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Abstract— Estimation of interactive forces, which are mostly
unavailable for a direct measurement on the interface between
the system and its environment, is an essential task in various
motion control applications. This paper proposes an interactive
force estimation method, based on the well-known equivalent
output injection of the second-order sliding mode. The equiva-
lent output injection is used to obtain a dynamic quantity, which
is first not appropriately shaped in the frequency domain, but
appears as a matched external disturbance that encompasses in-
teractive forces. Afterwards, a universal lead-lag shaper, which
depends on the inherent dynamics of the motion control system
coupled with environment, is used to extract an interactive force
quantity. Once identified, the lead-lag shaper can be applied
to the given system structure. An experimental case study
with valve-controlled hydraulic cylinder and dynamic load is
demonstrated. An accurate estimation of the interactive force,
in comparison to the reference measurement, is shown.

I. INTRODUCTION AND BACKGROUND

Motion control applications are often dealing with weakly

known interactive forces, which directly affect the controlled

system performance and can, in worst case, provoke even

instabilities. The control technologies, where complying

forces between the system and its environment are crucial

for robust and safe operation, range from the nanoscale

touching devices and medical mechatronics [1], [2] to the

humanoid-like [3], [4] and industrial [5] robotics, equally as

bulky hydraulic systems [6], here just to refer to some of

them. While structural differences between the motion- and

force-controlled systems and the relationship to mechanical

impedance [7] by interaction with environment have been

highlighted in an elegant way in [8], the issues of interactive

force of coupling proved to be challenging. This is especially

when shaping the desired endpoint impedance in the real-

world servo-systems, see e.g. [9]. An accurate and robust es-

timation of the contact forces remains a non-trivial task, even

for relatively simple (like rigid) environmental couplings.

A. Interaction with environment

For analyzing couplings of an interactive force, occurring

on the environmental interface, consider a generic two-

port representation S of the actuated motion system (i.e.

servomechanism) which interacts with its environment, see

block diagram shown in Fig. 1. Recall that the two-port

models, correspondingly networks, with the associated effort
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(F1, F2) and flow (V1, V2) variables, and their product rep-

resenting the input and output power and, thus, energy trans-

fer, are particulary useful for modeling interaction between

servomechanisms and environments. That allows specifying

a mechanical impedance and designing an impedance con-

troller [7] which, when has a varying closed-loop stiffness,

can be seen as a general form of the motion control [8].
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Fig. 1. Generic two-port of servomechanism with its environment.

Considering, in most simple case, a linear two-port model

of an interactive motion system (cf. Fig. 1), one can rec-

ognize that the 2 × 2 square matrix S contains the transfer

functions which relate to each other the velocities and forces,

cf. [9]. It is evident that while Sii describe the transfer

characteristics of a servomechanism and environment, corre-

spondingly, the Sij terms, with i �= j, are responsible for the

cross-couplings. Assuming i = 1, 2 for the servomechanism

and environment, respectively, and S to be regular in terms

of invertibility, one can write[
F1

V2

]
= S−1

[
V1

F2

]
(1)

for reverse transfer characteristics of the coupled interactive

system. Introducing S̄ ≡ S−1, one can recognize that

the forces of the servomechanism and environmental are

additionally balanced by the rate of induced relative mo-

tion, meaning F1 = S̄12F2 + S̄11V1. It is evident that an

unconstrained relative motion, i.e. S̄12 ∨ F2 = 0, allows

to determine the flow quantity of servomechanisms from its

effort counterpart and vice versa. As implication, the forward

transfer function S̄11 is mostly assumed to be known, corre-

spondingly identified, for the used nominal servomechanism.

On the contrary, the cross-coupling transfer characteristics

S̄12 of environmental interconnection can be barely available

and, as implication, hinder the estimation of external effort

variables. Therefore, an appropriate approximation of the en-

vironmental couplings is crucial for properly reconstructing

the interactive forces that affects the controlled system.

Since an interface between the system and its environment

is application-specific, in the most cases, a suitable reshaping

of the interactive force estimate is required, once the effort

variable F2 is of a primary interest. It is worth noting that

in the most simple case of a directly matched interactive
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force (here one can think on an absolutely rigid manipulator

hitting a stiff obstacle with unity restitution coefficient and

zero damping) S̄12 will yield the unity or constant transfer

characteristics. On the other hand, when thinking about a

standard solid (also called Zener) model of the viscoelastic

type, see e.g. [10] for fundamentals, one can assume

S̄12(s) = a
b s+ 1

c s+ 1
,

where a, b, c > 0 coefficients bear the corresponding elas-

ticity and viscosity constants of the associated environment.

Obviously s is the Laplace variable of the transfer func-

tion. One can recognize that the above transfer function

coincides with the lead or lag element, for c < b or

c > b respectively. With the same line of argumentation,

various structural properties of environmental interfaces, like

for example thermo-rheological, creeping and relaxation,

equally as visco-elasto-plastic effects, can be incorporated

when shaping the interactive forces. Therefore, we assume a

generic lead-lag shaper

S̄12(s) = a
n∏

k=1

bk s+ 1

ck s+ 1
, (2)

with a > 0 and bk, ck ≥ 0, while the lead-lag order n ≥ 1
is the free structural parameter, depending on principles and

mechanisms of the interactive force couplings.

B. Contribution and structure of the paper

This paper contributes to robust estimation of the interac-

tive forces, associated with environmental impact, when no

explicit parametric modeling of the environment interface

is given. The structural properties of interaction, which is

back-propagated to actuator dynamics of the motion system,

are assumed as general lead-lag characteristics, cf. Section

I-A. The corresponding order of the lead-lag shaper is

understood to be case-specific, that means depending on the

principal behavior of both, motion control system and its

environment. The proposed method relies on the equivalent

output injection, see e.g. [11], of the second-order sliding

mode [12]. Recall that the latter is robust to the unknown

bounded perturbations, has a finite-time convergence, and is

suitable for using the single output for maintaining system in

the sliding-mode. It should also be noted that an equivalent

approach, but involving more detailed explicit modeling of

the nominal system dynamics, has been recently shown [13]

for the same experimental data.

Following assumptions are made for the rest of the paper.

(i) a time-continuous system dynamics is uniformly con-

sidered, despite all real-time implementations are using the

forward Euler discretization scheme1. (ii) initial conditions

are negligible so that the transient phases, equally as conver-

gence phase to the sliding-mode, are taken out evaluation,

correspondingly performance assessment. (iii) neither noise

by-effects nor sliding-mode related chattering are within the

1Assumption (i) is justified by the sampling time of 1 millisecond – twice
smaller in the order of magnitude than the time constants of the system
demonstrated in the experimental case study of this work.

scope of the recent work and, therefore, neglected in both

the analysis and experimental evaluation. (iv) for the sake of

generality, that in relation to robust design in the frequency

domain and lack of an accurate friction identification (see e.g.

[14] for frictional uncertainties) the dynamic friction effects

are taken out of consideration.

The rest of the paper is organized as follows. In Section

II the second-order sliding mode, correspondingly the as-

sociated exact differentiator, are summarized for the sake

of clarity. An optimal parameter setting, according to [15],

is briefly addressed. The proposed estimation of interactive

forces is described in Section III, together with the cor-

responding lead-lag shaping of equivalent output injection.

An experimental case study, dedicated to predicting the

interactive load forces of hydraulic cylinder, is provided in

Section IV. The paper is concluded by Section V.

II. SECOND-ORDER SLIDING MODE

The second-order sliding mode, see e.g. [16], [12] for

fundamentals, appears when a sliding variable σ satisfies

σ = σ̇ = 0, (3)

while σ = σ(t,x) ∈ R is a sufficiently smooth function of

time t and system states x, and understood in the Filippov

sense [17]. The main issue with using higher (than first) order

sliding modes is the demand on system states to be available,

correspondingly measurable2. This means for fulfilling (3),

both σ and σ̇ should be determinable as from the system

states. Single exception is the well-known super-twisting

algorithm (STA) [20] which needs the measurement of σ
only, for steering the system into the second-order sliding

mode. STA drives both σ, σ̇ → 0 in finite time, so that a

second-order sliding mode occurs after the system reaches

the globally stable origin (σ, σ̇) = 0.

Based thereupon, the first-order robust differentiator, in-

troduced by Levant in [21], can be written as

˙̂x1 = K1

√
|e| |e|−1e+ x̂2, (4)

˙̂x2 = K2 |e|−1e. (5)

It aims at providing an exact estimation of unavailable σ̇(t >
T ) ≡ x̂2 quantity, after a finite convergence time T > 0.

The estimator dynamics, given by (4), (5), is driven by the

output error e = σ − x̂1, while only the sliding variable

σ(t) is available from the system measurements. For the

appropriately chosen estimator gains K1,K2 > 0, which

are the STA parameters [21], the robust exact differentiator

ensures convergence of the states estimation, i.e. e = ė = 0,

and that after finite-time transients. This is generally valid for

an upper bounded second-order dynamics, where |σ̈| ≤ L =
const < ∞ denotes the Lipschitz constant to be known. The

positive constant L upper bounds the matched, but unknown,

disturbances of the nominal second-order dynamics.

2This is excluding the approaches where the high-order sliding-mode
(HOSM) differentiators [18], [19] are used for reconstructing the dynamic
system states from the given single output measurement.



For an optimal STA gain setting, one can assume

K1 = 2.028
√

K2, K2 = 1.1L, (6)

as has been described and analyzed in detail in [15]. Here

is worth noting that the STA gain setting (6) aims for

minimizing the amplitude of fast oscillations, i.e. amplitude

of chattering, in the closed-loop of STA estimator. Further,

one can notice that the above K2-selection, with respect to L,

is quite standard, also for the HOSM derivatives, as initially

proposed and later confirmed in multiple works, see e.g.

[18], [22], [15]. The optimal gain setting (6) has also been

recently evaluated with experiments in [23]. From the above,

it is obvious that an appropriate gains assignment requires

the upper bound of the disturbed second-order dynamics to

be known. If L is unavailable from the system description,

correspondingly design, its approximative estimation is to be

obtained based on the experimental data. An example of such

identification, aimed for determining L, is shown in Section

IV within the experimental case study.

III. ESTIMATION OF INTERACTIVE FORCES

For estimating the interactive forces of environment, con-

sider a perturbed second-order dynamic system as

σ̈ = f(u, σ, σ̇, t) + ξ(t). (7)

The unperturbed (nominal) system dynamics is captured by

f(·), including the linear scaling factor of the inertial mass

m. The most simple case, of an actuated unconstrained

motion3, one assumes f = m−1
(
u− d(σ̇)

)
where an avail-

able input value is equivalent to the controlled force of the

servomechanism, i.e. u ≡ F1. The induced motion dynamics

is counteracted by the velocity-dependent damping d(·), that

is (mostly) the Coulomb and/or viscous friction, both inher-

ent for the moving bodies with bearings, correspondingly

contact surfaces, of an actuated relative displacement. For

a controlled servomechanism coupled with its environment,

the interactive forces are provoking an unknown, yet upper

bounded, perturbation ξ(t). The boundedness assumption of

the perturbation dynamics follows directly from the naturally

limited interactive forces, for which |F2| < Fmax is guaran-

teed for the finite system accelerations, input excitations, and

some constant Fmax. The boundedness assumption argues

again in favor of the lead-lag shaped couplings with envi-

ronment, cf. (2), meaning it excludes the free integrators or

differentiators when determining S̄12. We also stress that due

to the boundedness of the perturbed second-order dynamics,

the second-order sliding mode appears particulary suitable

for a robust estimation of the unknown interactive forces.

For the perturbed case of an exact differentiator (4), (5)

we introduce the state estimation error x̃2 = σ̇ − x̂2 which

dynamics is, consequently, governed by

˙̃x2 = f(·) + ξ(t)−K2 |e|−1e. (8)

Note that the nominal system dynamics, here and in the

following, is written without explicit arguments, this for the

3That case is considered in the experimental study in Section IV.

sake of simplicity and for not forcing oneself to have time-

varying and full-state-dependent dynamics. The finite-time

convergence to the second-order sliding mode ensures that

there exists a time constant T > 0 such that for all t ≥ T
the following identity holds 0 ≡ ˙̃x2 [11], leading to

K2 |e|−1e = f(·) + ξ(t). (9)

Thereupon, an equivalent output injection, cf. [11], is

χ ≡ K2 sign(e) = f(·) + ξ(t). (10)

Theoretically, an equivalent output injection is determined by

an infinite switching frequency of the discontinuous term,

which is maintaining the converged second-order sliding

mode. It implies that the spectral distribution of equiva-

lent output injection contains both, the known part of the

motion dynamics and unknown coupled interactive forces,

in addition to high-frequent oscillations of the sliding-mode

known as chattering [12]. Since the practical finite-sampling

of an estimator (in original work [11] also called observer)

produces a high but finite switching frequency, the necessity

to apply a filter to χ becomes self-evident. Most simple case,

a unity gain low-pass filter, denoted by h, can be designed in

frequency domain and used as a chattering cut-off operator.

This, rather standard [12], filtering approach that allows us-

ing an equivalent output injection, will indispensably provoke

an additional phase lag in the estimate

ξ̂(t) ≡ h
[
χ(t)− f(·, t)] = ξ(t) + ε(t).

Here ε(t) is the dynamic perturbation difference caused by

the filtering process, while ε(s) → 0 for ω → 0, for ω to be

the angular frequency. Therefore, the filtering by h causes

no errors in the lower frequencies.

Instead of low-pass filtering the equivalent output injec-

tion, we make use of the lead-lag transfer characteristics

of the environmental couplings, cf. Section I-A. Without

loss of generality and needs of specifying the polynomial

coefficients and order of (2), we can distinguish two princi-

pally different classes of environmental interfaces – of the

lead- or of the lag-type at higher angular frequencies ω.

While both will approach the a-gain at steady-state, i.e. for

ω → 0, an application-specific finite gain enhancement will

be otherwise expected for the lead-type interfaces at ω → ∞.

Consequently logical, a lag-type environmental interface will

exhibit a finite gain-reduction at high frequencies, i.e. at

ω → ∞. Falling back on a viscoelasticity type interface

modeling, as explained in Section I-A, some general remarks

can be drawn to attention. If, during the principal behavior

of environmental interface, the elasticity will be dominating

over viscosity, a lag-type coupling of the interactive forces

can be expected. On the contrary, a lead-type environmental

coupling is to be expected when the viscosity effects on

the interface dominate over elasticities in the structure. One

should keep in mind that the above distinguishing between

the lead- and lag-type interfaces refer to an upper bound of

the excitation frequencies. At the same time, an application-

specific shaping of the overall transfer characteristics of the



coupling interface is required for 0 < ω < ∞, thus giving

reasoning to the generic shaper (2).

The above considerations allow for using the lead-lag

shaper and, with the introduced transfer function G(s) ≡
mS̄−1

12 (s), designing an infinite impulse response (IIR) filter

g(·), which is the inverse Laplace transform of G. It is worth

emphasizing that the transfer characteristics, captured by G,

do not reflect an (artificially) injected low-pass filter, but have

a direct relationship to the coupling interface properties of the

system S, cf. Section I-A. Hence, the estimated interactive

force can be obtained from the equivalent output injection as

F̂2(t) = g
(
K2 sign(e)(t)− f(·, t)). (11)

An essential point, to be equally mentioned here, is that

an unavailable system state can enter the nominal dynamics

f(·). This case, the state estimate, e.g. x̂2, has to be used

instead of the unmeasurable system quantity. Yet this leads

to a feedback-coupled estimator dynamics and, as a logical

consequence, to an additional initial perturbations f(x̂2)(t)−
f(σ̇)(t) for t < T , i.e. before the finite-time convergence

of the robust differentiator, cf. Section II. Still, when fairly

requiring the boundedness of an initial state discrepancy

and BIBO characteristics of the nominal dynamic map f(·),
one can neglect the transient phase t < T and assumes

f(x̂2) ≈ f(σ̇) ∀ t > T , i.e. once the system is in sliding-

mode. For analysis of the observer convergence and stability

an interested reader is referred to [24].

IV. EXPERIMENTAL CASE STUDY

The experimental case study is accomplished on a valve-

controlled hydraulic cylinder system, counteracted by an-

other cylinder which appears as a dynamic load, see Fig. 2.

Both cylinders are rigidly coupled to each other via a sensing

force-cell, that allows for direct reference measurement of the

interactive forces which we aim to estimate, correspondingly

predict. More technical details on the experimental setup of

hydraulic system in use can be found in [25].

Fig. 2. Hydraulic cylinders system, laboratory view.

The single system parameter identified prior to the exper-

imental study is the overall lumped moving mass m, which

appears as a scaling factor in the total force balance. Both,

the shaping lead-lag dynamics

G(s) = 1.7
2.84× 10−5 s+ 1

0.00137 s+ 1
· 2.38× 10−5 s+ 1

0.01284 s+ 1
, (12)

and the Coulomb friction coefficient γ, resulting in

f = m−1
(
u− γ sign(x̂2)

)
= 0.5882

(
u− 160 sign(x̂2)

)
,

(13)

are identified simultaneously, by a standard numerical mini-

mization routine, using the measured reference force data.

Since L remains the single unknown design parameter

of the STA-based estimator, the proposed approach aims at

determining it via numerical optimization. That is performed

on experimental data of the single measured output. Here it

is worth to recall that the reference force measurement can

be unavailable during the design stage. Solving minimization

min
L

N∑
i=1

e(L)2, (14)

of the squared output error yields L = 3.1. Here N is the size

of the measured and STA-estimated data, while the output

error e depends on the L-assignment of STA-gains cf. (6).

The cumulative squared error (14) is shown in Fig. 3 against

the varying L, out of which the optimal value is taken.
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Fig. 3. Cumulative squared error against varying L.

The reference measured interactive force, used for the

above parameters identification, is shown versus the esti-

mated one in Fig. 4. One can recognize both time series

are well in accord with each other, and that for transient, os-

cillating, and quasi steady-state values of lower (about 1000

N) and higher (about 6000 N) amplitudes. The corresponding
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Fig. 4. Estimated interactive force F̂2 versus reference measured F2.

motion profile, with the measured and estimated quantities

of relative displacement and velocity, are shown in Fig. 5

(a) and (b) respectively. One can recognize a relatively high

level of the displacement measurement noise which indirectly

argues in favor of the robust sliding-mode-based estimation

scheme. From Fig. 5 (b) one can further recognize, that the

relative motion is with relatively low velocity amplitudes.

The velocity pattern is frequently oscillating in a stick-slip

manner, also with multiple sporadic zero-crossings, that is
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Fig. 5. Motion with interactive force: measured versus estimated relative
displacement (a) and estimated relative velocity (b)

typical for slower displacements under impact of a high

process noise and external perturbations, cf. Fig. 5 (a).

Another set of unseen data, i.e. not involved into pa-

rameters identification, has been equally used for evaluating

the estimation of an interactive force. Here the estimated

and reference measured interactive force values are shown

opposite to each other in Fig. 6. This time, the interactive
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Fig. 6. Estimated interactive force F̂2 versus reference measured F2.

force has more steeply periodic peaks, coming from the saw-

shaped profile of the applied load, and the longer steady-state

plateaus in-between, cf. Fig. 6. Also here one can recognize

a good accord between the estimation and measurement.

V. CONCLUSIONS

For robust estimation of the unknown interactive forces,

a method based of the second-order sliding-mode and as-

sociated equivalent output injection has been proposed. It

was shown that, depending on the system dynamics and

interactive force couplings acting as a matched perturbation,

the equivalent output injection can be reshaped via the stan-

dard lead-lag transfer characteristics. The estimation method

design is presented along with the parametrization of an

exact differentiator and strategy of reshaping the equivalent

output injection quantity. An experimental case study was

provided for evaluation of the proposed method. That one

disclosed an accurate estimation of the interactive forces in

the dynamically loaded valve-controlled hydraulic cylinder

with high level of the measurement and process noise.
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