table I

and II. For the lower noise levels both approaches perform

similarly as the parameter error eθ = ||θ̂ − θ||2/||θ||2 is more

or less comparable. In both cases the memory of the first 5 s

has to be compensated. With the increasing window length

of the first approach, this effect is reduced which results in a

better performance, but to the price of a higher noise level.

To illustrate the effect of the memory reduction, the

second approach uses a fixed estimation horizon. The results

are shown in Figure 4. As given in [12] the recursive

least squares algorithm leads to an offset in the estimation.

Although a compensation algorithm is presented in [12] it

is not applied here because the discrete error ε(κ) is not

Gaussian white noise. Further investigations should focus on

the reduction of the noise sensitivity.

V. CONCLUSIONS

In this work we revisit the modulating function method to

identify the parameters of a linear time-invariant fractional-

order system given by an input-output equation. In the

literature there are three approaches to generalize this idea
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Fig. 3. Comparison of pure output y(t) and noise-corrupted output ỹ(t),
setting σ2 = 10.
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Fig. 4. Estimation results starting at t = 5 s with an increasing estimation
window for a moderate noise level σ2 = 10. The estimation does not
converge to an equilibrium within the time interval due to the integration
error and the noise contribution.

TABLE I

BIASED ESTIMATIONS OF THE COEFFICIENTS WITH AN INCREASING

ESTIMATION WINDOW WITH tf = 100 s.

σ2 SNR â1 â0 b̂0 eθ(%)

0 ∞ 0.6804 0.3301 1.3405 1.0
1 21.75 0.5997 0.3239 1.2695 6.1

10 12.02 0.6665 0.3434 1.3313 6.7
100 3.92 0.0168 0.4333 0.8999 51.6

0 20 40 60 80 100
-1

-0.5

0

0.5

1

1.5

2

Fig. 5. Estimation results starting at t = 5 s with a fixed estimation window
of 35 s for a moderate noise level σ2 = 10. The estimation converges to a
biased parameter set.

TABLE II

BIASED ESTIMATIONS OF THE COEFFICIENTS AT tf = 100 s WITH A

FIXED ESTIMATION WINDOW.

σ2 SNR â1 â0 b̂0 eθ(%)
0 ∞ 0.6338 0.3321 1.3068 2.7
1 21.81 0.6199 0.3353 1.2992 3.8
10 12.14 0.4928 0.3511 1.2098 14.0

100 3.98 -0.0637 0.4282 0.8264 51.9

to the fractional-order case. We show that the convolution

arrangement and the right-side Caputo derivative lead to the

same results if we consider the flipped modulating function.

This simplifies the computation of the required derivatives,

as analytical derivatives can be applied.

The second part of this contribution focuses on the com-

pensation of the memory effect. We show that the spline-type

modulating functions are only able to reduce the effect of the

memory on the estimation, however a complete compensa-

tion is not possible. From the simulation example we may

draw the conclusion that the reduction of the initialization

increases the sensitivity with respect to measurement noise.

To overcome this problem we tune the modulating function

carefully and increase the number of equations. This is

possible by applying the recursive least squares estimation.

In a simulation example the approach yields good results for

low and medium noise levels.

Future work will focus on further reducing the error caused

by measurement noise. Possible approaches may include the

Kalman-like estimator structure in [12]. With an estimation

independent of the memory, one may generate additional

equations enhancing the estimation of possibly unknown

derivative orders. The idea is that the (nonlinear) estimated

derivative orders are constant and independent of some time

interval (on which the memory effect is sufficiently reduced).
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