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ABSTRACT
Pumps consume a significant amount of energy in a
water distribution network (WDN). With the emergence
of dynamic energy cost, the pump scheduling as per user
demand is a computationally challenging task. Computing
the decision variables of pump scheduling relies over mixed
integer optimization (MIO) formulations. However, MIO
formulations are NP-hard in general and solving such
problems is inefficient in terms of computation time and
memory. Moreover, the computational complexity of solving
such MIO formulations increases exponentially with the
size of the WDN. As an alternative, we propose a data-
driven approach to estimate the decision variables of pump
scheduling using deep neural networks (DNN). We evaluate
the performance of our trained DNN relative to a state-
of-the-art MIO solver, and conclude that our DNN based
approach can be used to minimize the pump switching and
cost incurred due to dynamic energy in a given WDN with
much lower complexity.

Index Terms—Pump scheduling, mixed-integer formulation,
deep neural networks, dynamic energy cost, water-energy
nexus.

I. INTRODUCTION

Pump scheduling is an integral part of water distribution
network (WDN) management. As per energy statistics of
US, WDNs and treatment plants consume approximately 4%
of total produced energy [1]. Pumps consume a significant
amount of energy, and optimal pump scheduling can save
the energy consumption by 10%-20% [2]. The empirical
flow and energy constraints imposed by WDN are non-
convex, and the decision variables (pumps and valve control)
are binary [3]. Hence, most approaches construct the pump
scheduling problem as a mixed-integer optimization (MIO)
problem with an objective to minimize the energy cost of
water dispatch to consumers [4]- [5]. In general, MIO is an
NP-hard non-convex problem, and computing the decision
variables of such problems takes substantial memory and
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computation time with the current approaches [6]. Moreover,
the computational complexity further increases with the ever
growing expansion of WDNs.

In contrast, we propose a data-driven approach, in which
the decision variables of MIO formulations are learned from
the data set of a WDN, and bypass the need of any MIO
solver. This approach is motivated by the observation that
a feed-forward deep neural network (DNN) can estimate
the decision variables of MIO problems with high accuracy.
Such data-driven approaches exploit the repetitive patterns
of problem instances, and reduce the MIO formulations to
a neural network prediction, and once the DNN model is
learned, it can speedup the computation time to solve MIO
problem for new problem instances [7].

This paper has two major contributions. First, we propose
a MIO framework for pump scheduling in a WDN aiming at
minimizing the energy cost, given the time-ahead dynamic
electric energy prize. The proposed optimization framework
also ensures that the WDN parameters are within the
admissible operating range, which is a difficult task to
achieve by a human operator especially for large-scaled
WDNs.The second contribution focuses on a data-driven
pump scheduling strategy based on training a feed forward
DNN. We solve an offline MIO problem for given network
constraints using a MIO solver, obtain the values of decision
variables, and train a feed-forward DNN using those values.
We benchmark the performance of DNN against the state-of-
the-art MIO solver Gurobi [8] using experiments conducted
over synthetic data sets, which shows that our approach
bypass the need of a solver.

The rest of the paper is structured as follows. Section II
formulates an MIO problem in WDN with an objective
to minimize the pump switching and cost incurred due to
dynamic energy. Section III proposes a model-free data-
driven approach for estimation of decision variables in the
WDN. Section IV and Section V respectively, present the
experimental results and conclusion.

II. MIO FOR PUMP SCHEDULING

Model: Consider a WDN modeled as a directed graph
G:=(N ,P), where N and P denote the sets of nodes and
edges (pipes) of the WDN, respectively. A typical WDN
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Fig. 1: Schematic of a WDN.

mainly includes the following types of nodes: a) reservoirs,
the primary source of water; b) tanks, the nodes that store
water from the reservoirs; and c) users, the points of water
demands. Let Nr ⊂ N and Nb ⊂ N be respectively the
subsets of nodes corresponding to the reservoirs and the
tanks, and Nu := N \ Nr ∪ Nb be the subsets of nodes
denoting the users. An edge between node n and node k of
the graph is denoted by the directed pair (n, k) ∈ P; and
let Pa ⊂ P be the subset of edges that host the pumps. In
our model, we assume that the pumps are deployed only
between the reservoirs and the tanks, and the water flow
from tanks to users is generated by means of gravity; hence,
(n, b) ∈ Pa =⇒ n ∈ Nr, b ∈ Nb as shown in Fig. 1.

Flow Conservation: Let qkt be the net water outflow
rate from the node k ∈ N at the time index t, where
t = 1, 2, . . . , T . The water flow from node n to node k at
time t is denoted as qnkt ≥ 0, with qnkt = 0 when there is
no flow. Further, we assume a directed graph, meaning that
qknt = 0 when qnkt ≥ 0. Considering the flow conservation,
the net water outflow at node k, can be written as

qkt =
∑

(k,n)∈P

qknt −
∑

(n,k)∈P

qnkt , ∀t ∈ T , (1)

where T = {0, 1, . . . , T − 1} is the set of time indices.
Further, the water flow is constrained as

0 ≤ qnkt ≤ qmax, ∀ (n, k) ∈ P, t ∈ T , (2)

where qmax is the maximum possible flow on any edge,
as the flow is constrained by physical properties of the
pipe such as length, diameter and friction coefficient. This
capacity bound can be obtained from empirical head-
loss equations such as Hazen-Williams or Darcy-Weisbach
equations [9].

Tank formulation: We assume that each tank b ∈ Nb

receives water from the reservoirs n ∈ Nr through the pump-
hosting edges (n, b) ∈ Pa and they supply water to the rest
of the network. The dynamics of the water storage tank can
be modelled as

vbt+1 = vbt + τ

( ∑
(n,b)∈Pa

qnbt −
∑

(b,n)∈P\Pa

qbnt

)
, (3)

where vbt is the amount of water stored in tank b at time
index t and τ > 0 is the sampling time interval. We also

bound vbt to avoid the overflow of the tank and to meet any
unexpected user demand:

vmin ≤ vbt ≤ vmax, b ∈ Nb, ∀t ∈ T . (4)

Where, vmin and vmax is the minimum and maximum water
volume in a tank respectively.

Pump Formulation: We introduce a binary variable
znbt ∈ {0, 1} to denote the pump switching in the edge
(n, b) ∈ Pa. When znbt = 1, the pump is ON and the water
flows from node n to node b. When znbt = 0, the pump is
OFF and there is no water flow between n and b. For the
pump-hosting edges, (2) can be rewritten by including the
pump switching as

0 ≤ qnbt ≤ qmaxznbt , ∀(n, b) ∈ Pa, t ∈ T . (5)

Switching Constraints: Frequent switching of pump
between ON and OFF states is not a desirable phenomenon
in WDN, as it increases the transients in the network.
Hence, we restrict the number of the pump switching
over a predetermined time horizon (Ts). To constrain
the switching, we introduce the binary toggle variables
dnbt ∈ {0, 1}, ∀t ∈ T , (n, b) ∈ Pa, where dnbt indicates a
toggle in the state of the pump, i.e., dnbt = 1 when
znbt 6= znbt+1, whereas dnbt = 0 implies no switching, that is
the pump state is same at time indices t and t+ 1.

We observed that the switching constraints involving
continuous and binary variables can be formulated with
mixed logical dynamics [10] [11]. To this end, we introduce
an auxiliary variable γnbt ∈ {−1, 0, 1} to model the updates
of znbt as a function of dnbt :

znbt+1 = znbt + γnbt , (6)

where γnbt is given by

γnbt =


−1, if dnbt = 1 ∧ znbt = 1

+1, if dnbt = 1 ∧ znbt = 0

0, otherwise.
(7)

The logic relationship between (6) and (7) can be added
to an optimization framework using the following linear
inequalities [11]:

B[γnbt znbt dnbt ]> ≤ b, (8)

where B =


1 0 −1
−1 0 −1

1 2 2
−1 −2 −2

 and b = [0 0 3 1]>.

Using the toggle dnbt , the total number of switching snbt
over a time window Ts, can be written recursively as

snbt+1 = snbt + dnbt − dnbt−Ts
, ∀t ∈ T . (9)

To control the number of switchings over Ts, we impose
following constraint:



snbt ≤ snb, ∀t ∈ T , (10)

where snb is the maximum number of switching for
the pump in the edge (n, b) ∈ Pa. Finally, we assume
the following initializations for the variable znbt , vnbt , and
snbt ,∀(n, b) ∈ Pa:

znb0 = zinit, vnb0 = vinit, snb0 = sinit. (11)

Let z ∈ {0, 1}T |Pa| and q ∈ RT |Pa|
+ , where R+ is the

set of non-negative real numbers, be the vector obtained by
stacking znbt and qnbt in the lexicographical order of t, n, and
b. A similar stacking of other variables dnbt , s

nb
t , γ

nb
t , and

vnbt is done to obtain the vectors d, s,γ, and v respectively
having length T |Pa|.

Mixed-Integer Optimization Framework: We assume
that the time-ahead dynamic energy cost {πt}Tt=1 for the
pump operation is given. Then, the total cost associated with
pumping is given by fo(z) =

∑T−1
t=0

∑
(n,b)∈Pa

zt
nbπt. We

propose a MIO framework with the following objectives:
i) to compute the optimal switching trajectories for the
pumps that minimize fo(z) and ii) to ensure that while
optimizing the switching strategy, all the WDN parameters
are within the admissible operation range given by the
equations (3),(4),(5),(6),(8),(9), (10), and (11). The proposed
MIO framework is

minimize fo(z) =

T−1∑
t=0

∑
(n,b)∈Pa

zt
nbπt

over {z, q,v,d, s,γ}
subject to (3), (4), (5), (6), (8), (9), (10), (11). (12)

It is to be remarked that the switching constraint (10)
controls the number of switchings over a specified time
interval, which is a tedious task in manually operated WDNs.

Since the variables z and d are binary, and γ and s
are integers, problem (12) is a MIO, which is an NP-
hard nonconvex problem. Despite MIO being intractable,
there are several algorithms that can be used to solve the
problem approximately, among which the branch and bound
algorithm and the cutting plane method are commonly used.
Notably, such formulations can be solved using MIO solvers
such as GLPK, Gurobi [8], etc.

III. A DATA-DRIVEN APPROACH
To this end, Section II formulates a MIO problem, where

the decision variable z is computed to obtain the optimal
trajectory of pump switching. Computing the decision
variables of such problems is inefficient in terms of memory
and computation time. In this section, we describe model-
free data-driven approach to estimate the decision variables
of the MIO formulation for WDN. We solve many problem
instances of (12) using a standard MIO solver. The obtained

solutions are used to train a feed-forward DNN which
bypasses the need of a computationally expensive solver for
WDN predictions.

III-A. DNN for Estimation of Decision Variables
A feed-forward DNN architecture consists of L layers,

which define a composition of functions of the form
f̂(Θ) = hL(hL−1(· · ·h1(Θ)), where Θ is the input of
the DNN, l = 1 is the input layer, l = 2, · · · , L− 1
are the hidden layers and l = L is the output
layer. Each layer depends on the previous layer by
yl = hl(yl−1) = σl(wlyl−1 + bl) ∈ RNl , where R is the
set of real numbers, σ is a non-linear activation function, wl

is the weight of the neural network, and Nl is the number of
nodes in layer l. The weights wl’s are obtained by training
the DNN using the training data sets obtained by solving
different problem instances of (12) with the help of the
Gurobi MIO solver.

We use rectified linear unit (ReLU) and leaky rectified
linear unit (Leaky ReLU) as activation for hidden layers. For
the outer layer, sigmoid activation function is used motivated
by the nature of the output decision variable and the cost
is computed using binary cross entropy. Further, we apply
batch normalization at the hidden layers to standardize the
preactivation distribution and reduce the internal covariance
shift [12]. We apply {vo, zo, so, do, πt, qkt } at the input layer
of DNN for T = {12, 15, 18, 20, 24}, and the estimates of
the decision variables {ẑt} are obtained at the output layer
l = L for each T .

III-B. Suboptimality
Let fo(z?) denotes the optimal value of the objective

function obtained by solving the MIO problem (12), whereas
fo(ẑ) denotes the value of the objective function computed
through the trained DNN model. We define the suboptimality
Υo as

Υo =
|fo(z?)− fo(ẑ)|

fo(z?)
(13)

To evaluate the performance of the DNN based approach,
we consider that the estimated solution is accurate if
suboptimality Υo ≤ ε, where ε is the error tolerance.

IV. EXPERIMENTAL RESULTS
We use the WDN shown Fig. 2a, which consists of

two reservoirs, four fixed-speed pump, two water storage
tanks, and two points of water demand (users), all connected
through loss-less pipes. We use the WDN parameters
as: vmin = 30 000 m3, vmax = 100 000 m3, and qmax =
20 000 m3/h. We initialized using zinit = 0, T5 = 10,
vinit = 5000 m3, and sinit = 3. In addition, we considered
five different time horizons T = {12, 15, 18, 20, 24}.
We consider the sampling time of τ = 1 h, ∀ T . The
electric energy cost πt, ∀t ∈ T and the demand
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Fig. 2: (2a.) depicts the schematic representation of the WDN, (2b.) presents the pump scheduling zt and other WDN
variables for T = 24 with τ = 1hr, (2c.) presents the suboptimality comparison for ReLU and LeakyReLU, (2d.) shows the
convergence of DNN for activation ReLU at T=20, and (2e.) presents the comparison of computation time between DNN
and Gurobi.

profile of user consumption at the point of water demand
qbnt , ∀t ∈ T , (b, n) ∈ P \ Pa are generated synthetically
by assuming a daily pattern of user consumption and
electric energy cost for 200000 problem instances for
each time horizons T . Also, we added the switching
constraints snb = 5 and Ts = 10, meaning that total number
of switching over a time window of length 10 should not
exceed 5.

The MIO problem (12) is solved using the Gurobi solver
to obtain the pump trajectory z?. Fig. 2b depicts the obtained
pump switching trajectory of a problem instance for a time
window of 24 hours. As expected, the pump z

(11)
t is in

ON state when the energy cost πt is smaller. The data,
which contains all the above mentioned WDN variables and
the Gurobi solutions are split as 90% − 10% for training
and testing the DNN. We train the DNN using random
initialization with ADAM optimizer. The structure of DNN
is constructed by one input layer, 8 hidden layers and one
output layer. The hidden layers were consisting of 20, 40,
60, 80, 100, 80, 60, and 40 neurons respectively. In addition,
we fixed the value of the Leaky ReLU parameter α as 0.1.

The model performance is evaluated using the
suboptimality Υo defined in (13) averaged over the test
data set and the results given in Fig. 2c shows that the
feed-forward DNN can estimate the decision variables of
MIO formulation within a tolerance range of ε ≤ 11×10−2.
Fig. 2d shows the convergence of the DNN cost function
for T = 20. Fig. 2e compares the computation time of the
Gurobi solver and the proposed DNN-based solver. Table I
presents the percentage of instances for which constraint (5)

Table I: Constraint Satisfaction

T ReLU LeakyReLU
12 85.57 % 85.12 %
15 89.5 % 89.28 %
18 81.87 % 81.5 %
20 87.8 % 87.74 %
24 89.5 % 89.88 %

is satisfied for {ẑt}, which ranges between 85% to 90%. We
would like to leave a remark that the constraint violation
can be addressed by projecting the affected variables of
the corresponding problem instances to the feasible region
defined by the constraints. The tests were conducted on a 2.7
GHz, Intel Core i7 computer with 8 GB RAM. It is observed
that there is an exponential increase in computation time for
Gurobi solver when T ≥ 48, whereas the DNN solves the
problem in milliseconds for all values of T .

V. CONCLUSION
With ever increasing expansion of WDN, pump

scheduling using existing MIO solver is inefficient in terms
of memory and computational time. In this work, we propose
a MIO formulation to minimize the electric energy cost of
WDN while keeping the WDN parameters within a desired
admissible range. Further, we propose a computationally
efficient method to solve the MIO formulation using DNN,
which can bypass the need of using MIO solvers. In a real
WDN, given the various interconnected tanks, valves, pump,
user demand and dynamic energy price, this approach could
compute the decision variables in a computationally efficient
and feasible manner, given the availability of necessary data.
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