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Abstract: In this paper, we investigate the application of transfer
learning to train a Deep Neural Network (DNN) model for joint channel
and power allocation in underlay D2D communication. Based on the tra-
ditional optimization solutions, generating training datasets for scenarios
with perfect channel state information (CSI) is not computationally de-
manding, compared to scenarios with imperfect CSI. Thus, a transfer
learning-based approach can be exploited to transfer the DNN model
trained for the perfect CSI scenarios to the imperfect CSI scenarios. We
also consider the issue of defining the similarity between two types of
resource allocation tasks. For this, we first determine the value of outage
probability for which two resource allocation tasks are the same, that is,
for which our numerical results illustrate the minimal need for relearning
from the transferred DNN model. For other values of outage probabil-
ity, there is a mismatch between the two tasks and our results illustrate
a more efficient relearning of the transferred DNN model. Our results
show that the learning dataset required for relearning of the transferred
DNN model is significantly smaller than the required training dataset for
a DNN model without transfer learning.

E.1 Introduction

In the last decade, research efforts in underlay D2D communication have categori-
cally focused on devising judicious resource allocation algorithms, as it is fundamen-
tal for the efficient performance of both cellular and D2D networks [84–86]. Judicious
resource allocation in the form of prudent power control and channel assignment to
D2D pairs is vital to limit interference. Its main goal is to maximize performance
metrics such as sum rate, energy efficiency, spectral efficiency etc. while satisfy-
ing the desired quality of service (QoS) requirements [84, 86]. Unfortunately, most
formulations on resource allocation lead to either mixed-integer nonlinear problems
or highly non-convex problems, which in general involve combinatorial complexity
for obtaining the optimal solution. Thus, convex relaxation approaches can be ex-
ploited to obtain the sub-optimal solution with consideration of (i) optimality gap,
(ii) convergence guarantees, and (iii) computation complexity.





In order to practically realize the resource allocation solution, recent research
works have proposed training of Deep Neural Networks (DNNs) to a close-to-optimal
solution. Motivation for exploiting DNN is primarily due to its universal approxi-
mation capability [87] and supplemented by the fact that trained DNN models are
computationally very simple [88] to execute. In this context, deep learning-based
resource allocation algorithms have been proposed in [89, 90]. However, these deep
learning-based resource allocation algorithms are only implementing power control
and power allocations, but not the joint resource allocation of both power allocation
and channel assignments, as presented in the perfect CSI [70] and imperfect CSI [72]
cases. Moreover, these previous works [89, 90] are focused on perfect CSI and im-
perfect CSI scenario of resource allocation in terms of power control and power
allocation respectively but do not include any transfer learning (TL) approach in
order to either improve the learning performance or accelerate the training, saving
computational resources.

Notice that the success of DNN models in replicating different optimization-
based resource solutions relies heavily on the availability of sufficiently large learning
datasets. The generation of large datasets depends on the computational complex-
ity of the original resource allocation solution; for example, under the perfect CSI
scenario, [70] decouples without loss of optimality, the resource allocation problem
into multiple power allocation subproblems and a channel assignment subproblem.
In [70], the power allocation subproblems have closed-form solutions and the chan-
nel assignment subproblem is solved by integer relaxation. Thus, in this case, it is
possible to obtain a large training dataset with reasonable complexity. However, if
we consider a similar set-up with imperfect CSI [72], the decoupled power alloca-
tion sub-problems are solved iteratively using fractional programming, making the
generation of large learning datasets cumbersome work.

The resource allocation under perfect and imperfect CSI can be considered as
similar tasks and in this paper, we investigate how to exploit the concept of trans-
fer learning (TL) in order to address the problem of learning with small datasets.
Transfer learning [19] is a promising technique in which DNN models trained for one
task can be transferred to another similar task which has less learning data. Some
related research work on TL includes robust sensing framework [21], and transfer
learning via self-imitation for resource allocation [32].

In this work, we address the problem of learning resource allocation in an im-
perfect CSI scenario [72] by exploiting the TL from the perfect CSI scenario. We
first characterize the similarity between the two resource allocation tasks in terms of
the outage probability. Next, we train a DNN model under the perfect CSI scenario
with the dataset generated from the algorithm presented in [70] and define it as a
baseline model for TL. The providing baseline model is then retrained for the case of
imperfect CSI with a small dataset generated from the algorithm presented in [72].
Our numerical results illustrate that as the mismatch between two tasks increases, a
larger dataset is required for relearning the baseline model; however, the amount of
dataset required for relearning the baseline model is significantly smaller, compared
to training of the new DNN model.





Base Station

D2D Tx j

D2D Rx j

CU i

D2D Tx 

D2D Rx

CU 

j-th 
D2D 
pair

D2D pair

gBi

gDj
hCji
~

hBj

Input: Channel gains              
Output: Power 
allocation & Channel 
assignments

Input: Channel gains              
Output: Power 
allocation & Channel 
assignments

Perfect CSI Imperfect CSI

Large dataset

Small dataset

Transfer Learning

D2D Tx

D2D x 

CU 

D2D 
pair

Figure E.1: Illustration of the system model with TL approach.

The remainder of this paper is structured as follows: Section E.2 describes the
system model and problem formulation of resource allocation under perfect and im-
perfect CSI. Section E.3 presents the proposed deep learning and transfer learning-
based approach for resource allocation. Section E.4 presents the experimental sys-
tem setup and Section E.5 presents and discusses the results before the concluding
remarks and future directions are provided in Section E.6.

E.2 System Model

In this work, we investigate the transfer of a DNN model trained for resource allo-
cation (channel assignment and power allocation) to cellular users (CUs) and D2D
pairs from the case of perfect CSI conditions to the case of practical operations under
imperfect CSI conditions, as shown in Figure E.1. Here, we consider a cell enabled
by a base station (BS), which communicates with NC cellular users through NC

downlink channels. The cell is assumed to operate in fully loaded mode; thus, CUs
can be indexed by C = {1, ..., NC}. Next, we consider ND D2D pairs (indexed by
D = {1, ..., ND}) wishing to communicate in underlay using the aforementioned NC

downlink channels. The notations for channels are as follows: gBi
and gDj

denote
respective direct channel gains between, BS to i-th CU and transmitter and receiver
in D2D pair; hBj

and hCj,i
denotes respective interference channel gain between BS

to the receiver of j-th D2D pair and the transmitter of j-th D2D pair to i-th CU.
Further, we denote the total noise power in any channel by N0.

Let βi,j be a binary variable denoting the channel assignment to the j-th D2D





pair; βi,j = 1, if i-th CU shares channel with j-th D2D pair and βi,j = 0 oth-
erwise. The D2D pairs are allowed to simultaneously access multiple channels;
thus, improving their individual sum rate. However, in order to limit interference
among D2D pairs, sharing of a channel is restricted to at most one D2D pair, i.e.,∑ND

j=1 βi,j ≤ 1, ∀i. Similarly, let PBi
and PDj,i

denote respectively transmit power
allocated to the BS over the i-th channel and the j-th D2D pair when accessing the
i-th channel. The corresponding transmit powers are constrained as: PBi

≤ PBmax

and PDji
≤ PDmax . Given the above system model, we define the following two

resource allocation tasks:

E.2.1 Task I: Resource Allocation under Perfect CSI

In this task, we follow the same formulation as in [70]. They assume that all channel
gains gBi

, gDj
, hBj

and hCj,i
; 1 ≤ i ≤ NC , 1 ≤ j ≤ ND are perfectly known

at the BS. The objective of this task is the sum rate maximization of both the
cellular and the D2D network along with a fairness measure in channel assignment
to the D2D pairs. Under the assumption of capacity-achieving codes, let Γ(z) :=

log2(1 + z); the sum rate over i-th channel is defined as: Ri :=
∑

j∈D βi,j[RCi,j
+

RDj,i
] + (1−

∑
j∈D βi,j)RCi,0

, where RCi,j
= Γ(PBi

gBi
/(N0 + PDji

hCj,i
)) denotes the

rate of the i-th CU when sharing the channel with the j-th D2D pair (βij = 1);
RDj,i

= Γ(PDji
gDj

/(N0 + PBi
hBj

)) the rate of the j-th D2D pair when sharing the
channel with the i-th CU (βij = 1); and RCi,0

= Γ(PBmaxgBi
/N0) the rate of the i-th

CU when it shares its channel with no D2D pair (βij = 0 ∀j). The overall network
rate of both cellular and D2D networks can be expressed as R :=

∑
i∈C Ri. For

consideration of fairness in channel assignment to D2D pairs, they define unfairness
measure (from [71]): δ2(B) := 1/(NDx

2
0)
∑ND

j=1(xj(B) − x0)
2, where xj :=

∑NC

i=1 βi,j

is the number of channels assigned to the j-th D2D pair, x0 := NC/ND and B is
channel assignemnet. Here, if NC is an integer multiple of ND, then xj = x0 ∀j
is the fairest channel assignment possible. Finally, the overall resource allocation
optimization problem under perfect CSI can be formulated as:

max
B,PB ,PD

R(B,PB, PD)− γδ2(B) (E.1a)

subject to βi,j ∈ {0, 1},
ND∑
j=1

βi,j ≤ 1∀i (E.1b)

0 ≤ PBi
≤ PBmax ∀i 0 ≤ PDji

≤ PDmax ∀j, i (E.2a)

∀i, j, PBi
gBi

N0 + PDji
hCj,i

≥ ηCmin if βij = 1 (E.2b)

∀i, j,
PDji

gDj

N0 + PBi
hBj

≥ ηDmin if βij = 1. (E.2c)

where ηCmin and ηDmin are the respective minimum signal-to-interference plus noise
ratio (SINR) requirements for CUs and D2D pairs. Notice that problem (E.1) is
a mixed-integer non-convex program, which involves combinatorial complexity for





obtaining the optimal solution. A close-to-optimal solution to problem (E.1) is
provided in [70], where joint power allocation and channel assignment are opti-
mally decoupled in several power allocation problems and a channel assignment
sub-problem. The decoupled power allocation subproblems have closed-form solu-
tions and the channel assignment subproblem is solved by integer relaxation. This
solution is computationally efficient. Thus, due to low complexity, one can easily
obtain a large dataset to transfer a DNN model.

E.2.2 Task II: Resource Allocation under Imperfect CSI

In this task, we follow the same formulation as in [72]. The interference channel
gain from the transmitter of the j-th D2D pair to the i-th CU, i.e., hCj,i

, is con-
sidered to be estimated with minimum cooperation between the cellular and D2D
networks. Thus, the interference channel gain is assumed to be exponentially dis-
tributed (Rayleigh fading) and is denoted by h̃Cj,i

; 1 ≤ i ≤ NC , 1 ≤ j ≤ ND. Due
to imperfect CSI, the resource allocation optimization problem presented in (E.1)
incurs the following modifications: (i) the objective function, and (ii) the stochastic
minimum SINR constraint for the CUs.

The stochastic SINR constraint (E.2b) can be replaced with probabilistic con-
straint to guarantee a minimum outage probability ϵ, expressed as:

Pr

{
PBi

gBi

N0 + PDji
h̃Cj,i

≥ ηCmin

}
≥ (1− ϵ) if βij = 1, ∀i, j (E.3)

The probabilistic SINR constraint can be expressed in a closed form expression for
a given statistical distribution of hCj,i

. Thus, constraint (E.3) can be equivalently
expressed as:

PBi
gBi

N0 + PDji
F−1

h̃Cj,i

(1− ϵ)
≥ ηCmin (E.4)

where, F−1

h̃Cj,i

(1 − ϵ) is the inverse cumulative distribution function (CDF) for h̃Cj,i

evaluated at (1− ϵ).
Next, focusing on the stochastic objective function, the objective function (E.1a)

can be replaced by the criterion to maximize the minimum network rate exceeded
for (1 − ϵ) portion of the time. The minimum network rate can be considered by
analyzing the lower bound of the total rate at channel i, which is defined as RLB

i :=

(1−
∑

j∈D βi,j)RCi,0
+
∑

j∈D βi,j[RDj,i
+RLB

Ci,j
], where, RLB

Ci,j
denotes the lower bound

(which must be at least achieved (1−ϵ) portion of the time) of the rate of the i-th CU
when sharing the channel with the j-th D2D pair (βij = 1). Since h̃Cj,i

is random,
we can compute RLB

Ci,j
= Γ(zLBCi,j

) where zLBCi,j
: Pr{zLBCi,j

≤ PBi
gBi

/(N0 + PDji
h̃Cj,i

)} =
1− ϵ. The minimum sum rate is therefore R(B,PB, PD) :=

∑
i∈C R

LB
i . The fairness

part is the same.
Once again, note that the resource allocation problem (E.1) with minimum net-

work rate objective and minimum SINR constraint for CUs expressed in (E.4), is





a non-convex mixed-integer program and obtaining the optimal solution requires
combinatorial complexity. An efficient close-to-optimal solution to the resource al-
location problem for the case of imperfect CSI is provided in [72], where once again
the joint power allocation and channel assignment problem is decoupled, without
loss of optimality, in several power allocation and channel assignment subproblems.
The decoupled power allocation subproblems are solved using iterative fractional
programming, whose solutions are later used to obtain channel assignment by inte-
ger relaxation. Notice that due to the iterative fractional programming in solving
the power allocation sub-problem, generating large datasets to train a DNN is cum-
bersome work due to larger computational complexity. Thus, in the next section, we
explore the similarity between these two tasks: (i) resource allocation in the perfect
CSI case, and (ii) resource allocation in the imperfect CSI case to exploit transfer
learning.

E.3 Transfer Learning based Resource Allocation

The fundamental requirement in transfer learning is to establish a similarity between
the tasks over which TL is performed. For the presented resource allocation problem,
the similarity between two tasks: (i) resource allocation in perfect CSI and (ii)
resource allocation in imperfect CSI can be established by following Lemma.

Lemma E.3.1. Under the assumption that the interference channel gains h̃Cj,i
fol-

lows an exponential distribution with the mean denoting the true channel gain value
in the perfect CSI case, the two resource allocation tasks for perfect CSI and imper-
fect CSI coincide for outage probability ϵ = 1

e
.

Proof: Notice that the minimum network rate objective function with the mod-
ified constraint (E.4) for resource allocation in the imperfect CSI case, is the same
as for the perfect CSI case when F−1

h̃Cj,i

(1− ϵ) = hCj,i
. For exponential distribution,

F−1

h̃Cj,i

(1− ϵ) = E[h̃Cj,i
] ln

(
1
ϵ

)
. Since the true CSI is equal to the mean of h̃Cj,i

, i.e.,

hCj,i
= E[h̃Cj,i

], the two tasks are the same for ϵ = 1
e
= 0.3679.

Next, we briefly discuss the DNN architecture, which is used in this work to obtain
the resource allocation solution for the perfect CSI case.

E.3.1 Fully-connected DNN Architecture

A deep neural network (DNN) architecture consists of multiple numbers of layers
between the input and output, each of which consists of a linear operation followed
by a point-wise non-linearity, also known as the activation function.

Consider a feed-forward DNN with L layers, labelled l = 1, ...., L and each with
a corresponding dimension ql, as shown in Figure E.2. The layer l is defined by
the linear operation Wl ∈ Rql−1×ql followed by a non-linear activation function
σl : R

ql → Rql . Layer l receives input from the l− 1 layer denoted as, Wl−1 ∈ Rql−1 ,
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Figure E.2: Architecture of fully-connected DNN with input and output.

the resulting output of the layer l, Wl ∈ Rql , is then computed as Wl := σl(WlWl−1),
where σl(·) is point-wise activation function. The final output of the DNN, WL, is
then related to the input W0 by propagating through the various layers of the DNN
as WL = σL(WL(σL−1(WL−1(....(σ1(W1W0)))))). The DNN learns the layer-wise
weights W1,W2, ...,WL. Our input to DNN is channel gains and output is channel
assignments and power allocations. The activation function σl includes a rectifier
function (commonly referred to as ReLU), defined as σl(x) = 0 for x < 0 and x for
x > 0.

E.3.2 Output Discretization and Scaling

In order to satisfy constraints (E.1b) and (E.2a), the output vector in the resource
allocation problem, that is, the channel assignments and power allocations, are
discretized and scaled respectively. A binary channel assignment to j-th D2D pair
is assigned as 1 if the channel is assigned and 0 if the channel is not assigned.
Since each channel can be assigned to at most one of the ND D2D pairs, for a j-th
D2D pair, we discretize maximum among NC possible channel assignments values
{βi,j}i∈C to one and other assignments to zero. Similarly, the power value should
range between 0 and Pmax. However, the obtained output power values may be
higher than Pmax and lesser than 0. Thus, in order to bring it to the specified range,
the power value is thresholded with 1 such that if the power is more than 1, then
it will be mapped to 1 and if it is less than 0, then it is mapped to 0, followed by
multiplication by Pmax.

E.3.3 Transfer Learning Strategy

In transfer learning, a DNN model trained for some specified task is transferred to
perform a similar task decreasing substantially the retraining [91]. A given target
task can be trained with fewer data by taking the trained model of a similar task
as the baseline model. Here the trained baseline DNN model refers to the model
trained for resource allocation in the perfect CSI scenario and the target task is
resource allocation for the imperfect CSI scenario.





Thus, for this work, we train a baseline model for the perfect CSI case using a
large dataset generated by the computationally efficient algorithm presented in [70].
Next, we use this baseline model to initialise the weights of the DNN model and fine-
tune it for the imperfect CSI scenario, where we assume that we have an insufficient
amount of dataset (generated from [72]) for training and testing, due to the huge
complexity of the considered algorithm.

E.4 System Setup

The proposed DNN and TL-based approaches are implemented in Python 3.7.3 with
TensorFlow 2.2.0 on a Windows 10 laptop having an Intel Core i5 8th generation
processor, Intel UHD Graphics 620, and 16 GB of memory. The original solver for
the perfect and the imperfect CSI model of resource allocation is implemented in
MATLAB R2018a. Therefore, we have compared the computational performance
of the perfect and imperfect CSI model with the proposed DNN and TL-based
approach.

E.4.1 Data Generation

The simulation setup to generate data comprises a circular cell of a 500m radius in
which the CUs and D2D transmitters are placed uniformly at random. Each D2D
receiver is placed uniformly at random inside a circle of radius 5m centred at the
corresponding transmitter. The channel gains are calculated using a path-loss model
with exponent 2 and gain −5 dB at a reference distance of 1m. We assume h̃C to be
exponentially distributed with the mean value obtained from the mentioned path-
loss model. Averages over 100,000 independent realizations of the user locations
with parameters BW = 15 kHz, γ = 50 × BW, ND = 5, NC = 5, N0 = −70dBW
(γ is scaled with BW to ensure that the unfairness and the achieved rate are of
comparable values) are performed. Thus, the input to the DNN is the set of channel
gains, that accounts for 40 inputs. The output to the DNN is a joint set of 50 power
allocations and 25 channel assignment variables. For training the baseline model
with perfect CSI, we consider 100,000 input-output pair samples.

E.4.2 Parameter Selection

To obtain a satisfactory baseline model, we train DNNs with a different number
of hidden layers, each having a variable number of neurons. Since output values
(channel assignments and power allocations) are positive, the activation function to
the hidden layers is a rectified linear unit (ReLU) and the output layer is linear.
The weights of the baseline DNN are initialized randomly. We use mean square
error (MSE) as the loss function and ADAM optimizer with a learning rate of 0.001
for stochastic optimization. We standardize the dataset by taking the mean and
scaling to unit variance. We use a mini-batch of 256 samples. Training epochs are
set empirically.





E.4.3 Training and Testing Stage

For the baseline DNN training, we divide the whole data into 80:20 ratio, that is,
80 % for training and 20 % for testing. During testing, for each channel realization,
we pass it through the trained network and collect the optimized power allocation
and channel assignments. Then, we also evaluate the satisfaction of power con-
straints (E.2b), SINR (E.2c), and (E.4).

E.5 Results and Discussions

This section presents numerical results and a discussion to showcase the effectiveness
of the proposed DNN and TL-based approach. The performance accuracy of the
model is evaluated in terms of MSE. There are 100,000 input-output samples in
both scenarios.

Table E.1 presents the different training and testing errors that are carried out
for the perfect CSI scenario to train the DNN model and set it as our baseline model
for TL. It can be observed that the DNN model having 3 hidden layers (highlighted)
is performing better as compared to the other combinations. The accuracy, i.e., test
MSE, are comparable to the training part, thus illustrating no over-fitting in the
model. Moreover, the percentage of constraint satisfaction (E.2b) and (E.2c) in the
testing stage are high and nearly the same as its counterpart in training.

Table E.2 shows the results for the imperfect CSI scenario with outage probability
ϵ = 0.1 when (i) trained via a DNN model with the same training-testing split and
configurations as in the perfect CSI scenario, and (ii) trained with a baseline model
learnt from perfect CSI (TL) with 50% training-testing split. It can be noticed that
the TL-based approach has obtained nearly the same MSE as the direct DNN-based
approach with the random initialization, and has a similar percentage of constraint
satisfaction. This indicates that our baseline model obtained/transferred from the

Table E.1: Model learning for Perfect CSI

Number of hidden layers 3 6 3 6
Input layer neurons 40 40 40 40
Hidden layer activation function ReLU ReLU ReLU ReLU
Hidden layer neurons 40,20,5 40,20,5, 40,60,80 40,60,80,

20,40,60 100,80,60
Output layer activation function Linear Linear Linear Linear
Output layer neurons 75 75 75 75
Test MSE 0.038 0.039 0.205 0.090
Train MSE 0.039 0.039 0.206 0.090
Test E.2b; E.2c constraints 94.53; 94.69; 81.78; 84.67;
satisfied (in %) 100 100 86.70 92.96
Train E.2b; E.2c constraints 94.55; 94.58; 81.78; 84.53;
satisfied (in %) 100 99.99 86.62 92.93





Table E.2: Model learning for Imperfect CSI

Test Train Test Train Test Train
MSE MSE E.2b E.2b E.4 E.4

constraint constraint constraint constraint
satisfied satisfied satisfied satisfied

DNN 0.017 0.017 95.28 95.32 100.0 100.0
TL 0.017 0.017 95.01 94.92 100.0 100.0

perfect CSI scenario improves the learning for the imperfect CSI case with less
amount of training data (usually termed as sample-complexity).

The amount of training data required to retrain the baseline model depends on
the degree of task mismatch. It can be observed from Figure E.3 that when two
tasks are similar, i.e., outage probability ϵ = 0.3679, then just with 20% of training
data, the MSE of TL is 0.04. Moreover, with 30% of training data, the transferred
baseline model is completely trained. However, as illustrated in Figure E.4, when
a lot of mismatch presents between the two tasks, ϵ = 0.05, then almost 80% of
training data is required for retraining the transferred baseline model. Since the
problem is highly non-convex, the solution that is achieved may correspond to local
minima. In Figure E.4, the training of the DNN seems to converge to a local optima
when the amount of training data is below 70%, but then it achieves a better solution
with 80% of the training data.
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Figure E.3: Percent of training data vs MSE (No. of epochs=10).
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Figure E.4: Percent of training data vs MSE (No. of epochs=10).
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Figure E.5: Sum-rate for different values of outage probability ϵ.

Figure E.5 shows the plot of sum-rate obtained for different values of outage
probability ϵ, that is, 0.05, 0.1 and 0.3679, for the case of imperfect CSI [72]. The
black dashed line is the sum-rate obtained by averaging the 100,000 realizations of
the original solutions calculated numerically using optimization method [72]. The
blue and red dashed lines, respectively, are the sum-rates obtained by training the
imperfect CSI model via DNN and TL with 50% training-testing separation of sam-
ples. It can be noticed that the sum-rate of TL is higher than the one obtained for
the DNN, showing a better performance. Specifically, the TL is achieving the same
sum-rate as the original for ϵ = 0.3679, a condition in which the two resource alloca-
tion tasks for perfect CSI and imperfect CSI (under outage probability ϵ = 0.3679)
are similar. This signifies that even with a small number of training samples, TL
achieves nearly the same performance as the original, and superior performance,
as compared to using a DNN without TL, hence resulting in saving computational
resources.

Table E.3 presents the comparison of computational performance of the proposed
TL-based approach with the DNN-based approach (both implemented in Python)
and with the numerical optimization methods proposed in [70, 72] (implemented in
MATLAB). It can be noticed that the MATLAB implementation of both algorithms
requires substantially more computational time as compared to the TL-based ap-
proach. Moreover, the case of imperfect CSI requires a lesser number of epochs to

Table E.3: Computational performance for perfect and Imperfect CSI

Optimization
methods [70,72]

DNN TL

Scenario Time Train
epochs

Test
time

Train
epochs

Test
time

(second) (80,000 (second) (50,000 (second)
samples) samples)

Perfect 46.0 51 0.166 - -
CSI
Imperfect 214.0 13 0.161 19 0.125
CSI





train the DNN as compared to the perfect CSI for the same training data. The
TL-based approach requires a lesser number of training iterations, that is, 950,000
(19 epochs × 50, 000 samples) as compared to the imperfect CSI, which is 1040,000
(13 epochs × 80, 000 samples). As expected, the TL-based approach requires less
training data (sample complexity), thus saving computational resources.

E.6 Conclusion and Future Work

In this paper, we have first designed a DNN-based algorithm for wireless resource
allocation in the case of a perfect CSI model. The optimal DNN model is considered
as the baseline for transfer learning in order to train an imperfect CSI model. Our
results show that for the joint problem of channel assignments and power allocations
over D2D communications, DNNs can approximate accurately this solver between
cellular users and D2D pairs, with the knowledge of the channel-state-information
(CSI). Moreover, the transferred model to the imperfect CSI scenario performs better
than the DNN model without transfer learning and requires less amount of training
data, reducing the sample complexity. Our results show that DNN has great po-
tential to solve real-time wireless resource allocation problems and transfer learning
can reduce the data-hungry nature of DNN, saving computational resources. TL
can lead to a good performance across similar problems with a limited amount of
training data.




