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Sammendrag

Radiokart gir informasjon om signalstyrke og nettverksdekning i et angitt geografisk
område. Beregningen av nøyaktige radiokart er nødvendig for å forbedre ytelsen
til mange bruksområder for fremtidige trådløse nettverk, for eksempel lokalisering,
nettverksplanlegging og ressursallokering. For å utarbeide nøyaktige radiokart kan
den nøyaktige posisjonen til sender (Tx) og mottaker (Rx) brukes. Dette er kjent
som den stedsbaserte metoden. Men i praksis har trådløse nettverk en høy grad
av multibane, med resultat av at det er vanskelig å finne nøyaktig posisjon av Rx.
Alternativt kan man bruke signalets ankomsttidspunkt (ToA), som er lettere å måle.
Dette er kjent som den stedsfrie metoden. En av måtene å inkorporere begge meto-
dene er Mixture of Experts (MoE).

På grunn av endringer i utbredelsesegenskapene til trådløse nettverk, kan en
radiokartmodell designet under et bestemt miljø (kildemiljø) ikke brukes direkte i
et nytt miljø (målmiljø). Utformingen av en ny modell krever en betydelig mengde
måleprøver, og ofte store beregningsressurser og datainnsamlingskostnader.

For å adressere disse problemstillingene foreslår vi i denne avhandlingen en serie
av Transfer Learning (TL) modeller som bruker hver av de nevnte metodene for å
estimere radiokart i nye trådløse miljøer der det er mangel på måleprøver. For dette
formålet trener vi først en radiokartmodell i et kildemiljø og overfører den deretter til
et annet lignende, men fortsatt annerledes målmiljø. Deretter finjusteres modellen
for målmiljøet ved å bruke en liten mengde prøver av det trådløse målmiljøet.

For et slikt system styrer likheten mellom to trådløse miljøer effektiviteten til TL-
operasjonen. Derfor, for å kvantifisere likheten, undersøker vi forskjellige klassiske
likhetsmål inkludert den mye brukte Wasserstein-avstanden. Numerisk viser vi at
disse klassiske målene ikke gir gode resultater i sammenheng med TL for radiokart-
estimering. For å overvinne begrensningene til disse klassiske målene, designer vi
et datadrevet likhetsmål (DDS), som er i stand til å fange opp alle variasjonene
av trådløse miljøer og kan lære de trådløse forplantningsegenskapene direkte fra
dataene. I tillegg kan vår DDS forutsi mengden treningsdata som trengs for å
estimere radiokart i nye trådløse målmiljøer når TL-operasjonen utføres.

Eksperimenter viser at våre foreslåtte TL-metoder fungerer effektivt med høy
modellnøyaktighet og sparer en betydelig mengde sensormålingsdata. Ulike mod-
eller er designet for hvert av tilfellene med stedsbasert, stedsfri og MoE-basert ra-
diokartvurdering. Numeriske eksperimenter viser ytelsen til alle tilfellene.

Til slutt undersøker vi anvendelsen av TL mellom to forskjellige optimalis-
eringsproblemer med felles ressursallokering (kanaltilordning og kraftallokering) i
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underliggende D2D-kommunikasjon. Ressursallokeringsmodellen som er trent på
datasettet hentet fra scenarioet med perfekt kanaltilstandsinformasjon (CSI), over-
føres til det ufullkomne CSI-scenarioet og finjusteres deretter. Eksperimentet viser
at TL forbedrer ytelsen til det ufullkomne CSI-scenariet med mindre mengder tren-
ingsdata.
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Abstract

Radio maps provide information about spatial signal strength and network coverage
in a designated geographical area. The estimation of accurate radio maps is neces-
sary to improve the performance of many applications of future wireless networks.
For instance, localization, network planning, and resource allocation, to name a
few. To obtain accurate radio maps, the exact knowledge of transmitter (Tx) and
receiver (Rx) locations can be used. This is known as the location-based method.
However, in practice, wireless networks incur a high degree of multipath. As a
result, it is difficult to obtain accurate locations of Rxs. Alternatively, time of ar-
rival (ToA) features of radio signals, which are easier to obtain, can be used. This
is known as the location-free method. One of the ways to incorporate both methods
is the mixture of experts (MoE).

Due to changes in the propagation characteristics of wireless networks, a radio
map model designed under a particular wireless environment (source environment)
can not be directly used in a new wireless environment (target environment). More-
over, designing a new radio map model for each new wireless environment requires
a huge amount of measurement samples and may need substantial computational
resources and data acquisition costs.

To address these issues, in this dissertation, we propose a series of transfer learn-
ing (TL) schemes using each of the aforementioned methods to estimate radio maps
in new wireless environments where there is a scarcity of measurement samples. To
this end, we first train a radio map model in a source wireless environment and then
transfer it to another similar but still different target wireless environment. It is
then fine-tuned using a small amount of samples of the target wireless environment
to reduce the data acquisition cost.

For such a scheme, the similarity between two wireless environments controls the
effectiveness of the TL operation. Therefore, to quantify the similarity, we inves-
tigate different classical similarity measures including the widely used Wasserstein
distance. Numerically, we show that these classical measures do not perform well in
the context of TL for radio map estimation. To overcome the limitations of these
classical measures, we design a data-driven similarity measure (DDS), which is able
to capture all the variations of wireless environments and can learn the wireless prop-
agation characteristics directly from the data. Additionally, our DDS can predict
the amount of training data needed to estimate radio maps in new target wireless
environments when performing the TL operation.

Experiments show that our proposed TL schemes perform efficiently with high
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model accuracy and save a substantial amount of sensor measurement data. Differ-
ent models are designed for each of the cases of location-based, location-free, and
MoE-based radio map estimation. Numerical experiments showcase the performance
of each case, respectively.

Finally, we investigate the application of TL between two different optimization
problems of joint resource allocation (channel assignment and power allocation) in
underlay D2D communication. The resource allocation model trained on the dataset
obtained from the perfect channel state information (CSI) scenario is transferred
to the imperfect CSI scenario and then fine-tuned. The experiment shows that TL
improves the performance of the imperfect CSI scenario with less amount of training
data.
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Chapter 1

Introduction

1.1 Motivation

A radio map contains meaningful information about the signal propagation envi-
ronment of a wireless network. In the most general sense, a radio map portrays
an estimate of the power spectral density (PSD) over a specified geographical area
as a function of location, time, and frequency. Moreover, a radio map also depicts
various characteristics of the wireless environment over a certain region, which is gov-
erned by various factors, such as reflections, diffractions from large-scale objects and
buildings, and scattering from small-scale objects, which result in fluctuations in the
received radio signals. For example, Figure 1.1 shows two radio maps corresponding
to two wireless environments, one without objects and another one incorporating
three objects represented by three cubes in black colour, respectively, showing the
power distribution across space with four transmitters (Txs), a carrier frequency
of 900 MHz with 1 MHz bandwidth. Figure 1.1(c) shows the absolute difference
between these two radio maps with the three objects represented by three cubes in
black colour. Moreover, it can also be seen that the received power1 is high near
each Tx and decreases as one moves away from each Tx. Note that the power values
are normalized to the scale [0, 250].

There are several applications of radio maps in wireless networks. A wide range
of applications of radio maps is shown in Figure 1.2. Specifically, in the case of
network planning, an area having inadequate power in some region (weak coverage)
can be covered appropriately by adding a new base station in that region [4], as
shown in Figure 1.3. Similarly, the Txs locations can be inferred by inspecting a
radio map [5]. For example, it can be seen in Figure 1.1 that the received power (in
dBm) is higher near each Tx, and this information can be exploited to identify the
locations of Txs.

To improve the performance of future wireless networks, as shown in Figure 1.2,
accurate estimation of radio maps is essential for efficient network operations. The
estimation of radio maps is also known as spectrum cartography (SC) [6]. To esti-
mate radio maps, one needs to first deploy sensors or receivers (Rxs) in the considered

1Note that the term “power” is used to refer to PSD in the rest of the dissertation.
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(a) (b) (c)

Figure 1.1: Radio map of: (a) original wireless environment, (b) wireless environ-
ment with 4 Txs and 3 objects represented by 3 cubes, and (c) difference between
the two radio maps in (a) and (b).
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Figure 1.2: Application of radio maps.

area and then construct a map by applying some kind of interpolation or regression
techniques. Different methods can be used for this, such as kernel-based methods [7]
and deep learning methods, which usually require the knowledge of accurate Rx loca-
tions. However, in cases where there is a high degree of wireless multipath, locations
of Rxs can not be estimated accurately. Then, time of arrival (ToA) features of radio
signals can be used instead [6, 8] to estimate the radio maps. Moreover, a mixture
of experts (MoE) (see Section 2.7), which incorporates both location information
of Rxs, ToAs, and an estimation of the location errors, can also be used to estimate
the radio maps.
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Figure 1.3: Network planning using radio map.

The propagation characteristics of wireless networks vary with the environments,
thus, a radio map model learned for one wireless environment (source environment),
can not be used directly in the new wireless environment (target environment).
Moreover, estimating a radio map for each new wireless environment, in general,
requires typically a large amount of sensing data. However, in practice, there is
data scarcity, that is, lack of data as it is usually difficult and expensive to have
always a sufficiently large number of measurements in each new wireless environ-
ment. Collecting a large amount of sensing data for each new wireless environment
and learning the corresponding radio map model each time is time-consuming. To
address these issues, we propose transfer learning (TL) methods (see Section 2.5)
to reduce the amount of data samples. The TL approach allows us to exploit the
previously learned radio map model in a source environment in order to estimate
radio maps in other (new) similar wireless environments (target environment), us-
ing only some additional sensor measurement samples instead of a complete set of
sensor measurements. TL requires also similarity measures [2] between different en-
vironments in order to decide whether the TL operation will be beneficial, reducing
the number of sensor measurements. Intuitively, the TL operation will be beneficial
when the (source) original environment and the new (target) environment are suf-
ficiently similar. In this sense, we also design a data-driven similarity measure (see
Section 3.6.2) to measure the similarity between the source and target wireless
environments. Our designed similarity measure also predicts the amount of training
data needed to perform the TL operation for a new similar wireless environment.
For the sake of simplicity, in this dissertation, we focus on data-driven radio map
estimation for indoor wireless environments. However, the same methodology can
also be applied to outdoor wireless environments for estimating radio maps.

Resource allocation (RA) in wireless networks is a computationally demanding
task. In principle, TL can be used for RA if two tasks are sufficiently similar. This
will reduce the amount of computational resources needed as well as the training
time.
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1.2 Summerized State of Art

The estimation of radio maps has gained significant attention in wireless networks,
and a number of works [3,9–11] have been done to estimate radio maps using different
techniques. One can categorize these techniques into either model-based or model-
free methods. Model-based techniques generally assume certain signal propagation
models and then combine the PSD of signals received from the active Txs [9]. For
example, a log distance path loss model for Wi-Fi radio map estimation is proposed
in [10], but then it ignores multipath propagation. Model-free techniques explore
and make use of neighbourhood information. For example, these models employ
radial basis function (RBF) [12] interpolation techniques for estimating radio maps.
RBF can use different types of kernels, such as Gaussian, multi-quadrics, or splines.
To capture path loss and shadowing, the power map estimation algorithm in [13]
uses multiple kernels. Kernel-based regression methods can also be used to estimate
power maps from features (e.g., ToA-based features) obtained from the pilot signals
in [11]. These aforementioned works can map the power distribution across space
efficiently using either location-based or location-free features. However, these tech-
niques are severely impaired by small and large-scale fading while estimating radio
maps.

There have been also works that employ deep-learning techniques for estimating
radio maps. For example, to estimate radio maps in urban environments, the authors
in [3] adopt a RadioUNet model which is a modified UNet architecture [14] (origi-
nally designed for biomedical image processing application). Notice that [3] and [14]
also use auto-encoders. A deep autoencoder, which learns the spatial structure of
shadowing is proposed to estimate power maps in [15]. To estimate outdoor radio
maps, a two-phase learning framework integrating the radio propagation model and
designing a conditional generative adversarial network is proposed in [16]. A max-
imum likelihood estimation-based indoor radio map estimation under a Gaussian
quantizer, is proposed in [17]. However, these works require training the model from
the very beginning for each new wireless environment, resulting in the need for a
huge amount of training data, which is typically difficult and expensive to obtain.
Moreover, without TL, one also needs to train a new deep learning model from the
very beginning when the wireless environment changes, as illustrated in Figure 1.1.
Given these difficulties, it is very challenging to learn efficient deep-learning models
for estimating radio maps in each new wireless environment.

As mentioned previously, one promising solution to deal with the data scarcity
problem is the use of transfer learning (TL) methods [18, 19]. TL has been seen to
achieve promising results in several applications of wireless networks and in han-
dling the data scarcity issue, reducing the amount of training samples. For ex-
ample, for capturing traffic pattern diversity in the cellular data of distinct cities,
the work in [20] proposes a spatial-temporal cross-domain neural network (STC-
Net). The work in [20] uses model-based TL, where the complete source model is
transferred to the target environment, exploiting similarities between distinct types
of cellular traffic across distinct cities. For improving the robustness of deep neu-
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ral networks (DNN) based spectrum sensing in a cognitive radio scenario, TL is
used in [21], where it is assumed that the data collected under distinct character-
istics belong to distinct but related distributions. In [22], downlink channel state
information (CSI) prediction from uplink CSI using direct model-based TL, is pro-
posed for frequency division duplexing (FDD) in a massive multiple-input multiple-
output (MIMO) framework. In [23], wireless fingerprinting localization uses a TL
method incorporating the Wasserstein distance [24]. A TL-based method incorpo-
rating the Kullback-Leibler (KL) divergence index as a similarity measure, is used
for predicting the antenna tilt-dependent radio map in [25]. A two-phase TL gen-
erative adversarial network (TPTL-GAN) for estimating power spectrum maps for
underlay cognitive radio networks, is proposed in [26], however, this work is tailored
for underlay cognitive radio applications. To sum up, to the best of our knowledge,
there is no work in the literature that employs transfer learning for estimating radio
maps in either indoor or outdoor wireless environments and predicts the amount of
training data required for the new target wireless environments.

There have been few works that use TL for optimization problems in different
applications. The authors in [27] propose a TL-based dynamic multiobjective evo-
lutionary algorithm (EA) which integrates TL and population-based EAs to solve
the dynamic multiobjective optimization problems (DMOPs), in which the opti-
mization functions change over time in varying environments. To maximize the
production net present value (NPV) throughout the expected life of the reservoir, a
TL-based optimization framework is proposed in [28] for dynamic production opti-
mization problems. A TL-based parallel evolutionary algorithm framework for bi-
level optimization problems is proposed in [29], which conducts a parallel lower-level
search (LLS) in bi-level optimization. A non-iterative topology optimization method
using TL based on a convolutional neural network architecture is proposed in [30] for
different 3D design explorations. In [31], a TL-based framework for learning to op-
timize for resource management (LORM) is proposed, which achieves near-optimal
performance for mixed-integer nonlinear programming (MINLP) resource manage-
ment problems in wireless networks. For tackling an NP-hard mixed-integer nonlin-
ear programming problem of resource allocation, a TL method via self-imitation is
proposed in [32]. However, to the best of our knowledge, none of the works present
in the literature has used TL between two different optimization problem solvers for
two different but similar tasks in wireless networks, in particular, for the resource
allocation task.

1.3 Problem Statements and Main Contributions

This dissertation addresses four problem statements which are derived from the
literature review:

Q1. TL for Location-based Radio Map Estimation: How can we estimate
accurate radio maps in a new target wireless environment where there is data
scarcity, that is, an insufficient amount of measurement data to estimate the
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radio map?
This problem is presented in papers A and B. The main contributions of these
works can be summarized as follows:

• Design of an effective data-driven TL method that transfers and fine-
tunes a DNN-based model for a radio map learned from a given source
environment to another target environment.

• Design of a data-driven similarity measure that is used to decide whether
to perform the TL operation in a new target wireless environment, that
outperforms other widely used similarity measures.

• Prediction of the amount of training data needed to estimate the radio
map in a different target environment, when performing the TL operation,
based on our data-driven similarity measure.

• Analysis of the robustness of the proposed TL scheme under noisy envi-
ronments when the locations of receivers are estimated and not perfectly
known, and the corresponding power values are noisy. Our proposed TL
scheme shows satisfactory performance (Paper B).

• Extensive testing of the proposed TL scheme using simulated data from
the Remcom simulator [33]. Results demonstrate that our proposed
scheme can perform effective TL in most of the tested environments
while using a small amount of training data. Moreover, the proposed
data-driven similarity measure can accurately recommend TL guarantee-
ing a satisfactory radio map estimation while reducing the number of
necessary training samples.

Q2. TL for Location-Free Radio Map Estimation and its Comparison:
Due to a high degree of wireless multipath during the signal propagation, it
might be difficult to obtain the exact Rxs locations. How can we estimate ac-
curate radio maps in a new wireless environment without the exact knowledge
of Rxs locations and having insufficient amount of measurement data? More-
over, what are the advantages and disadvantages of this method with respect
to a location-based method?
This problem is presented in paper C. The main contributions of this work
can be summarized as follows:

• Design of an efficient DNN-based model that learns a radio map for an
indoor wireless environment using ToA features and/or Rxs locations. In
addition, we adapt the previously proposed data-driven TL method to
these newly designed models.

• Extensive testing of our algorithms using simulated data from the Rem-
com simulator [33]. Our simulation results demonstrate that employing
only ToA (location-free) feature is better in estimating accurate radio
maps when the location information is not accurately known.
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• Numerically, we show that the proposed TL method employing only ToA
(location-free) feature requires less amount of training data as compared
to the location-based TL method, as presented in Paper A. It is also
shown experimentally that a similarity measure based on the Wasserstein
distance (WD), which is widely used in TL, is also not applicable for the
location-free radio map estimation application.

Q3. TL for Radio Map Estimation using Mixture of Experts: In a given
wireless environment, there might be both an inexact knowledge of Rxs lo-
cations and a large number of wireless multipaths. The inaccuracy of Rxs
locations and the degree of wireless multipath will change across space in the
environment. Since there are cases where the location-free is better (e.g. high
degree of wireless multipath) than the location-based method, and some cases
where the location-based is better (e.g. lower degree of wireless multipath)
than the location-free method, how can we leverage both location-based and
location-free methods to estimate accurate radio maps in a new wireless envi-
ronment which has an insufficient amount of measurement data?
This problem is presented in paper D. The main contributions of this paper
are:

• Designing a MoE-based radio map model which mixes two experts, i.e.,
location-based and location-free experts.

• Adapting data-driven TL method for a MoE-based radio map model
learned from an original wireless environment that is transferred and
fine-tuned for other similar wireless environments.

• Extensive testing of the proposed TL method using simulated data from
the Remcom simulator [33]. Results show that the proposed method
performs an effective TL for estimating radio maps in most varying wire-
less environments while using a relatively small amount of training data.
Numerically, the proposed method outperforms the individual location-
based and location-free experts.

Q4. TL-based Resource Allocation for Underlay D2D Communications:
One source of the applications of radio maps is resource allocation (RA) in
wireless networks. In this context, our goal is to understand the process of
TL between similar resource allocation optimization problems. How can we
jointly allocate channels and power values to a given imperfect channel state
information (CSI) scenario with less amount of training data, using additional
information from the perfect CSI scenario?
This problem is presented in paper E. The main contributions of this paper
are:

• We design a baseline DNN model for the data generated from a per-
fect CSI scenario and then transfer it to an imperfect CSI scenario and
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fine-tune it with an additional small amount of data generated from the
imperfect CSI scenario.

• We show how the desired outage probability ϵ can be used to measure
the similarity between two scenarios. For higher values of ϵ, less amount
of training data is required for fine-tuning the transferred baseline DNN
model in the imperfect CSI scenario.

• Numerically, we show that the sum-rate obtained by training the im-
perfect CSI model using TL, is higher than the DNN without TL. At
the point when both RA tasks are equivalent (ϵ = 1

e
), TL achieves ap-

proximately the same sum rate as the original algorithm while saving
computational resources.

1.4 Outline of the Dissertation

The dissertation is based on five papers which are attached in the Appendix and are
organized as the following chapters.

• Chapter 2 This chapter provides the background theory needed for the readers
in order to follow the contents of this dissertation. In this chapter, we intro-
duce wireless signal propagation including multipath propagation, time of ar-
rival (ToA) and estimation of ToA, the trilateration approach, the framework
of deep neural networks (DNNs) and convolutional neural networks (CNNs),
the concept of transfer learning and the different possible similarity measures,
the mixture of experts (MoE), and TL for resource allocation problem, which
are used in this dissertation.

• Chapter 3 This chapter summarizes Paper A [34] and Paper B [2], which an-
swer Q1. It discusses the problem of accurate radio map estimation in wire-
less networks. We propose a transfer learning-based method that transfers
and fine-tunes a DNN-based model for a radio map learned from an origi-
nal (source) wireless environment to other new (target) wireless environments.
The DNN-based radio map model is learned with the exact knowledge of Rxs
locations and we refer to it as the location-based TL method. Our method
checks the TL recommendation based on our designed data-driven similar-
ity measure (DDS), and then predicts the amount of training data needed to
perform the TL operation in new wireless environments to estimate the radio
maps with a given accuracy. We show the superiority of our DDS as compared
to other standard similarity measures, such as the Wasserstein distance. Ad-
ditionally, it investigates the noise robustness in both Rxs locations and power
values of the proposed TL method.

• Chapter 4 This chapter summarizes Paper C [8], which answers Q2. It dis-
cusses the problem of radio map estimation in wireless networks when the
exact knowledge of Rxs locations is not available due to wireless multipath.
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However, time of arrival (ToA) based (location-free) features of radio signals
can be easily obtained. We propose a TL-based method that transfers and fine-
tunes a DNN-based radio map model learned from an original (source) wireless
environment to other new (target) wireless environments using location-free
features. The DNN-based radio map model is learned using the ToA features
and we refer to it as the location-free TL method. Similarly, as before, the
method checks the TL recommendation based on our designed DDS, and then
predicts the amount of training data needed to perform the TL operation in
the new wireless environment to estimate the corresponding radio map with a
given accuracy. Again, our similarity measure shows a superior performance
as compared to other standard similarity measures, such as the Wasserstein
distance. Moreover, comparisons are made with the location-based TL method
which employs only exact Rxs locations as in Paper A [34] and the method
which employs both the Rxs locations and ToA features, assuming that exact
Rxs locations are known.

• Chapter 5 This chapter summarizes Paper D [35], which answers Q3. It dis-
cusses the problem of radio map estimation in wireless networks when we
exploit both inaccurate Rx location information and ToA-based information.
It introduces a mixture of experts (MoE) method to estimate radio maps in
wireless networks. The MoE incorporates both an expert based on estimated
Rxs locations and another expert based on ToA features, which are combined
by a gating network. The MoE-based radio map model is learned for an origi-
nal (source) wireless environment and then transferred and fine-tuned to other
new (target) wireless environments. The method checks the TL recommenda-
tion based on our designed DDS and then predicts the amount of training data
needed to perform the TL operation in new wireless environments to estimate
the radio map with a certain accuracy. Additionally, the amount of compu-
tation time required for executing a MoE model, which incorporates three
DNNs inside it, will be always higher than the computation time required for
executing an individual expert, such as location-based or location-free expert,
which incorporates only a single DNN. To this end, we can choose a particular
expert to perform the TL operation in new wireless environments by selecting
an appropriate threshold value experimentally.

• Chapter 6 This chapter summarizes Paper E [36], which answers Q4. It dis-
cusses the problem of joint resource allocation (channel assignment and power
allocation) in the context of underlay D2D communications, where TL is de-
signed to transfer solutions between similar resource allocation problems. We
propose a TL-based method that transfers and fine-tunes a DNN model, pre-
viously trained to provide the solution for the perfect channel state informa-
tion (CSI) scenario, to provide the solution for the case of imperfect (CSI)
scenarios. In this case, the similarity measure between the two types of re-
source allocation problems is given by the outage probability. We show how a
significant amount of training samples are saved using the TL operation.
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• Chapter 7 This chapter discusses the main conclusions of the dissertation. In
addition, several possible future directions are also presented in this chapter.
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Chapter 2

Background

Every aspect of past and present communication networks have been modelled
typically by mathematical (physics-based or stochastic-based) models, that are ei-
ther derived from theoretical considerations, or empirically from field measurement
campaigns. However, we are rapidly reaching the point at which the quality and
heterogeneity of the services we demand from communication systems, will exceed
the capabilities and applicability of present modelling and design approaches. To
provide the end-users with a perceived seamless and limitless connectivity, the re-
configuration of network resources and/or the deployment of additional network
nodes in response to new data demands (e.g., lower delay, higher throughput) must
be prompt and efficient. The traditional models are difficult to adapt to the changes
in the data demands and the propagation characteristics of the wireless networks.
However, the data-driven artificial intelligence (AI)-based models are adequate to
adapt to these changes in wireless networks. AI-based smart wireless networks [37]
have the ability to sense the surrounding wireless environments and then adapt to
those wireless environments. In this context, a radio map provides essential informa-
tion for smart wireless networks as it depicts the various characteristics of wireless
signal propagation and the environment over a certain region. Radio signal propa-
gation is generally affected by various factors, such as reflections, diffractions, and
scattering, resulting in fluctuations in the received radio signals. In other words,
radio maps portray an estimate of the power spectral density (PSD) over a required
geographical area as a function of location, time, and frequency. Usually, received
signal powers are obtained through sensor measurements at locations of receivers
Rxs. In this dissertation, we obtain these power values through high-fidelity simu-
lators, such as Remcom [33].

2.1 Wireless Signal Propagation

Ideally, wireless signals travel in a straight line from the transmitter (Tx) to the
receiver (Rx). That is, these signals travel through the direct line of sight (LOS)
traversing the shortest distance, resulting in the reception of noiseless signals at
the Rx. However, in real scenarios, the LOS signals might be blocked by some
objects in the environment. Additionally, non-LOS signals might reach the Rxs,
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Figure 2.1: Indoor wireless signal propagation.
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Figure 2.2: Outdoor wireless signal propagation.

after being reflected on walls or objects or passing through various objects in the
surroundings. As a result, the received signals will not be only the perfect LOS
signals, resulting in several multipath signals. Examples of these objects are: doors,
walls, furniture, fire cabinets, metal objects, glass, and concrete in the context of
indoor wireless networks; and buildings, mountains, roads, and rain-water molecules
of the atmosphere in the context of outdoor wireless networks. These objects impose
different effects on the propagation of radio signals, such as reflection, diffraction,
and scattering [38]. Figure 2.1 and Figure 2.2 show the indoor and outdoor wireless
signal propagation, respectively.

• Reflection: When the propagating signal falls on an object whose size is much
larger than the wavelength of the signal, then it is reflected. For example, in
an indoor scenario, as shown in Figure 2.1, the wall and furniture reflect the
propagating signals. On one side, reflection degrades the signal quality. On
the other side, it helps the signal to reach the Rx points where the LOS signal
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Figure 2.3: Multipath components in an indoor wireless environment.

cannot reach.

• Diffraction: Diffraction of radio waves is caused by sharp edges and corners.
The phenomenon causes the bending of the radio waves as they pass through
the edge of the object. For example, corners of buildings, furniture in indoor
environments, and the back of trees in outdoor environments. Diffraction
results in a change in the direction of the wave path from the normal LOS
path.

• Scattering: It happens when the dimensions of the objects in the path of
the radio waves are very small compared to the wavelength of the waves.
The incoming signal is scattered into several weaker outgoing signals. For
example, objects, and sharp edges of walls or furniture cause the signal to
scatter in indoor scenarios. Similarly, dust, street signs, lamp posts, sharp
edges of buildings, and water particles in the air cause the signal to scatter in
outdoor scenarios.

2.1.1 Multipath Propagation

As explained before, when radio waves leave the transmitter, due to reflection,
diffraction, and scattering, they propagate in many directions. Hence, the mul-
tipath propagation implies that the signals reach the Rx through multiple paths. In
other words, when the signal travels from Tx to Rx through the radio channel, it is
reflected, diffracted, or scattered by the objects in the indoor wireless environment,
such as walls, objects as shown in Figure 2.1. As a result, the signal does not only
follow the direct LOS path but follows multiple different propagation paths, form-
ing a multipath signal at the receiver. Each multipath component reaches the Rx
with different amplitude, delay, and phase shifts. For example, it can be seen in
Figure 2.3 that the signal reaches the Rx through many paths. One path is a direct
LOS, and on the other paths, the radio waves encounter reflection, diffraction, and
scattering.
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This multipath wireless propagation has an influence on the estimation of radio
maps. Usually, to estimate accurate radio maps, one needs to have an exact knowl-
edge of the Rx locations. One can estimate the Rx locations by means of different
localization methods, such as the Trilateration [1] method, which uses the estimated
time of arrival (ToA) information of radio signals. However, in the presence of wire-
less multipath, it is difficult to obtain accurate Rx locations. Alternatively, one can
use the ToA features directly instead of the Rx locations for estimating radio maps,
as we discuss in Chapter 4.

Next, we explain how ToA features are obtained from radio signals.

2.2 Time of Arrival

In practice, we need to have several anchor nodes to estimate the locations of Txs
and Rxs as shown in Figure 2.4. In general, these anchor nodes should transmit
pilot signals in different frequency bands or different time slots depending on the
protocols in order to not interfere with the Tx signals. From these pilot signals,
we can use super-resolution algorithms, such as Roy-Kailath’s ESPRIT (Estimation
of Signal Parameters via Rotational Invariance Technique) [39] and Hua-Sarkar’s
MPM (Matrix Pencil Method) [40] to estimate the ToA in practice. ToA is the time
at which the radio signals from each Tx arrive at each of the Rxs.

Reflection

LOS

Figure 2.4: Illustration of wireless environment showing Tx, Rx and anchor nodes.

In the context of our experiment in this dissertation, ToA features are accurately
calculated using the high-accuracy ray-tracing X3D ray model [41], using the Rem-
com [33] software. To this end, a single ray from the transmitter to the receiver
point is constructed. The ray path is used to determine the distance, the ToA, and
the direction of arrival (DoA). The ToA for each propagation path i is given as:

ti = Li/c (2.1)

where Li is the total geometrical path length. For example, as shown in Figure 2.4,
L1 and L2 show two different paths between Anchor4 and receiver Rx. c is the speed
of light in free space. The unit of ToA is seconds.
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As discussed previously, location-based methods require to have exact Rx loca-
tions to estimate accurate radio maps. However, it is difficult to obtain exact Rx loca-
tions in the presence of noise, measurement errors, and most importantly, when there
is a high degree of wireless multipath. We can estimate approximate Rx locations us-
ing different localization algorithms, such as the trilateration [1], squared range least
squares (SR-LS) [42], squared range difference least squares (SRD-LS) [42], squared
range iterative reweighted least squares (SRIR-LS) [43], and iterative re-weighting
squared range difference least squares (IRWSRD-LS) [44]. Note that in this PhD
thesis, our purpose is not to improve the localization algorithm but to incorporate
the location uncertainty information in our TL problem of radio map estimation.

2.3 Trilateration Algorithm

One can estimate the approximate Rx locations from the ToA features using the
trilateration localization algorithm [1]. The algorithm determines the approximate
locations of Rxs based on the simultaneous ToAs from multiple anchor nodes at
known locations that transmit pilot signals. Note that we can use the same Txs as
anchor nodes if we have enough of them with known locations. Otherwise, we need
to use additional dedicated anchor nodes for localization purposes. Specifically,
it finds the intersection of three circles in the 2D case or the intersection of four
spheres in the 3D case, where a system of quadratic (non-linear) equations is solved.
For example, as shown in Figure 2.5, point S is the intersection point of three
circles having centres A(XA, YA), B(XB, YB), and C(XC , YC), respectively, and it is
estimated by considering the intersection.

A( )
B( )

C( )

S

Figure 2.5: A simple trilateration algorithm in 2D in case of no multipath [1].

As shown in Figure 2.5, when there is no wireless multipath then the ToA features
are accurate, resulting in the estimated Rx location at the intersection point of three
circles (see point S). However, in the case of wireless multipath, the ToA features
are inaccurate, resulting in these three circles generally not intersecting, as shown in
Figure 2.6. Therefore, the localization algorithm will return an inaccurate estimate
of the Rx location.
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Figure 2.6: A simple trilateration algorithm in 2D in case of multipath [1].

2.4 Deep Neural Network

In addition, we need to map the locations of Rxs with the corresponding received
signal power values. For this purpose, we use a deep neural network (DNN) as a
universal function approximator [45].

A DNN [45] architecture consists of multiple layers between the input and output,
each of which consists of a linear operation followed by a point-wise non-linearity,
also known as an activation function, as shown in Figure 2.7. Consider a feed-
forward DNN with L layers, labelled l = 1, ...., L and each with a corresponding
dimension ql. The layer l is defined by a linear operation Wl ∈ Rql−1×ql followed by
a non-linear activation function σl : R

ql → Rql . Layer l receives input from the l− 1

layer denoted as, Zl−1 ∈ Rql−1 , the resulting output of the layer l, Zl ∈ Rql , is then
computed as Zl := σl(WlZl−1), where σl(·) is point-wise activation function. The
final output ZL of the DNN is then related to the input Z0 by propagating through
the various layers of the DNN as ZL = σL(WL(σL−1(WL−1(....(σ1(W1Z0)))))). The
DNN learns the layer-wise weights W1,W2, ...,WL. The DNN training is performed
by going through the training data either one-by-one or batch-by-batch. Going
through the whole training dataset is called one training epoch. The whole training
is finished by going through multiple training epochs until the weights converge.
The number of training epochs can be used to measure the training time of the

Input layer Hidden layers Output layer

Locations of
Receivers 

{ }

Power 
{ )}

 
{ }

 
{ }

 

Figure 2.7: Baseline DNN model.
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DNN. There are different types of activation functions available in the literature,
such as Linear, Sigmoid, Tanh, ReLU, and LeakyReLU [46]. In our experiment, we
perform grid search and random search [47] to find the best activation function σl,
we then obtained a rectified linear unit function (commonly referred to as ReLU)
as the best activation function. Similarly, there are different types of optimizers in
the literature, such as Gradient Descent, Stochastic Gradient Descent, Mini-Batch
Gradient Descent, RMSProp, and Adaptive Moment Estimation (Adam) [48]. In
our experiment, we perform grid search and random search [47] to find the best
optimizer, we then obtained Adam optimizer as the best optimizer.

Our model should map the location of receivers {xi} to the corresponding power
values {P (xi)}. We chose a DNN-based model since DNNs are universal function
approximators. Moreover, DNN can learn directly high-level features from the data,
which do not require domain expertise and manual feature extraction as compared
to other machine learning techniques [49]. Figure 2.7 shows a baseline DNN model
with its input and output.

A special type of DNN is called convolutional neural network (CNN), which is
described in the next section.

2.4.1 Convolutional Neural Network

Convolutional neural network (CNN) [50] is one of the most important networks
in the field of deep learning. It is a type of feed-forward neural network which
extracts features from data with convolution structures. It assumes and leverages
the spatial correlation of the input features, which makes it suitable for image and
video processing applications or any similar application where the inputs have a high
degree of spatial correlation. (In our case, CNN takes the images of floor plans as
input.) One needs typically four components to build a CNN model. Convolution
is an important step for extracting features, known as feature maps. One may lose
information at the border while selecting a certain size of the convolutional kernel.
Hence, padding is also used to enlarge the input with zero value so that the size can
be adjusted. Stride is used to control the density of convolving. The larger the stride,
the lower the density. After convolution, feature maps comprise a large number of
features which may be prone to overfitting. Hence, pooling (down-sampling) is used
to remove redundancy. Pooling can be max pooling or average pooling.

Next, effective training of the DNN model or designing any AI-based wireless
network requires a sufficiently large amount of sensor measurements, which might
not be available. To cope with the data scarcity problem, one can exploit transfer
learning (TL).

2.5 Transfer Learning

Transfer learning (TL) [18,19] is the exploitation of learning in a new task through
the transfer of knowledge from a related task. In the context of radio map estima-
tion, the use of knowledge acquired in one wireless environment (source environment)
to assist the learning task in the new wireless environment (target environment) is
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Figure 2.8: TL illustration of floor plans and radio maps of original (source) and
target wireless environment.

referred to as TL. Hence, TL can handle the data scarcity issue in the target environ-
ment. In this regard, one needs to answer three main questions while performing the
operation of TL, namely “what to transfer”, “how to transfer”, and “when to transfer”.
Regarding “what to transfer”, the specific TL approach is referred to as transductive
transfer [19] in which the baseline model trained under the source environment is
transferred to a similar target environment. Similarly, for “how to transfer”, the
approach is parameter transfer in which the parameters from the trained baseline
model under the source wireless environment are transferred to a similar target wire-
less environment and fine-tuned with a small additional amount of training samples.
Similarly, the “when to transfer” is associated with the similarity measure between
the source and the target wireless environments, that is, the transfer is performed
when both wireless environments are sufficiently similar under a certain similarity
measurement. In other words, one does not need to train a model from the very
beginning for a similar task, instead, the knowledge from the pre-trained model can
be utilized and the amount of necessary training samples to estimate an accurate
radio map, can be drastically reduced.

Our focus in this dissertation is related to the application of TL for the estimation
of radio maps in wireless networks. For example, Figure 2.8 shows a simple illustra-
tion of the use of TL to estimate the radio map of the target wireless environment
from the source wireless environment.
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The different similarity measures used for TL are discussed in the next section.

2.6 Similarity Measures for Radio Maps

A crucial element of TL is that one needs to have a measure of similarity between
the source and the target wireless environments because similarity affects the effec-
tiveness of the TL operation. The more similar the source and the target wireless
environments are, the more features can be shared between both wireless environ-
ments, and the more effective is the TL operation, resulting in less amount of training
data needed to perform TL operation in the target wireless environments. To this
end, one can consider different classical similarity measures, which are discussed
further.

Wasserstein distance: Wasserstein distance (WD) [51] is a popular metric to
calculate the distance between two probability distributions. It has been widely
used in TL due to its symmetry, smooth gradients, and good numerical results [52].
It is based on the minimal cost that is incurred to transform one distribution (e.g.,
represented by an image histogram, in our case, the image of environment E) into
another one. It is also called earth mover’s distance or transportation distance and
it is an outcome of the optimal transport theory [53].

In the context of TL, the random variables we want to compare can be either
the pixel value distributions of the images or radio maps representing the source
Es and target Et environment. For a random variable in the source Es and target
environments Et, denoted by XEs and XEt , with distribution functions fXEs

(xEs) and
fXEt

(xEt), and joint distribution function fXEsXEt
(xEs , xEt), the WD between XEs and

XEt is defined as [51]:

W (XEs , XEt) = inf
fXEsXEt

∈F

∫
XEsXEt

|XEs −XEt | dfXEsXEt
(xEs , xEt)

= inf
fXEsXEt

∈F
EfXEsXEt

|XEs −XEt|
(2.2)

where F is the collection of all possible joint distributions. fXEs
and fXEt

are
the marginal distributions. dfXEsXEt

(XEs , XEt) is the derivative of joint distribu-
tion of variables XEs and XEt . EfXEsXWEt

is the expectation operation with respect
to fXEsXEt

. Notice that WD is symmetric, that is, W (XEs , XEt) = W (XEt , XEs).
Equivalently, it is shown in [51] that equation (2.2) can be re-written as:

W (XEs , XEt) =

∫
[0,1]

|f−1
XEs

(X)− f−1
XEt

(X)| dX (2.3)

where, f−1
XEs

(X), and f−1
XEt

(X) are the inverse distribution functions in the source Es
and target Et environments, respectively.

Given a sufficiently large number of realizations (samples) of variables XEs and
XEt , (2.3) can be numerically estimated.

As shown in Figure 2.8, the WD between the floor images and the corresponding
radio maps are 7.1× 10−5 and 16.3× 10−5, respectively.
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Figure 2.9: Illustration of different radio maps corresponding to different indoor
wireless environments.
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Figure 2.10: Correlation between inter-image WD and inter-radio map WD.

Next, we also consider four different indoor wireless environments as shown in
Figure 2.9. Test environment 0 (TE 0) shows the radio map of the original wireless
environment. Similarly, Test Environment 1 (TE 1), Test Environment 2 (TE 2),
and Test Environment 3 (TE 3), respectively, show the radio maps of three different
target environments in which the object (cube) is placed at different locations.

Let WDim
i,j denotes the WD between the images (im) of TE i and TE j where

i, j ∈ {0,1,2,3}, and i ̸= j. For instance, WDim
0,1 denotes the Wasserstein distance

between the images of test environment 0 (TE 0) and test environment 1 (TE 1).
Similarly, WDrm

i,j denotes the WD between radio maps (rm) of TE i and TE j where
i, j ∈ {0,1,2,3}, and i ̸= j. The WD between images of test environments and their
corresponding radio maps are shown in Figure 2.10.

Figure 2.10 shows a mismatch between the inter-image WD and the inter-radio
map WD, which gives us 6 points, given that WD is a symmetric distance. The
values of WDs (shown by blue stars) show no correlation between the distances in
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the image domain (floor plan) and the radio maps domain. Ideally, for the WD to
work appropriately as a similarity measure, both WDs should be properly aligned,
as the cube location changes. This signifies that the WD is not a suitable similarity
measure in our TL problem of radio map estimation.

KAZE: KAZE1 [54] is a scale, rotation and affine invariant two-dimensional (2D)
feature detector algorithm, that uses a designated feature descriptor. The feature
detector detects feature points in terms of blobs2 in an image using scale normalized
determinant of the Hessian matrix [55], computed at multiple scale levels. The
maxima of the feature detector response are picked up as feature points using a
moving window. After feature detection, feature matching is performed using the
L1-norm for the string-based feature descriptors and setting a threshold.

SIFT: Scale-invariant feature transform (SIFT) [56] is also a scale, rotation
and affine invariant 2D feature detector algorithm, that uses a designated feature
descriptor. The feature detector in terms of blobs in an image is based on the
Difference-of-Gaussians3 (DoG) operator. Feature points are detected by searching
local maxima using DoG at various scales of the subject images. The description
method extracts a 16× 16 neighbourhood around each detected feature and further
segments the region into sub-blocks, rendering a total of 128 bin values. After feature
detection, feature matching is performed using the L1-norm for string-based feature
descriptors and setting a threshold.

ORB: Oriented FAST and rotated BRIEF (ORB) [57] is scale, and rotation
invariant but with limited affine changes, having a designated feature descriptor.
It is a mixture of modified FAST (features from accelerated segment test) [58] and
direction-normalized BRIEF (binary robust independent elementary features) [59]
description methods. ORB detects corners in an image. FAST corners are detected
in each layer of the scale pyramid and corners of detected points are evaluated using
Harris corner score [57, 58] to filter out top-quality points. After feature detection,
feature matching is performed using Hamming distance for binary feature descriptors
and setting a threshold.

BRISK: Binary robust invariant scalable keypoints (BRISK) [60] is also scale
and rotation invariant but with limited affine changes, having a designated feature
descriptor. Like ORB, BRISK also detects corners in an image. It detects corners
using AGAST (adaptive and generic accelerated segment test) [61] and filters them
with FAST corner score while searching for maxima in the scale space pyramid.
After feature detection, feature matching is performed using Hamming distance for
binary feature descriptors and setting a threshold.

1KAZE is a Japanese word which means wind, the authors in [54] decided to use this term for
their method.

2Blob is a group of connected pixels in an image that share some common property, for example,
grayscale value.

3DoG is actually a band-pass filter which removes high-frequency components representing
noise, and also some low-frequency components representing the homogeneous areas in the image.
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Figure 2.11: Illustration of correlation between inter-image and inter-radio map
similarities using four different similarity measures.

As an illustration, we calculate four different similarity measures (KAZE, ORB,
SIFT, and BRISK) between the original wireless environment and three different
target wireless environments as shown in Figure 2.9. To this end, Figure 2.11 shows
Pearson’s correlation [20], which is a widely adopted metric for measuring the cor-
relation, between the inter-image and the inter-radio map similarities. It can be
seen that the correlation value is very poor for each similarity measure. This again
signifies that these similarity measures are not effective for our TL problem of radio
map estimation.

PSNR: The objective image quality metric, such as the peak signal-to-noise ra-
tio (PSNR) [62,63] evaluates the quality of the image by exploiting the difference of
corresponding pixel values between the original and the reconstructed image (in our
case, the image of original and target wireless environment) and provides some mea-
sure of closeness between them. The higher the PSNR, the better the image quality.
Suppose fi,j and f ′

i,j are the original and the reconstructed image, respectively. H

and W are the height and width of the image, respectively. L is the dynamic range
of allowable image pixel intensities (L = 255). The PSNR is defined as [62,63]:

PSNR = 10 log10

(
L2

MSE

)
. (2.4)

where the mean square error (MSE) is defined as:

MSE(f, f ′) =
1

HW

H−1∑
i=0

W−1∑
j=0

(fi,j − f ′
i,j)

2. (2.5)
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SSIM: Structural similarity (SSIM) [64, 65] is a perception-based metric that
considers image degradation as the perceived change in structural information,
while also incorporating important perceptual phenomena, including both lumi-
nance masking and contrast masking. The SSIM index is computed locally within
a sliding window that moves pixel-by-pixel across the image, resulting in an SSIM
map. The SSIM score of the entire image is then computed by pooling the SSIM
map, e.g., by simply averaging the SSIM values across the image [65].

Suppose x and y are the local image patches taken from the same location of two
images that are being compared (in our case, the image of the original and target
wireless environment). SSIM measures the similarities of three elements of image
patches: the luminances l(x, y) (brightness values), the contrasts c(x, y), and the
structures s(x, y). It is defined as [64]:

S(x, y) = l(x, y).c(x, y).s(x, y)

=

(
2µxµy + C1

µ2
x + µ2

y + C1

)(
2σxσy + C2

σ2
x + σ2

y + C2

)(
σxy + C3

σxσy + C3

)
(2.6)

where, µx, µy and σx, σy are the local sample means and standard deviations of x
and y, respectively. σxy is the sample cross-correlation of x and y after removing
their means. C1, C2, and C3 are small positive constants that stabilize each term
so that near-zero sample means, variances, or correlations do not lead to numerical
instability.

Since these classical similarity measures can be applied to any type of image
representing wireless environments, and they do not consider the radio environment
characteristics and propagation properties, intuitively, these similarity measures are
not applicable, in general, for TL of radio map models. This has been numerically
verified in Chapter 3. This motivates us to design a data-driven similarity mea-
sure (DDS) (see Section 3.6.2) that learns the wireless environment characteristic
from the data. For this, we design and then train a CNN regression model.

Data-driven Similarity Measure (DDS): Figure 2.12 shows the DDS based
on a CNN with its input and output. The input of the CNN is images of distinct
target wireless environments. The output of the CNN is a similarity score. This
similarity score can be selected based on the application and it is discussed in more
details in Section 3.6.2 of Chapter 3.

Images of 
Environments

Conv Fully
connected layer

Maxpool Conv Maxpool

Similarity score

Figure 2.12: Illustration of the data-driven similarity measure.
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2.7 Mixture of Experts

As discussed previously, it is possible to estimate the approximate Rx locations from
the ToA (discussed in Section 2.2) features of radio signals using different types
of algorithms, such as the trilateration localization [1] (discussed in Section 2.3).
One can also directly use the ToA features to estimate radio maps. A mixture
of experts (MoE) architecture considers these two methods in order to exploit the
complementarity between them.

Expert 1 Expert 2 Expert 3 Expert N

Input

Gating
Function

Output

Figure 2.13: A simple illustration of MoE architecture.

The MoE is one of the popular ensemble methods to perform a machine learn-
ing (ML) task, such as classification or regression [66]. It mainly works on the
divide-and-conquer [67] principle, in which the overall problem (in our case radio
map estimation) is divided between different kinds of machine learning experts, such
as DNN experts and supervised by a gating function [66]. In other words, different
experts designed using different features are used as the input of MoE, as shown in
Figure 2.13. The output of each expert is combined linearly or non-linearly using
data-dependent weights through a gating function. The gating function can be ei-
ther a weighted sum of each expert or it can be a DNN incorporating the output of
each expert as an input feature. Furthermore, the gating function is trained in order
to obtain the final output (in our case radio maps). The key advantages of MoEs
are that, instead of assigning a set of fixed combinational weights to each expert,
the gating function computes and assigns these weights dynamically from the inputs
according to the local efficiency of each expert across space. As a result, the MoE
has been shown to perform better in different ML tasks, such as in the classification
of cluster structures [68].

In the context of our radio map estimation problem, MoE comprises two DNN-
based experts. The first expert is the location-based expert, trained with the esti-
mated locations of Rxs, and the second expert is the location-free expert, trained
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Figure 2.14: MoE architecture for radio map estimation.

with the ToA features, as shown in Figure 2.14. The gating network, which is also a
DNN, combines these experts to obtain the final radio maps. It has been discussed
in more details in Chapter 5.

2.8 Transfer Learning for Resource Allocation

Two optimization problems may have a certain similarity and this can be also ex-
ploited using TL. In general, if optimization problem 1 is similar to optimization
problem 2 then a DNN trained to solve optimization problem 1 can be transferred
and fine-tuned to solve optimization problem 2. For this to work, the two problems
should be sufficiently similar.
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Figure 2.15: Illustration of the TL system model for resource allocation.
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For example, in this dissertation, we investigate the TL between similar opti-
mization problems for the resource allocation (RA) (joint channel assignment and
power allocation) task among cellular users (CUs) and D2D pairs, as shown in Fig-
ure 2.15. In this case, we take the first RA optimization problem of perfect channel
state information (CSI) and learn a DNN that imitates/approximates an optimal
solver for this problem. We then transfer this trained DNN model to the second RA
optimization problem of imperfect CSI which is somehow similar and then fine-tune
it with the small amount of data obtained from the solver.

2.8.1 Similarity Measure for Resource Allocation

The similarity between two RA problems of perfect and imperfect CSI can be es-
tablished using the outage probability. The higher the outage probability, the more
similar the two RA problems are, leading to a fewer amount of sensor measurement
data for fine-tuning the transferred model in the imperfect CSI scenario. Under
specific assumptions, we prove that these two RA problems are equivalent for an
outage probability of ϵ = 1

e
. More details are presented in Chapter 6.
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Chapter 3

Transfer Learning for Location-based
Radio Map Estimation

This chapter summarizes Paper A [34] and Paper B [2]. The results obtained here
reply Q1.

3.1 Motivation

Estimation of accurate radio maps is necessary for various applications of wireless
communications, such as localization, network designing and planning, and resource
allocation [36]. For estimating accurate radio maps, most existing methods require
knowing the exact locations of receivers (Rxs). Moreover, these radio maps change
for different wireless environments. As a result, a radio map model learned for a
given wireless environment can not be directly deployed and used for other wireless
environments. Learning a radio map model in a new wireless environment needs,
in general, a sufficiently large amount of training data and is computationally de-
manding. To address these issues, we propose a transfer learning (TL)-based radio
map estimation method that transfers and fine-tunes a deep neural network (DNN)-
based radio map model learnt from an original wireless environment to other different
(but sufficiently similar) wireless environments. Our proposed method recommends
whether to perform TL or not and it also predicts the amount of training data
needed to estimate radio maps in new wireless environments, when performing the
TL operation, based on our designed data-driven similarity measure (DDS). In Pa-
per B [2], we experimentally tested different classical similarity measures between
two different wireless environments in order to investigate their applicabilities in the
TL problem of radio map estimation. Moreover, we also investigate the robustness
of the proposed scheme under noisy environments, that is, when there are errors
in the locations of receivers Rxs (inaccurate location estimates), and noise in the
power values. These two kinds of inaccuracies are prevalent in wireless networks
due to the challenges in estimating accurate receiver locations because of the wire-
less multipath, and the measurement errors in the device, respectively. The main
contributions of papers A and B can be summarized as follows:
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• Design of an effective data-driven TL method that transfers and fine-tunes a
DNN-based model for a radio map learned from a given source environment
to another target environment.

• Design of a data-driven similarity measure that can recommend to perform
the TL operation more accurately in a new target wireless environment, as
compared to other widely used similarity measures.

• Prediction of the amount of training data needed to estimate the radio map
in a different target environment, when performing the TL operation, based
on our data-driven similarity measure.

• Analysis of the robustness of the proposed TL scheme under noisy environ-
ments when the locations of receivers are estimated and not perfectly known,
and the corresponding power values are noisy. Our proposed TL scheme shows
satisfactory performance (Paper B).

• Extensive testing of the proposed TL scheme using simulated data from the
Remcom simulator [33]. Results demonstrate that our proposed scheme can
perform effective TL in several varying environments while using a small
amount of training data. Moreover, the proposed data-driven similarity mea-
sure can accurately recommend TL guaranteeing a satisfactory radio map es-
timation while reducing the number of necessary training samples.

3.2 Problem Formulation

The main questions we are targeting here are: (a) how to design a baseline model for
a specific wireless environment to estimate the radio maps; (b) how to estimate the
radio map corresponding to a new wireless environment with limited available sensor
data (aggregate power values), by leveraging the information from the previously

Room 1

Room 2

Room 1

TL

(a)

Room 1

Room 2

(b)

Room 1

Room 2

Figure 3.1: Illustration of radio map for: (a) original (source), and (b) target wireless
environment with 4 Txs and 3 objects represented by 3 cubes from Paper B [2].
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Figure 3.2: MapNet: Baseline DNN model.

learned model (baseline) of source wireless environment that has a certain similarity
to the new wireless environment, which requires a certain similarity measure.

Let Es and Et denote the source and target wireless environment, respectively, as
shown in Figure 3.1. Let us assume that only a small amount of aggregate power
values are available in the target wireless environment Et, as compared to the number
of samples in the source environment Es. The radio map consists of aggregate power
measurements P (xi) corresponding to a set of N locations {xi}Ni=1, where i is the
index of the receiver. To obtain the aggregate power at each Rx location, multiple
signals from different transmitters Txs are added with each different phase.

Using a DNN (referred to as MapNet), as shown in Figure 3.2, we create a
predictive function that predicts the power values at any locations in a radio map
for a given wireless environment. More specifically, for the source environment
Es, we first learn a predictive function fs(·) that is approximated by a DNN with
weight parameters θ⋆s . Note that θ⋆s is the optimal value of the weight parameters
in the source environment Es. Similarly, for the target environment Et, one can
also learn the predictive function ft(·) that is approximated by a DNN with weight
parameters θ⋆t . Let us also assume that Es and Et have some similarity in terms of
wireless propagation characteristics.

Instead of learning ft(·) directly without exploiting any previous knowledge, we
perform first TL by exploiting the already learned function fs(·). This allows for
improving the learning of the target predictive function ft(·) by using a smaller
amount of additional measurement samples, as compared to not exploiting the pre-
vious information.

In the source environment Es, we learn the optimal weight parameters θ⋆s for the
power value prediction using a DNN by minimizing a loss function:

θ⋆s = argmin
θ∈Θ

[Loss(Ps(xi), P̂
θ
s (xi))] (3.1)

where Θ is the space of parameters of θ, Ps(xi) and P̂ θ
s (xi) = fs(xi, θ) are the actual

and the predicted power values at ith location, respectively, in the source environ-
ment Es. We denote the loss function as Loss(Ps(xi), fs(xi, θ)), which is chosen in
this work to be the Mean Square Error (MSE), defined as, MSE =

∑Ns
i=1 [P (xi)−P̂ (xi)]

2

Ns
,
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where Ns is number of receivers Rxs. Note that the number of receivers may also
be different in each environment.

Then, we can learn a DNN model for the target environment Et by first trans-
ferring and initializing (TL operation) the DNN model parameters as θ[0]t = θ⋆s , and
then solving with the usual training iterations to minimise the same loss function
in the target environment Et. After performing TL, the training will result in a
“fine-tuning”, which should require a small number of additional data samples if the
environments Es and Et are sufficiently similar.

θ⋆t = argmin
θ∈Θ

[Loss(Pt(xi), P̂
θ
t (xi))] (3.2)

where Pt(xi) and P̂ θ
t (xi) = ft(xi, θ) are the actual and the predicted power values

at ith location of the receiver, respectively, at the target environment Et. If the
TL is effective, it is expected that the number of samples {Pt(xi)} to estimate an
accurate radio map will be smaller as compared to the number of samples that are
used to train the source environment Es, and smaller than the number of samples
that would need to be used at the target environment Et without TL. Note that
the loss function Loss(·, ·) is typically chosen to be the same for both source Es and
target Et environments, namely MSE.

3.3 Radio Map Estimation Model Using TL

The overall architecture of the radio map estimation model is shown in Figure 3.3
and Figure 3.4. It mainly consists of two phases of operations: (i) training shown in
Figure 3.3, and (ii) execution shown in Figure 3.4. The training itself has two stages:
(i) the development of the baseline DNN model in the source wireless environment
Es, followed by the possibility of transferring it to the target wireless environment Et
by first transferring the baseline model and then fine-tuning, and (ii) the establish-
ment of a data-driven similarity measure between the source and the target wireless

Room 1

Room 1

Room 2
TL

Source: Original
Wireless Environment

Target: Modified 
Wireless Environments

Baseline DNN Model Baseline DNN Model
Transferred and Fine-tuned

Data-driven Similarity Measure (DDS) Between
Source and Target Wireless Environment

Stage 2Stage 1

 Images of 
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Environments

Location
of Receiver 

{ }
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{ )}
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{ )}
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8 Test MSEs
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8 Number of Epochs
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Conv Maxpool Fully
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Test MSE and
Number of Epochs
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Figure 3.3: Data-driven transfer learning based radio map estimation model (train-
ing phase).
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Figure 3.4: Data-driven transfer learning based radio map estimation model (exe-
cution phase).

environment. During execution, the image of a test wireless environment is given
as an input to the DDS. The DDS predicts different MSE values and number of
training epochs for the TL operation at different data splits (number of training
samples). Next, in the TL decision block, these values are compared with the set
MSE and epochs thresholds to decide further whether to perform TL operation with
a specific data split. If the thresholds are satisfied, then the TL can be performed
with that specific data split, else, TL will not be performed and MapNet needs to
be trained from the very beginning.

3.4 TL System Design

The TL system design proposed for the radio map estimation from the original
wireless environment to the target environment is shown in Stage 1 of Figure 3.3.
The original indoor wireless environment is a single floor comprising two rooms.
The target indoor wireless environments are created by incorporating several ob-
jects, represented by cubes, inside the original wireless environment. Each cube can
represent any kind of object, such as furniture, or TV. These cubes can cause differ-
ent wireless propagation phenomena, such as reflection, diffraction, and scattering
similar to the effects caused by the real-world objects.

3.5 Transfer Learning Approach

The baseline DNN MapNet is learnt from the power values {P (xi)} observed at mul-
tiple locations of Rxs {xi} under the source wireless environment Es (see Figure 3.2).

A high-level description of the flow of the baseline DNN MapNet in the form of
pseudo-code is presented in Algorithm 1.

Next, given the baseline model MapNet shown in Figure 3.2, we first decide
whether to perform the TL operation based on the similarity measure. We, then,
transfer the MapNet to the target environment Et, followed up by fine-tuning using
some additional amount of training data only 5% to 40% from the target environ-
ment. In our work, we consider a set of possible target environments. After training
and fine-tuning the transferred baseline model MapNet for each new target environ-
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Algorithm 1: Baseline DNN Model MapNet
Input: D := {xi, P (xi)}: dataset of n locations of Rxs xi, and power

values P (xi)

B: Batch size, α: Learning rate, NEP : Number of epochs
Output: θ: Trained DNN model parameters, MSE: MSE of trained

DNN based on test data
Data-Splitting: Splitting data into training Dtrain and test Dtest

1: Training stage
2: Randomly initialize the network parameters
3: for k = 1,...,NEP do
4: for j = 1,...,NB = ceil(|Dtrain|/B) do
5: Randomly select B training samples from training data Dtrain as the

training batch
6: Update DNN parameters θ with learning rate α to minimize

Loss = MSE =
∑

[P (xi)−P̂ θ(xi)]
2

|B|
7: end for
8: end for
9: Testing stage

10: Initialize MSE: MSE← 0

11: Use test data Dtest

12: Predict power values P̂ (xi) on given locations of Rxs {xi}
13: Calculate MSE as MSE =

∑
[P (xi)−P̂ θ(xi)]

2

|Dtest|
14: Save trained DNN model parameters θ.

ment Et, we store the test MSE and the number of training epochs, which are used
further to establish our data-driven similarity between the source Es and the target
Et wireless environments, as we explain in Section 3.6.

A high-level description of the flow of the TL method in the form of pseudo-code
is presented in Algorithm 2.

3.6 Similarity Measure

A fundamental element in TL is the notion of similarity between the source Es and
the target Et wireless environments because similarity affects directly the effective-
ness of the TL operation. The more similar the source Es and the target Et wireless
environments are, the less amount of training data is expected to be required for
the TL operation in the corresponding target Et environment.

3.6.1 Classical Similarity Measures

To establish the similarity between the source Es and target Et wireless environments,
we first consider and analyse one of the widely used similarity measures used in TL,
such as the Wasserstein distance (WD) [23]. WD computes the distance between
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Algorithm 2: TL Method
Input: Es: Source environment, Et: Target environment, MapNet:

baseline DNN model θ⋆s , α: Learning rate, B: Batch size, r: Splitting ratio,
NEP : Number of epochs

Output: MapNet: DNN model θ⋆t for target environment Et, MSE(Et):
MSE of transferred model based on the test data, NEP (Et): Number of
training epochs for the transferred model

Data-Splitting: Splitting data into training Dt
train and test Dt

test with
splitting ratio r

1: Fine-Tuning and Testing stage
2: Initialize MSE(Et): MSE(Et)← 0

3: Initialize NEP (Et): NEP (Et)← 0

4: Fine-Tuning stage
5: for k = 1,...,NEP do
6: for j = 1,...,NB = ceil(|Dt

train|/B) do
7: Randomly select B training samples from training data Dt

train as the
training batch

8: Update DNN parameters θ with learning rate α to minimize
Loss = MSE =

∑
[P (xi)−P̂ θ(xi)]

2

|B|
9: end for

10: Check early stopping criterion and stop when satisfied
11: end for
12: Save number of training epochs NEP

13: Testing stage
14: Predict power values P̂ (xi) on given locations of Rxs {xi}
15: Calculate MSE(Et) =

∑
[P (xi)−P̂ θ(xi)]

2

|Dt
test|

two distributions, which in our case, correspond to the two images of the two floor
plans of these environments. In our case, we compute WD between two images
of different wireless environments. The mathematical formulation of the WD is
presented in Section 2.6 of Chapter 2.

There exist different similarity measures, such as KAZE [54], SIFT [56], ORB [57],
BRISK [60], PSNR [64], SSIM [64], in addition to the Wasserstein distance, which
we also consider. A brief description of all these similarity measures is presented in
Section 2.6 of Chapter 2.

Notice that since these classical similarity measures can be applied to any type of
image representing source Es and target Et environments, and they do not consider
the radio environment characteristics and propagation properties, it is expected
that, these similarity measures are not suitable, in general, for TL of radio map
models. In fact, we show in both Paper A [34] and Paper B [2], respectively, that
these similarity measures, including WD, do not perform well in the context of radio
map estimation, as shown in Figure 3.5. This motivates us to design our data-driven
similarity measure (DDS) (see Figure 3.6) which incorporates and learns the wireless
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Figure 3.5: Correlation analysis between different types of similarity measures.
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Figure 3.6: CNN-based neural structure for the similarity measure.

environment characteristics from the data. This is done by incorporating in the loss
function, that is optimized in the DDS, the MSE (or number of training epochs)
corresponding to the radio map obtained after using TL from the baseline MapNet.
Thus, our DDS is coupled with the baseline MapNet.

3.6.2 Data-driven Similarity Measure

Our DDS incorporates explicitly the TL-operation effect in terms of the MSE and/or
the number of training epochs that are required to achieve a certain accuracy (MSE)
of the radio map in the target environment Et, along with the floor plans images of
the environments. To this end, we train a convolutional neural network (CNN) [50]
regression model under two different loss functions. Loss function A, given by LA =

|MSE(Et)− M̂SEt|2, is the squared difference between the actual test MSE obtained
previously after performing TL, denoted by MSE(Et), and the predicted test MSE,
denoted by M̂SEt, which is obtained when performing TL. Loss function B, given by
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LB = ||[MSE(Et)− M̂SEt, NEP (Et)− N̂EP t ]||2, contains both the test MSE and the
number NEP (E) of training epochs, the latter one representing the training time to
perform TL. Similarly, NEP (Et), and N̂EP t are the actual and predicted TL number
of training epochs, respectively. Loss function B measures the quality of the image
in terms of MSE as well the training time in terms of the number of training epochs
needed to perform TL.

Method A: This method comprises of a CNN (see Figure 3.6) having the images of
distinct target environments Et as input, and the test MSE, i.e., MSE(Et) obtained
after performing TL, as output. It uses the loss function LA, and the corresponding
learned CNN model is referred to as SimNetA. Each image is assumed to be a
three-level image in which free space is white (gray value 255), walls are assumed
128, and objects (e.g., cubes) are black (gray value 0). These differences in intensity
levels are useful to differentiate different elements.

Method B: This method comprises of a CNN with the same input, however,
the output is now the combination of the test MSE, i.e., MSE(Et) obtained after
performing TL and the number NEP (Et) of training epochs required for each tar-
get environment Et when MapNet is transferred and re-trained. It uses the loss
function LB and the corresponding learned CNN model is referred to as SimNetB.

For any similarity measure, to obtain a similarity decision on whether TL is
beneficial (in our case, small MSE(Et), and small NEP (Et)) or not between two
environments, we need to set a threshold. In the case of our DDS, under Method A,
we can set a threshold for the test MSE, which we denote as MSEthr and compare
it with the predicted test MSE, i.e., M̂SEEt, obtained after TL. Similarly, under
Method B, we can also set a threshold for both the predicted test MSE obtained
after TL, i.e., MSEthr and the number of training epochs, i.e, NEP thr

and compare
these thresholds with the corresponding predicted values after TL. If the predicted
values are less than these thresholds, then two radio maps are recognized as similar
and it is expected that TL will perform effectively, thus, it is decided to perform TL,
otherwise, we assume that TL is not effective. Notice that the choices of threshold
values (MSEthr and NEP thr

) provide additional degrees of freedom on the proposed
model. For Method A, a very high threshold MSEthr will result in a less accurate
radio map estimation. However, if we choose a very low threshold, then it will result
in a better radio map estimation, but a lower recommendation rate1. Similarly, for
Method B, higher threshold values MSEthr and NEP thr

will result in both estimating
a poorer radio map and having a longer convergence time. However, if we choose
very low threshold values, then it will result in a better radio map estimation and
a shorter convergence time, but the recommendation rate will be lower. Moreover,
it should be noticed that the choice of these thresholds will also depend on the
application scenario, that is, the complexity of the environment patterns. To select
the value of these thresholds, we have to trade-off between the radio map quality,
convergence time (Method B), and the recommendation rate of the TL. Figure 3.7
illustrates the similarity decision taken for a new test wireless environment under

1The recommendation rate of TL is calculated as the number of environments for which the TL
operation is recommended divided by the total number of environments.
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Figure 3.7: Data-driven similarity decision between the target Et and source Es
environments.2

each method. The DDS takes an image of a test environment as an input. It
then predicts different MSE values and the number of training epochs for the TL
operation at different data splits (number of training samples). These values are
compared with the set MSE and epochs thresholds. If the thresholds are satisfied,
then the given test environment is considered to be similar and it outputs the specific
data split.

A high-level description of DDS in the form of pseudo-code is presented in Al-
gorithm 3.

3.7 Data Generation

We use the standard high-accuracy ray-tracing X3D ray model [41], computed using
the software Remcom [33] to obtain the power measurements that are sufficiently
representative of the real indoor wireless environments.

In Paper A [34], we place one Tx at one fixed location xt in the original envi-
ronment, and then multiple Rxs at uniformly spaced locations (xr

i ) with a 15 cm
spacing, horizontally and vertically. This results in a total of 6678 Rx locations and
their corresponding power values {P (xr

i )}, where i is the index of the receiver. Next,
to create different indoor wireless environments, we incorporate one object, repre-
sented by a solid cube (made of metal), within the original wireless environment.

Similarly, in Paper B [2], we place four Txs in the original indoor wireless envi-
ronment at four different fixed locations and then multiple Rxs at uniformly spaced
locations xr

i with a 15 cm spacing, horizontally and vertically. Next, to create dif-
ferent indoor wireless environments, we place and denote the inclusion of one cube
within the original wireless environment as Type I E , two cubes as Type II E , three
cubes as Type III E , four cubes as Type IV E , and eight cubes as Type V E . The
inclusion of an increasing number of cubes makes the target wireless environments
Et more complex, providing more complex power radio maps to investigate the suit-
ability of our proposed TL method in estimating the respective radio maps. The
summary of different types of indoor wireless environments with the respective num-
ber of environments is presented in Table 3.1 and shown in Figure 3.8.

2The symbol ⪯ indicates component-wise less than or equal operation.
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Algorithm 3: Data-driven Similarity Measure SimNet
Input: D := {Imt,MSEt, NEP t(only for Method B)}: dataset comprising

three-level images of target environments, MSE after TL for 8 different
data splits (5% to 40%) (Algorithm 2), Number of training epochs
required after TL for 8 different data splits (5% to 40%) (Algorithm 2),
for each environment, respectively. MSEthr: MSE threshold, NEP thr

:
Threshold for number of epochs, α: Learning rate, B: Batch size,
r: Splitting ratio, N cnn

EP : Training epochs of SimNet
Output: SimNet(θsim), M̂SEt, N̂EP t are the predicted MSE and number

of training epochs, respectively, for 8 different data splits (5% to 40%),
TL decision: Yes/No, the required data split

Data-Splitting: Splitting data into training Dtrain and test Dtest with
splitting ratio r

1: Training stage
2: Use data from Dtrain

3: Normalize image values Imt, MSEt and NEP t to [0, 1]

4: Randomly initialize θsim
5: for k = 1,...,N cnn

EP do
6: for j = 1,...,NB = ceil(|Dtrain|/B) do
7: Randomly select B training samples from Dtrain as the training batch
8: Update θsim with learning rate α to minimize loss given by the

MSEcnn
A = LA = |MSE(Et)− M̂SEt|2 (for Method A)

MSEcnn
B = LB = |[MSE(Et)− M̂SEt, NEP (Et)− N̂EP t ]|2 (for Method B)

(3.3)
9: end for

10: end for
11: Testing stage
12: Initialize MSEcnn: MSEcnn ← 0

13: Use test data from Dtest

14: Predict M̂SEt and N̂EP t for 8 different data splits (5% to 40%) on a given
image Imt

15: TL decision
16: for q = 1,...,|D| do
17: if M̂SEt ≤ MSEthr(for Method A) then
18: TL decision ← Yes and output the corresponding data split, else, TL

decision ← No
19: if M̂SEt ≤ MSEthr & N̂EP t ≤ NEP thr

(for Method B) then
20: TL decision ← Yes and output the corresponding data split, else, TL

decision ← No
21: end if
22: end if
23: end for
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Figure 3.8: Illustration of different types of wireless environments E (a) Type I E (4
Txs, 1 cube), (b) Type II E (4 Txs, 2 cubes), (c) Type III E (4 Txs, 3 cubes), (d)
Type IV E (4 Txs, 4 cubes), and (e) Type V E (4 Txs, 8 cubes)

Table 3.1: Summary of wireless environment E .

Type of environment E Description Number of environment E
Type I 4 Txs, 1 Cube 250
Type II 4 Txs, 2 Cubes 252
Type III 4 Txs, 3 Cubes 248
Type IV 4 Txs, 4 Cubes 254
Type V 4 Txs, 8 Cubes 42

Total number of environments 1046

Furthermore, for each change in the location of the object, a new indoor wireless
environment is created and simulated to obtain the power values for that particular
environment. A total of 250 (with one Tx) and 1046 (with 4 Txs) different indoor
wireless environments are created in Paper A [34], and Paper B [2], respectively.
The image of each environment is saved as a 160 x 275-pixel image which is used
to investigate the suitability of different similarity measures as discussed in Sec-
tion 3.6, including our designed similarity measure. The different parameters used
in Remcom for data generation are provided in both Paper A [34] and Paper B [2],
respectively.

3.8 Performance Evaluation

We evaluate the performance of the proposed scheme based on the overall model
accuracy (for Paper A [34] and Paper B [2]) and noise robustness (for only Pa-
per B [2]).

3.8.1 Model Accuracy

We calculate the transferability, F1-score, and accuracy [69]. The transferability
represents how good the considered model is in recommending a correct TL for a
new target environment Et (recommending a correct TL means that the actual TL
operation is successful). A higher value of transferability means a higher chance of
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Table 3.2: Transferability, F1-score, and Accuracy for Type I and all types of envi-
ronments grouped together.

(a) (b)
Type I All Types Grouped Together

Performance Method A Method B Method A Method B
measures Only Both MSE(Et) Only Both MSE(Et)

MSE(Et) and NEP (Et) MSE(Et) and NEP (Et)
TP 237 226 828 779
TN 0 8 75 96
FP 13 10 103 132
FN 0 6 40 39

Transferability 1.0 0.974 0.953 0.952
F1-score 0.973 0.965 0.920 0.901
Accuracy 0.948 0.936 0.863 0.836

correctly recommending TL when TL is possible. The F1-score is a measure of the
test accuracy of the model, normalized to be between 0 and 1. The closer it is to 1,
the better the model is. Accuracy measures the degree of veracity of the model. All
these measures are defined in terms of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) as [69]:

Transferability =
TP

TP + FN
; F1-score =

2TP
2TP + FP + FN

. (3.4)

Accuracy =
TP + TN

TP + TN + FP + FN
. (3.5)

where TP means that the source Es and the target Et environment are sufficiently
similar MSE(Et) ≤MSEthr (Method A) or [MSE(Et),NEP (Et)] ⪯ [MSEthr, NEP thr

]
(Method B) and the decision to transfer is taken M̂SEt ≤ MSEthr (Method A) or
[M̂SEt, N̂EP t ] ⪯ [MSEthr, NEP thr

] (Method B). TN means that Es and Et are not
sufficiently similar and the decision of not to transfer is taken. FP means that Es
and Et are not sufficiently similar but the decision to transfer is taken. FN means
that Es and Et are sufficiently similar but the decision of not to transfer is taken.
For better accuracy, FP and FN should be small.

Table 3.2 presents the transferability, F1-score, and accuracy of the proposed
model (for Paper B [2]). It can be noticed from Table 3.2 (a) that all performance
measures for the Type I environments under Method A are slightly better than in
Method B. The model accuracy under Method A is 94.8%, indicating a high accu-
racy. On the other hand, the model accuracy under Method B is 93.6%. Similarly, it
can be noticed from Table 3.2 (b) that when all types of environments are grouped
together, then all performance measures under Method A are also better than in
Method B. The overall accuracy under Method A is 86.3% and the overall accuracy
under Method B is 83.6%. This suggests that our proposed scheme can be used
effectively for estimating radio maps in new wireless environments.
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3.8.2 Noise Robustness

To investigate the robustness of the proposed scheme (for Paper B [2]) towards the
presence of noise, we investigate two cases of noise: (a) error in the Rxs locations
(inaccurate location estimations), and (b) noise in the power values. To this end,
for case (a), we consider a practical scenario where the Rxs locations are estimated
from the time of arrival (ToA) features of the radio signals using the trilateration
localization algorithm3 [1] (see Section 2.3). ToA is the time at which the radio
signals from each Tx arrive at each of the Rxs. For case (b), in order to reflect the
inexact power measurements, we add Gaussian noise of zero mean and a variance
of 0.5 dBm to the power values in each environment. This procedure is followed for
each target environment Et of each type. We then transfer the baseline DNN model
MapNet to each target environment Et and fine-tune it to obtain the test MSE, i.e.,

3Notice that the particular choice of the algorithm is not important for the evaluation of our
TL performance with respect to error locations.
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Figure 3.9: (a) Radio map for a wireless environment of Type I (noiseless), (b) Radio
map of the same environment as in (a) after adding noise to power values, (c) location
error map between the true and estimated Rxs locations for the same environment
as in (a), and (d) plot between test MSE corresponding to TL and the percentage
of training data after TL for the noiseless and the noisy case corresponding to the
same environment as in (a).
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MSE(Et), and the number NEP (Et) of training epochs corresponding to TL for each
target environment Et.

Figure 3.9(a) shows one of the wireless environments from the Type I environ-
ment (noiseless), Figure 3.9(b) shows noisy radio map after adding noise to the power
values, Figure 3.9(c) shows the location error map between the true and estimated
Rxs locations, and Figure 3.9(d) shows the plot between the test MSE corresponding
to TL and the necessary percentage of training data after the TL operation, for the
noiseless and the noisy environments.

It can be seen from Figure 3.9(d) that as the percentage of training data increases,
the test MSE corresponding to TL, i.e., MSE(Et), decreases. For the noiseless envi-
ronment, the MSE(Et) is smaller (shown by the solid black line). However, when we
have noisy power values, then there is a significant increase in the MSE(Et) (shown by
the dashed green line) when using a smaller amount of training data (upto 25%) and
thereafter, it overlaps with the noiseless test MSE. This signifies that our proposed
scheme shows some robustness against noisy power values. On the contrary, when
estimated Rx inexact locations are used, then the MSE(Et) increases significantly
(shown by the dashed blue line) and the increment is slightly higher, as compared
to the case of having noise in the power values. This means that the errors in the
estimated Rx locations affect more than the noise in the power values. This signifies
that our proposed scheme is less robust against the errors in location estimations
as compared to the noisy power values. Similarly, when we have both estimated Rx
locations and noisy power values, then the overall increment in the MSE(Et) is com-
paratively higher (shown by the dashed red line) than in the noiseless environment.
This means that our proposed scheme is less robust against having a combination of
errors in location estimations and noisy power. In addition, it can also be seen that
for noisy scenarios, more data is needed to compensate for this noise, as expected.
For instance, to achieve an MSE(Et) = 0.005, in the noiseless case, it requires only
10% of the training data. However, to achieve the same amount of MSE(Et), our
model trained with estimated Rx locations and no noise in power, requires 40% of
the training data. This motivates the design of TL with location-free methods, as
we explain in Chapter 4.

3.9 Visualization of Radio Maps

We visualize different radio maps (for Paper B [2]) which are obtained before and
after applying TL operation, as shown in Figure 3.10. The cubes and the walls of the
rooms are represented in black and dashed red colours, respectively. The differences
in the radio maps can be easily visualized.

3.10 Performance of the TL Model with Additional
Complex Changes in Wireless Environments

Additionally (for Paper B [2]), we generated 130 different wireless environments
by making the following changes: (a) changing the carrier frequency of waveform
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Figure 3.10: Radio map for (a) original wireless environment with 4 Txs, (b) a
wireless environment from Type III, (c) same wireless environment as in (b) after
performing TL with 40% training data (MSE(Et) = 0.0038), (d) a wireless environ-
ment from Type V, and (e) same wireless environment as in (d) after performing
TL with 40% training data (MSE(Et) = 0.0048).

(a) (b) (c) (d) (e)

Figure 3.11: Radio map for (a) original wireless environment with 4 Txs, (b) an en-
vironment with additional wall and changed Tx locations, (c) same environment as
in (b) after performing TL with 35% training data (MSE(Et) = 0.005), (d) another
environment with additional wall and changed Tx locations, and (e) same environ-
ment as in (d) after performing TL with 40% training data (MSE(Et) = 0.0002).

from 900 to 950 MHz, (b) changing the location of each Tx by 1 meter, (c) adding
a wall below to second room, and (d) adding two objects in the floor plan and
changing its locations horizontally, and vertically with a spacing of 15 cm. This
experiment was successful with a TL-recommendation rate of 100% and an overall
model accuracy of 84.4%. The radio maps of two of these wireless environments are
shown in Figure 3.11. The differences in these radio maps can be easily visualized.

3.11 Summary

• We design an effective data-driven TL method that transfers and fine-tunes
a DNN-based radio map model learned from an original indoor wireless envi-
ronment to other different indoor wireless environments.
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• Our data-driven similarity measure performs efficiently in finding the similarity
between the source and the target wireless environments. It also predicts the
amount of training data needed to estimate radio maps in different target
wireless environments when performing the TL operation.

• The traditional similarity measures, including the widely used Wasserstein
distance, are not able to provide accurate similarity between the source and
the target wireless environment that considers the wireless propagation char-
acteristics. As a result, these similarity measures are not suitable for our TL
problem in the context of radio map estimation.

• With different types of wireless environments tested, our proposed TL scheme
performs satisfactorily with high model accuracy and saves a substantial amount
of sensor measurement data, even in the presence of complex changes in the
wireless environments, such as the change in Tx locations, carrier frequency,
additional wall, etc.

• The errors in the estimated Rx locations affect the model accuracy more than
the noise in the power values. This signifies that our proposed TL scheme
is less robust against errors in location estimations as compared to errors in
power values. In addition, for noisy scenarios, more training data is needed to
compensate for this noise. This motivates the investigation of methods that
are location-free.
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Chapter 4

Transfer Learning for Location-free
Radio Map Estimation

This chapter summarizes Paper C [8]. The results obtained here reply Q2.

4.1 Motivation

Obtaining accurate locations, especially, in scenarios having a high degree of wire-
less multi-path, is difficult. Alternatively, one can employ location-free features of
radio signals, such as time of arrival (ToA), time difference of arrival (TDoA), and
direction of arrival (DoA), to estimate radio maps. ToA, which is the focus of our
work, is the time at which the radio signals arrive at the receiver Rx from the trans-
mitter Tx, and it can be estimated through different methods (see Section 2.2 in
Chapter 2). To this end, we propose a transfer learning (TL) method using ToA
features to estimate radio maps for indoor wireless communications. Moreover, we
also compare the proposed TL method with (a) the TL method of Chapter 3,
where the exact locations of Rxs are used, and (b) the TL method where both the
ToA features and the exact locations of Rxs are used.

4.2 TL System Design

Similarly to Chapter 3, we propose a TL system for estimating radio maps from
the source (original) indoor wireless environment to the target indoor wireless envi-
ronments.

4.3 Baseline Model and Transfer Learning Approach

To estimate radio maps, we first develop a fully-connected deep neural network
(DNN)-based radio map model in the original wireless environment, as shown in
Figure 4.1. In this case, the DNN is designed to map the ToA {τ ri }, corresponding
to each Rx location {xr

i}, to the power values {P (τ ri )} obtained at each Rx loca-
tion {xr

i} under the original wireless environment (referred to as Method 2). We
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Figure 4.1: DNN model for radio map estimation.

use the first two ToA values {τ ri }. The target wireless environment then exploits
this baseline radio map model and fine-tunes it with additional data available from
the target wireless environment, as shown in Figure 3.3 of Chapter 3. Since a
sufficient amount of similarity between the source and target wireless environments
is necessary to perform effectively the TL operation, it is also necessary in this case
to consider a similarity measure, as described previously in Chapter 3.

We consider two methods (see Figure 4.1). Method 1 uses both exact ToAs
and exact locations of Rxs. Method 2 uses only exact ToAs. These methods are
compared with Method 3 which uses only exact locations of Rxs [34].

4.4 Similarity Measure

Generally, the amount of training data needed to perform the TL operation relies on
its similarity measure. For instance, less amount of training data is needed in the new
target wireless environment, if the source and the target wireless environment are
sufficiently similar, and vice-versa. Thus, a similarity measure is needed to determine
whether the TL operation is effective (see Section 2.5 in Chapter 2). We design
a data-driven similarity measure (DDS), as described previously in Chapter 3.

4.5 Data Generation

Similar to Chapter 3, we also use the high-accuracy ray-tracing X3D ray model [41],
computed using the software Remcom [33] to obtain the power measurements that
are sufficiently representative of the real indoor wireless environments. The detailed
description to generate data for TL is presented under Section 3.7 of Chapter 3.

4.6 TL Performance

To understand the performance of the proposed TL method, transferability, F1-
score and accuracy (see Section 3.8.1) are calculated for both cases under each
Method. Higher values of these performance measures imply a better performance
of the model.
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Figure 4.2: TL Performance of different methods.

Figure 4.2 shows the transferability, F1-score and accuracy for each case under
each Method along with Method 3 [34] for comparison. An empirical threshold for
the test MSE corresponding to TL, and the number of training epochs are set as 0.01
and 20, respectively, for each case of each Method. Two environments are recognized
as sufficiently similar, if both obtained values are less than these thresholds, else, the
TL operation is not recommended. We can see that all these measures have higher
values under case A for both Method 1 and Method 2 than for case B. In addition,
100% accuracy is achieved by Method 1 and Method 2 under case A, which is higher
than the corresponding value under case B. On the other hand, all measures under
case B corresponding to Method 2 are slightly lower than the corresponding values
under case B corresponding to Method 1.

Moreover, while comparing all these measures, we notice that both case A and
case B are performing better under Method 1 and Method 2 than the corresponding
cases under Method 3. In particular, there is an improvement of around 26% in
accuracy under Method 1, for case A and case B, respectively, as compared to
Method 3. Similarly, there is an improvement of around 24.5% in accuracy under
Method 2 (only location-free) for case A and case B, as compared to Method 3
(only location-based). In addition, the values of all the performance measures under
Method 2 (only location-free) are almost the same as Method 1, for both case A and
case B. Generally, Method 1 (both location-based and location-free) performs the
best as it has both features, as expected. Numerically, Method 2 (only location-free)
performs better than Method 3 (only location-based). This can be caused by the
fact that the received power is easier to relate to the ToA than the Rxs locations.

4.7 Visualization of Radio Maps

For the purpose of visualization, we present different radio maps which are estimated
using the various methods, as shown in Figure 4.3. The cubes and the walls of the
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(a) (b) (c) (d)

Figure 4.3: Radio map for: (a) original indoor wireless environment, (b) indoor
wireless environment where a single object, represented by a cube, is present, (c)
the same wireless environment as in (b) after performing TL using both ToA features
and locations of Rxs (Method 1), where only 40% of training data is used for training
the DNN resulting in a test MSE corresponding to TL as 0.0020, and (d) the same
wireless environment as in (b) after performing TL using only ToA features (location-
free) (Method 2), where only 40% of training data is used for training the DNN
resulting in a test MSE corresponding to TL as 0.0036.

rooms are represented in black and dashed red colours, respectively. The differences
in the radio maps can be easily visualized.

4.8 Summary

• We address the problem of transfer learning in radio map estimation for indoor
wireless communications in scenarios having wireless multi-path, where it may
be difficult to have accurate location estimations.

• We consider the use of ToA features of the radio signals instead of using directly
the locations of Rxs. Additionally, we consider the combination of ToAs and
locations of Rxs.

• We design an effective data-driven TL method that transfers and fine-tunes
a DNN-based radio map model, learned from an original indoor wireless en-
vironment, to other different and similar indoor wireless environments. We
consider three methods: Method 1 is the combination of location-based and
location-fee; Method 2 is only location-free; and Method 3 is only location-
based.

• We design a data-driven similarity measure to investigate the similarity be-
tween the source and the target wireless environments. Our DDS can predict
the amount of training data needed in new target environments when perform-
ing the TL operation.

• We also investigate the suitability of the widely used similarity measure, that
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is, Wasserstein distance in estimating radio maps, and find that it is not ap-
plicable to our radio map estimation problem.

• Method 1 (combination of location-based and location-free), and Method 2
(only location-free) require less amount of training data, as compared to
Method 3 (only location-based) [34], in order to perform TL operation in
new target wireless environments for estimating radio maps.

• Both Method 1 and Method 2 have better accuracy as compared to Method 3 [34].

• Use of only location-free ToA features is satisfactory for estimating accurate
radio maps in the new indoor wireless environments in scenarios of having
wireless multi-path, where it may be difficult to have accurate location esti-
mations.

• The radio map estimated using only location-free ToA features (Method 2) is
almost as good as Method 1 (combination of location-based and location-free).
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Chapter 5

Transfer Learning for Radio Map
Estimation using Mixture of Experts

This chapter summarizes Paper D [35]. The results obtained here reply Q3.

5.1 Motivation

As shown in Chapter 4, with the incorporation of methods that use both esti-
mated sensor locations and methods that use the time of arrival (ToA) features,
one can estimate accurate radio maps. Along these lines, we develop a mixture of
experts (MoE)-based radio map model in the original wireless environment which
comprises two deep neural network (DNN)-based experts. Expert 1 is location-
based, trained with the estimated locations of receivers (Rxs) and corresponding
power values, and Expert 2 is location-free, trained with the ToA features and cor-
responding power values. In addition, a gating network, which is also a DNN, com-
bines the output of both experts to estimate the final radio map. This MoE-based
radio map model is then transferred to new wireless environments and fine-tuned
to estimate the corresponding radio maps in those environments. Moreover, our
designed data-driven similarity measure coordinates with the transfer learning (TL)
operation, similar to Chapter 3, and predicts the amount of training data needed
to perform TL operation in the new wireless environments. In general, location-free
estimation has more input parameters than the location-based. Thus, it requires
more training data to sufficiently train its bigger network. Note that this will be
the case only if the location estimation is sufficiently accurate for the location-based
method. However, when the location estimation is not sufficiently accurate, then the
location-based method will require more training data as compared to the location-
free method that uses accurate ToA features. In the case that both the locations of
Rxs and ToAs are inaccurate, the location-free estimation will require more training
data, but it will converge to a more accurate estimation since it has more features.
Thus, to take advantage of both methods, MoE is expected to be beneficial.
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Figure 5.1: Illustration of radio maps: (a) original wireless environment, and (b)
target environment with 4 transmitters Txs and 3 objects represented by 3 cubes.
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Figure 5.2: MoENet: Baseline MoE model.

5.2 Problem Formulation

To design a TL-based radio map estimation model using MoE, we consider three
parts, namely, the design of a MoE, the TL operation, and the TL similarity mea-
sure. Firstly, we consider two separate experts. Expert 1 is location-based having
the estimated locations of Rxs {x̂r

j} as input (where j is the index of the Rx), and
F1(x̂

r
j) = P̂ (x̂r

j) as output, the corresponding aggregate power. Similarly, Expert 2
is location-free having the estimated ToAs {τ̂ rj } as input, and F2(τ̂

r
j ) = P̂ (τ̂ rj ) as out-

put, the corresponding aggregate power. Then, considering the MoE principle [66],
we can combine both experts using a gating network G(xGNj

). The input to the
gating network is {xGNj

} = {P̂ (x̂r
j), P̂ (τ̂ rj ), τ̂

r
j , x̂

r
j , exr

j
}, where P̂ (x̂r

j), and P̂ (τ̂ rj ) are
the predicted receiver powers from Expert 1 and Expert 2, respectively, and exr

j
is

the location estimation error, assumed to be known. In practice, exr
j

can be either
estimated by performing location estimation measurements in advance, e.g., varying
the wireless environment and estimating (offline) ẽxr

j
at each position of the poten-

tial receiver and calculating the average of these errors across environments (envs)
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exr
j
= Eenvsẽxr

j
, or through a localization algorithm that is able to estimate this er-

ror. This error generally defines an uncertainty region around the estimated location
where the actual location resides. Its output is G(xGNj

) = P̂ (xGNj
), that is, the

aggregate received power at Rxj. Our problem is how to learn functions F1(·), F2(·),
and G(·).

Let Es, and Et denote the source (original) and target wireless environments,
respectively, as shown in Figure 5.1. Next, let us assume that only a small amount
of power values are available in Et, as compared to the number of samples in Es.

For the source environment Es, we first learn the DNN-based MoE Gs(·), as shown
in Figure 5.2, with weight parameters θ⋆s through minimizing the loss function mean
square error (MSE), MSE =

∑Ns
i=1 [P (xi)−Gs(·)]2

Ns
, where Ns is number of Rxs. Let us

also assume that Es and Et have some similarity in terms of wireless propagation
characteristics. We perform TL by transferring the baseline MoE model learnt in
Es to the target environment Et, initializing its parameters by the values obtained
from the baseline MoE model of Es. Then, we fine-tune this model to minimise
the same loss function but in the target environment Et, by using some additional
measurement samples. If the TL operation is successful, this additional number of
samples will be small. The detailed mathematical formulation of TL can be seen
in [2]. The similarity measure is defined in the same way as in Chapter 3, where
the baseline model is now given by MoENet, instead of MapNet.

5.3 Radio Map Estimation Model Using TL

Similarly to Chapter 3, the proposed model has two phases, namely; the training
phase and the execution phase. The training phase, as shown in Chapter 3, consists
of two stages: (i) the design of the baseline MoE model in the source environment
Es, followed by the possibility of transferring it to the target environment Et, and (ii)
the establishment of a similarity measure between Es and Et. The execution phase,
shown in Figure 5.3, takes a floor plan image of a new Et as input. It first checks if
TL can be performed based on our data-driven similarity measure (DDS). If TL can
be performed then we obtain the percentage of training data needed to perform TL
and the corresponding radio map. On the other hand, if TL can not be performed,
then a new baseline model is trained from the very beginning.

Test image 

DDS
Trained
MoENet

N
o

TL Decision

Transfer baseline
  MoENet and

  Fine-tune

Train a new
  MoENet without

transferring Radio map

Ye
s

(Percentage of
training data)

Figure 5.3: Data-driven transfer learning-based radio map estimation model using
MoE (execution phase).
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5.4 Transfer Learning Approach

As shown in Figure 5.2, Expert 1 is location-based having the power values obtained
at multiple estimated locations of Rxs in the original wireless environment (see Fig-
ure 5.1(a)). The estimated locations of Rxs are obtained using the trilateration
localization algorithm [1] (see Section 2.3). Expert 2 is location-free mapping of
the power values to the estimated ToA features for the same original wireless envi-
ronment. We use 2 ToA features for every Tx. The gating network takes the outputs
of each expert, the inputs of each expert, and the location estimation error exr

j
to

obtain the final output (power values) for estimating the radio maps. Both experts
and the gating network are trained jointly as feed-forward DNNs for the original
wireless environment. The trained baseline MoE model, as shown in Figure 5.2, is
referred to as MoENet.

Then, given the baseline MoE model MoENet, we first decide whether to perform
TL operation based on the similarity measure (DDS). However, since our similarity
measure is data-driven, a sufficient amount of data obtained from performing TL
operation is also necessary to learn this similarity measure. To this end, we transfer
the MoENet to each individual target wireless environment Et, followed up by fine-
tuning using a small amount of additional training data from Et.

After training and fine-tuning the transferred MoENet for each new target wire-
less environment, we store the test MSE, i.e., MSE(Et) and the number NEP (Et) of
training epochs, which are used further to investigate similarity measures between
the source Es and the target Et wireless environments.

Next, we design a data-driven similarity measure (DDS), similar to the one in
Chapter 3. We use the same Method A and Method B for our DDS, where the
test MSE, i.e., MSE(Et) and number NEP (Et) of training epochs are obtained from
MoENet instead of MapNet.

A high-level description of DDS in the form of pseudo-code is presented in Al-
gorithm 4.

5.5 Model Performance

We use Remcom [33] to obtain 1046 different target wireless environments as before.
Additionally, we use the trilateration algorithm [1] to obtain estimated Rx locations
for each wireless environment. Moreover, we add Gaussian noise with zero mean
and a variance of 1 dB to the ToA features of each wireless environment.

Table 5.1: Transferability, F1-score, and Accuracy

Performance Method A Method B
measures MSE(Et) Both MSE(Et) and NEP (Et)

Transferability 0.957 0.970
F1-score 0.859 0.851
Accuracy 0.765 0.747
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Algorithm 4: Data-driven Similarity Measure SimNet
Input: D := {Imt,MSE1t,MSE2t,MSE3t, NEP t(only for Method B)}:

dataset comprising three-level images of target environments, 8 sets of
MSEs (MSE1, MSE2, MSE3) of the transferred model after TL for
different data splits rt = {5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%},
Training epochs of the transferred model after TL for all 8 sets of data
splits, for each environment, respectively

MSEthr: MSE threshold, NEP thr
: Epoch threshold, α: Learning rate,

B: Batch size, r: Splitting ratio, N cnn
EP : Training epochs of SimNet

Output: SimNet(θsim), MSEcnn: MSE of trained CNN model,
TL decision: Yes/No

Data-Splitting: Split data into training Dtrain & test Dtest with ratio r

1: Training stage
2: Use data from Dtrain

3: Normalize image values Imt, MSE1t, MSE2t, MSE3t and NEP t to [0, 1]

4: Randomly initialize θsim
5: for k = 1,...,N cnn

EP do
6: for j = 1,...,NB = ceil(|Dtrain|/B) do
7: Randomly select B training samples from Dtrain as the training batch
8: Update θsim with learning rate α to minimize loss given by the

MSEcnn = LA = |MSE(Et)− M̂SEt|2 (Method A)

= LB = |[MSE(Et)− M̂SEt,

NEP (Et)− N̂EP t ]|2 (Method B)

(5.1)

9: end for
10: end for
11: Testing stage
12: Initialize MSEcnn: MSEcnn ← 0

13: Use test data from Dtest

14: Predict MSE1t, MSE2t, MSE3t and NEP t on a given image of Imt

15: Calculate MSEcnn using (5.1)
16: TL decision
17: for q = 1,...,|D| do
18: for each rt do
19: if max (M̂SE1t, M̂SE2t, M̂SE3t) ≤ MSEthr then
20: TL decision ← Yes and output rt, else, TL decision ← No
21: if max

(M̂SE1t, M̂SE2t, M̂SE3t) ≤ MSEthr & N̂EP t ≤ NEP thr
(Method B) then

22: TL decision ← Yes and output rt, else, TL decision ← No
23: end if
24: end if
25: end for
26: end for
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To investigate the performance of the proposed model, Table 5.1 presents the
transferability, F1-score, and accuracy [2]. It can be observed that the F1-score un-
der each method is the same, while the transferability is slightly better in Method B.
The accuracy under Method A is 76.5% and the accuracy under Method B is 74.7%.
The reason for observing a smaller accuracy under Method B is because Method B
is more strict towards satisfying both the test MSE and the number of training
epochs threshold criteria, as compared to Method A, where only the test MSE cri-
terion needs to be satisfied. This suggests that our proposed model can be used
effectively for estimating radio maps in new wireless environments with fewer sensor
measurements, as compared to the case of training a raw model without TL.

5.6 Visualization of Radio Maps

To visualize the accuracy of the estimated maps, we present different radio maps
that are estimated using each expert, as shown in Figure 5.4. The cubes and the
walls of the rooms are represented in black and dashed red colours, respectively.
The differences in the radio maps can be easily seen.

(a) (b)

(c) (d) (e)

Figure 5.4: Radio map for (a) original wireless environment with 4 Txs, (b) an
environment from Type IV, (c) environment (b) after performing TL using Expert 1
with 40% training data (MSE(Et) = 0.0078), (d) environment (b) after performing
TL using Expert 2 with 40% training data (MSE(Et) = 0.006), and (e) environment
(b) after performing TL using MoENet with 40% training data (MSE(Et) = 0.0054).
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5.7 Performance of the TL Model with Additional
Complex Changes in Wireless Environments

Additionally, we generated 130 different wireless environments by making the fol-
lowing changes: (a) changing the carrier frequency of waveform from 900 to 950
MHz, (b) changing the location of each Tx by 1 meter, (c) adding a wall below to
second room, and (d) adding two objects in the floor plan and changing its locations
horizontally, and vertically with a spacing of 15 cm. This experiment was successful
with a TL-recommendation rate of 99.78% and an overall model accuracy of 72.5%.
The radio map of one of these wireless environments is shown in Figure 5.5. The
differences in the radio maps can be easily visualized.

(a) (b)

(c) (d) (e)

Figure 5.5: Radio map for (a) original wireless environment with 4 Txs, (b) an
environment with additional wall and changed Tx locations, (c) environment (b)
after performing TL using Expert 1 with 30% training data (MSE(Et) = 0.0096),
(d) environment (b) after performing TL using Expert 2 with 30% training data
(MSE(Et) = 0.0076), and (e) environment (b) after performing TL using MoENet
with 30% training data (MSE(Et) = 0.0071).
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5.8 Summary

• We design an effective data-driven transfer learning method that transfers and
fine-tunes a MoE-based radio map model, learned from an original wireless
environment, to other different but similar wireless environments.

• MoE comprises two DNN-based experts, namely; a location-based expert (Ex-
pert 1), and a location-free expert (Expert 2), where the output of each expert
is connected to a gating network to estimate the final radio maps.

• With different types of wireless environments tested, our proposed MoE-based
TL method performs effectively in estimating accurate radio maps, while sav-
ing a substantial amount of sensor measurement data, even in the presence
of complex changes in the wireless environments, such as the change in Tx
locations, carrier frequency, additional wall, etc.

• The resulting radio map estimated using MoE is more accurate than the one
estimated using either Expert 1 or Expert 2, for the same amount of training
data.
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Chapter 6

Transfer Learning Based Joint
Resource Allocation

This chapter summarizes Paper E [36]. The results obtained here reply Q4.

6.1 Motivation

Resource allocation (RA) algorithms are necessary to achieve high performance in
both cellular and device-to-device (D2D) networks. Proper/Optimal resource al-
location can limit interference and maximize performance metrics, such as total
sum rate, energy efficiency, and spectral efficiency, to name a few. However, RA
formulations result usually in non-convex optimization and are difficult to solve
efficiently. Alternatively, given an optimal high complexity solver for a certain non-
convex problem, we can train first offline a deep neural network (DNN) that learns
the mapping between instances to the problem and the corresponding optimal (or
close-to-optimal) solutions provided by this solver. Then, when a similar (but still
different) non-convex optimization problem has to be solved, we can perform first
transfer learning (TL) of the DNN-based solver that imitates the optimal (or close-
to-optimal) solver for the first problem, and then fine-tune it with a small additional
training dataset to learn efficiently DNN-based solver for the other similar problem.
As usual, DNNs need a large amount of data for training to learn this mapping.
The idea is to use TL to reduce the amount of necessary training data. To this
end, we investigate the application of TL for the joint RA (channel assignments and
power allocation) in underlay D2D communications. More specifically, we address
the problem of learning joint RA (channel assignments and power allocation) to
cellular users (CUs) and D2D pairs in an imperfect channel state information (CSI)
scenario, by performing TL from a perfect CSI scenario. This is also motivated in
this case by the fact that it is easier to obtain a large training dataset for simpler
scenarios with perfect CSI as compared to more challenging scenarios with imperfect
CSI. Even though we focus on this particular application of RA, the same technique
can be applied to other applications that can benefit from performing TL between
similar optimization problems.
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Figure 6.1: Illustration of the system model with TL approach.

6.2 TL System Model

The system model with the TL approach is shown in Figure 6.1. We investigate
the transfer of a DNN model trained for resource allocation (channel assignment
and power allocation) to cellular users and D2D pairs, from the case of perfect CSI
conditions to the case of imperfect CSI conditions.

We consider a cell served by a single base station (BS), which communicates
with NC cellular users (CUs) through NC downlink channels. The cell is assumed
to operate in, without loss of generality, a fully loaded mode, where all channels are
assigned to cellular users; thus, the CUs can be indexed by C = {1, ..., NC}. Next,
we consider ND D2D pairs (indexed by D = {1, ..., ND}) wishing to communicate
in underlay1 mode using the aforementioned NC downlink channels. The notations
for the channels are as follows: gBi

and gDj
denote respective direct channel gains

between the BS to i-th CU and transmitter and receiver of the j-th D2D pair; hBj

and hCj,i
denote, respectively, interference channel gain between BS to the receiver

of j-th D2D pair and the transmitter of j-th D2D pair to i-th CU. Furthermore, we
denote the total noise power in any channel by N0.

1In underlay D2D communication, channels (e.g. frequency bands or time slots) can be simul-
taneously used by both D2D users and traditional CUs.
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6.2.1 Resource Allocation under Perfect CSI

In this problem, we follow the same formulation as in [70]. The objective of this
problem is the sum rate maximization of both the cellular and the D2D network
along with a fairness measure in channel assignment to the D2D pairs. Here,
all channel gains gBi

, gDj
, hBj

and hCj,i
; 1 ≤ i ≤ NC , 1 ≤ j ≤ ND are per-

fectly known at the BS. Let Γ(z) := log2(1 + z); the sum rate over i-th chan-
nel is defined as: Ri :=

∑
j∈D βi,j[RCi,j

+ RDj,i
] + (1 −

∑
j∈D βi,j)RCi,0

, where
RCi,j

= Γ(PBi
gBi

/(N0 + PDji
hCj,i

)) denotes the rate of the i-th CU when sharing
the channel with the j-th D2D pair (βij = 1); RDj,i

= Γ(PDji
gDj

/(N0 + PBi
hBj

))

the rate of the j-th D2D pair when sharing the channel with the i-th CU (βij = 1);
and RCi,0

= Γ(PBmaxgBi
/N0) the rate of the i-th CU when it shares its channel

with no D2D pair (βij = 0 ∀j). The overall network rate of both cellular and
D2D networks can be expressed as: R :=

∑
i∈C Ri. The overall resource allocation

optimization problem under perfect CSI can be formulated as:

max
B,PB ,PD

R(B,PB, PD)− γδ2(B) (6.1a)

subject to βi,j ∈ {0, 1},
ND∑
j=1

βi,j ≤ 1 ∀i (6.1b)

0 ≤ PBi
≤ PBmax ∀i 0 ≤ PDji

≤ PDmax ∀j, i (6.1c)
PBi

gBi

N0 + PDji
hCj,i

≥ ηCmin ∀i, j, if βij = 1 (6.1d)

PDji
gDj

N0 + PBi
hBj

≥ ηDmin ∀i, j, if βij = 1. (6.1e)

where ηCmin and ηDmin are the respective minimum SINR requirements for CUs and
D2D pairs. The binary variable βi,j denotes the channel assignment to the j-th
D2D pair; βi,j = 1, if the i-th CU shares the channel with the j-th D2D pair, and
βi,j = 0 otherwise. It is assumed that each D2D pair can access multiple channels at
the same time, but no channel can be used by multiple D2D pairs simultaneously,
which implies that

∑ND

j=1 βi,j ≤ 1, ∀i. PBi
and PDj,i

denote, respectively, the trans-
mit power allocated to the BS over the i-th channel and the j-th D2D pair when
accessing the i-th channel. The unfairness measure δ2(B) (from [71]) is defined
as δ2(B) := 1/(NDx

2
0)
∑ND

j=1(xj(B) − x0)
2, where xj :=

∑NC

i=1 βi,j is the number of
channels assigned to the j-th D2D pair, x0 := NC/ND and B is channel assignment.

δ(B) can be interpreted as standard deviation of xj from their fairest value x0

and thus, assigning more uneven channels among D2D pairs, will lead to a larger
δ(B). Note that the expression for R has a sum of the log functions of ratios, which
makes the expression non-convex. Additionally, the variable βi,j is binary. These
two issues make the optimization problem a mixed-integer non-convex problem.

This resource allocation optimization problem can be solved efficiently [70] to
find close-to-optimal solutions, allowing to obtain efficiently a large dataset to learn
a DNN-based solver model.
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Figure 6.2: Baseline DNN with input and output.

6.2.2 Resource Allocation under Imperfect CSI

In this problem, we follow the same formulation as in [72]. Here, the interference
channel gain is assumed to be exponentially distributed (Rayleigh fading2 channel
response) and is denoted by h̃Cj,i

, 1 ≤ i ≤ NC , 1 ≤ j ≤ ND. In the case of imperfect
knowledge of CSI, the stochastic SINR constraint (6.1d) is replaced with a proba-
bilistic constraint to guarantee a minimum outage probability ϵ, and is expressed
as:

PBi
gBi

N0 + PDji
F−1

h̃Cj,i

(1− ϵ)
≥ ηCmin (6.2)

where F−1

h̃Cj,i

(1 − ϵ) is the inverse cumulative distribution function (CDF) for h̃Cj,i

evaluated at (1− ϵ). The solution to this non-convex mixed-integer resource alloca-
tion problem in [72] is much more computationally demanding as compared to [70].
Thus, generating large datasets to train and learn a DNN-based solver is difficult.

6.3 Transfer Learning Approach

We first learn a baseline DNN model under the perfect CSI scenario with the dataset
generated from the algorithm presented in [70] where the input of the DNN comprises
channel gains, and the output of the DNN comprises both channel assignments and
power allocations. The baseline model used for TL is shown in Figure 6.2.

The baseline DNN model is then transferred to the imperfect CSI scenario and
fine-tuned with a small dataset generated from the algorithm presented in [72].

6.4 Similarity Measure

In this work, we have not designed a data-driven similarity measure (DDS) as before.
However, we show that the outage probability can indicate how similar the imperfect
CSI scenario is to the perfect CSI scenario. The smaller it is, the more different the

2Rayleigh fading is suitable for indoor scenarios where there is high multipath and no line of
sight (LOS).
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scenarios are. This measures the similarity between the optimization problems,
which in turn measures the similarity between the solvers.

Moreover, we prove that under the assumption that the interference channel
gains h̃Cj,i

follow an exponential distribution (Rayleigh fading channel response)
with a mean equal to the true channel gain value in the perfect CSI case, the two
resource allocation problems for perfect CSI and imperfect CSI are equivalent for
an outage probability ϵ = 1

e
.

Note that equivalent optimization problems have the same set of solutions. How-
ever, a solution provided by one solver for a problem might be different from another
solver of an equivalent problem, since there might not be a unique solution.

6.5 Data Generation

The simulation setup comprises a circular cell of radius 500m in which the CUs and
D2D transmitters are placed uniformly at random. Each D2D receiver is placed
uniformly at random inside a circle of radius 5m centred at the corresponding trans-
mitter. The channel gains are calculated using a path-loss model with exponent 2
and gain −5 dB at a reference distance of 1m. We assume h̃C to be exponentially
distributed with the mean value obtained from the mentioned path-loss model. Av-
erages over 100,000 independent realizations of the user locations with parameters
BW = 15 kHz, γ = 50 × BW, ND = 5, NC = 5, N0 = −70dBW (γ is scaled with
BW to ensure that the unfairness and the achieved rate are of comparable values)
are performed. Thus, the input to the DNN is the set of channel gains, which ac-
counts for 40 inputs. The output of the DNN is a joint set of 50 power allocations
and 25 channel assignment variables. For training the baseline DNN model with
perfect CSI, we consider 100,000 input-output pair samples.

6.6 Numerical results

We show how the amount of training data required to fine-tune the baseline model
depends on the degree of mismatch between the tasks of solving the two optimization
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Figure 6.3: Percent of training data vs MSE (Number of epochs = 10).
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Figure 6.4: Percent of training data vs MSE (Number of epochs = 10).
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Figure 6.5: Sum-rate for different values of outage probability ϵ.

problems. For example, Figure 6.3 shows that when two problems are equivalent, i.e.,
outage probability ϵ = 0.3679, then with only 30% of training data, the transferred
baseline model is completely trained. However, Figure 6.4 shows that when there
is a large mismatch between the two problems, i.e., ϵ = 0.05, then almost 80% of
training data is required for the complete training of the transferred baseline model.

Next, Figure 6.5 shows the plot of sum-rate obtained for different values of outage
probability ϵ, that is, ϵ = 0.05, ϵ = 0.1 and ϵ = 0.3679, for the case of imperfect
CSI [72]. It can be noticed that the resulting sum-rate achieved after performing
TL is higher than the one obtained from a DNN-based solver model trained without
TL. Specifically, by performing TL, we achieve the same sum-rate as the original
solver [72] for ϵ = 0.3679, a condition in which the two resource allocation problems
for perfect CSI and imperfect CSI (under an outage probability ϵ = 0.3679) are
equivalent. This signifies that even with a small number of training samples, by
performing TL, we achieve nearly the same performance as the original solver [72],
and superior performance as compared to using a DNN-based solver without TL for
the same amount of training data. Hence, it results in a substantial reduction of the
required computational resources.
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6.7 Summary

• We investigate the application of transfer learning for joint resource allocation
(channel assignment and power allocation) in underlay D2D communications.

• We design a baseline DNN model for the data generated from a perfect CSI
scenario and then transfer it to an imperfect CSI scenario and fine-tune it with
an additional small amount of data generated from the imperfect CSI scenario.

• The baseline DNN model transferred from the perfect CSI scenario improves
the learning for the imperfect CSI scenario while requiring a (relatively) small
amount of additional training data.

• We show how the similarity between two RA problems can be measured by
the desired outage probability ϵ. At ϵ = 1

e
= 0.3679, both RA problems are

equivalent. As a result, less amount of training data is required for fine-tuning
the transferred baseline DNN model in the imperfect CSI scenario.

• For other smaller values of ϵ, there is a larger mismatch between the two RA
problems, and a larger amount of training data is required for fine-tuning the
transferred baseline DNN model in the imperfect CSI scenario.

• The amount of data required for fine-tuning the transferred baseline DNN
model in the imperfect CSI scenario is significantly smaller as compared to
the training of a new DNN model without performing TL.

• The sum-rate obtained by training the imperfect CSI model using TL, is higher
than the DNN without TL for the same amount of training data. At the point
when both RA problems are equivalent (ϵ = 1

e
), TL achieves the original sum

rate while saving computational resources.
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Chapter 7

Concluding Remarks

7.1 Conclusion

This dissertation proposes transfer learning (TL) methods for: (a) estimating ra-
dio maps in wireless communications, and (b) resource allocation. The four major
areas covered in this dissertation are; (i) TL methods to combat the data-scarcity
challenge (location-based and location-free), (ii) similarity measure between wire-
less environments for machine learning algorithms in the context of wireless net-
works, (iii) TL-based non-linear mixing of two non-linear experts (location-based
and location-free), and (iv) TL between similar resource allocation problems with
a focus on the TL from perfect channel state information (CSI) to imperfect CSI.
A detailed description of the proposed methods can be found in Chapters 3 - 6,
while motivation and background can be found in Chapters 1 and 2, respectively.

In Chapter 3, we assume that we have an exact knowledge of receivers Rxs
locations and corresponding power values for the wireless environment, which we
refer to as the location-based TL method. Based on this, we propose a data-driven TL
method to estimate radio maps in new and sufficiently similar wireless environments.
We design a baseline radio map model in the original (source) wireless environment
and transfer and fine-tune it to the new wireless environments. We assume that a
relatively small amount of training data is available in new wireless environments.
We also design a data-driven similarity measure (DDS) in order to measure, in terms
of wireless propagation characteristics, the similarity between the original and new
wireless environments. Our DDS also allows us to predict the accuracy, in terms of
mean square error (MSE), and the amount of training data needed to perform TL
operations in new wireless environments for estimating radio maps.

In Chapter 4, we assume that there is a high degree of wireless multipath in
the wireless environments and hence it is difficult to obtain accurate Rxs locations.
Then, we employ time of arrival (ToA) features of radio signals and learn a map
between the ToAs and corresponding power values for the wireless environment, and
we refer to this method as location-free TL method. More specifically, we design a
baseline radio map model employing ToA features in the original (source) wireless
environment and then we transfer and fine-tune it to the new wireless environments.
Similar to Chapter 3, our DDS can also predict the accuracy, in terms of MSE,
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Table 7.1: Comparison of chapters

Location-based Location-free Mixture of location-based Resource
and location-free allocation

Chapter 3 " $ $ $

Chapter 4 $ " $ $

Chapter 5 " " " $

Chapter 6 $ $ $ "

and the amount of training data required to perform TL operations in new wireless
environments for estimating radio maps.

In Chapter 5, we estimate radio maps of new wireless environments using a mix-
ture of experts (MoE)-based method. We design a MoE-based radio map model in
the original wireless environment which comprises two deep neural network (DNN)-
based experts. Expert 1 is the estimated location-based model, trained with the
estimated locations of Rxs and the associated power values, while Expert 2 is the
location-free model, trained with the estimated ToA features and the associated
power values. A gating network, which is also a DNN, is also trained to combine the
output of both experts and estimate the final radio maps. This MoE-based radio
map model is transferred to the new wireless environments and fine-tuned to esti-
mate the corresponding radio maps. The proposed MoE-based TL method performs
better than Expert 1 and Expert 2 experimentally and saves a substantial amount
of sensor measurement data, as compared to the scenario without using TL.

In Chapter 6, we cover TL between solvers of similar resource allocation prob-
lems. In particular, we assume that it is possible to obtain a large amount of train-
ing dataset for resource allocation (RA) scenarios with perfect CSI as compared
to scenarios with imperfect CSI. We propose a TL-based method for joint resource
allocation (channel assignments and power allocation) over D2D communications.
A baseline model is learned with the data corresponding to the perfect CSI, then
transferred and fine-tuned for the imperfect CSI scenarios. We also show how the
desired outage probability in the RA problem can be used to measure the similarity
between the perfect and the imperfect CSI scenarios. The total sum-rate of both
the cellular users (CUs) and the D2D pairs obtained by training the imperfect CSI
solver using TL, is higher than the DNN without TL, for the same amount of train-
ing data. A summary of the key differences between different methods proposed in
the various chapters is presented in Table 7.1.

7.2 Future Work

In this dissertation, we have studied the design of data-driven TL methods in wireless
networks, including the design of similarity measures, for estimating accurate radio
maps, and performing accurate resource allocation tasks. In terms of future work,
there are several key challenges that need to be looked into in the future.
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• Adapting our proposed TL method of radio map estimation to select the best
baseline model out of multiple potential baselines. For example, different
classes (clusters) of source wireless environments which are used to design
multiple baseline models (cluster head) for the TL operation may comprise
multiple objects or different numbers of transmitters to design multiple base-
lines. When a new environment comes, the proposed method should pick
(based on the similarity) the closest cluster/class and use its baseline for the
TL operation.

• Investigating the suitability of our proposed TL method of radio map estima-
tion in outdoor wireless network scenarios.

• Adapting our proposed TL method of radio map estimation in more chal-
lenging real-world wireless environments. For example, dynamic changes in
wireless environments over time. In other words, how to update the proposed
TL model in real-time using the least amount of sensor measurements if the
objects are continuously moving in the wireless environments.

• Incorporating deep generative models, such as generative adversarial networks
(GANs) [16] together with our TL methods to estimate radio maps in wireless
environments. This two-phase TL method may first explore global informa-
tion to extract radio propagation patterns and then local features to estimate
different wireless effects on radio maps.

• Incorporating tensor-based methods, such as [17], together with our TL meth-
ods to work in the scenarios of heavily quantized sensor measurements in
wireless environments for estimating radio maps.

• Designing data-driven similarity measures to perform TL operation for dif-
ferent types of network resource allocation problems so that it is possible to
perform an efficient TL to save a substantial amount of sensor measurements
and network resources.

69





Appendix A

PAPER A

Title: Deep Transfer Learning Based Radio Map Estimation
for Indoor Wireless Communications

Authors: Rahul Jaiswal, Mohamed Elnourani, Siddharth
Deshmukh, Baltasar Beferull-Lozano

Conference: IEEE SPAWC 2022

71



Deep Transfer Learning Based Radio
Map Estimation for Indoor Wireless
Communications

R. Jaiswal, M. Elnourani, S. Deshmukh, B. Baltasar Lozano

Abstract: This paper investigates the problem of transfer learn-
ing in radio map estimation for indoor wireless communications, which
can be exploited for different applications, such as channel modelling,
resource allocation, network planning, and reducing the number of nec-
essary power measurements. Due to the nature of wireless communi-
cations, a radio map model developed under a particular environment
can not be directly used in a new environment because of the changes
in the propagation characteristics, thus creating a new model for every
environment requires in general a large amount of data and is computa-
tionally demanding. To address these issues, we design an effective novel
data-driven transfer learning procedure that transfers and fine-tunes a
deep neural network (DNN)-based model for a radio map learned from
an original indoor wireless environment to other different indoor wire-
less environments. Our method allows to predict the amount of training
data needed in new indoor wireless environments when performing the
operation of transfer learning using our similarity measure. Our sim-
ulation results illustrate that the proposed method achieves a saving of
60-70% in sensor measurement data and is able to adapt to a new wireless
environment with a small amount of additional data.

A.1 Introduction

In wireless communications, accurate estimation of channel gain/path loss is impor-
tant in network design for optimizing the distribution of towers, channel modelling,
allocating resources and meeting the expected quality of service (QoS) requirements
of the end user. Path loss measures the loss of signal strength (reduction in power,
or attenuation) between a transmitter (Tx) and a receiver (Rx) due to large-scale
effects. Different factors may cause the attenuation in signal power, for example,
free-space propagation loss, reflections, diffractions, etc. from buildings, and objects
blocking the line of sight (LOS) between Tx and Rx. Path loss is obtained for each
Tx-Rx pair location and is sometimes referred to as path gain or radio map.

Wireless communication is dynamic in nature. For example, a good model for

72



a radio map that is appropriate in a particular wireless environment, may not be
appropriate for a new wireless environment due to changes in propagation charac-
teristics. On the other hand, notice that knowing the strength of signal or received
power in one wireless network area (source area) at several spatial locations (sam-
pled radio map), one can make a smart utilization of a pre-developed model to
estimate the radio map in another new wireless network area (target area) by ex-
ploiting transfer learning (TL) [19] and reduce the need of new measurements at the
new environment.

The exploitation of knowledge acquired in the source area for the learning task
in the target area is referred to as transfer learning (TL) [19]. It handles the data
scarcity issue in the target area. In the context of radio map estimation, one may
have configured or setup the wireless system in one indoor environment but need to
perform deployment in another environment. TL can be exploited to achieve a good
solution in the target area instead of learning a solution from the very beginning by
exploiting the knowledge from the source model.

Some of the works that have successfully adopted TL include [3, 20–23, 32]. To
capture traffic pattern diversity in cellular data of different cities, a spatial-temporal
cross-domain neural network (STCNet) model is proposed in [20]. Model-based
TL is exploited for similarities between different kinds of cellular traffic. In [21],
TL is exploited to improve the robustness of deep neural network (DNN) based
spectrum sensing in cognitive radio with the assumption that the data collected
under different characteristics belong to different but related distributions/domains.
A TL method via self-imitation is proposed in [32] to tackle the NP-hard mixed-
integer nonlinear programming problems of resource allocation. In [22], downlink
channel state information (CSI) prediction from uplink CSI using direct model-
based TL, is proposed for frequency division duplexing (FDD) in a massive multiple-
input multiple-output (MIMO) framework. A TL method based on Wasserstein
distance [51] is applied to the wireless fingerprinting localization in [23]. In fact, [3]
adopts a RadioUNet model which is a modified UNet architecture [14] (originally
designed for biomedical image processing) for estimating radio maps in the urban
environment. However, the work in [3] requires training the model from the very
beginning for each new wireless environment.

Since users may experience different indoor wireless environments, data collection
and training of DNN models from the very beginning are required in new wireless
environments. Typically, a large amount of samples and training epochs are required
for training a DNN, and thus training a new DNN for each new wireless environment
may demand a substantial computational time and data acquisition cost.

In this work, we address the problem of estimating radio maps in indoor wireless
communications using TL when the wireless environment changes. We assume that
fast fading is averaged out in the measurements. The main contributions of this
paper are the following:

• Design of an effective data-driven TL procedure that transfers and fine-tunes
a DNN-based model for a radio map learned from an original indoor wireless
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environment to other different indoor wireless environments.

• Formulation of a data-driven similarity measure model that predicts the mean
square error (MSE) that will be achieved for the estimated radio map in a new
wireless environment when performing TL from a baseline (source) environ-
ment.

• Prediction of the amount of training data needed in new wireless environments
depending on a certain criterion of the MSE threshold for the radio map es-
timation, when performing the operation of TL using our similarity measure
model.

• Extensive testing of our algorithms using simulated data from the Remcom
simulator [33]. Numerical experiments demonstrate that the proposed TL
method achieves a high success-rate in estimating radio maps accurately for
each new indoor wireless environment while using a small amount of train-
ing data. We also show experimentally that the Wasserstein distance (WD),
widely used in TL, is not applicable to our radio map application.

The remainder of this paper is structured as follows: Section A.2 describes
the environments for transfer learning. Section A.3 presents the proposed trans-
fer learning-based radio map estimation. Section A.4 presents and discusses the
results followed by concluding remarks in Section A.5.

A.2 Description of Environments for Transfer learn-
ing

In order to obtain power measurements that are sufficiently representative for real
indoor wireless environments, we use the standard high accuracy ray-tracing X3D

Source Task- Original Environment Target Task- Modified Environment

TL

(a)

Room 1

Room 2

(b)

Room 1

Room 2

Figure A.1: Environments for TL: Original and modified environments.
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Table A.1: Parameters used in Remcom for data generation.

Waveform Narrow-band Sinusoidal
Carrier frequency 900 MHz
Bandwidth 1.0 MHz
Antenna type Omni-directional
Tx location (1.5, 10, 1.3)m
Tx height 1.3m
Tx power 27.73 dBm
Receiver threshold -250 dBm
Voltage standing wave ratio (VSWR) 1.0
Transmission line loss 0 dB
Space between two Rx points 15cm
Space between two Rx routes 15cm
Noise figure 3 dB
Ray tracing X3D ray model
Ray spacing 0.2°
Number of reflections 3
Number of transmissions 2
Number of diffractions 0
Volume of the object (single cube) 1m3

Number of Rx locations 6678
Floor dimension (width x length x height) (9.5 x 20.6 x 2.88)m
Number of wireless environments 250
Image size of floor environment (width x height) (160 x 275) pixels

ray model [41], computed using the software Remcom [33]. We first consider an
environment of a single floor which is comprised of two rooms, in order to obtain
the radio map as shown in Figure A.1. We place a transmitter “Tx” at one fixed
location (xt) and then multiple receivers “Rx” at uniformly spaced locations (xr

i ) to
obtain the power corresponding to each Rx location (P (xr

i )), where i is the index
of the receiver. This results in 6678 Rx locations and corresponding power values.
Furthermore, to create different wireless environments, we incorporate an object at
different locations, that is, a single solid cube block (made of metal) having vol-
ume 1m3 with the original environment1. The location of this object is changed
horizontally, vertically, and diagonally as shown in Figure A.1(b), with an incre-
mental spacing of 15cm. For each location, a new indoor wireless environment is
created and the ray-tracing model provides the power for each particular environ-
ment with similar Rx locations. A total of 250 different indoor wireless environments
are created by changing the location of the object in different directions and the im-
ages of each indoor wireless environment are saved as 160 x 275-pixel images. These
images are later used also to investigate the suitability of the WD as a similarity

1The inclusion is made for the sake of simplicity to build different wireless environments con-
ceptually.
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measure for our problem and to develop a data-driven similarity measure between
different indoor wireless environments. The parameters used in the Remcom for
data generation are summarized in Table A.1.

A.3 Transfer Learning Based Radio Map Estima-
tion

The TL system design proposed for radio map estimation from a source task to a
target task is shown in Figure A.1. The arrows in Figure A.1(b) show the direction
in which the object, that is, a cube, is moved. Each object location creates a new
indoor wireless environment. The fundamental requirement in TL is the notion
of similarity between the source and the target task over which TL is performed.
Therefore, we now define the source task in which the baseline DNN model is trained
and the target tasks in which the baseline/pre-trained model is transferred and fine-
tuned, and then establish a similarity measure between the source and the target
tasks.

A.3.1 Baseline DNN Model and TL Approach

We design and develop a DNN model with the power values obtained at multi-
ple locations of receivers under the original indoor wireless environment (see Fig-
ure A.1(a)). For this purpose, we train a fully-connected DNN model (see Table A.2)
and refer to it as “Baseline model”, as shown in Figure A.2.

Location of Receivers  
( ) 

Power  
( ))

Input layer 1st Hidden
layer

Output layer2nd Hidden
layer

Figure A.2: Radio map estimation DNN model.

Next, we transfer the pre-trained (baseline) model to all new indoor wireless
environments one-by-one (total 250) and fine-tune each of them individually. Our
hypothesis is that there is no sufficient amount of training data to train a DNN from
the very beginning for the new wireless environments and hence, TL can be exploited
to be able to train a DNN with a small amount of training data for estimating the
radio map.

We normalize the data to be between 0 and 1 for the faster training of DNN [3].
We use the rectified linear unit (ReLU) as an activation function and a mini-
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batch of 32 samples. The usual MSE for the normalized data, defined as MSE =∑r
i=1(P (xi)−P̂ (xi))

2

r
, is used as the loss function, where P (xi) and P̂ (xi) are the actual

and the predicted power samples, respectively, and r is the number of Rx locations.
Adam optimizer with a learning rate of 0.001 is used for stochastic optimization.
Generally, the training data required to perform TL depends on the similarity, the
more similar the environment, the less training data is required. In order to obtain
the percentage of training data needed to perform the operation of TL, the whole
data is split into eight different train-test split ratios, such as 0.05:0.95, 0.10:0.90,
0.15:0.85, 0.20:0.80, 0.25:0.75, 0.30:0.70, 0.35:0.65, and 0.40:0.60. Here, for instance,
0.05:0.95 specifies 5% training and 95% testing data. After training DNNs for each
new indoor wireless environment, we store the test MSE obtained using TL and
the number of epochs used in training the DNN model in order to establish the
similarity between source and target tasks.

A.3.2 Similarity Measure using Wasserstein Distance

Similarity measures between the source and the target tasks such as Wasserstein
distance (WD) [23] have been widely used in TL. WD computes the distance between
two distributions. In our case, we compute WD between two images of different
wireless environments. For two random variables U and V (U being the image of the
environment with the cube present at the left-hand side bottom corner, and V being
the image of remaining environments with the cube present at different locations)
with respective cumulative distribution function (CDF) FU(u) and FV (v), the WD,
which we denote as d, is defined as [51]

d(U, V ) = inf
FUV ∈F

{EFUV
|U − V |} (A.1)

where, F is the collection of all joint CDFs, and EFUV
is the expectation of joint CDF.

In practice, the CDFs are computed empirically from the corresponding histograms.

A.3.3 Data-driven Similarity Measure

In order to formulate a data-driven similarity measure between the source and the
target tasks, we train a convolutional neural network (CNN) regression model un-
der two different cases and set a threshold empirically for its comparison with the
obtained value.

Case A: In this case, the input of the CNN is composed of the images (first
layer of Figure A.3) of different indoor wireless environments (total 250) and the
output is the test MSE corresponding to TL obtained for each wireless environment
when the baseline model is transferred and re-trained. The size of each image is 160
x 275 pixels. Each image is converted into a grayscale image before injecting it into
the CNN.

Case B: In this case, the input of the CNN is the same, but the output is now
both the test MSE corresponding to TL and the number of training epochs obtained
for each wireless environment when the baseline model is transferred and re-trained.
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Images of Indoor
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layer  

Fully
Connected
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Output 

Test MSE and  
Number of Epochs 

 (Case B)

Figure A.3: Network structure for the CNN.

This case has a larger CNN model and it needs larger feature sets. This makes it
computationally demanding. The network structure we consider in both cases is
shown in Figure A.3.

Furthermore, to decide whether TL is beneficial or not between two tasks, in
case A, we empirically set a threshold for the test MSE corresponding to TL as 1%
(0.01) and compare it with the obtained test MSE using TL. If the value of obtained
test MSE using TL is less than this threshold, then two tasks are recognized as
similar and TL can be performed, otherwise, we assume that TL is not beneficial.

Similarly, in case B, we empirically set a threshold for the test MSE corresponding
to TL as 1% (0.01) and the number of training epochs as 20, and compare the
thresholds with both the obtained test MSE using TL and the obtained number of
training epochs. If the obtained values of test MSE using TL and the number of
training epochs are less than the thresholds, then two tasks are recognized as similar
and TL can be performed, otherwise, it is assumed that TL is not beneficial.

A.4 Results and Discussions

The baseline DNN model used for TL is presented in Table A.2. It can be observed
that the training of the baseline DNN model is satisfactory for the testing, that is,
the test MSE is comparable to the training MSE, thus resulting in no over-fitting in
the model.

Next, to check the potential usefulness of the WD, we first compute the WD
between the floor image corresponding to the indoor wireless environment when the
cube is positioned near the Tx (see Figure A.1(b)), and the different floor images (to-
tal 250) corresponding to indoor wireless environments when the cube is positioned
at different locations. Similarly, we also compute the WD between the correspond-
ing sampled radio map (power values) obtained when the cube is positioned near
the Tx, and the sampled radio maps corresponding to the rest of the indoor wire-
less environments when the cube is positioned at different locations. However, if
we measure the Pearson’s correlation coefficient2 (PCC), which is a widely adopted

2

PCC(x, y) =
n(
∑

xy)− (
∑

x)(
∑

y)√
[n

∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

(A.2)
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Table A.2: The Baseline DNN model

Number of neurons in input layer 2
Number of hidden layers 2
Number of neurons in each hidden layer 16, 8
Hidden layers activation function ReLU
Dropout after each hidden layer 0.20
Number of neurons in output layer 1
Output layer activation function ReLU
Optimizer used Adam
Loss function MSE
Batch size 32
Train-Test split ratio 80:20
Test MSE 0.0102
Train MSE 0.0101

metric for measuring correlations [20], between both types of WDs (floor images and
associated sampled radio maps) across the various considered environments, then it
results in a value of 0.08, reflecting poor correlation. This implies that the WD is not
an effective similarity measure for our TL problem in the context of indoor wireless
radio maps, which justifies further the use of our data-driven similarity measure for
TL.

Along these lines, Table A.3 and Table A.4 present the model learning for the
CNN regression models under case A and case B, respectively. In case B, the settings
to train the CNN regression model are the same as in case A except for the number
of neurons in the output layer of the neural network is 16 due to aggregation of the
number of training epochs as well as the test MSE obtained using TL as output
features of the CNN. Both tables show that the CNN is trained appropriately in
both cases, that is, the test MSE, is comparable to training MSE.

Following our designed TL decision strategy described earlier for 250 different
indoor wireless environments, we now obtain a decision for each of the two CNN
cases.

Table A.5 and Table A.6 present the TL decisions for case A and case B, re-
spectively. Each table demonstrates training data needed to perform TL following
the proposed TL strategy and the corresponding number of indoor wireless environ-
ments.

It can be noticed from Table A.5 that 246 out of 250 different indoor wireless
environments satisfy our criteria and are recommended for TL, resulting in a training
data requirement of 30-40% only. This leads to a TL success-rate of 98.4%. Similarly,
Table A.6 shows that 217 out of 250 different indoor wireless environments satisfy
our criteria and are recommended for TL, resulting in a training data requirement
of 20-35% only. This leads to a TL success-rate of 86.8%. Both results signify that
TL can be used effectively to estimate the radio map in the new indoor wireless

x = WD of image, y = WD of power values, n = number of environments.
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Table A.3: The CNN model in Case A

Total indoor wireless environments 250
Image size of floor environment (width x height) 160 x 275
Number of convolutional layers 2
Number of filters in first and second convolutional layer 32,64
Filter size in first and second convolutional layer 3 x 3
Number of max pooling layers 2
Filter/pool size in each max pooling layer 2 x 2
Number of strides in first and second convolutional layer 2
Activation function in first and second convolutional layer ReLU
Dropout after second max pooling layer 0.3
Number of neurons in the output layer of neural network 8
Activation function in the output layer of neural network ReLU
Optimizer used Adam
Loss function MSE
Batch size 32
Train-Test split ratio 80:20
Test MSE 0.0411
Train MSE 0.0314

Table A.4: The CNN model in Case B

Number of neurons in the output layer of neural network 16
Test MSE 0.0423
Train MSE 0.0348
All other parameters are the same as in Table A.3 (Case A).

Table A.5: TL Performance in Case A

Training data needed Number of environments
40% 23
35% 206
30% 17

Table A.6: TL Performance in Case B

Training data needed Number of environments
35% 31
30% 152
25% 31
20% 3

environment where a small number of sensor measurements are available.
Furthermore, in order to see how good and reliable our proposed model is, we
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Table A.7: Transferability, F1-score, and Accuracy

Case A Case B
TP 166 144
TN 19 17
FP 52 66
FN 13 23

Transferability 0.927 0.862
F1-score 0.836 0.763
Accuracy 0.740 0.644

calculate transferability3, F1-score, and accuracy [69] in each case. Transferability
shows how good our model is at recommending a correct TL. F1-score is a measure
of the test accuracy of the model. Accuracy measures the degree of veracity of the
model.

Table A.7 presents the true positive (TP), true negative (TN), false positive (FP),
false negative (FN), transferability, F1-score, and accuracy for each case. It can be
observed that the transferability and F1-score of our proposed model in case A are
higher than in case B. Moreover, the accuracy of our proposed model in case A
is 74%, which is higher than in case B. This means that for the different modified
indoor wireless environments tested, the case A model provides a good performance.
The reason for case B having lower accuracy is that the training epochs are not
highly correlated with the test MSE corresponding to TL for the similarity measure.
The analysis of results signifies that the data-driven similarity measure between the
source and the target tasks is performing well and TL can be used effectively to
estimate the radio map in the new indoor wireless environments requiring only a
small number of sensor measurements.

As an illustration, Figure A.4 shows the radio maps corresponding to the original
environment (no cube present) and two different indoor wireless environments (cube
present). The cube in the radio maps is represented in black colour and the walls of
the rooms in the radio maps are represented in dashed red colour. The radio maps
in Figure A.4(b) and Figure A.4(c) represent the environments where only 20% and
30% of training data, respectively, are required when executing the operation of TL,
as compared to the original radio map without executing the operation of TL in
Figure A.4(a). The differences in the radio maps among the three environments can
be easily visualized.

A.5 Conclusion

In this paper, we present a TL-based method to estimate the radio map for in-
door wireless networks. Moreover, a data-driven similarity measure is developed
to quantify the similarity between two tasks which is later used to decide whether

3Instead of the usual name of sensitivity in the context of medical diagnostic tests [69], we use
the term “transferability” for the sake of clarity given the context of our work here.
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(a) (b) (c)

Figure A.4: Radio map in (a) original indoor wireless environment, (b) environment
where 20% of training data is required when executing the operation of TL, and (c)
environment where 30% of training data is required when executing the operation
of TL.

to recommend performing TL given only the image of the environment. A unique
advantage of transfer learning is that it will reduce the number of training samples
that are necessary for estimating the radio map in similar environments, saving a
large amount of data acquisition requirements.
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A Data-driven Transfer Learning
Method for Indoor Radio Map
Estimation

R. Jaiswal, M. Elnourani, S. Deshmukh, B. Baltasar Lozano

Abstract: Estimating accurate radio maps is important for vari-
ous tasks in wireless communications, such as localization, resource al-
location, and network planning, to name a few. Due to the changes in
the propagation characteristics of the wireless environments, a radio map
model learned under a particular wireless environment cannot be directly
used in a new wireless environment. Moreover, learning a new model for
every environment requires, in general, a large amount of data and is
computationally demanding. In this work, we design an effective novel
data-driven transfer learning method that transfers and fine-tunes a deep
neural network (DNN)-based radio map model learned from an original
indoor wireless environment to other indoor wireless environments with
a certain level of similarity, allowing the radio map to be estimated with
less amount of training data. As opposed to other widely used simi-
larity measures that do not take into account the wireless propagation
characteristics, we design a data-driven similarity measure that predicts
the mean square error (MSE) and the amount of training data needed
when learning a radio map in a new wireless environment. The proposed
solution is corroborated by extensive simulations over a range of environ-
ments, achieving savings of approximately 40-90% in sensor measurement
data.

B.1 Introduction

To predict and improve the performance of future wireless communications, accu-
rate estimation of radio maps is essential for efficient network operations. The radio
map contains meaningful information about the wireless network and its propaga-
tion channels. Some of the applications of radio maps include resource allocation,
localization, network design and planning to optimize the distribution of base sta-
tions, among others. For example, in the case of network planning, an area having
inadequate power in some region (weak coverage) can be covered appropriately by
adding a new base station in that region. In the most general sense, a radio map
portrays an estimate of the power spectral density (PSD) over a required geographi-
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cal area as a function of location, time, and frequency. Moreover, the radio map also
depicts the various characteristics of the wireless environment over a certain region,
which is governed by various factors, such as reflections, diffractions from large-scale
objects and buildings, and scattering from small-scale objects, which result in fluc-
tuations in the received radio signals. In this work, for the sake of simplicity in the
explanation of our design methodology, we focus on data-driven radio map estima-
tion for indoor wireless environments. However, the general framework can also be
applied to estimate radio maps in outdoor wireless environments.

Estimating an accurate radio map for each new wireless environment using the
data-driven method, in general, requires a huge amount of sensing data. However,
in practice, there is data scarcity, that is, lack of data as it is difficult and expensive
to obtain measurements in each new wireless environment. Moreover, collecting a
large amount of sensing data for each new wireless environment and learning the
corresponding radio map model each time is time-consuming. A good radio map
that has been learnt in a particular wireless environment, may not be appropriate
for another different wireless environment because the wireless propagation charac-
teristics change. On the other hand, notice that by knowing the strength of signal or
received power in one wireless environment (source environment) at several spatial
locations (sampled radio map), one can make smart utilization of a pre-developed
(learned) radio map model from the radio map samples in a source environment to
estimate the radio map in another new environment (target environment) by using
the concept of transfer learning (TL) [19], with the goal of reducing the need of new
measurements at the new wireless environment.

The use of knowledge acquired in the source environment to assist the learning
task in the target environment is referred to as transfer learning [19]. Hence, TL
can handle the data scarcity issue in the target environment. In this regard, one
needs to answer three main questions while performing the operation of TL, namely
“what to transfer”, “how to transfer”, and “when to transfer”. In the context of
radio map estimation, one may have configured or set up, for example, the wireless
system in one environment (source) but need to perform deployment in another
environment (target). Regarding “what to transfer”, the specific TL approach is
referred to as transductive transfer [19] in which the baseline model trained under
the source environment is transferred to a similar target environment. Similarly,
for “how to transfer”, the approach is parameter transfer in which the parameters
from the trained baseline model under the source environment are transferred to
similar target environments and fine-tuned with an additional amount of training
samples. Our proposed scheme also estimates the amount of additional training
samples required. Moreover, the “when to transfer” is associated with the similarity
measure between the source and the target environment, that is, the transfer is
performed when both environments are sufficiently similar. Our goal in this paper is
to design a data-driven TL method to be able to learn an accurate radio map solution
in the target environment by exploiting the knowledge learned from the source model
instead of learning a solution directly based only on measurements from the new
environment. In this work, we address all these three questions pertaining to TL for
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radio map estimation. Moreover, we also target identifying the amount of training
data required for the new wireless environment to achieve a certain accuracy in the
estimated radio map. Notice that even though we focus in this paper on power
radio maps, our work can be also generalized to channel gain maps for every pair of
relative transmitter-receiver Tx-Rx positions.

B.2 Related Works and Motivation

It is worth noting that there have been a number of works that have successfully
applied TL for various tasks in wireless networks. For capturing traffic pattern
diversity in the cellular data of distinct cities, the model in [20] proposes a spatial-
temporal cross-domain neural network (STCNet). Model-based TL, where the com-
plete source model is transferred to the target environment, is employed for the
similarities between distinct types of cellular traffic across distinct cities. For im-
proving the robustness of deep neural network (DNN) based spectrum sensing in a
cognitive radio scenario with the assumption that the data collected under distinct
characteristics belong to distinct but related distributions, TL is used in [21]. For
tackling an NP-hard mixed-integer nonlinear programming problem of resource allo-
cation, a TL method via self-imitation is proposed in [32]. In [22], downlink channel
state information (CSI) prediction from uplink CSI using direct model-based TL,
is proposed for frequency division duplexing (FDD) in a massive multiple-input
multiple-output (MIMO) framework. In [23], wireless fingerprinting localization
uses a TL method incorporating Wasserstein distance [24]. A TL-based method
incorporating the Kullback-Leibler (KL) divergence index as a similarity measure,
is used for predicting the antenna tilt-dependent radio map in [25]. A two-phase TL
generative adversarial network (TPTL-GAN) for estimating power spectrum maps
for underlay cognitive radio networks, is proposed in [26]. Moreover, TL has been
shown to save a good amount of training data for allocating channels and power
in underlay D2D wireless communications [36]. For estimating the radio map in
indoor wireless networks, a TL-based approach is used in [34]. Preliminary exper-
iments for location-free radio map estimations are performed in [8]. However, the
work in [8,34] is limited to a single base station and a very simple wireless environ-
ment. Our work considers complex indoor wireless environments with multiple base
stations and changes in the locations of the base stations. Our core objective is to
save sensor measurement data for estimating accurately the radio map in the new
wireless environment, by using TL.

Since users may experience different wireless environments E , without TL, data
collection is required for effective model learning at each given new wireless en-
vironment. In fact, in practice, in the case of a DNN-based model, typically, a
large number of samples and training epochs are required to train a DNN, and thus
training a new DNN for each new wireless environment may demand a substantial
computational time and data acquisition cost. Given these, a solution which is par-
ticularly appealing is, if a model is well trained first in a given wireless environment,
then by transferring that trained model and fine-tuning it in another similar but still
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different wireless environment, can effectively generate an estimated radio map using
a much smaller amount of samples, reducing significantly data acquisition cost.

Motivated by this, in this paper, we propose a transfer learning method to esti-
mate radio maps in a new environment E where there is a scarcity of measurement
samples. Our proposed method is that if we have an environment with an accurate
radio map then by using TL, we can exploit this accurate radio map in estimating
the radio map for a new wireless environment where there is data scarcity. The first
challenge is how to quantify the similarity between two wireless environments since
this similarity controls the TL operation. From a human cognizance perspective,
one can visualize two wireless environments and intuitively judge their similarity. In
principle, one could consider the images of the wireless environments and quantify
this similarity by using existing techniques such as KAZE [54], scale-invariant feature
transform (SIFT) [56], oriented FAST and rotated BRIEF (ORB) [57], binary robust
invariant scalable keypoints (BRISK) [60], peak signal-to-noise ratio (PSNR) [64],
structural similarity (SSIM) [64], and Wasserstein distance (WD) [51], among others.
These similarity measures perform different feature extraction algorithms for finding
the similarity between two images, however, they can not guarantee the similarity
between their corresponding radio maps (see Section B.5.4.2). This incoherence
between the similarity of wireless environment images and wireless environment ra-
dio maps is due to the dependence of radio maps on the location of transmitters,
reflecting surfaces, diffracting edges and scattering objects which are not accommo-
dated in the above currently used similarity measures. This motivates us to design a
data-driven similarity measure (DDS) (see Section D.3.2), which can learn all these
elements directly from the data.

In order to motivate further the necessity of designing a new data-driven simi-
larity measure, we consider a simple toy example as shown in Figure B.1.

Test Radio Map 0 Test Radio Map 1 Test Radio Map 2 Test Radio Map 3

Test Environment 0 Test Environment 1 Test Environment 2 Test Environment 3

(a) (b) (c) (d)

Figure B.1: Toy example illustrating different radio maps corresponding to different
indoor wireless environments.
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Figure B.2: Correlation between inter-image WD and inter-radio map WD.

Here, we first discuss the widely studied Wasserstein distance (WD) [51] measure1

(see Section B.4.2). Let us consider an indoor floor plan comprising of two-rooms
in which a Tx is placed at a fixed location. This is denoted as the reference or
test environment 0 (TE 0). Then, we create three other different environments by
incorporating a cube, made up of metal, at three different locations (see Section D.4
for more details), namely, Test Environment 1 (TE 1), Test Environment 2 (TE 2),
and Test Environment 3 (TE 3), respectively. These test environments are created
by incorporating a cube slightly below the Tx, slightly above the Tx, and at the left
bottom corner. Further, the radio map (densely sampled) of each test environment
from their corresponding power values, is obtained. The walls of both the rooms and
the cube are represented in dashed red, and solid black colour, respectively, in each
radio map. The illustration of each radio map corresponding to each environment
E , is shown in Figure B.1.

Let WDim
i,j denotes the WD between the images2 (im) of TE i and TE j where

i, j ∈ {0,1,2,3}, and i ̸= j. For instance, WDim
0,1 denotes the Wasserstein distance

between the images of test environment 0 (TE 0) and test environment 1 (TE 1).
Similarly, WDrm

i,j denotes the WD between radio maps (rm) of TE i and TE j. The
WD between images of test environments and their corresponding radio maps are
shown in Figure B.2.

We can see from Figure B.2 that there is a mismatch between the inter-image
WD and the inter-radio map WD for the toy example, which gives us 6 points, given
that WD is a symmetric distance. The values of WDs (shown by blue stars) show
no correlation between the distances in the image domain (floor plan) and the radio
maps domain. Ideally, for the WD to work appropriately as a similarity measure,
both WDs should be properly aligned, as the cube location changes. This signifies
that the WD is not a suitable similarity measure in our proposed TL problem.
The unsuitability of WD for all our environments is shown via correlation heatmap
in Section B.5.4.2. Therefore, we motivate to design the data-driven similarity

1The same conclusion holds for the other similarity measures.
2We use a coloured image of the floor plan.
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measure (DDS) as described in Section B.4.2. To the best of our knowledge, the
proposed scheme is the first of its kind in the literature which employs a data-driven
transfer-learning method to estimate radio maps when there is a data scarcity of
radio measurements. The main contributions of this paper are as follows:

• Design of an effective data-driven TL method that transfers and fine-tunes a
DNN-based model for a radio map learned from a given source environment
to another environment.

• Design of a data-driven similarity measure that is used to decide whether to
perform the TL operation in a new target wireless environment, as compared
to other widely used similarity measures.

• Prediction of the amount of training data needed to estimate the radio map
in a different target environment, when performing the TL operation, using
data-driven similarity measure.

• Analysis of the robustness of the proposed TL scheme under noisy environ-
ments when the locations of receivers are estimated and not perfectly known,
and the corresponding power values are noisy. This scheme shows satisfactory
performance comparable to the noiseless case.

• Experimentally measuring the temporal window in which fine-tuning the model
is unnecessary.

• Extensive testing of the proposed TL scheme using simulated data from the
Remcom simulator [33] (office area and cafe area). Results demonstrate that
our proposed scheme can perform effective TL in the most tested environments
while using a small amount of additional training data, and outperforms the
state-of-the-art. Moreover, the proposed data-driven similarity measure can
accurately recommend TL guaranteeing a satisfactory radio map estimation
while reducing the number of necessary training samples.

B.3 Problem Formulation

This section presents the problem formulation of radio map estimation. The problem
is defined as: “how to estimate the radio map of a given wireless environment with
limited available sensor data by leveraging the information from other environments
that have a certain similarity.”

Let Es, and Et denote the source and target wireless environment, respectively,
as shown in Figure B.3. Next, let us assume that only a small amount of aggregate
power values3 are available in Et, as compared to the number of samples in Es. The
radio map consists of aggregate power measurements P (xi) corresponding to a set
of N locations {xi}Ni=1, where i is the index of the receiver.

3To obtain aggregate power, at each Rx location, multiple signals from the different Txs are
summed with different phases.

89



Using a DNN, we create a predictive function that predicts the power values at
any location in a radio map for a given wireless environment. More specifically, for
the source environment Es, we first learn predictive function fs(·) that is approxi-
mated by a DNN with weight parameters θ⋆s . Note that θ⋆s is the optimal value of
the weight parameters in the source environment Es. Similarly, for the target envi-
ronment Et, one can also learn the predictive function ft(·) that is approximated by
a DNN with weight parameters θ⋆t . Let us also assume that Es and Et have some
similarity in terms of wireless propagation characteristics.

Instead of learning ft(·) directly without exploiting any previous knowledge, we
perform first TL by exploiting the already learned function fs(·). This allows for
improving the learning of the target predictive function ft(·) by using a smaller
amount of additional measurement samples, as compared to not exploiting the pre-
vious information.

In the source environment Es, we learn the optimal weight parameters θ⋆s for
the power value prediction using a source DNN by minimizing the following loss
function:

θ⋆s = argmin
θ∈Θ

[Loss(Ps(xi), P̂
θ
s (xi))] (B.1)

where Θ is the space of parameters of θ, Ps(xi) and P̂ θ
s (xi) = fs(xi, θ) are the

actual and predicted power values at ith location, respectively, at the Es. We denote
the loss function as Loss(Ps(xi), fs(xi, θ)), which is chosen to be the Mean Square
Error (MSE), defined as:

MSE =

∑Ns

i=1 [P (xi)− P̂ (xi)]
2

Ns

(B.2)

where Ns is the number of receivers. Note that the number of receivers may be also
different in each environment.

After this, we can learn a DNN model for the target environment Et by first
transferring and initializing the DNN model parameters as θ[0] = θ⋆s , and then solving
with the usual training iterations to minimise the same loss function in the target
environment Et. This training after performing TL, can be considered as “fine-
tuning”.

θ⋆t = argmin
θ∈Θ

[Loss(Pt(xi), P̂
θ
t (xi))] (B.3)

where Pt(xi) and P̂ θ
t (xi) = ft(xi, θ) are the actual and predicted power values at ith

location of the receiver, respectively, at the Et. If the TL is effective, it is expected
that the number of samples {Pt(xi)} to estimate an accurate radio map will be
smaller as compared to the number of samples that is used to train the source Es
environment. Note that the loss function Loss(·, ·) is typically chosen to be the same
for both source Es and target Et environments, namely MSE.

B.4 Proposed Radio Map Estimation Model

The overall architecture of the radio map estimation model considered in this work is
shown in Figure B.3 and Figure B.4. It mainly consists of two phases: (i) the training
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Figure B.3: Data-driven TL-based radio map estimation model (training phase).
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Figure B.4: Data-driven TL-based radio map estimation model (execution phase).

phase, and (ii) the execution phase. The training phase consists of two stages: (i)
the development of the baseline DNN model in the source environment, followed
by the possibility of transferring it to the target environment by first transferring
the baseline model and then fine-tuning, and (ii) the establishment of similarity
measure between the source and the target environment. During the execution
phase, the image of a test wireless environment is given as input to the DDS. The
DDS predicts different MSE values and the number of training epochs for the TL
operation at different data splits (number of training samples). Next, in the TL
decision block, these values are compared with the set MSE and training epochs
thresholds to decide further whether to perform TL operation with a specific data
split. If the thresholds are satisfied then the TL can be performed with that specific
data split, else, TL will not be performed and a new baseline model MapNet needs
to be trained from the very beginning.

An illustration of a TL system design to estimate the radio map from the source
to the target environment is shown in Figure B.5. The target environment in Fig-
ure B.5(b) depicts one of the environments having four Txs and three objects repre-
sented by three cubes4. The details of generating different target environments for
TL are discussed in Section B.5.1.

4The choice of cubes is done for the sake of simplicity without loss of generality. Similar results
and conclusions are obtained for more complex objects as shown in later experiments.
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ment with 4 Txs and 3 objects represented by 3 cubes.
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Figure B.6: MapNet: Baseline DNN model.

B.4.1 Baseline DNN Model and Transfer Learning Approach

We first design a feed-forward DNN [73] model with the power values obtained at
multiple locations of receivers under the original environment (see Figure B.5(a)).
For this purpose, we train a fully-connected DNN model as shown in Figure B.6
and refer to it as MapNet which is our baseline model. A high-level description
of the flow of the baseline DNN MapNet in the form of pseudo-code is presented
in Algorithm 5. Our model should map the location of receivers {xi} to the
corresponding power values {P (xi)}. We choose a DNN-based model since DNNs
are universal function approximators. Moreover, DNN can learn high-level features
from the data, which do not require domain expertise or manual feature extraction
as compared to other machine learning techniques [49]. Moreover, DNN models are
highly adaptable, that is, they can be fine-tuned to new tasks with an extra amount
of data by leveraging information from the previous tasks, by means of transfer
learning.

Then, given the baseline model MapNet shown in Figure B.6, we first decide
whether to perform TL operation based on the similarity measure. However, since
our similarity measure is data-driven, a sufficient amount of data obtained from
performing TL operation is also necessary to learn this similarity measure. To this
end, we transfer the MapNet to each target environment Et individually, followed
up by fine-tuning using a small amount of additional training data. A high-level
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Algorithm 5: Baseline DNN Model MapNet
Input: D := {xi, P (xi)}: dataset of n locations of Rxs xi, and power

values P (xi)

B: Batch size, α: Learning rate, NEP : Number of epochs
Output: θ: Trained DNN model parameters, MSE: MSE of trained

DNN based on test data
Data-Splitting: Splitting data into training Dtrain and test Dtest

1: Training stage
2: Randomly initialize the network parameters
3: for k = 1,...,NEP do
4: for j = 1,...,NB = ceil(|Dtrain|/B) do
5: Randomly select B training samples from training data Dtrain as the

training batch
6: Update DNN parameters θ with learning rate α to minimize

Loss = MSE =
∑

[P (xi)−P̂ θ(xi)]
2

|B|
7: end for
8: end for
9: Testing stage

10: Initialize MSE: MSE← 0

11: Use test data Dtest

12: Predict power values P̂ (xi) on given locations of Rxs {xi}
13: Calculate MSE as MSE =

∑
[P (xi)−P̂ θ(xi)]

2

|Dtest|
14: Save trained DNN model parameters θ.

description of the flow of the TL method in the form of pseudo-code is presented
in Algorithm 6. Generally speaking, the amount of training data required when
performing the TL operation, depends on the similarity between the Es and Et,
that is, the more similar environments, the less additional training data is required.
The required training data for the target environments vary from 5% to 40% of
the amount of training data that is necessary for the baseline model MapNet of
the source environment. This training data needed for fine-tuning the MapNet in
the target environment may be referred to as “fine-tuning data”. After training and
fine-tuning the transferred baseline model MapNet for each new environment, we
store the test MSE and the number of training epochs while satisfying an early
stopping [74] convergence criterion, i.e., MSE is approximately stable for a certain
number of consecutive iterations.

Next, let us assume first that our similarity measure recommends performing TL
and we actually perform TL. We explain our data-driven similarity measure (DDS)
in Section B.4.2, where we use the test MSE and the number of training epochs. We
first provide a description of the possible similarity measures that could be used in
TL.
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Algorithm 6: TL Method
Input: Es: Source environment, Et: Target environment, MapNet:

baseline DNN model θ⋆s , α: Learning rate, B: Batch size, r: Splitting ratio,
NEP : Number of epochs

Output: MapNet: DNN model θ⋆t for target environment Et, MSE(Et):
MSE of transferred model based on the test data, NEP (Et): Number of
training epochs for the transferred model

Data-Splitting: Splitting data into training Dt
train and test Dt

test with
splitting ratio r

1: Fine-Tuning and Testing stage
2: Initialize MSE(Et): MSE(Et)← 0

3: Initialize NEP (Et): NEP (Et)← 0

4: Fine-Tuning stage
5: for k = 1,...,NEP do
6: for j = 1,...,NB = ceil(|Dt

train|/B) do
7: Randomly select B training samples from training data Dt

train as the
training batch

8: Update DNN parameters θ with learning rate α to minimize
Loss = MSE =

∑
[P (xi)−P̂ θ(xi)]

2

|B|
9: end for

10: Check early stopping criterion and stop when satisfied
11: end for
12: Save number of training epochs NEP

13: Testing stage
14: Predict power values P̂ (xi) on given locations of Rxs {xi}
15: Calculate MSE(Et) =

∑
[P (xi)−P̂ θ(xi)]

2

|Dt
test|

B.4.2 Similarity Measures

A crucial element of TL is that one needs to have a measure of similarity between
two wireless environments because similarity affects the effectiveness of the TL op-
eration. The more similar the source and the target environments are, the more
features can be shared between both environments, resulting in better transfer-
ability between both environments and vice-versa. To this end, one can consider
different traditional similarity measures, such as KAZE [54], SIFT [56], ORB [57],
BRISK [60], PSNR [64], SSIM [64], and WD [51]. Since these similarity measures
can be applied to any type of image representing source environment Es, and they
do not consider the radio environment characteristics and propagation properties,
these similarity measures may not be applicable, in general, for TL of radio map
models. If one uses an inaccurate similarity measure then the TL decision might
be incorrect. This may result in one of two cases; (i) performing TL when there is
no benefit of TL, resulting in a worse estimation of radio maps, and (ii) training
the model from the very beginning when TL could have been performed, result-
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ing in requiring a large amount of training data and more computation resources.
This motivates us to design a data-driven similarity measure that learns the wire-
less environment characteristic from the data, which is the second component of our
proposed scheme, as shown in Figure B.3.

Next, we first introduce the WD, which is one of the widely used similarity
measures, and then the designed DDS that we propose for the TL-based radio map
estimation problem.

Wasserstein distance (WD) [51] is a popular metric to calculate the distance
between two probability distributions. It has been widely used in TL due to its
symmetry, smooth gradients, and good numerical results [52]. It is based on the
minimal cost that is incurred to transform one distribution (e.g., represented by an
image histogram, in our case, the image of environment E) into another one. It is
also called earth mover’s distance or transportation distance and it is an outcome
of the optimal transport theory [53].

In the context of TL, for a random variable5 in the source Es and target en-
vironments Et, denoted by XEs and XEt , with distribution functions fXEs

(xEs) and
fXEt

(xEt), and joint distribution function fXEsXEt
(xEs , xEt), the WD between XEs and

XEt is defined as [51]:

W (XEs , XEt) = inf
fXEsXEt

∈F

∫
XEsXEt

|XEs −XEt | dfXEsXEt
(xEs , xEt)

= inf
fXEsXEt

∈F
EfXEsXEt

|XEs −XEt|
(B.4)

where F is the collection of all possible joint distributions. fXEs
and fXEt

are
the marginal distributions. dfXEsXEt

(XEs , XEt) is the derivative of joint distribu-
tion of variables XEs and XEt . EfXEsXWEt

is the expectation operation with respect
to fXEsXEt

. Notice that WD is symmetric, that is, W (XEs , XEt) = W (XEt , XEs).
Equivalently, it is shown in [51] that equation (B.4) can be re-written as:

W (XEs , XEt) =

∫
[0,1]

|f−1
XEs

(X)− f−1
XEt

(X)| dX (B.5)

where, f−1
XEs

(X), and f−1
XEt

(X) are the inverse distribution functions in the source Es
and target Et environments, respectively.

Given a sufficiently large number of realizations (samples) of variables XEs and
XEt , (B.5) can be numerically estimated.

For the sake of simplicity, let us consider two images corresponding to two dif-
ferent wireless environments obtained by two different positions of an object such
as a cube (see Figure B.1). We can calculate the WD between the floor image
corresponding to the Es when the cube is positioned at one location, and the dif-
ferent floor images corresponding to the remaining Et when the cube is positioned
at different locations. In the same manner, we can also calculate the WD between
the corresponding sampled discretized radio map (power values) obtained when the

5In our case, one of these random variables models the pixel value distributions of the images
representing the source Es and target Et environment.
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cube is positioned at one location, and the sampled radio map corresponding to
another environment where the cube is positioned at a different location.

Intuitively speaking, an effective similarity measure for our problem should have
the property that it keeps a correlation between WD(XEs , YEt) and WD(RMEs ,RMEt).
To see this, we can compute the Pearson’s correlation coefficient (PCC) [20], which
is a widely adopted metric for measuring correlations. For a given n pairs of input-
output data
{(WDE

1 ,WDRM
1 ), (WDE

2 ,WDRM
2 ), ..., (WDE

n,WDRM
n )}, the PCC is defined as [20]:

PCC(WDE
i ,WDRM

i ) =

∑n
i=1(WDE

i − µWDE
i
)(WDRM

i − µWDRM
i

)√∑n
i=1(WDE

i − µWDE
i
)2
√∑n

i=1(WDRM
i − µWDRM

i
)2

(B.6)

where WDE
i and WDRM

i are different values/samples of WDs corresponding to dif-
ferent environments. µWDE

i
and µWDRM

i
are their corresponding means. Here, n is

the number of environments.
Data-driven Similarity Measure (DDS): In the context of radio map es-

timation, classical similarity measures (e.g., WD) do not perform well, as shown
numerically in Figure B.1 under Section B.1. Moreover, our experimental results
in Section B.5.4.2 also confirm that other similarity measures including WD do not
perform well. Thus, we propose formulating a DDS tailored to the TL-based radio
map estimation problem. To this end, we provide a DDS that incorporates explicitly
the TL-operation effect in terms of the MSE and/or the number of training epochs
that are required to achieve a certain accuracy (MSE) of the radio map in the tar-
get environments, along with the images of environments. We also train this DDS
model to predict TL accuracy (MSE) and training epochs in order to capture all the
variations of the environments and their impacts on both the radio map estimation
and the TL operation.

To formulate our DDS, DDSEs(ImEt), between the source environment Es and
the target environment Et, as shown in our proposed scheme (Figure B.3), we train
a convolutional neural network (CNN) [50] regression model under a certain loss
function. A high-level description of DDS in the form of pseudo-code is presented
in Algorithm 7. We consider two choices for the loss function. Loss function A
LA = |MSE(Et) − M̂SEt|2 is the squared difference between the actual test MSE
obtained previously from TL, denoted by MSE(Et), and the predicted test MSE,
denoted by M̂SEt, which is obtained when performing the TL.

Alternatively, a different loss function can be used to control the sample complex-
ity by considering also the number of epochs. Loss function B LB = ||[MSE(Et) −
M̂SEt, NEP (Et) − N̂EP t ]||2 contains both the test MSE and the number of training
epochs which specify the error in power values and the need for training time to
perform TL, respectively. Note that NEP (Et), and N̂EP t are actual and predicted
TL training epochs, respectively. The test MSE and the number of training epochs
are normalized separately to 0 and 1. Minimising this loss function provides us
with the radio maps that have the least error and converge in the least number of
iterations.

96



Algorithm 7: Data-driven Similarity Measure SimNet
Input: D := {Imt,MSEt, NEP t(only for Method B)}: dataset comprising

three-level images of target environments, MSE after TL for 8 different
data splits (5% to 40%) (Algorithm 6), Number of training epochs
required after TL for 8 different data splits (5% to 40%) (Algorithm 6),
for each environment, respectively. MSEthr: MSE threshold, NEP thr

:
Threshold for number of training epochs, α: Learning rate,
B: Batch size, r: Splitting ratio, N cnn

EP : Training epochs of SimNet
Output: SimNet(θsim), M̂SEt, N̂EP t are the predicted MSE and number

of training epochs, respectively, for 8 different data splits (5% to 40%),
TL decision: Yes/No, the required data split

Data-Splitting: Splitting data into training Dtrain and test Dtest with
splitting ratio r
1: Training stage
2: Use data from Dtrain

3: Normalize image values Imt, MSEt and NEP t to [0, 1]

4: Randomly initialize θsim
5: for k = 1,...,N cnn

EP do
6: for j = 1,...,NB = ceil(|Dtrain|/B) do
7: Randomly select B training samples from Dtrain as the training batch
8: Update θsim with learning rate α to minimize loss given by the

MSEcnn = LA = |MSE(Et)− M̂SEt|2 (Method A)

= LB = |[MSE(Et)− M̂SEt,

NEP (Et)− N̂EP t ]|2 (Method B)

(B.7)

9: end for
10: end for
11: Testing stage
12: Initialize MSEcnn: MSEcnn ← 0

13: Use test data from Dtest

14: Predict M̂SEt and N̂EP t for 8 different data splits (5% to 40%) on a given
image Imt

15: TL decision
16: for q = 1,...,|D| do
17: if M̂SEt ≤ MSEthr (for Method A) then
18: TL decision ← Yes and output the corresponding data split, else, TL

decision ← No
19: if M̂SEt ≤ MSEthr & N̂EP t ≤ NEP thr

(for Method B) then
20: TL decision ← Yes and output the corresponding data split, else, TL

decision ← No
21: end if
22: end if
23: end for

97



Images of
Environments 

8 Test MSEs and
8 Number of Epochs

Conv Fully connected
layer

Output 

Maxpool Conv Maxpool

(Method A)
8 Test MSEs

(Method B)

Figure B.7: CNN-based neural structure for the similarity measure.

Method A: This method comprises the CNN having the images (see Figure B.7)
of distinct target environments Et as an input, and eight sets of test MSEs, i.e.,
MSE(Et) obtained after performing TL for each target environment when MapNet
is transferred and re-trained at different data splits (5%, 10%, 15%, 20%, 25%, 30%,
35%, 40%), as output. This method uses the loss function LA. The corresponding
learned CNN model in this case is referred to as SimNetA. Each environment image
has two parts. The first part is the floor image which is a three-level image in which
free space is white (gray value 255), walls are assumed gray value 128, and objects
(e.g., cubes) are black (gray value 0). These differences in intensity levels are useful
to differentiate three elements (free space, walls, and objects). The second part is a
black and white image of the Tx locations which is created by assigning a value of
255 (white) wherever the transmitters are located, and the rest pixel values are set
as 0 (black).

Method B: This method comprises the CNN having the same input, however,
the output is now the combination of eight sets of test MSEs, i.e., MSE(Et) obtained
after performing TL for each target environment with different data splits (5%, 10%,
15%, 20%, 25%, 30%, 35%, 40%) and eight sets of NEp(Et) of training epochs required
for each environment when MapNet is transferred and re-trained. This method uses
the loss function LB. The corresponding learned CNN model in this case is referred
to as SimNetB.

Method A considers only the accuracy of the proposed scheme and the network
trained under Method A is relatively smaller as compared to Method B. However,
Method B considers both the accuracy and time complexity, resulting in a larger
network. This makes it more computationally demanding. The choice of the Method
depends on the application, i.e., how much information (accuracy and time complex-
ity) is needed and how much computations can be afforded.

For any similarity measure, to obtain a similarity decision whether TL is ben-
eficial (in our case, small MSE(Et), and small NEP (Et)) or not between two envi-
ronments, we need to set a threshold. In the case of our DDS, under Method A, we
can set a threshold for the test MSE (MSEthr) and compare it with the predicted
test MSE (M̂SE(Et)) obtained after TL. Similarly, under Method B, we can also
set a threshold for both the predicted test MSE obtained after TL, i.e., MSEthr and
the number of training epochs, i.e, NEP thr

and compare these thresholds with the

98



Image of target 
environment Predicted output 

if TL is performed

(Output required
 data split)

Tx2

Tx3
Tx1

Tx4

Not Similar 

Similar DDS
SimNet

(Method A)

(Method B)

 

Comparison with Thresholds

Figure B.8: Data-driven similarity decision between the target Et and source Es
environments.6

corresponding predicted values after TL. If the predicted values are less than these
thresholds, then two radio maps are recognized as similar and TL can be performed
effectively, otherwise, we assume that TL is not effective. Figure B.8 illustrates the
similarity decision taken between two environments under each method. Note that,
we give an image of the floor plan of a new target wireless environment as input and
then map it to the MSE of the TL operation (MSE and NEP in Method B).

Notice that the choices of threshold values (MSEthr and NEP thr
) provide ad-

ditional degrees of freedom on the proposed model. For Method A, a very high
threshold value MSEthr will result in a less accurate radio map estimation. How-
ever, if we choose a very low threshold value, then it will result in a better radio
map estimation, but a lower recommendation rate7. Similarly, for Method B, higher
threshold values MSEthr and NEP thr

will result in both estimating a poorer radio
map and having a longer convergence time. However, if we choose very low threshold
values, then it will result in a better radio map estimation and a shorter convergence
time, but the recommendation rate will be lower. Moreover, it should be noticed
that the choice of these thresholds will also depend on the application scenario,
that is, the complexity of the environment patterns. To select the value of these
thresholds, we have to trade-off between the radio map quality, convergence time
(Method B), and the recommendation rate of the TL.

B.5 Numerical Evaluation

B.5.1 Generation of Indoor Wireless Environments

This subsection presents the adopted procedure to obtain power measurements at
multiple receiver locations corresponding to different types of environments, assum-
ing a dense spatial sampling.

We use the standard high accuracy ray-tracing X3D ray model [41], computed
using the software Remcom [33]. We first consider an environment of a single floor

6The symbol ⪯ indicates component-wise less than or equal operation.
7The recommendation rate of TL is calculated as the number of environments for which the TL

operation is recommended divided by the total number of environments.
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Table B.1: Parameters used in Remcom for generating the data.

Waveform Narrow-band Sinusoidal
Carrier frequency 900 MHz
Bandwidth 1.0 MHz
Antenna type Omni-directional
Tx1 location (1.5, 10.0, 1.3) m
Tx2 location (6.0, 11.0, 1.3) m
Tx3 location (6.0, 7.75, 1.3) m
Tx4 location (4.75, 2.5, 1.3) m
Tx height 1.3 m
Tx power 27.73 dBm
Space between two Rx points 15 cm
Space between two Rx routes 15 cm
Ray tracing X3D ray model
Ray spacing 0.2°
Number of reflections, transmissions, and diffractions 3, 2, 0
Volume of the object (single cube) 1 m3

Number of Rx locations 6678
Floor dimension (width x length x height) (9.5 x 20.6 x 2.88) m
Image size of floor (width x height) (160 x 275) pixels

which comprises two rooms, for generating the radio map shown in Figure B.5(a).
We place Nt transmitters Txs at different locations {xt

i}Nt=4
i=1 and then multiple

receivers Rxs at uniformly spaced locations {xr
j} with 15 cm spacing to obtain the

aggregate power values {P (xr
j)} at each Rx location. This results in (63 x 106)

6678 Rx locations and we generate the aggregated power values at these locations.
Table B.1 summarizes the parameters used in Remcom for generating the data.

Next, to create different types of environments with 4 Txs, we place certain ob-
jects at different locations. For the sake of simplicity, we consider objects represented
by a single solid cube block, placed in the environment. We denote the inclusion
of one cube block within the original environment as Type I E , two cube blocks as
Type II E , and so on. The inclusion of an increasing number of cube blocks makes
the original environment more complex, providing a good target environment Et to
investigate the suitability of our proposed TL method in estimating the respective
radio maps. We assume that the cube is made of metal having a volume of 1 m3.
The location of this object is changed horizontally, vertically, and diagonally, with
an incremental spacing of 15 cm generating also different environments of each type.
For each change in location, a new environment is created and the ray-tracing model
provides the power values for that particular environment with the same Rx locations
(expect that the Rx can not be on the top of the cubes). 1046 distinct environments
are created by changing the location of the object in distinct directions and the
image of each environment is saved as a 160 × 275-pixel three-level image in which
free space is white (gray value 255), walls are assumed 128, and obstacles/objects
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Figure B.9: Illustration of different types of wireless environments E (a) Type I E
(4 Txs, 1 cube), (b) Type II E (4 Txs, 2 cubes), (c) Type III E (4 Txs, 3 cubes, (d)
Type IV E (4 Txs, 4 cubes), (e) Type V E (4 Txs, 8 cubes), and (f) Type VI E .

Table B.2: Summary of wireless environment E .

Type of E Description of E Number of E
Type I 4 Txs, 1 Cube 250
Type II 4 Txs, 2 Cubes 252
Type III 4 Txs, 3 Cubes 248
Type IV 4 Txs, 4 Cubes 254
Type V 4 Txs, 8 Cubes 42
Type VI Changed layout 130

Total 1176

(e.g., cubes) are black (gray value 0).
Additionally, we create 130 different Type VI wireless environments that have

the following changes: (a) changing the carrier frequency of the waveform from 900
MHz to 950 MHz, (b) changing the location of each Tx by 1 meter, (c) adding a
wall 2 meter below to the Room 2, and (d) adding two objects in the floor plan
and changing its locations horizontally, and vertically, with a spacing of 15 cm. As
a result, the total number of wireless environments becomes 1176. The summary
of different types of wireless environments with the respective number of environ-
ments is presented in Table B.2 and shown in Figure B.9. These images are later
used to investigate the suitability of different similarity measures, as discussed in
Section B.4.2, in particular, the WD and our DDS.

B.5.2 Performance Measures

We evaluate the performance of the proposed scheme based on the overall model
accuracy and noise robustness.

B.5.2.1 Model Accuracy

To evaluate the performance of the proposed scheme, we calculate the transferability,
F1-score, and accuracy [69] for Type I environment E and all types of wireless
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environments grouped together (see Figure B.9 and Table B.2). We assume that
on average, moving from the Type I environment E to all types of environments E ,
the environments become more complex, resulting in less similarity between Es and
Et. The transferability presents how good the considered model is in recommending
a correct TL for a new Et (recommending a correct TL means that the actual TL
operation is successful). The higher value of transferability means a better model.
The F1-score is a measure of the test accuracy of the model, normalized to be
between 0 and 1. The closer it is to 1, the better the model is. Accuracy measures
the degree of veracity of the model. All these measures are defined in terms of
true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
as [69]:

Transferability =
TP

TP + FN
. (B.8)

F1-score =
2TP

2TP + FP + FN
. (B.9)

Accuracy =
TP + TN

TP + TN + FP + FN
. (B.10)

where TP means Es and Et are sufficiently similar MSE(Et) ≤MSEthr (Method A) or
[MSE(Et),NEP (Et)] ⪯ [MSEthr, NEP thr

] (Method B) and the decision to transfer is
taken M̂SEt ≤ MSEthr (Method A) or [M̂SEt, N̂EP t ] ⪯ [MSEthr, NEP thr

] (Method B).
TN means that Es and Et are not sufficiently similar and the decision of not to transfer
is taken. FP means that Es and Et are not sufficiently similar but the decision is still
to transfer. FN means that Es and Et are sufficiently similar but the decision of not
to transfer is taken. For better accuracy, FP and FN should be as small as possible.

B.5.2.2 Noise Robustness

To investigate the robustness of the proposed scheme towards the presence of noise,
we investigate two cases of noise: (a) error in the Rxs locations (imperfect location
estimations), and (b) noise in the power values. These two kinds of inaccuracies
are prevalent in wireless networks due to the challenges in estimating accurate Rxs
locations, and the measurement errors in the device, respectively. To this end, for
case (a), we consider a practical scenario where the Rxs locations are estimated
from the time of arrival8 (ToA) features of the radio signals using the trilateration
localization algorithm9 [1]. The algorithm determines the approximate locations of
Rxs based on the simultaneous ToAs from multiple Txs (at least 3 Txs) at known
locations. Specifically, it finds the intersection of four circles in the 2D case or
the intersection of four spheres in the 3D case, where a system of quadratic (non-
linear) equations is involved and solved. For case (b), in order to reflect the inexact
power measurements, we add Gaussian noise of zero mean and a certain variance
to the power values in each environment. We assume a variance of 0.5dBm. This

8Time of arrival (ToA) is the time at which the radio signals from each Tx arrive at each of the
Rxs.

9Notice that the particular choice of the algorithm is not important for the evaluation of our
TL performance with respect to error locations.
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procedure is followed for each Et of each type (see Table B.2). Then, we transfer the
baseline DNN model MapNet to each Et and fine-tune it to obtain the test MSE, i.e.,
MSE(Et), and the number NEP (Et) of training epochs corresponding to TL for each
Et. Moreover, we also plot the test MSE corresponding to TL with the percentage
of training data after TL, for both the noiseless and noisy environments.

B.5.3 System Setup

All algorithms are programmed in Python 3.8.5. We use the Keras framework on
top of TensorFlow 2.2.0 on a Windows 10 laptop having Intel Core i5-5200U CPU
8th generation with 2.20 GHz, Intel ultra high definition (UHD) Graphics 620, and
16 GB of memory. Next, we present different parameters and hyper-parameters used
for the MapNet and SimNet.

For developing an efficient baseline DNN model MapNet for TL and a data-
driven similarity measure by training a CNN model SimNet, we experiment with
various choices of parameters and hyper-parameters. We normalize each type of data
separately. For example, locations of Rxs between 0 and 20 meters are normalized to
0 and 1, power values of Rxs between -55 and 25 dBm are normalized to 0 and 1, and
images of floor plans between 0 and 255 are normalized to 0 and 1. Normalizing the
data is commonly used in machine learning for faster training of models, as shown
in [75]. We train each model with a distinct number of hidden layers, each having
a variable number of neurons. The rectified linear unit (ReLU) [76] is employed as
the activation function to the hidden layers and the output layer of each model since
we only need positive values. The weights of each model are initialized randomly.
The entire training data is employed to optimize the weights of each model. The
absolute MSE [64], which is the standard metric employed in regression tasks, is used
as the loss function, since the goal is to minimize the difference between the real
and the predicted power values. Adam [77] optimizer with a learning rate of 0.001 is
employed for the stochastic optimization of each model. We also perform grid search
and random search [47] in order to find the best hyper-parameters. Additionally,
3-fold cross-validation [78] is employed for evaluating the training and the testing
accuracy of each model. The various choices of parameters and hyper-parameters
for the baseline DNN MapNet and CNN SimNetA trained under Method A and
CNN SimNetB trained under Method B are outlined in Table B.3, and Table B.4,
respectively. With these parameters, the models achieve good performance in terms
of minimizing the MSE during training with moderately low generalization error for
the test dataset.

B.5.4 Results and Discussions

This subsection discusses the results to showcase the effectiveness of the proposed
scheme.
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Table B.3: Parameters and hyper-parameters for MapNet

Number of neurons in input layer 2
Number of hidden layers 6
Number of neurons in each hidden layer 512, 256, 128, 64, 32, 16
Hidden layers activation function ReLU
Number of neurons in output layer 1
Output layer activation function ReLU
Optimizer with learning rate Adam (0.001)
Loss function MSE
Batch size 8
Training-Testing split ratio 70:30

Table B.4: Parameters and hyper-parameters for SimNetA and SimNetB

SimNetA SimNetB
Floor image size (width x height) 160 x 275
Number of convolutional layers 2
Number of filters in first and second convolutional layer 32, 16
Filter size in first and second convolutional layer 3 x 3
Number of max pooling layers 2
Filter/pool size in each max pooling layer 2 x 2
Number of strides in first and second convolutional layer 2
Activation function in first and second convolutional layer ReLU
Number of neurons in the output layer of neural network 8 16
Activation function in the output layer of neural network ReLU
Optimizer with learning rate Adam (0.001)
Loss function MSE
Batch size 32
Training-Testing split ratio 80:20
Number of iterations for early stopping 5
Threshold MSEthr for MSE 0.005
Threshold NEP thr

for number of training epochs - 12

B.5.4.1 Baseline DNN Model Analysis

In order to obtain the best baseline DNN model (see Figure B.6) required for per-
forming the TL operation in the new environment Et, we perform grid search [47]
with a variable number of hidden layers (5-10), number of neurons for each layer
(8-1024), and learning rate range (0.0001-0.01) for the set of data described in Sec-
tion D.4 and the best baseline model MapNet (see Table B.3) results in a training
and test MSE of 0.0024, and 0.0026, respectively. This reflects that the test MSE is
comparable (slightly large) to the training MSE, that is, the baseline DNN model
MapNet is indeed an accurate model for the training data and also generalizes well
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Figure B.10: Correlation analysis between different types of similarity measures.

for the test data.

B.5.4.2 Experimental Analysis of TL

For TL, we have different types of target environments Et, for instance, Type I
(see Table B.2). Firstly, the baseline model MapNet is transferred to all types of
environments Et (total 1176 environments) and then the individual DNN models
are fine-tuned to obtain the test MSE, i.e., MSE(Et) and the number NEP (Et) of
training epochs corresponding to TL.

Next, to investigate experimentally the potential usefulness of other different
similarity measures, as discussed in Section B.4.2, we obtain the similarity between
the environment Es and all the environments Et (total 1176 environments) and plot
the correlation heatmap10, as shown in Figure B.10. Here, WD is the Wasserstein
distance between different floor images of environments, where the source environ-
ment Es assumes that the cube is present at the left-hand side bottom corner of the
floor image and the target environment assumes that the cube is located at another
position. In this particular experiment, for the sake of simplicity, we only use one
cube to have simpler interpretations and intuitions.

It can be observed from Figure B.10 that there is a very poor correlation between
all these similarity measures with respect to the test MSE, i.e., MSE(Et) obtained
after performing TL. This means that the similarity measures KAZE, SIFT, ORB
and BRISK, which usually are applied to detect certain features (e.g., blobs and
corners) in the neighbouring pixels, fail here in the case of radio maps, resulting in a
mismatch between the images of the source and the target environments. Similarly,
the reason for the failure of both SSIM and PSNR11 is that the differences in the
pixel values of the source and the target environment images are unable to provide
the measure of closeness, resulting in a poor mismatch. In the same manner, the WD
is unable to identify the pattern of the distribution (represented by the histograms)
of the power values in a radio map when a cube is moved from one location of the

10A correlation heatmap is a graphical representation of the correlation between different vari-
ables (here similarity) in the coloured form.

11PSNR is a similarity measure defined in [62,63].
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Table B.5: TL performance for Type I environment and all types of environments
grouped together.

(a) (b)
Type I All Types

Method A Method B Method A Method B
Only Both MSE(Et) Only Both MSE(Et)

MSE(Et) and NEP (Et) MSE(Et) and NEP (Et)
Necessary training Number of Number of Number of Number of

data environments environments environments environments
5% 3 - - 2
10% 20 7 8 27
15% 25 2 52 33
20% 9 3 51 124
25% 193 148 193 288
30% - 31 872 196
35% - 31 - 56
40% - 20 - 150

TL Recommendation 250/250 242/250 1176/1176 876/1176
rate (in %) (100) (96.8) (100) (74.48)

Es to the new location of the Et. This implies that all these similarity measures
including the WD are not effective similarity measures for our TL problem in the
context of radio map estimation. Hence, we design our DDS based on CNN.

For comparison, following the same TL strategy, as discussed in Section B.4.1, we
also train the CNN regression models for the DDS (see Section B.4.2). Specifically,
for illustration, the baseline DNN model MapNet is transferred to a Type I Et
(4Txs and 1 cube) first and then fine-tuned individually for each Et to obtain the
MSE(Et) and the number NEP (Et) of training epochs corresponding to TL that are
required to further train the CNN regression models SimNetA and SimNetB for
the DDS. Finally, the same operation is performed with all Et grouped together (a
total of 1176 environments) for the DDS. Notice that we consider six different seeds
while performing the TL operation to obtain the average value of the result, that is,
MSE(Et) and the number NEP (Et) of training epochs corresponding to TL.

TL Analysis for Type I: Here, we consider 250 different environments which
correspond to 250 different floor images (see Table B.2). While training the CNN
regression model SimNetA under Method A (see Figure B.7 and Table B.4), we
obtain training MSE and test MSE of 0.0912, and 0.1017 respectively. This reflects
that the test MSE is comparable to the training MSE, implying that the SimNetA is
trained appropriately. Similarly, while training the CNN regression model SimNetB
under Method B (see Figure B.7 and Table B.4), we obtain training and test MSE
of 0.0163, and 0.0304 respectively. This also reflects that the SimNetB is trained
appropriately.

Next, Table B.5 (a) presents the TL decision for both methods under Type I
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environments. It presents the number of environments that satisfy the proposed TL
strategy with the necessary training data required for performing TL operation. It
can be observed from Table B.5 (a) that for Method A, all 250 distinct environments
satisfy our criteria and are recommended for TL, with a training data requirement
in the range of 5-25% as compared to 70% when not using TL. This implies that
our proposed method is able to achieve savings of approximately 65-90% in sensor
measurement data while achieving the same accuracy. This leads to a TL recommen-
dation rate of 100%. Similarly, for Method B, 242 out of 250 distinct environments
satisfy our criteria and are recommended for TL, with a training data requirement
in the range of 10-40% as compared to 70% when not using TL. This implies that
our proposed method is able to achieve savings of approximately 40-85% in sensor
measurement data for the same accuracy. This leads to a TL recommendation rate
of 96.8%.

TL Analysis for All Types: Here, we group the floor images from all different
environments together having 4 Txs, and either 1 cube, 2 cubes, 3 cubes, 4 cubes,
8 cubes, and environments with a different layout. This results in a total of 1176
different floor images (see Table B.2). While training the CNN model SimNetA
under Method A (see Figure B.7 and Table B.4), we obtain a training MSE and
a test MSE of 0.0254, and 0.032, respectively. Similarly, while training the CNN
model SimNetB under Method B (see Figure B.7 and Table B.4), we obtain a
training MSE and a test MSE of 0.0055, and 0.0141, respectively. Once again, this
reflects that the training of both CNN models is satisfactory.

Next, Table B.5 (b) presents the TL decision for both methods under all types.
Table B.5 (b) reflects that for Method A, all 1176 different environments satisfy
our criteria and are recommended for TL, with a training data requirement in the
range of 10-30%. This leads to a TL recommendation rate of 100%. Similarly,
for Method B, 876 out of 1176 different environments satisfy our criteria and are
recommended for TL, with a training data requirement in the range of 5-40%. This
leads to a TL recommendation rate of 74.48%. The reason for observing a smaller
TL recommendation rate under Method B, is due to the fact that Method B is
more strict towards satisfying both the test MSE and the number of training epochs
threshold criteria, as compared to Method A, where only the test MSE criterion
needs to be satisfied.

B.5.4.3 Model Accuracy

To understand how good and reliable our proposed scheme is, Table B.6 presents
the transferability, F1-score, and accuracy for Type I environments, as well as all
types of environments grouped together (see Table B.2). It can be noticed from
Table B.6 (a) that the transferability, F1-score, and accuracy of the Type I environ-
ments under Method A are slightly better than in Method B. The model accuracy
under Method A is 94.8%, indicating a high accuracy. On the other hand, the model
accuracy under Method B is 93.6%.

Moreover, it can be noticed from Table B.6 (b) when all types of environments Et
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Table B.6: Transferability, F1-score, and Accuracy for Type I environment and all
types of environments grouped together.

(a) (b)
Type I All Types grouped together

Performance Method A Method B Method A Method B
measures Only MSE(Et) Both MSE(Et) Only MSE(Et) Both MSE(Et)

and NEP (Et) and NEP (Et)
TP 237 226 958 740
TN 0 8 0 253
FP 13 10 218 105
FN 0 6 0 78

Transferability 1.0 0.974 1.0 0.904
F1-score 0.973 0.965 0.897 0.889
Accuracy 0.948 0.936 0.814 0.844

are grouped together, then the transferability and F1-score under Method A are
better than in Method B. The model accuracy under Method A is 81.4%. On the
other hand, the model accuracy under Method B is 84.4%. This can be attributed to
the fact that Method B has a larger network than Method A which may make it more
robust. This suggests that our proposed TL method is adaptable to different changes
(e.g., changes in carrier frequency, the height of antennas, adding an extra wall, etc.)
in wireless environments, and can be used effectively for estimating accurate radio
maps in a new wireless environment while requiring a smaller amount of sensor
measurements, as compared to the case of training a raw model without TL.

B.5.4.4 Noise Robustness

To see the robustness of our proposed scheme with respect to noise, as discussed in
Section B.5.2.2, Figure B.11 shows the plot between the test MSE corresponding to
TL and the necessary percentage of training data after the TL operation, for the
noiseless and the noisy environments. The plot corresponds to one of the wireless
environments (Figure B.11(a)) from the Type I environment E (see Table B.2).

It can be seen from Figure B.11(b) that as the percentage of training data in-
creases, the test MSE corresponding to TL i.e., MSE(Et) decreases. For the noiseless
environment, the MSE(Et) is smaller (shown by the solid black line). However, when
we have noisy power values (see Section B.5.2.2), there is a significant increase in the
MSE(Et) (shown by the dashed green line) when using a smaller amount of training
data (upto 25%) and thereafter, it overlaps with the noiseless test MSE. This signi-
fies that our proposed scheme is robust against noisy power values. On the contrary,
when estimated Rx locations (see Section B.5.2.2) are used [1], then the MSE(Et)
increases significantly (shown by the dashed blue line) and the increment is slightly
higher, as compared to the case of having noise in the power values. This means
that the errors in the estimated Rx locations affect more than the noise in the power
values. This signifies that our proposed scheme is less robust against the errors in
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Figure B.11: (a) Radio map for a wireless environment from Type I E , and (b) plot
between test MSE corresponding to TL and percentage of training data after TL
for the noiseless and noisy environment corresponding to the same environment (a).

location estimations as compared to the noisy power values. Similarly, when we have
both estimated Rx locations and the noisy power values, then the overall increment
in the MSE(Et) is comparatively higher (shown by the dashed red line) than the
noiseless environment. This means that our proposed scheme is less robust against
having a combination of errors in location estimations and noisy power values. In
addition, it can also be seen that for noisy scenarios, more data is needed to com-
pensate for this noise, as expected. For instance, to achieve a MSE(Et) 0.005, our
noiseless model requires only 10% of training data. However, to achieve the same
amount of MSE(Et), our model trained with estimated Rx locations and no noise in
power values requires 40% of training data.

B.5.4.5 Time Complexity

To understand the trade-off between the training time taken by the DNN while
performing TL operation for each environment (total of 1176 environments), we
calculate the amount of savings in training time (expressed in terms of training
epochs). Since we have already set a threshold for the number NEP thr

of training
epochs as 12, we compare this threshold with the number of training epochs obtained
by each new Et after performing TL operation, as shown in Figure B.12.

Figure B.12 illustrates that most of the environments are saving a large amount
of training time by reducing the number of training epochs, and are recommended
for TL (see environments above the dashed blue line). However, some of the envi-
ronments are taking more time due to their increased number of training epochs as
compared to the set threshold NEP thr

, resulting in not being recommended for TL
(see environments below the dashed blue line). Moreover, if we decrease the default
threshold of the number NEP thr

of training epochs from 12 (see Table B.4), then the
number of environments recommended for TL is also deceased and correspondingly
the saving in training time is also increased because it needs more training epochs to
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Figure B.12: Reduction in number of training epochs for each new environment.

train the new environments, resulting in not satisfying the threshold NEP thr
criteria,

and vice-versa. Furthermore, Method B has a larger amount of training parame-
ters to train the CNN as compared to Method A. Method B has 41,824 parameters
as compared to Method A, which has 23,384 parameters. In the execution phase,
Method B has 41,824 weights as compared to Method A, which has 23,384. This
takes 1.322 second for Method B as compared to 0.609 second for Method A for 209
wireless environments.

B.5.4.6 Illustration of Estimated Radio Maps

As an illustration, Figure B.13 represents the radio maps corresponding to the orig-
inal wireless environment without any cube present, with 4Txs located at four dif-
ferent fixed positions, an environment from Type V (8 cubes present), and the same
environment after performing the TL operation where only 40% of the training data
is required, an environment from Type VI (changed Txs locations and an additional
wall), and the same environment after performing the TL operation where only 35%
of the training data is required, respectively. The cubes and the walls of the rooms
in the radio maps are represented in black and dashed red colours, respectively. The
differences in these five radio maps can be easily visualized.

B.5.4.7 Temporal Window Experiment

In this experiment, we have used a MapNet model, trained and fine-tuned for one
environment for the next 7 environments (without fine-tuning). The cube (object)
is moved 15 cm towards the right every time with a speed of 4 km/h (typical walking
speed). We observe that the test MSEs are almost the same when transiting across
the first six environments (800 ms), but there is a large increase for environment 7
at 945 ms, that is, where the cube moves more than 1 m. Thus, we can say that the
temporal window is 800 ms, and fine-tuning is unnecessary during this window.
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(a) (b) (c) (d) (e)

Figure B.13: Radio map for (a) original (source) wireless environment with 4 Txs
located at four different fixed positions, (b) a wireless environment from Type V en-
vironment, (c) same environment as in (b) after performing TL where only 40% of
the training data is required to train the DNN resulting in a test MSE, i.e., MSE(Et)
as 0.0048, (d) a wireless environment from Type VI environment (changed Tx loca-
tions and additional wall), and (e) same environment as in (d) after performing TL
where only 35% of the training data is required to train the DNN resulting in a test
MSE, i.e., MSE(Et) as 0.005.

B.5.4.8 Comparison with State-of-the-art

To showcase the efficacy of our proposed TL method in estimating accurate radio
maps, we compare the obtained results with the widely used RadioUNet [3] method.

RadioUNet is a modified UNet [14] architecture (originally designed for biomed-
ical image processing application), which is used to estimate radio maps in both
indoor and outdoor urban environments. It uses convolutional auto-encoders [14]
for mapping the images of the wireless environments and Tx locations (input) to the
corresponding radio maps (output).

RadioUNet mainly comprises two UNets [14]. The input of the first UNet has two
feature channels (images of indoor wireless environments and images of Tx locations),
and the output has one feature channel i.e., estimated radio maps. The input to
the second UNet might have additional channels as compared to the first UNet.
However, in our experiment, both UNets use the same two feature channels without
loss of generality. During training, the first UNet is trained to estimate the radio
maps. After that, the weights of the first UNet are frozen, and the second UNet is
trained to estimate the radio maps. The different parameters used in the RadioUNet
are presented in Table B.7.

In this experiment, we use the RadioUNet method with the parameters as pre-
sented in Table B.7 for the dataset of 1176 indoor wireless environments presented
in Section B.5.1. Note that the RadioUNet method is trained with several environ-
ments at the same time. In the test phase, it estimates the radio map without TL
and fine-tuning. The RadioUNet method results in training, validation, and test
MSE of 0.0032, 0.0036, and 0.0033, respectively. In comparison, our baseline DNN
model MapNet has a training and test MSE of 0.0024, and 0.0026, respectively,
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Table B.7: Parameters used in the RadioUNet [3]

Layer Resolution Channels Filter
First Second First Second First Second
UNet UNet UNet UNet UNet UNet

Input 256 2 3
First 256 6 20 5
Second 128 40 30 5
Third 64 50 40 5
Fourth 64 60 50 5
Fifth 32 100 60 3
Sixth 32 100 70 5
Seventh 16 150 90 5
Eighth 8 300 110 5
Ninth 4 500 150 4
Tenth 8 300+300 110+110 4
Eleventh 16 150+150 90+90 4
Twelfth 32 100+100 70+70 3
Thirteenth 32 100+100 60+60 6
Fourteenth 64 60+60 50+50 5
Fifteenth 64 50+50 40+40 6
Sixteenth 128 40+40 30+30 6
Seventeenth 256 20+6+2 20+2+2 5
Eighteenth 256 20+2 20+2 5
Output 256 1 - -
Loss function MSE
Optimizer Adam
Learning rate 0.0001
Batch size 15
Epochs 15
Train-Val-Test data split 76:12:12

which is smaller than the RadioUNet.

Next, Figure B.14 shows radio maps corresponding to an indoor wireless envi-
ronment from Type III (3 cubes present), the same environment after performing
the TL operation using the proposed TL method where only 35% of the training
data is required, and the same environment estimated using RadioUNet. We can
observe that the radio map estimated using RadioUNet has a very high value of test
MSE (0.4274). However, the radio map estimated using our proposed TL method is
better and more accurate with less value of test MSE (0.0038). Similar results are
observed for other types of wireless environments (see Figure B.9). This signifies
that our proposed TL method outperforms the RadioUNet method and is more effi-
cient in estimating accurate radio maps for new indoor wireless environments. This
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(a) (b) (c)

Figure B.14: Radio map for (a) a wireless environment from Type III environment,
(b) same environment as in (a) after performing the TL operation using the proposed
method with only 35% training data (MSE(Et) = 0.0038), and (c) same environment
as in (a) estimated using RadioUNet (MSE(Et) = 0.4274).

is caused by the fine-tuning which is performed for each new target environment
after the TL operation in our method, as compared to the RadioUNet where no
fine-tuning is performed. In general, the RadioUNet has two CNNs with 18 hidden
layers each. On the other hand, our proposed TL method has one DNN with 6
hidden layers and one CNN with 4 hidden layers. Thus, our proposed TL method
is smaller and typically requires less training data.

B.5.4.9 TL Performance with Cafe Area Indoor Wireless Environment

In this experiment, we have made more realistic indoor wireless environments cor-
responding to a typical cafe area, which includes the following objects: a kitchen,
a fridge, two tables, twelve chairs, four men sitting, and two standing men moving
inside the cafe. The cafe floor dimension (length x width) is 9.5mx16m. It has 5
windows with a size of 4mx1m each, and two doors with a size of 2mx3m each. All
environments have 4 Txs placed at 4 fixed locations and multiple Rxs placed at a
uniform spacing of 15 cm. Tx1, Tx2, Tx3, and Tx4 are placed at (1.5, 10, 3)m, (7.5,
11, 3)m, (4.75, 6.5, 3)m, and (4.75, 1.25, 3)m, respectively.

In the source cafe area wireless environment, all these objects are fixed without
the two standing men.

The target cafe area wireless environments are created by moving one or two
men. Each time they move a distance of 15 cm, it generates a new target cafe area
wireless environment. A total of 202 different cafe area wireless environments are
created. The aggregate received power for each target cafe area wireless environment
is obtained for 6678 Rx locations. The illustration of TL system design between the
original and the target cafe area wireless environments is shown in Figure B.15.

To perform the TL operation in the new cafe area wireless environments, we
investigate the suitability of the previously developed baseline DNN model (see
Section B.5.4.1). However, we experimentally found that the DDS predicts a test
MSE of 0.0092 for the baseline cafe area wireless environment, which is higher than
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Figure B.15: Illustration of the source and the target cafe area wireless environments.

Table B.8: Parameters for cafe SimNetA and SimNetB

SimNetA SimNetB
Cafe floor image size (width × height) 298 x 500
Number of convolutional layers 3
Filters in each convolutional layer 256, 128, 32 256, 128, 64
Filter size in each convolutional layer 3 x 3
Number of max pooling layers 3
Filter/pool size in each max pooling layer 2 x 2
Strides in each convolutional layer 2
Activation function in convolutional layer ReLU
Neurons in Ist flatten layer of neural network 16 32
Dropout after Ist flatten layer 0.2 0.2
Neurons in output layer of neural network 8 16
Activation function in flatten and output layer ReLU
Optimizer with learning rate Adam (0.001)
Loss function, Batch size MSE, 16
Training-Testing split ratio 70:30
Number of iterations for early stopping 5
Threshold MSEthr for MSE 0.00385
Threshold for number of training epochs - 8

the previously set test MSE threshold (0.005). Hence, we learn a new baseline DNN
model for all cafe area wireless environments. The new baseline is trained with the
power values obtained at multiple locations of Rxs from the source cafe area wireless
environment. Using grid search as before (see Section B.5.4.1), the best parameters
obtained here are the same as in Table B.3 except the addition of dropouts [79]
in the initial four hidden layers as 0.25, batch size as 16 and training-testing data
split ratio as 60:40. The obtained training and test MSE are 0.0036 and 0.0038,
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Table B.9: Transferability, F1-score, and Accuracy

Performance Method A Method B
measures Only MSE(Et) Both MSE(Et) and NEP (Et)

TP 194 190
TN 0 0
FP 8 12
FN 0 0

Transferability 1 1
F1-score 0.979 0.969
Accuracy 0.96 0.94

respectively. Further, this baseline model is transferred to each new target cafe area
wireless environment and fine-tuned, and the corresponding test MSE MSE(Et) and
the number NEP (Et) of training epochs are saved, which are then used for the DDS.

TL Performance Analysis: To train the DDS, we consider 202 different cafe
area wireless environments which correspond to 202 different cafe area floor images.
While training the CNN regression model SimNetA under Method A (see Table B.8),
we obtain a training and test MSE of 0.0198 and 0.0242, respectively. Similarly, while
training the CNN regression model SimNetB under Method B, we obtain training
and test MSE of 0.037 and 0.0451, respectively. This reflects that both CNN models
are trained appropriately.

Next, we present the DDS results for both methods. Under both Method A and
Method B, all 202 (100%) different cafe area environments satisfy our criteria and
are recommended for TL, with a training data requirement of only 35%.

Cafe Area SimNet Model Accuracy: Table B.9 reflects that the transferabil-
ity under both methods is the same. However, the F1-score and accuracy under
Method A are slightly better than Method B. The accuracies are 96% and 94%
under Method A and Method B, respectively. Intuitively, Method A has to satisfy
only the MSE threshold while Method B has to satisfy both the MSE and number
of epochs threshold criteria.

Illustration of Estimated Cafe Area Radio Maps: Figure B.16 shows the radio
map of the original (source) cafe area indoor wireless environment, one of the target
cafe area indoor wireless environments with two men moving, and the same target
cafe area environment after performing TL with only 35% training data. The differ-
ences in the radio maps can be easily visualized. Note that all objects in the radio
maps are shown in solid black colour. This signifies that our proposed TL method
is effective for real-world environments, such as cafe area wireless environments.
Moreover, the cafe area wireless environments can be easily modified to represent
other real-world environments, such as conference area type environments (E.g., the
cafe area environment with the addition of a whiteboard acts like a conference area
environment).
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Figure B.16: Radio map for (a) original cafe area environment, (b) a target cafe
area environment, and (c) same environment as in (b) after performing TL using
the proposed method with only 35% training data (MSE(Et) = 0.0036).

B.6 Conclusion and Future work

In this paper, we present a novel TL method to estimate radio maps in indoor wire-
less environments. A data-driven similarity measure is also designed to quantify the
similarity between two wireless environments which is then used to decide whether
to recommend performing the TL operation, given only the floor image of the wire-
less environment. Our data-driven similarity measure outperforms other similarity
measures for the TL operation when estimating radio maps. It is shown to be highly
effective when the amount of training samples in the new (target) wireless environ-
ment is limited. Our proposed TL method reduces the requirement in the number of
training samples necessary for estimating accurate radio maps in environments with
a certain level of similarity, saving approximately 40-90% of sensor measurement
data. In this work, the experimental results are based on simulated data from the
Remcom simulator [33]. In the future, we plan to investigate the applicability of the
proposed method to outdoor and real (non-simulated) wireless network scenarios
using data from the network operators.
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Location-free Indoor Radio Map
Estimation using Transfer learning

R. Jaiswal, M. Elnourani, S. Deshmukh, B. Baltasar Lozano

Abstract: Accurate estimation of radio maps is important for var-
ious applications of wireless communications, such as network planning,
and resource allocation. To learn accurate radio map models, one needs
to have accurate knowledge of transmitter and receiver locations. How-
ever, it is difficult to obtain accurate locations in practice, especially, in
scenarios having a high degree of wireless multi-path. Alternatively, time
of arrival (ToA) features, which are easier to obtain, can be employed for
estimating radio maps. To this end, this paper investigates the applica-
tion of the transfer learning method using ToA features for estimating
radio maps under indoor wireless communications. The performance is
compared with the scenarios where only the locations of receivers and
both ToAs and locations of receivers, are used for estimating radio maps,
assuming that locations are known. Due to the changes in propagation
characteristics, a radio map model learned in a specific wireless environ-
ment cannot be directly employed in a new wireless environment. To
address this issue, a data-driven transfer learning method is designed
that transfers and fine-tunes a deep neural network model learned for a
radio map from a source wireless environment to other distinct (target)
wireless environments. Our proposed method predicts the training data
required in the new wireless environments using a data-driven similarity
measure. Our results demonstrate that using ToA (location-free) features
results in superior performance for estimating radio maps in terms of the
necessary number of sensor measurements for estimating radio maps with
good accuracy, as compared to a location-based approach, where it may
be difficult to have accurate location estimations. It leads to a saving
of 70-90% of the necessary sensor measurement data for a mean square
error (MSE) of 0.004.

C.1 Introduction

Estimating accurate radio maps is crucial for numerous applications in wireless com-
munications, such as network planning, spectrum management, channel modelling,
and resource allocation, to name a few. Radio maps provide typically the value of
received power at every spatial location over a certain frequency band of interest in
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any geographical area. The received powers at distinct spatial locations vary due to
distinct factors, for instance, reflections, diffractions, propagation loss, and objects
that block the line of sight between a transmitter (Tx) and a receiver (Rx).

Most of the algorithms to estimate radio maps are based on the knowledge of the
Tx and Rx locations. This is known as the location-based radio map estimation [34].
However, accurate knowledge of sensor locations is difficult to obtain specially in en-
vironments where high wireless multipath fading is present. Alternatively, one can
employ the features based on the received signals, such as the time of arrival1 (ToA)
for estimating the radio maps. This is known as the location-free radio map esti-
mation [6]. Both the location-based and the location-free features are combined to
estimate the channel gain maps in [80].

Because of the differences in propagation characteristics, a radio map model de-
veloped in a specific wireless environment, may not work appropriately in the new
wireless environments. Training of machine learning (ML) methods, as a conse-
quence, require substantial data for new wireless environments. Thus, one needs
to have a large number of samples and training epochs for training the deep neu-
ral network (DNN)-based methods. Moreover, adequate computational time and
data acquisition cost are needed while training the DNN for each new wireless en-
vironment. For alleviating these costs, one can develop a radio map model in one
wireless environment (source environment) and then smartly use this model in a sim-
ilar wireless environment (target environment), by exploiting the concept of transfer
learning (TL) [19].

Model-based transfer learning [19] is the process of exploiting acquired knowledge
from a certain learning task to another target task. TL handles the issue of data
scarcity in the target environment in terms of reducing the amount of necessary
data for efficient learning. In the scenario of estimating radio maps, one may have
learned a radio map model in one indoor wireless environment but needs to estimate
radio maps in other similar indoor wireless environments. Using TL, one does not
require to learn a solution from the very beginning in the target environment, which
requires in general a large amount of data, instead, the knowledge from the source
model can be exploited.

Few works consider exploiting TL for wireless communications. A TL-based ap-
proach has been employed from the perfect channel state information (CSI) scenario
to the imperfect CSI scenario in underlay D2D communications for jointly allocating
channel and power [36]. An estimation of radio maps for indoor wireless environ-
ments employing the locations of Txs and Rxs, using TL, is investigated in [34].
In [20], a model-based TL is employed for capturing the diversity of cellular traffic
patterns of different cities. For improving the robustness of the spectrum sensing
algorithm developed for cognitive radio, TL is also applied in [21]. For tackling
the non-convex resource allocation problem in [32], TL is employed to transfer from
one solver to another solver. In [23], the optimal transport-based TL approach is
designed which minimises the Wasserstein distance [24] for wireless fingerprinting

1Time of arrival (ToA) is the time at which the radio signals arrive at the Rx from the Tx.
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localization.
This work employs TL for estimating radio maps in indoor wireless communica-

tions environments when the wireless environment changes. The following are the
key contributions of this paper:

• Design of an efficient DNN-based model that learns a radio map for an indoor
wireless environment. Additionally, the design of a data-driven TL method
that transfers a DNN model for a radio map learned from a source baseline
indoor wireless environment to another distinct target indoor wireless environ-
ment and further fine-tunes that DNN model.

• Design of a data-driven similarity measure model that maps the images of
indoor wireless environments to the mean square error (MSE) that will be
achieved for the estimated radio map in a new indoor wireless environment
when performing the TL operation from a baseline (source) environment to a
new (target) environment.

• Estimation of the amount of training data required for training in the new
wireless environment, depending on a certain criterion of the MSE and the
training epochs thresholds for estimating the radio maps, while executing the
TL operation, employing the data-driven similarity measure that we design.

• Extensive testing of our algorithms using simulated data from the Remcom
simulator [33]. Our simulation results demonstrate that employing only ToA
(location-free) feature is better in estimating accurate radio maps when the
location information is not accurately known.

• Numerically, we show that the proposed TL method employing only ToA
(location-free) feature requires less amount of training data as compared to
the location-based method [34]. It is also shown experimentally that a simi-
larity measure based on the Wasserstein distance (WD), which is widely used
in TL, is not applicable to our radio map application.

The remaining paper is organized as follows: Section C.2 explains the generation
of distinct wireless environments for TL. The proposed radio map estimation method
is introduced in Section C.3. Section C.4 discusses the numerical results. Section C.5
presents the conclusion.

C.2 Generation of Wireless Environments

The highly accurate and standard ray-tracing 3D ray model [41], calculated using
Remcom [33], is employed to obtain power measurements for real indoor wireless
environments. Along this line, Figure C.1 depicts an indoor environment which con-
sists of a single floor with two rooms. For obtaining power measurements {P (xr

i )}
at every Rx location {xr

i}, a transmitter “Tx” is placed at one fixed location {xt},
where i is the receiver location index. Also, several receivers are uniformly located.
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Source task- Original Environment Target task- Modified Environment

TL

(a) (b)

Room 1

Room 2
Room 1

Room 2

Figure C.1: TL environments: (a) original (source) environment, and (b) modified
(target) environments.

Table C.1: Remcom parameters to generate data.

Waveform Narrow-band Sinusoidal
Frequency of carrier with bandwidth 900 MHz (1 MHz)
Type of antenna Omni-directional
Location of Tx (1.5, 10, 1.3) m
Height of Tx 1.3 m
Power of Tx 27.73 dBm
Threshold of Receiver -250 dBm
Voltage standing wave ratio (VSWR) 1.0
Loss of Transmission line 0 dB
Two Rx points separation 15 cm
Two Rx routes separation 15 cm
Noise figure 3 dB
Ray spacing 0.2°
No. of reflections, transmissions, and diffractions 3, 2, 0
Object volume (single cube) 1 m3

Number of Rxs for locations and ToAs 6678
Dimension of floor (width x length x height) (9.5 x 20.6 x 2.88) m
Total indoor environments generated 250
Floor image size (width x height) (160 x 275) pixels

Similarly, for each Rx location {xr
i}, we acquire the ToA estimated also using the

model in [33], denoted as {τ ri }, and we associate it with the corresponding received
power at that location, which leads to a mapping of the form {P (τ ri )}. The dimen-
sion of the floor, the sensor placement, and other parameters employed in Remcom
are presented in Table C.1. A total of 6678 ToA features corresponding to every Rx
location and power measurement are obtained.
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Next, for creating distinct indoor wireless environments conceptually, an object,
that is, a single solid cube block having a volume of 1m3 and made of metal is
incorporated inside the original indoor environment. With an incremental spacing
of 15cm, the location of the object changes in each direction, as depicted by arrows
in Figure C.1(b). Each time new indoor environment generates whenever this object
arrives at a new location. At the same time, the power measurements are obtained
for this new environment by the ray-tracing model. This process results in 250
distinct indoor wireless environments. In addition, we save the images of each
environment having an image size of 160 x 275 pixels. These images are later
exploited for investigating different similarity measures for our TL problem, such
as the WD and the data-driven similarity measure among distinct indoor wireless
environments.

C.3 Radio Map Estimation Method

To estimate a radio map from a source to a target environment, the proposed TL
scheme is depicted in Figure C.1. Defining similarity among source and target
environments is important to perform TL operation. Along this line, a baseline
DNN model (see Figure C.2) is developed in the source environment and then the
target environment exploits this baseline model and fine-tunes it with additional
data available from the target environment for establishing the similarity between
both environments. In other words, the test MSE and the number of training epochs
that are achieved after transferring the baseline DNN and re-training it in the new
environments, are used as inputs to our data-driven similarity measure which is
designed using the convolutional neural network (CNN) (see Figure C.3).

C.3.1 Baseline Model and TL Operation

Firstly, a DNN model is developed which approximates the power values for the
original indoor environment (see Figure C.1(a)). Here we propose two methods.
Method 1 uses both ToAs and locations of Rxs, and Method 2 uses only ToA
(location-free) features. Along these lines, fully-connected DNN models are trained
for each method and are referred to as respective “Baseline models”, as shown in
Figure C.2.

Next, each baseline model is transferred to each new indoor environment (a total
of 250 environments) and fine-tuned separately. Our hypothesis is: for training a
DNN under the new environment, no ample amount of training data is available.
Thus, to estimate radio maps in the new environment, one can exploit the TL
operation for training a DNN model in the new environment with only a small
amount of training data.

The data generated from Remcom (see Section C.2) is normalized to be between
0 and 1 to favour numerical stability in the training of DNN [34]. Let P(τi,xi)

and P̂(τi,xi) be the actual and the estimated power values, respectively, the mean
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Figure C.2: DNN model for radio map estimation.

square error (MSE) [64] which is used as the loss function is calculated as, MSE =∑r
i=1(P(τi,xi)−P̂(τi,xi))

2

r
, where r is the total number of Rx locations.

Generally, the amount of training data needed for performing the TL operation
relies on its similarity measure. For example, less amount of training data is needed
between the two environments, if both environments are similar, and vice-versa.
Thus, a similarity measure is needed to determine whether the TL operation is
effective.

C.3.2 Similarity Measure based on the Wasserstein Distance

The Wasserstein distance (WD) [23] is one of the widely used similarity measures
employed in the TL for establishing the similarity between a source and a target
task. The distance between the two distributions is computed using WD. In the pro-
posed TL scheme, the WD among the two images corresponding to the two different
indoor wireless environments is computed. In practice, one computes cumulative dis-
tribution functions (CDFs) (see Equation C.1) empirically from the corresponding
histograms with a sufficient amount of data. Let us consider two random variables
S and T . In our case, S and T represent the image values corresponding to an envi-
ronment in which the cube is located at the left bottom corner (see Figure C.1), and
image values corresponding to another environment in which the cube is located at
a distinct location, respectively. Let FS(s) and FT (t) be the respective CDFs. FST

and EFST
[·] be the joint CDFs, and the expectation with respect to the joint CDFs,

respectively. The WD between both environments is calculated as [51]:

d(S, T ) = inf
FST∈FST

EFST
[|S − T |] (C.1)

C.3.3 Data-driven Similarity Measure

As shown later in Section C.4.2, it can be shown experimentally that typical sim-
ilarity measures, such as the widely used WD, are not effective in our application
of radio map estimation (as compared to other applications), since it is not able
to track the variations of the radio maps as the indoor wireless environment varies.
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Figure C.3: CNN model for similarity measure.

This motivates the design of a data-driven similarity measure (DDS) for our TL
problem that is able to understand the structure of the data in radio maps, and how
it varies as the indoor wireless environment changes.

To determine the substantial reduction of training data during the TL operation
using our data-driven similarity measure, the training data in the target indoor
wireless environments varies from 5% to 40%. For establishing the similarity among
the two environments, the test MSE corresponding to TL and the number of epochs
employed in DNN training are stored, once the DNN is trained in each new (target)
environment. Next, to design a DDS (see Figure C.3), a CNN regression model
is trained within two distinct cases for each of the methods using both ToAs and
locations of Rxs features, and using only ToA (location-free) features, respectively
and then a threshold is set empirically for its comparison with the original one. The
CNN networks used in both cases are shown in Figure C.3.

C.3.3.1 Case A

The images of distinct indoor wireless environments (a total of 250 environments)
are the input of the CNN model. The test MSE obtained after performing the TL
operation over each environment is the output of the CNN. Each coloured floor
image has a size of 160 x 275 pixels. Before injecting these images into the CNN,
they are converted into grayscale images using the OpenCV [81] library.

Next, for recommending the TL operation among two different environments, an
empirical threshold for the test MSE corresponding to TL βTestMSE is set as 0.01.
Two environments are recognized as sufficiently similar, if the test MSE obtained
after performing the TL operation is less than this threshold, else, the TL operation
is not recommended.

C.3.3.2 Case B

The same input (as in case A) is provided to the CNN model. The test MSE and
the number of training epochs obtained after performing the TL operation over
each environment are the output of the CNN model. The training epochs provide
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Figure C.4: Similarity decision between two wireless environments.

information about the time needed to train the model for a particular environment.
Note that, a larger CNN model is required for this case, resulting in a need for larger
feature sets. Hence, it becomes computationally demanding.

Next, for recommending the TL operation among two different environments, an
empirical threshold for the test MSE corresponding to TL βTestMSE, and the number
of training epochs βTrainEpoch is set as 0.01 and 20, respectively. Two environments
are recognized as sufficiently similar, if both values are less than these thresholds,
else, the TL operation is not recommended. Figure C.4 illustrates the similarity
decision taken between two indoor wireless environments under each case of the
proposed TL method.

C.4 Results and Discussions

This section discusses the numerical results obtained in each method. Here we
compare the performance of the proposed Method 1 and Method 2 with the TL
method in [34] (Method 3) which employs only locations of Rxs for estimating radio
maps in new indoor wireless environments.

C.4.1 Baseline DNN Model

Table C.2 presents the structures of the baseline DNN models that are used for each
method (see Figure C.2). It also presents the structure of the baseline DNN model
used in [34] which employs only locations of Rxs for estimating radio maps. We
refer to the method used in [34] as Method 3 for its comparison with Method 1 and
Method 2. It can be seen from Table C.2 that under each method, the test MSE is
comparable and is slightly larger than the train MSE which reflects no over-fitting
in each baseline DNN model, resulting in successful learning of each baseline model.

Next, observe the test MSE obtained in Method 1 and Method 2 with the test
MSE obtained in Method 3 in Table C.2, we notice that Method 1 and Method 2
have lesser test MSE values as compared to Method 3. Specifically, there is a
reduction of around 69% and 55% in the test MSE values using both ToAs and
Rx locations features (Method 1) and only ToA features (Method 2), respectively,
as compared to using only locations of Rxs features (Method 3). This shows that
Method 1 and Method 2 are having better baseline models as compared to Method 3
for the TL operation. Moreover, the test MSE of the baseline model under Method 2
(location-free) is almost the same as Method 1. Notice that the structure of each
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Table C.2: The Baseline model learning

.

Parameters used Both ToAs and Only Only locations
locations of Rxs ToAs of Rxs [34]

(Method 1) (Method 2) (Method 3)
Input layer neurons 4 2 2
Total hidden layers 6 3 2
Hidden layer neurons 512, 256, 128, 64, 32, 16 16, 8

64, 32, 16
Activation function ReLU ReLU ReLU
in hidden layers
Dropout after each - - 0.20
hidden layer
Output layer neurons 1 1 1
Activation function ReLU ReLU ReLU
in output layer
Optimizer employed Adam Adam Adam
Learning rate 0.0001 0.0001 0.001
Loss function MSE MSE MSE
Size of mini-batch 16 16 32
Data split ratio for 70:30 70:30 80:20
training-testing
Train MSE 0.00282 0.00459 0.0101
Test MSE 0.00313 0.00463 0.0102

baseline model in Table C.2 is optimal and is obtained using the grid search with
its evaluation through 5-fold cross-validation.

C.4.2 Wasserstein Distance as a Similarity Measure

To test whether WD is suitable for our TL application, the WD between the floor
images of indoor environments and the WD between their associated sampled radio
maps (power values) when the cube is located at the left bottom corner (see Fig-
ure C.1(b)), and the rest of the indoor environments (a total of 250 environments)
when the cube is located at other distinct locations, are calculated. Next, we com-
pute Pearson’s correlation coefficient (PCC) [34], which is one of the popular metrics
for calculating correlations [20] between both kinds of WDs (floor images and as-
sociated sampled radio maps) across the several considered environments, then the
correlation obtained is 0.08 that reflects a very poor correlation. This indicates
that WD cannot be employed as a similarity measure for the TL-based radio map
estimation in indoor wireless communications. The reason is that the WD is not
able to capture effectively the changes in the radio maps caused by the variations
in the locations of the cube. Hence, our designed data-driven similarity measure is
exploited further for the TL-based radio map estimation problem.
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Table C.3: The CNN model under Case A of Method 1.

Number of available indoor environments 250
Floor image size (width x height) 160 x 275
Total convolutional layers 2
Filters in 1st and 2nd convolutional layer 32, 64
Size of filters 3 x 3
Max pooling layers 2
Filter/pool size 2 x 2
Strides under 1st and 2nd convolutional layer 2
Convolutional layer activation function ReLU
Dropout after 2nd max pooling layer 0.3
Output layer neurons of neural network 8
Output layer activation function ReLU
Optimizer with learning rate Adam (0.001)
Loss function MSE
Size of mini-batch 16
Data split ratio for training-testing 80:20
Train MSE 0.01768
Test MSE 0.02790

Table C.4: The CNN model under Case B of Method 1.

Total output layer neurons of neural network 16
Remaining configurations are the same as in Table C.3.
Train MSE 0.01256
Test MSE 0.02047

C.4.3 Data-driven Similarity Measure

C.4.3.1 Method 1

The model learnings of the CNN under case A and case B for the Method 1, respec-
tively, are presented in Tables C.3 and C.4. Note that, the configurations to train
the CNN in case B are the same as in case A, except for the output layer neurons
which have now become 16 due to the combination of both the test MSE and the
number of training epochs corresponding to TL. Both Tables reflect a proper train-
ing of CNN under each case, that is, the testing MSE is comparable and slightly
larger than the training MSE.

C.4.3.2 Method 2

The model learnings of the CNN under case A and case B for the Method 2, respec-
tively, are presented in Tables C.5 and C.6. Both Tables reflect the proper training
of CNN under each case.

Next, as explained in Section C.3.3, the decisions of recommendation of TL oper-
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Table C.5: The CNN model under Case A of Method 2.

All parameters and hyper-parameters are same as in Table C.3.
Train MSE 0.02134
Test MSE 0.03223

Table C.6: The CNN model under Case B of Method 2.

Total output layer neurons of neural network 16
Remaining configurations are the same as in Table C.3.
Train MSE 0.01420
Test MSE 0.02276

Table C.7: Performance of proposed TL method.

ToAs and locations Only ToAs Only locations of
of Rxs (Method 1) (Method 2) Rxs [34] (Method 3)
Case A Case B Case A Case B Case A Case B
(Only (MSE and (Only (MSE and (Only (MSE and
MSE) Epochs) MSE) Epochs) MSE) Epochs)

Training data No. of No. of No. of No. of No. of No. of
needed Envs. Envs. Envs. Envs. Envs. Envs.

after TL
5% 250 184 208 78 - -
10% - 5 35 49 - -
15% - 11 7 11 - -
20% - 5 - 19 - 3
25% - 8 - 6 - 31
30% - 3 - 10 17 152
35% - 1 - 3 206 31
40% - 5 - 1 23 -

% of training 5% 5-40% 5-15% 5-40% 30-40% 20-35%
data after TL

ations for both case A and case B of each Method are determined and are presented
in Table C.7. It shows the number of indoor wireless environments that follow our
proposed TL strategy and the corresponding amount of training data required after
performing the TL operations. Table C.7 illustrates that under case A of Method 1,
all 250 distinct environments achieve the threshold criteria and are therefore recom-
mended for TL, with a need of only 5% training data. This accounts for 100% TL
recommendation rate. In the same manner, under case B using Method 1, 222 out
of 250 distinct environments achieve the threshold criteria and are therefore recom-
mended for TL, with a need of only 5-40% training data. This accounts for 88.8%
TL recommendation rate. On the other hand, under case A using Method 2, all 250
distinct environments achieve the threshold criteria and are therefore recommended
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for TL, with a need of only 5-15% training data. This accounts for 100% TL rec-
ommendation rate. In the same manner, under case B of Method 2, 177 out of 250
distinct environments achieve the threshold criteria and are therefore recommended
for TL, with a need of only 5-40% training data. This accounts for 70.8% TL rec-
ommendation rate. The reason for having a lower TL recommendation rate under
case B for both Method 1 and Method 2 is due to not having a better correlation
between the training epochs and the test MSE obtained after TL operation for the
similarity measure.

Furthermore, in Table C.7, we also compare the requirement of the percentage of
training data after TL under each case of Method 1 and Method 2 with Method 3,
we notice that the wireless environments under case A of Method 1 require only
5% training data as compared to 30-40% in Method 3, saving around 85% train-
ing data. Similarly, most of the wireless environments under case B of Method 1
require only 5% training data and the remaining few wireless environments require
only 10-40% training data. This illustrates the saving of a large amount of training
data as compared to Method 3, where the wireless environments mostly require 20-
35% training data. In the same manner, the wireless environments under case A of
Method 2 (location-free) require only 5-15% training data as compared to 30-40%
in Method 3, saving around 65% training data. Similarly, most of the wireless envi-
ronments under case B of Method 2 (location-free) require only 5-10% training data
and the remaining wireless environments require only 15-40% training data. This
again demonstrates performance improvement in terms of saving a large amount of
training data as compared to Method 3. In addition, observe that the percentage of
training data required after TL under each case of Method 2 (location-free) is almost
the same as Method 1. The above observation highlights that the presence of a small
number of sensor measurements in the new (target) indoor wireless environments is
sufficient to effectively estimate radio maps for Method 1 and Method 2.

C.4.4 Comparison of Reliability

To understand the reliability of the proposed TL method, transferability, F1-score
and accuracy [69] are calculated for both cases under each Method. The effectiveness
of the proposed method in recommending a correct TL is characterised by transfer-
ability. The model test accuracy is characterised by F1-score. All these measures
range from 0 to 1. The higher values of these measures suggest that the developed
model is better in respective performance.

To this line, Figure C.5 presents the transferability, F1-score and accuracy [69] for
each case under each Method along with Method 3 for comparison. Notice that the
transferability, F1-score and accuracy under case A of both Method 1 and Method 2
are higher than its corresponding case B. In addition, 100% accuracy is achieved
by Method 1 and Method 2 under case A, which is higher than the corresponding
value under case B. The reason for having lower accuracy under case B of both
Method 1 and Method 2 is due to the small correlation between the training epochs
and the test MSE obtained after TL operation for the similarity measure. Therefore,
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Figure C.5: Reliability comparison of different methods.

case A under both Method 1 and Method 2 performs better. On the other hand, the
transferability, F1-score and accuracy under case B of Method 2 are slightly lower
than the corresponding values under case B of Method 1.

Moreover, while comparing the transferability, F1-score and accuracy, in Fig-
ure C.5, under each case of Method 1 and Method 2 with Method 3, we notice that
both cases under Method 1 and Method 2 are performing better than the corre-
sponding cases under Method 3. In particular, there is an improvement of around
26% in accuracy under each case of Method 1 as compared to Method 3. Similarly,
there is an improvement of around 24.5% in accuracy under each case of Method 2
(location-free) as compared to Method 3. In addition, the values of all measures
under each case of Method 2 (location-free) are almost the same as Method 1.

Therefore, we can conclude from the results that the incorporation of ToA
(location-free) features alone is satisfactory for estimating accurate radio maps in
the new indoor wireless environments, which motivates using this method in scenar-
ios with high wireless multi-path, where it may be difficult to have accurate location
estimations.

C.4.5 Illustration of Radio Maps

We consider an indoor environment where the cube is present near the Tx. Fig-
ure C.6(b) shows the radio map for this environment without performing the TL
operation. However, Figure C.6(c) and Figure C.6(d), respectively, illustrate the
radio map for this same environment where only 40% of training data is needed
while performing the TL operation using both ToA features and locations of Rxs
(Method 1) and using only ToA features (Method 2). The solid black and dashed
red colour, respectively, represent the cube and the walls of the rooms in the radio
maps. It is clearly visible that the radio map estimated using only ToA features
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(a) (b) (c) (d)

Figure C.6: Radio map for (a) original indoor wireless environment, (b) a modified
indoor wireless environment where the cube is present near the Tx, (c) same envi-
ronment of (b) after executing the operation of TL using both ToA features and
locations of Rxs (Method 1), where only 40% of training data is used for training
the DNN resulting in a test MSE after TL as 0.00203, and (d) same environment
of (b) after executing the operation of TL using only ToA features (location-free)
(Method 2), where only 40% of training data is used for training the DNN resulting
in a test MSE after TL as 0.00368.

(location-free) (Method 2) is smoother and satisfactory. In fact, the corresponding
test MSE is very similar to the one obtained when using both ToA features and
locations of Rxs (Method 1).

C.5 Conclusion

A TL-based radio map estimation method for indoor wireless networks is presented
in this paper. We first design a method (Method 1) where both ToA features
and locations of Rxs are used, assuming that the exact locations of receivers are
known. Then, we consider a method (Method 2) based only on the ToA features
(location-free). Moreover, for establishing the similarity between two wireless envi-
ronments, a data-driven similarity measure is developed. This similarity measure
is later employed for making a decision regarding the recommendation to perform
TL operation, given only the image of the new wireless environment. Additionally,
the performance of Method 1 and Method 2 is also compared with Method 3 [34],
which employs only the locations of receivers for estimating radio maps. Satisfactory
performance is observed while employing only ToA features (location-free), which
motivates using this method in scenarios with high wireless multi-path where it may
be difficult to have accurate location estimations. The proposed TL method em-
ploying only ToA features (location-free) also significantly reduces the number of
training samples as compared to the location-based method [34] in similar indoor
wireless environments and hence, a large amount of sensor measurements are saved.
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Leveraging Transfer Learning for
Radio Map Estimation via Mixture
of Experts

R. Jaiswal, M. Elnourani, S. Deshmukh, B. Baltasar Lozano

Abstract: This paper leverages transfer learning (TL) on a mixture
of experts (MoE) model for indoor radio map estimation. The proposed
MoE combines location-based and location-free experts through a gating
network exploiting their complementary benefits. To estimate the radio
map in a new wireless environment, the learned model of another suffi-
ciently similar environment is transferred and fine-tuned with additional
data from the new environment. The proposed data-driven similarity
measure predicts the amount of data needed for TL. Results demon-
strate that the proposed method only requires 15-40% of measurements
to adapt to several varying environments, and as expected, the proposed
MoE method outperforms both experts.

D.1 Introduction

To improve the performance of future wireless communication systems, accurate
estimation of radio maps is important. A radio map portrays an estimate of the
power spectral density (PSD) over a required geographical area as a function of
location, time, and frequency. It also depicts the various propagation characteristics
of the wireless environment over a certain region, which is governed by various
factors, such as reflections, diffractions, and scattering [38,82]. In the case of multi-
transmitter Tx environments, there are two types of radio maps. One that uses
the aggregate power from all the different Txs which can be used for applications,
such as network designing and planning. The other type uses the individual power
of each Tx and can be used for applications, such as localization, and resource
allocation. Additionally, this work focuses on data-driven radio map estimation
for indoor wireless environments. However, the same method can also be applied
to outdoor wireless environments. There have been some works related to radio
map estimation in the literature. For example, a RadioUNet [3] model which is a
modified UNet architecture [14] (originally designed for biomedical image processing)
is adapted for estimating radio maps in urban environments. To estimate outdoor
radio maps, a two-phase learning framework integrating the radio propagation model
and designing a conditional generative adversarial network is proposed in [16]. A
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maximum likelihood estimation-based indoor radio map estimation framework under
a Gaussian quantizer is proposed in [17]. However, these works require training the
model from the very beginning for each new wireless environment, resulting in the
need for a large amount of sensor measurements.

In addition, the propagation characteristics of wireless environments may change
over space, time, and frequency. Therefore, a radio map model developed under a
given wireless environment (source environment), can not be deployed directly in a
new wireless environment (target environment). Moreover, developing a new radio
map model for each new wireless environment needs a large amount of sensing
data. To tackle these issues, one can exploit transfer learning (TL) [19] where the
knowledge acquired in the source environment for the learning task (in our case,
learning a radio map model) can be used in the target environment when both the
source and target environments are sufficiently similar. Some previous works on the
exploitation of TL for wireless networks include [21, 23, 36]. TL has been employed
to improve the robustness of deep neural network (DNN)-based spectrum sensing
in cognitive radios [21]. A TL method is proposed for the joint resource allocation
problem in [36]. Similarly, TL is also used for wireless fingerprinting localization
in [23]. None of these works consider radio map estimation using TL.

To estimate radio maps, location-based algorithms [2,34] employ exact knowledge
of receiver (Rx) locations. However, in practice, it is difficult to obtain accurate
sensor locations, particularly, in environments having a large number of wireless
multipaths. It is possible to estimate the approximate sensor locations from the
time of arrival (ToA) features of radio signals using different types of algorithms,
such as the trilateration localization [1]. This algorithm determines locations of Rxs
based on one ToA value from each of the several Txs placed at known locations. On
the contrary, one can also directly use ToA features to estimate radio maps without
estimating the sensor locations, which is known as location-free algorithms [8]. It
is also possible to incorporate both location-based and location-free algorithms, by
using a mixture of experts (MoE) architecture. MoE [66] exploits the complementary
advantages of each expert. MoE is exploited in [80] to estimate channel gain maps
using kernel-based methods.

In this paper, in the context of radio map estimation, for a fixed time and fre-
quency band, we consider a MoE that comprises two DNN-based experts. Expert 1
is location-based, trained with the estimated locations of Rxs. Expert 2 is location-
free, trained with ToA features. The training of Expert 2 involves higher complexity
due to the fact that it requires learning a higher dimension function. The gating
network, which is also a DNN, combines the output of both experts to obtain the
final radio map. To demonstrate the underlying motivation behind the use of the
MoE for radio map estimation, we show in Figure D.1(a) the location-error (in me-
ters) ẽxr

j
= ||xr

j − x̂r
j || map, where xr

j is the actual locations of Rxs and x̂r
j is the

estimated locations of Rxs, and the corresponding wireless environment radio map
shown in Figure D.1(b). The location-error map is a gray-scale image that depicts
the normalized error values of the sensor locations between 0 and 1. It is obtained
by calculating, at each location, the Euclidean distance between the true and the
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(a) (b) (c) (d) (e)

Figure D.1: (a) Location-error map for the original wireless environment (63× 106

points with a spacing of 15 cm); Radio map for: (b) the original wireless environment
with 4 Txs, (c) the same environment as in (b) estimated using Expert 1 (test MSE
= 0.0051), (d) the same environment as in (b) estimated using Expert 2 (test MSE
= 0.0050), and (e) the same environment as in (b) estimated using the MoE (test
MSE = 0.0039).

estimated locations of Rxs. In this particular case, the estimated locations are ob-
tained using the trilateration localization algorithm [1]. The walls of the rooms are
represented in dashed red colour.

Additionally, Figure D.1 shows three radio maps. Figure D.1(c), Figure D.1(d),
and Figure D.1(e) are the radio maps of the original wireless environment as shown
in Figure D.1(b), estimated using Expert 1, Expert 2, and a MoE using a gating
network, respectively. These radio maps are obtained by either using the power
value outputs (Figure D.1(b)) or by training the respective Experts (Figure D.1(c)-
(e)). The location-error map (Figure D.1(a)) depicts a significant amount of location
errors in some areas, which can affect the accurate radio map estimation. In general,
the performance of Experts 1 and 2 varies with the locations of Rxs. As we describe
later in Section D.2, it is observed that the MoE based on the gating network,
provides an improvement in the accuracy of the radio map (see Figure D.1(e)), as
it incorporates both location-based measurements and location-free features, along
with the location-error information. This motivates us to design a data-driven MoE
model, which can adapt to location errors and experts’ inaccuracies in order to
estimate accurate radio maps. The main contributions of this paper are:

• Design of an effective data-driven transfer learning method based on a MoE-based
radio map model learned from an original wireless environment that is transferred
and fine-tuned to other similar wireless environments.

• Adapting our data-driven similarity measure, proposed in [2, 34], which is then
used to decide whether TL is performed or not.

• Prediction of the amount of training data needed in new wireless environments
when performing the TL operation.
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• Extensive testing of the proposed TL scheme using simulated data from the Rem-
com simulator [33]. Results show that the proposed scheme performs an effective
TL for estimating radio maps in most wireless environments while using a rela-
tively small amount of training data. Numerically, the proposed scheme outper-
forms the individual location-based and the location-free experts [2, 8].

D.2 Problem Formulation

In this work, we tackle three problems, namely, the design of a MoE, the TL opera-
tion, and the TL similarity measure. Firstly, consider two separate experts. Expert 1
is a location-based having the estimated locations of Rxs {x̂r

j} as input (where j is
the index of the Rx), and F1(x̂

r
j) = P̂ (x̂r

j) as output, the corresponding aggregate
power1 (in dBm), or a vector of all the individually received powers from each Tx.
Similarly, Expert 2 is location-free having the estimated ToAs {τ̂ rj } as input, and
F2(τ̂

r
j ) = P̂ (τ̂ rj ) as output, the corresponding aggregate power or a vector of all the

individually received powers from each Tx. Furthermore, we consider using the MoE
principle [66], we can combine both experts using a gating network (G). The input to
the gating network is {xGNj

} = {P̂ (x̂r
j), P̂ (τ̂ rj ), τ̂

r
j , x̂

r
j , exr

j
}, where P̂ (x̂r

j), and P̂ (τ̂ rj )

are the predicted receiver powers from Expert 1 and Expert 2, respectively, and
exr

j
is the location estimation error, assumed to be known. In practice, exr

j
can be

either estimated by performing location estimation measurements in advance, e.g.,
varying the wireless environment and estimating (offline) ẽxr

j
at each position of the

potential receiver and calculating the average of these errors across environments
exr

j
= Eenvironmentsẽxr

j
, or through a localization algorithm that is able to estimate

this error. This error generally defines an uncertainty region around the estimated
1In our experiment, we use aggregate power. However, the same formulation holds for both,

that is, aggregate power and individual power radio maps.

Room 1

Room 2

Room 1

TL

(a)

Room 1

Room 2

(b)

Room 1

Room 2

Figure D.2: Illustration of radio maps: (a) original wireless environment, and (b)
target wireless environment with 4 Txs and 3 cube objects represented by 3 black
squares.
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location where the actual location resides. The output of the gating network is
G(xGNj

) = P̂ (xGNj
), that is, the aggregate received power at Rxj. Our first problem

is how to find the functions F1(·), F2(·), and G(·).
To understand the second problem, let Es, and Et denote the source and target

environments, respectively, as shown in Figure D.2. Next, let us assume that only
a small amount of power values are available in Et, as compared to Es.

For the source environment Es, we first learn the DNN-based MoE Gs(·) with
weight parameters θ⋆s through minimizing the loss function mean square error (MSE),
MSE =

∑Ns
i=1 [P (xi)−Gs(·)]2

Ns
, where Ns is number of Rxs. Let us also assume that Es

and Et have some similarity in terms of wireless propagation characteristics. We
perform TL by transferring the baseline MoE model learnt in Es to Et, and initialize
its parameters by the values obtained from the baseline MoE model of Es. Then,
we can fine-tune this model for minimising the same loss function but in the target
environment Et, by using only fewer additional measurement samples. The detailed
mathematical formulation of TL can be seen in [2].

Notice that one should have a similarity measure between the source Es and
target Et environments because it affects the TL performance. This is our third
problem. The more similar Es and Et are, the more effective is expected TL to be.
We have also tested classical similarity measures [2], such as scale-invariant feature
transform2 (SIFT) [56], and widely used Wasserstein distance3 (WD) [51], and found
them inadequate for the application of TL for radio map estimation [2]. The reason
is that these similarity measures can be applied to any type of image representing
the source environment Es and they do not consider the radio environment propa-
gation properties. Thus, we design our data-driven similarity measure (DDS) that
incorporates and learns the wireless propagation characteristics from the data.

D.3 Proposed Radio Map Estimation Model

The proposed model comprises two phases, namely; the training phase and the
execution phase, as shown in Figure D.3 and Figure D.4. The training phase consists
of two stages: (i) the design of the baseline MoE model in source environment Es,
followed by the possibility of transferring it to target environment Et, and (ii) the
establishment of a similarity measure between Es and Et. During the execution
phase, the image of a test wireless environment is given as input to the DDS. The
DDS predicts different MSE values and the number of training epochs for the TL
operation at different data splits (number of training samples). Next, in the TL

2SIFT [56] is a scale, rotation and affine invariant 2D feature detector algorithm based on
the difference-of-Gaussians (DoG) operator [83]. It detects feature points by searching the local
maxima at various scales of the subject image. Feature matching is then done using L1-norm and
setting a threshold.

3WD [51] calculates the distance between two probability distributions. We calculate the WD
between the floor image corresponding to the Es when the cube is positioned at one location, and
the different floor images corresponding to the remaining Et when the cube is positioned at different
locations.
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Figure D.3: Data-driven TL-based radio map estimation model using MoE (training
phase).
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Figure D.4: Data-driven TL-based radio map estimation model using MoE (execu-
tion phase).

decision block, these values are compared with the set MSE and training epochs
thresholds to decide further whether to perform TL operation with a specific data
split. If the thresholds are satisfied, then the TL can be performed with that specific
data split, else, TL will not be performed and MoENet needs to be trained from the
very beginning.

D.3.1 Baseline MoE Model and Transfer Learning Approach

We first design a MoE model which comprises two experts and a gating network, as
described in Section D.2. Both experts and the gating network are trained jointly as
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Figure D.5: MoENet: Baseline MoE model.

a feed-forward DNN for the original wireless environment (see Figure D.2(a)). We
refer to the baseline MoE model (shown in Figure D.5) as MoENet.

A high-level description of the MoENet in the form of pseudo-code is presented
in Algorithm 8.

Next, given the baseline MoE model MoENet, we first decide whether to per-
form the TL operation on the basis of the similarity measure. However, since our
similarity measure is data-driven, a sufficient amount of data from a number of envi-
ronments is necessary to learn this similarity measure. To this end, we transfer the
MoENet to each target environment Et individually, followed up by fine-tuning it
using a small amount of additional training data from Et. The required training data
for the target environments is varied from 5% to 40% of the amount of training data
that is necessary for learning the MoENet from Es. After training and fine-tuning
the transferred MoENet for each new environment Et, we store the test MSE(Et) and
the number of training epochs NEP (Et). The training is stopped after satisfying an
early stopping [74] convergence criterion, that is, when the MSE is approximately
stable for a certain number of consecutive iterations.

A high-level description of the TL method in the form of pseudo-code is presented
in Algorithm 9.

D.3.2 Similarity Measure

Similar to the work in [2, 34], the DDS incorporates explicitly the TL effect in
terms of MSE and the number of training epochs, along with the images of the
environments. These are required to achieve a certain accuracy (MSE) of the radio
map estimation in Et and a certain number of training epochs (time complexity).
For this, we train a convolutional neural network (CNN) [50] regression model under
two distinct loss functions, one for accuracy and one for both accuracy and time
complexity. Loss function A: LA = |MSE(Et) − M̂SEt|2 is the squared difference
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Algorithm 8: Baseline DNN model MoENet with three jointly trained
DNNs

Input: D := {x̂i, τ̂i, exi
, Pi}: dataset of n estimated locations of Rxs x̂i

and n estimated ToAs τ̂i, location estimation error at same Rxs exi
, and

power values Pi

B: Batch size, α: Learning rate, NEP : Number of epochs
Output: θ1: Trained DNN1 model parameters, θ2: Trained DNN2

model parameters, θ3: Trained DNN3 model parameters, MSE1: MSE of
trained DNN1 based on test data, MSE2: MSE of trained DNN2 based on
test data, MSE3: MSE of trained DNN3 based on test data

Data-Splitting: Splitting data into Dtrain and Dtest

Data-division for three different DNN networks: D1 := {x̂i, Pi},
D2 := {τ̂i, Pi}, D3 = {xGN i

, Pi} := {P̂ (xi), P̂ (τi), x̂i, τ̂i, exi
, Pi}, where

P̂ (xi), P̂ (τi) are the output of DNN1 and DNN2, respectively
1: Training stage
2: Randomly initialize the network parameters
3: for k = 1,...,NEP do
4: for j = 1,...,NB = ceil(|D1train, D2train, D3train|/B) do
5: Randomly select B training samples from training data

D1train, D2train, D3train as the training batch
6: Update DNN1, DNN2, & DNN3 parameters θ1, θ2, θ3 with learning

rate α to minimize Losses = MSE1 =
∑

[Pi−P̂ θ1(xi)]
2

|B| , MSE2 =∑
[Pi−P̂ θ2(τi)]

2

|B| , MSE3 =
∑

[Pi−P̂ θ3(xGNi
)]2

|B|
7: end for
8: end for
9: Testing stage

10: Initialize MSE1, MSE2, MSE3: MSE1← 0,MSE2← 0,MSE3← 0

11: Use test data D1test, D2test, D3test

12: Predict power values P̂ (xi) on given {xi}, P̂ (τi) on given {τi}, and
P̂ (xGN i

) on given {xGN i
}

13: Calculate
MSE1 =

∑
[Pi−P̂ θ1(xi)]

2

|D1test| , MSE2 =
∑

[Pi−P̂ θ2(τi)]
2

|D2test| , MSE3 =
∑

[Pi−P̂ θ3(xGNi
)]2

|D3test|
14: Save trained DNN1, DNN2, and DNN3 models parameters θ1, θ2, θ3.

between the actual test MSE obtained from the TL, denoted by MSE(Et), and the
predicted test MSE, denoted by M̂SEt, which is obtained when performing the TL.
Loss function B: LB = ||[MSE(Et) − M̂SEt, NEP (Et) − N̂EP t ]||2 contains both the
test MSE and the number of training epochs which specify the power-value errors
and the need for training time to perform TL, respectively. Note that NEP (Et), and
N̂EP t are the actual and predicted TL training epochs, respectively. Based on these
loss functions, we propose two methods.

Method A: This method comprises CNN (see Figure D.6) having the images of
distinct target environments Et as input, and eight sets of test MSEs, i.e., MSE(Et)
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Algorithm 9: TL Method
Input: Dt: data of target environment Et, MoENet: baseline MoE

model θ1⋆s, θ2
⋆
s, θ3

⋆
s,

α: Learning rate, B: Batch size, r: Splitting ratio, NEP : Number of epochs
Output: MoENet: DNN model θ1⋆t , θ2

⋆
t , θ3

⋆
t for target environment Et,

MSE1(Et): MSE of transferred DNN1 based on the test data, MSE2(Et):
MSE of transferred DNN2 based on the test data, MSE3(Et): MSE of
transferred DNN3 based on the test data, NEP (Et): Number of training
epochs for the jointly transferred DNN models

Data-Splitting: Splitting data into training D1ttrain, D2ttrain, D3ttrain and
test D1ttest, D2ttest, D3ttest with splitting ratio r, as shown in Algorithm 8
1: Fine-Tuning and Testing stage
2: Initialize MSE1(Et),MSE2(Et),MSE3(Et):

MSE1(Et)← 0,MSE2(Et)← 0,MSE3(Et)← 0

3: Initialize NEP (Et): NEP (Et)← 0

4: Fine-Tuning stage
5: for k = 1,...,NEP do
6: for j = 1,...,NB = ceil(|D1ttrain, D2ttrain, D3ttrain|/B) do
7: Randomly select B training samples from training data

D1ttrain, D2ttrain, D3ttrain as the training batch
8: Update DNN parameters θ1t, θ2t, and θ3t with α to minimize

Losses = MSE1 =
∑

[Pi−P̂ θ1(xi)]
2

|B| ,MSE2 =
∑

[Pi−P̂ θ2(τi)]
2

|B| ,MSE3 =∑
[Pi−P̂ θ3(xGNi

)]2

|B|
9: end for

10: Check early stopping criterion and stop when satisfied
11: end for
12: Save number of training epochs NEP (Et)
13: Testing stage
14: Predict power values P̂ (xi), P̂ (τi), and P̂ (xGN i

) on given {xi}, {τi}, and
{xGN i

}, respectively
15: Calculate MSE1(Et) =

∑
[Pi−P̂ θ1(xi)]

2

|D1ttest|
, MSE2(Et) =

∑
[Pi−P̂ θ2(τi)]

2

|D2ttest|
,

MSE3(Et) =
∑

[Pi−P θ3(xGNi
)]2

|D3ttest|

obtained after performing TL with different data splits (5%, 10%, 15%, 20%, 25%,
30%, 35%, 40%), as output. It uses the Loss function LA and the corresponding
learned CNN model is henceforth referred to as SimNetA. Each floor image repre-
senting an environment is assumed to be a three-level image in which free space is
represented as white (gray value 255), walls are assumed a gray value of 128, and
objects (e.g., cubes) are black (gray value 0).

Method B: This method comprises CNN with the same input but whose output
is now the combination of eight sets of test MSEs, i.e., MSE(Et) obtained after
performing TL with different data splits (5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%),
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Figure D.6: CNN-based neural network structure for the similarity measure.

and eight sets of NEP (Et) of training epochs required for each target environment Et
when MoENet is transferred and re-trained. It uses the Loss function LB and the
corresponding learned CNN model is henceforth referred to as SimNetB.

For any similarity measure, the goal is to decide whether TL is beneficial (in
our case, small MSE(Et), and small NEP (Et) (Method B)) or not between the two
environments, based on certain thresholds. To select the value of these thresholds,
we have to trade-off between the radio map quality, convergence time (Method B),
and the recommendation rate4 of the TL. In the case of our DDS, under Method A,
we set a threshold for the test MSE (MSEthr) and compare it with the predicted test
MSE (M̂SE(Et)) obtained after TL. Similarly, under Method B, we set thresholds
for both the test MSE (MSEthr) and the number of training epochs (NEP thr

). If both
predicted values are less than these thresholds, then two radio maps are recognized
as similar and TL can be performed effectively, otherwise, we assume that TL is
ineffective. Note that, as shown in Figure D.6 of DSS, we give an image of the floor
plan of a new target wireless environment as input and then map it to the MSE of
the TL operation (MSE and NEP in Method B).

A high-level description of DDS in the form of pseudo-code is presented in Al-
gorithm 10.

D.4 Generation of Indoor Wireless Environments

To obtain power measurements at multiple Rx locations for distinct types of envi-
ronments, we use the high accuracy ray-tracing X3D ray model [41], computed using
Remcom [33]. We first consider an environment of a single floor with two rooms.
We place Nt = 4 transmitters Txs at distinct locations {xt

i}Nt
i=1 and then Rxs at

uniformly spaced locations {xr
j} with a 15 cm spacing vertically and horizontally to

obtain the aggregate power values {P (xr
j)} at each Rx location. Additionally, we

measure the first two ToAs of each Tx’s signals at each Rx location. We add Gaussian
noise with zero mean and a variance of 1 dB to these ToAs. This results in (63×106)
6678 Rx locations and corresponding aggregate power values. Table D.1 summarizes

4The recommendation rate of TL is computed as the number of environments for which TL is
recommended divided by total number of environments.
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Algorithm 10: Data-driven Similarity Measure SimNet
Input: D := {Imt,MSE1t,MSE2t,MSE3t, NEP t (only for Method B)}:

dataset comprising three-level images of target environments, 8 sets of
MSEs (MSE1, MSE2, MSE3) of the transferred model from Algorithm 9
for different data splits rt = {5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%},
Training epochs of the transferred model from Algorithm 9 for all 8 sets
of data splits, for each environment, respectively, MSEthr: MSE threshold,
NEP thr

: Epoch threshold, r: Split ratio, N cnn
EP : Training epochs of SimNet

Output: SimNet(θsim), MSEcnn: MSE of the trained CNN model,
TL decision: Yes/No

Data-Splitting: Split into training Dtrain & test Dtest with split ratio r

1: Training stage
2: Use data from Dtrain

3: Normalize image values Imt, MSE1t, MSE2t, MSE3t and NEP t to [0, 1]

4: Randomly initialize θsim
5: for k = 1,...,N cnn

EP do
6: for j = 1,...,NB = ceil(|Dtrain|/B) do
7: Randomly select B training samples from Dtrain as the training batch
8: Update θsim with learning rate α to minimize loss given by the

MSEcnn = LA = |MSE(Et)− M̂SEt|2 (Method A)

= LB = |[MSE(Et)− M̂SEt,

NEP (Et)− N̂EP t ]|2 (Method B)

(D.1)

9: end for
10: end for
11: Testing stage
12: Initialize MSEcnn: MSEcnn ← 0

13: Use test data from Dtest

14: Predict MSE1t, MSE2t, MSE3t and NEP t on a given image of Imt

15: Calculate MSEcnn using (D.1)
16: TL decision
17: for q = 1,...,|D| do
18: for each rt do
19: if max (M̂SE1t, M̂SE2t, M̂SE3t) ≤ MSEthr then
20: TL decision ← Yes and output rt, else, TL decision ← No
21: if max (M̂SE1t, M̂SE2t, M̂SE3t) ≤ MSEthr & N̂EP t ≤

NEP thr
(for Method B) then

22: TL decision ← Yes and output rt, else, TL decision ← No
23: end if
24: end if
25: end for
26: end for
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Table D.1: Parameters used in Remcom for generating the data

Waveform Narrow-band Sinusoidal
Carrier frequency with Bandwidth 900 MHz (1.0 MHz)
Antenna type Omni-directional
Tx1 location (1.5, 10.0, 1.3) m
Tx2 location (6.0, 11.0, 1.3) m
Tx3 location (6.0, 7.75, 1.3) m
Tx4 location (4.75, 2.5, 1.3) m
Tx height, and Tx power 1.3 m, and 27.73 dBm
Space between two Rx points and Rx routes 15 cm each
Ray tracing model, and Ray spacing X3D ray model, and 0.2°
Reflections, transmissions, and diffractions 3, 2, 0
Floor dimension (width x length x height) (9.5 x 20.6 x 2.88) m
Image size of floor (width x height) (160 x 275) pixels

Table D.2: Summary of wireless environment E .

Type of Environment E Description of E Number
Type I 4 Txs, 1 Cube 250
Type II 4Txs, 2 Cubes 252
Type III 4 Txs, 3 Cubes 248
Type IV 4 Txs, 4 Cubes 254
Type V 4 Txs, 8 Cubes 42

Total number of environments 1046

the selected Remcom parameters with the radio map shown in Figure D.2 (a).
Next, we place physical objects, represented by cubes, at different locations to

create distinct types of environments with 4 Txs. For the sake of simplicity, we
consider objects represented by a single 1 m3 metallic solid cube block, placed in
the environment. We create 5 types of environments; Type I, Type II, Type III,
Type IV and Type V environments where 1, 2, 3, 4 or 8 cubes are placed in the
original wireless environment at various locations respectively. This results in 250,
252, 248, 254, and 42 environments of each type respectively, and a total of 1046
environments. Note that the location of each cube is changed horizontally, vertically,
and diagonally with an incremental spacing of 15 cm to generate these environments.
The image of each environment is saved as a 160 × 275 three-level image. These
images are later used to measure the similarity between environments, as discussed
in Section D.3.2. In each of these environments, the same Remcom parameters
were used to generate the aggregate power at each Rx location. The summary of
different types of wireless environments with the respective number of environments
is presented in Table D.2 and shown in Figure D.7. Additionally, we generate 130
different wireless environments by making the following changes: (a) changing the
carrier frequency of waveform from 900 to 950 MHz, (b) changing the location of

145



Room 1

Room 2
Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2
Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2
Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2
Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

Room 1

Room 2

(a) (b) (c) (d) (e)

Figure D.7: Illustration of different types of wireless environments E (a) Type I E
(4 Txs, 1 cube), (b) Type II E (4 Txs, 2 cubes), (c) Type III E (4 Txs, 3 cubes),
(d) Type IV E (4 Txs, 4 cubes), and (e) Type V E (4 Txs, 8 cubes).

each Tx by 1 meter, (c) adding a wall below to second room, and (d) adding two
objects in the floor plan and changing its locations horizontally, and vertically with
a spacing of 15 cm.

D.5 Results and Discussions

This section discusses the results of the proposed model.

D.5.1 Numerical Analysis with Noiseless ToAs

In this experiment, we use the exact ToA features (noiseless). To optimize the
baseline MoE model MoENet (see Figure D.5) that we need before performing TL
in the new target environment Et, grid search is performed, for the dataset described
in Section D.4, with a variable number of hidden layers (5-10), neurons for each
layer (8-1024), and learning rate range (0.0001-0.01). The average localization error
exr

j
is obtained numerically by using the trilateration algorithm [1] for all wireless

environments and then calculating the average at each Rx location. The histogram
of this error (in meters) is shown in Figure D.8.
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Figure D.8: Histogram of average location estimation error from all environments.
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Table D.3: Parameters and hyper-parameters for MoENet

Expert 1 Expert 2 Gating Network
Neurons in input layer 2 8 13
Number of hidden layers 7 5 3
Number of neurons in 1024, 512, 256, 1024, 512, 256, 256, 128, 64
each hidden layer 128, 64, 32, 16 128, 32
Batch normalization 1 to 5 layer - -
Batch normalization - 1 to 4 layer -
Batch normalization - - 1 and 2 layer
Dropout after 3rd layer - - 0.2
Hidden and output layers ReLU
activation function
Neurons in output layer 1
Optimizer with learning rate Adam (0.0001) [77]
Loss function & Batch size MSE, 64
Training-Testing split ratio 80:20
Iterations for early stopping 5

With the parameters as in Table D.3, the best jointly trained MoENet results
in a training and a test MSE of 0.0048 and 0.0051 for Expert 1, 0.0031 and 0.0034

for Expert 2, and 0.0022 and 0.0027 for MoENet gating network, respectively. This
reflects that the MoENet is indeed an accurate model for training data and also
generalizes well for the test data. Based on our experiment, we have observed that
the gating network only requires 3 hidden layers.

TL Performance Analysis: While training the CNN model SimNetA under
Method A (see Figure D.6 and Table D.4), a training MSE and a test MSE of
0.0276, and 0.0315, respectively, are obtained. Similarly, while training the CNN
model SimNetB under Method B, a training MSE and a test MSE of 0.0206, and
0.0234, respectively, are obtained. This reflects that both SimNetA and SimNetB
are trained appropriately.

Table D.5 presents the TL decisions for both methods. Under Method A, 1031
out of 1046 (98.56%), and under Method B, 1034 out of 1046 (98.85%) different
environments, respectively, satisfy our criteria and are recommended for TL, with a
training data need in the range of only 15-40%.

SimNet Model Accuracy: To investigate the reliability of the proposed scheme,
Table D.6 presents the transferability, F1-score, and accuracy [2]. The transferability
represents how good the considered model is in recommending a correct TL for a new
Et. The F1-score is a measure of the test accuracy of the model. Accuracy measures
the degree of veracity of the model. Given true positive (TP), true negative (TN),
false positive (FP), and false negative (FN), all these measures are defined as [69]:

Transferability =
TP

TP + FN
; F1-score =

2TP
2TP + FP + FN

. (D.2)
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Table D.4: Parameters and hyper-parameters for SimNetA and SimNetB

SimNetA SimNetB
Number of convolutional layers 3
Number of filters in each convolutional layer 256, 128, 64
Filter size in each convolutional layer 3 x 3
Number of max pooling layers 3
Filter/pool size in each max pooling layer 2 x 2
Dropout after each max pooling layer 0.2
Number of strides in each convolutional layer 2
Activation function in each convolutional layer ReLU
Neurons in 1st flatten layer of neural network 32
Activation function in neural network ReLU
Dropout after 1st flatten layer of neural network 0.2
Neurons in output layer of neural network 24 32
Activation fn. in output layer of neural network ReLU
Optimizer with learning rate Adam (0.001)
Loss function and Batch size MSE, 32
Training-Testing split ratio 80:20
Threshold MSEthr for MSE 0.01
Threshold NEP thr

for number of training epochs - 11

Table D.5: TL performance

Method A Method B
Only MSE(Et) Both MSE(Et) and NEP (Et)

Necessary training Number of wireless Number of wireless
data environments environments
15% 1 -
20% 55 30
25% 21 39
30% 515 381
35% 289 483
40% 150 101

TL Recommendation 1031/1046 1034/1046
rate (in %) (98.56) (98.85)

Accuracy =
TP + TN

TP + TN + FP + FN
. (D.3)

Table D.6 reflects that the transferability under each method is the same, while
the F1-score is slightly better in Method A. The accuracy under Method A, and
Method B is 79.2% and 78.3%, respectively. The reason for observing a smaller
accuracy under Method B, is because Method B is more strict towards satisfying
both the test MSE and the number of training epochs threshold criteria, as compared
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Table D.6: Transferability, F1-score, and Accuracy

Performance Method A Method B
measures Only MSE(Et) Both MSE(Et) and NEP (Et)

TP 808 798
TN 21 22
FP 203 213
FN 14 13

Transferability 0.982 0.983
F1-score 0.881 0.875
Accuracy 0.792 0.783

to Method A, where only the test MSE criterion needs to be satisfied. This suggests
that our proposed model can be used effectively to estimate radio maps in new
wireless environments with fewer sensor measurements, as compared to the case of
training a raw model without TL.

D.5.2 Numerical Analysis with Noisy ToAs

In this experiment, we add Gaussian noise with zero mean and a variance of 1 dB
to the ToA features (noisy). With the parameters as in Table D.3, the best jointly
trained MoENet results in a training and a test MSE of 0.0048 and 0.0051 for
Expert 1, 0.0028 and 0.005 for Expert 2, and 0.0031 and 0.0039 for MoENet gating
network, respectively.

TL Performance Analysis: While training the CNN model SimNetA under
Method A (see Figure D.6 and Table D.4), a training MSE and a test MSE of
0.0201, and 0.0255, respectively, are obtained. Similarly, while training the CNN
model SimNetB under Method B, a training MSE and a test MSE of 0.0277, and
0.032, respectively, are obtained. This reflects that both SimNetA and SimNetB
are trained appropriately.

Table D.7: TL performance

Method A Method B
Only MSE(Et) Both MSE(Et) and NEP (Et)

Necessary training Number of wireless Number of wireless
data environments environments
15% - 13
20% 27 22
25% - 47
30% 128 116
35% 541 561
40% 297 263

TL Recommendation 933/1046 1022/1046
rate (in %) (94.93) (97.7)
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Table D.8: Transferability, F1-score, and Accuracy

Performance Method A Method B
measures Only MSE(Et) Both MSE(Et) and NEP (Et)

TP 748 758
TN 53 24
FP 212 241
FN 33 23

Transferability 0.957 0.970
F1-score 0.859 0.851
Accuracy 0.765 0.747

Table D.7 presents the TL decisions for both methods. Under Method A, 933
out of 1046 (94.93%), and under Method B, 1022 out of 1046 (97.7%) different
environments, respectively, satisfy our criteria and are recommended for TL, with a
training data need in the range of only 15-40%.

SimNet Model Accuracy: Table D.8 reflects that the F1-score under each method
is the same, while the transferability is slightly better in Method B. Method B has
slightly lower accuracy than Method A. The accuracy under Method A is 76.5%
and the accuracy under Method B is 74.7%. This again suggests that our proposed
model can be used effectively to estimate radio maps in new wireless environments
with fewer sensor measurements, as compared to the case of training a raw model
without TL, even in the presence of noise in the ToA features.

D.5.3 Numerical Analysis with Noisy ToAs and Additional
Complex Changes in Wireless Environments

As discussed in Section D.4, 130 different wireless environments are generated. These
environments are combined with the 1046 environments, resulting in a total of 1176
target wireless environments. The TL operation is performed for all these environ-

Table D.9: TL performance

Method A Method B
Only MSE(Et) Both MSE(Et) and NEP (Et)

Necessary training Number of wireless Number of wireless
data environments environments
20% 55 61
25% 315 86
30% 271 429
35% 404 496
40% 105 101

TL Recommendation 1150/1176 1173/1176
rate (in %) (97.78) (99.74)
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Table D.10: Transferability, F1-score, and Accuracy

Performance Method A Method B
measures Only MSE(Et) Both MSE(Et) and NEP (Et)

TP 833 808
TN 20 8
FP 305 357
FN 18 3

Transferability 0.978 0.996
F1-score 0.837 0.817
Accuracy 0.725 0.693

ments while keeping both MSE and training epoch thresholds the same.
TL Performance Analysis: Table D.9 presents the TL decisions for both meth-

ods. Under Method A, 1150 out of 1176 (97.78%), and under Method B, 1173 out
of 1176 (99.74%) different environments, respectively, satisfy our criteria and are
recommended for TL, with a training data need in the range of only 20-40%.

SimNet Model Accuracy: Table D.10 reflects that the transferability is slightly
better in Method B. However, the F1-score and accuracy under Method A are
slightly better than Method B. The accuracy under Method B is 69.3% and the
accuracy under Method A is 72.5%.

D.5.4 Performance Comparison

While comparing the performance of the proposed TL model with the noiseless and
noisy ToA features (see Table D.6 and Table D.8), it can be observed that the
overall model accuracy slightly decreases with the presence of noise (79.2% with
noiseless and 76.5% with noisy ToAs). However, both scenarios have satisfactory
performance.

Similarly, while comparing the performance of the proposed TL model with noisy
ToAs and with and without changes in the wireless environments (see Table D.8 and
Table D.10), it can be observed that the TL Recommendation rates under both sce-
narios are almost the same. However, the overall model accuracy slightly decreases
when making complex changes in the wireless environments (76.5% without change
and 72.5% with change in environment). This signifies that our proposed TL model
is adaptable to more complex changes (e.g., changes in carrier frequency, the height
of antennas, adding an extra wall, etc.) in wireless environments.

D.5.5 Choice of Thresholds

We have estimated experimentally the minimum test MSE threshold (MSEthr) that
allows a particular expert to perform TL for estimating accurate radio maps of new
environments. A very high threshold value will result in a less accurate radio map
estimation. However, if we choose a very low threshold value, then it will result
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in a better radio map estimation, but a lower TL recommendation rate. Moreover,
it should be noticed that the choice of these thresholds will also depend on the
application scenario. Additionally, the amount of computation time required for
executing a MoE model, which incorporates three DNNs inside it, will be always
higher than the computation time required for executing an individual expert, such
as Expert 1 or Expert 2, which incorporates only a single DNN. To this end, we
experimentally selected a MSEthr of 0.0098 for Expert 1, 0.0079 for Expert 2, and
0.0075 for the MoE gating network, respectively. Notice that our overall proposed
model requires a MSEthr of 0.01 to perform effective TL operation.

D.5.6 Estimated Radio Maps

To visualize the radio maps, Figure D.9 and Figure D.10 depict five different radio
maps of different wireless environments with and without TL operation. The cubes
and the walls of the rooms are represented in black and dashed red colours, respec-
tively. The differences in the radio maps among the five distinct scenarios can be
easily visualized.

(a) (b) (c) (d) (e)

Figure D.9: Radio map for (a) original wireless environment with 4 Txs, (b) an
environment from Type IV, (c) environment (b) after performing TL using Expert 1
with 40% training data (MSE(Et) = 0.0078), (d) environment (b) after performing
TL using Expert 2 with 40% training data (MSE(Et) = 0.006), and (e) environment
(b) after performing TL using MoENet with 40% training data (MSE(Et) = 0.0054).

D.6 Conclusions

This paper presents a mixture-of-expert (MoE) based transfer learning method for
estimating radio maps in wireless networks. The MoE comprises a location-based
and a location-free expert. A gating network supervises these two experts. To
quantify the similarity between two wireless environments, a data-driven similarity
measure is adapted and later used to perform TL operation for a given image of
the wireless environment. Results demonstrate that the proposed MoE-based TL
method performs efficiently in estimating radio maps for the new wireless environ-
ments while requiring fewer amount of training samples, and outperforms both ex-
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(a) (b) (c) (d) (e)

Figure D.10: Radio map for (a) original wireless environment with 4 Txs, (b) an
environment with additional wall and changed Tx locations, (c) environment (b)
after performing TL using Expert 1 with 30% training data (MSE(Et) = 0.0096),
(d) environment (b) after performing TL using Expert 2 with 30% training data
(MSE(Et) = 0.0076), and (e) environment (b) after performing TL using MoENet
with 30% training data (MSE(Et) = 0.0071).

perts. Also, our proposed method performs well in the presence of noise in the time
of arrival features and when making complex changes in the wireless environments.

153





Appendix E

PAPER E

Title: Transfer Learning Based Joint Resource Allocation
for Underlay D2D Communications

Authors: Rahul Jaiswal, Siddharth Deshmukh, Mohamed
Elnourani, Baltasar Beferull-Lozano

Conference: IEEE WCNC 2022

155



Transfer Learning Based Joint
Resource Allocation for Underlay
D2D Communications

R. Jaiswal, S. Deshmukh, M. Elnourani, B. Baltasar Lozano

Abstract: In this paper, we investigate the application of transfer
learning to train a Deep Neural Network (DNN) model for joint channel
and power allocation in underlay D2D communication. Based on the tra-
ditional optimization solutions, generating training datasets for scenarios
with perfect channel state information (CSI) is not computationally de-
manding, compared to scenarios with imperfect CSI. Thus, a transfer
learning-based approach can be exploited to transfer the DNN model
trained for the perfect CSI scenarios to the imperfect CSI scenarios. We
also consider the issue of defining the similarity between two types of
resource allocation tasks. For this, we first determine the value of outage
probability for which two resource allocation tasks are the same, that is,
for which our numerical results illustrate the minimal need for relearning
from the transferred DNN model. For other values of outage probabil-
ity, there is a mismatch between the two tasks and our results illustrate
a more efficient relearning of the transferred DNN model. Our results
show that the learning dataset required for relearning of the transferred
DNN model is significantly smaller than the required training dataset for
a DNN model without transfer learning.

E.1 Introduction

In the last decade, research efforts in underlay D2D communication have categori-
cally focused on devising judicious resource allocation algorithms, as it is fundamen-
tal for the efficient performance of both cellular and D2D networks [84–86]. Judicious
resource allocation in the form of prudent power control and channel assignment to
D2D pairs is vital to limit interference. Its main goal is to maximize performance
metrics such as sum rate, energy efficiency, spectral efficiency etc. while satisfy-
ing the desired quality of service (QoS) requirements [84, 86]. Unfortunately, most
formulations on resource allocation lead to either mixed-integer nonlinear problems
or highly non-convex problems, which in general involve combinatorial complexity
for obtaining the optimal solution. Thus, convex relaxation approaches can be ex-
ploited to obtain the sub-optimal solution with consideration of (i) optimality gap,
(ii) convergence guarantees, and (iii) computation complexity.
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In order to practically realize the resource allocation solution, recent research
works have proposed training of Deep Neural Networks (DNNs) to a close-to-optimal
solution. Motivation for exploiting DNN is primarily due to its universal approxi-
mation capability [87] and supplemented by the fact that trained DNN models are
computationally very simple [88] to execute. In this context, deep learning-based
resource allocation algorithms have been proposed in [89, 90]. However, these deep
learning-based resource allocation algorithms are only implementing power control
and power allocations, but not the joint resource allocation of both power allocation
and channel assignments, as presented in the perfect CSI [70] and imperfect CSI [72]
cases. Moreover, these previous works [89, 90] are focused on perfect CSI and im-
perfect CSI scenario of resource allocation in terms of power control and power
allocation respectively but do not include any transfer learning (TL) approach in
order to either improve the learning performance or accelerate the training, saving
computational resources.

Notice that the success of DNN models in replicating different optimization-
based resource solutions relies heavily on the availability of sufficiently large learning
datasets. The generation of large datasets depends on the computational complex-
ity of the original resource allocation solution; for example, under the perfect CSI
scenario, [70] decouples without loss of optimality, the resource allocation problem
into multiple power allocation subproblems and a channel assignment subproblem.
In [70], the power allocation subproblems have closed-form solutions and the chan-
nel assignment subproblem is solved by integer relaxation. Thus, in this case, it is
possible to obtain a large training dataset with reasonable complexity. However, if
we consider a similar set-up with imperfect CSI [72], the decoupled power alloca-
tion sub-problems are solved iteratively using fractional programming, making the
generation of large learning datasets cumbersome work.

The resource allocation under perfect and imperfect CSI can be considered as
similar tasks and in this paper, we investigate how to exploit the concept of trans-
fer learning (TL) in order to address the problem of learning with small datasets.
Transfer learning [19] is a promising technique in which DNN models trained for one
task can be transferred to another similar task which has less learning data. Some
related research work on TL includes robust sensing framework [21], and transfer
learning via self-imitation for resource allocation [32].

In this work, we address the problem of learning resource allocation in an im-
perfect CSI scenario [72] by exploiting the TL from the perfect CSI scenario. We
first characterize the similarity between the two resource allocation tasks in terms of
the outage probability. Next, we train a DNN model under the perfect CSI scenario
with the dataset generated from the algorithm presented in [70] and define it as a
baseline model for TL. The providing baseline model is then retrained for the case of
imperfect CSI with a small dataset generated from the algorithm presented in [72].
Our numerical results illustrate that as the mismatch between two tasks increases, a
larger dataset is required for relearning the baseline model; however, the amount of
dataset required for relearning the baseline model is significantly smaller, compared
to training of the new DNN model.
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Figure E.1: Illustration of the system model with TL approach.

The remainder of this paper is structured as follows: Section E.2 describes the
system model and problem formulation of resource allocation under perfect and im-
perfect CSI. Section E.3 presents the proposed deep learning and transfer learning-
based approach for resource allocation. Section E.4 presents the experimental sys-
tem setup and Section E.5 presents and discusses the results before the concluding
remarks and future directions are provided in Section E.6.

E.2 System Model

In this work, we investigate the transfer of a DNN model trained for resource allo-
cation (channel assignment and power allocation) to cellular users (CUs) and D2D
pairs from the case of perfect CSI conditions to the case of practical operations under
imperfect CSI conditions, as shown in Figure E.1. Here, we consider a cell enabled
by a base station (BS), which communicates with NC cellular users through NC

downlink channels. The cell is assumed to operate in fully loaded mode; thus, CUs
can be indexed by C = {1, ..., NC}. Next, we consider ND D2D pairs (indexed by
D = {1, ..., ND}) wishing to communicate in underlay using the aforementioned NC

downlink channels. The notations for channels are as follows: gBi
and gDj

denote
respective direct channel gains between, BS to i-th CU and transmitter and receiver
in D2D pair; hBj

and hCj,i
denotes respective interference channel gain between BS

to the receiver of j-th D2D pair and the transmitter of j-th D2D pair to i-th CU.
Further, we denote the total noise power in any channel by N0.

Let βi,j be a binary variable denoting the channel assignment to the j-th D2D
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pair; βi,j = 1, if i-th CU shares channel with j-th D2D pair and βi,j = 0 oth-
erwise. The D2D pairs are allowed to simultaneously access multiple channels;
thus, improving their individual sum rate. However, in order to limit interference
among D2D pairs, sharing of a channel is restricted to at most one D2D pair, i.e.,∑ND

j=1 βi,j ≤ 1, ∀i. Similarly, let PBi
and PDj,i

denote respectively transmit power
allocated to the BS over the i-th channel and the j-th D2D pair when accessing the
i-th channel. The corresponding transmit powers are constrained as: PBi

≤ PBmax

and PDji
≤ PDmax . Given the above system model, we define the following two

resource allocation tasks:

E.2.1 Task I: Resource Allocation under Perfect CSI

In this task, we follow the same formulation as in [70]. They assume that all channel
gains gBi

, gDj
, hBj

and hCj,i
; 1 ≤ i ≤ NC , 1 ≤ j ≤ ND are perfectly known

at the BS. The objective of this task is the sum rate maximization of both the
cellular and the D2D network along with a fairness measure in channel assignment
to the D2D pairs. Under the assumption of capacity-achieving codes, let Γ(z) :=

log2(1 + z); the sum rate over i-th channel is defined as: Ri :=
∑

j∈D βi,j[RCi,j
+

RDj,i
] + (1−

∑
j∈D βi,j)RCi,0

, where RCi,j
= Γ(PBi

gBi
/(N0 + PDji

hCj,i
)) denotes the

rate of the i-th CU when sharing the channel with the j-th D2D pair (βij = 1);
RDj,i

= Γ(PDji
gDj

/(N0 + PBi
hBj

)) the rate of the j-th D2D pair when sharing the
channel with the i-th CU (βij = 1); and RCi,0

= Γ(PBmaxgBi
/N0) the rate of the i-th

CU when it shares its channel with no D2D pair (βij = 0 ∀j). The overall network
rate of both cellular and D2D networks can be expressed as R :=

∑
i∈C Ri. For

consideration of fairness in channel assignment to D2D pairs, they define unfairness
measure (from [71]): δ2(B) := 1/(NDx

2
0)
∑ND

j=1(xj(B) − x0)
2, where xj :=

∑NC

i=1 βi,j

is the number of channels assigned to the j-th D2D pair, x0 := NC/ND and B is
channel assignemnet. Here, if NC is an integer multiple of ND, then xj = x0 ∀j
is the fairest channel assignment possible. Finally, the overall resource allocation
optimization problem under perfect CSI can be formulated as:

max
B,PB ,PD

R(B,PB, PD)− γδ2(B) (E.1a)

subject to βi,j ∈ {0, 1},
ND∑
j=1

βi,j ≤ 1∀i (E.1b)

0 ≤ PBi
≤ PBmax ∀i 0 ≤ PDji

≤ PDmax ∀j, i (E.2a)

∀i, j, PBi
gBi

N0 + PDji
hCj,i

≥ ηCmin if βij = 1 (E.2b)

∀i, j,
PDji

gDj

N0 + PBi
hBj

≥ ηDmin if βij = 1. (E.2c)

where ηCmin and ηDmin are the respective minimum signal-to-interference plus noise
ratio (SINR) requirements for CUs and D2D pairs. Notice that problem (E.1) is
a mixed-integer non-convex program, which involves combinatorial complexity for
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obtaining the optimal solution. A close-to-optimal solution to problem (E.1) is
provided in [70], where joint power allocation and channel assignment are opti-
mally decoupled in several power allocation problems and a channel assignment
sub-problem. The decoupled power allocation subproblems have closed-form solu-
tions and the channel assignment subproblem is solved by integer relaxation. This
solution is computationally efficient. Thus, due to low complexity, one can easily
obtain a large dataset to transfer a DNN model.

E.2.2 Task II: Resource Allocation under Imperfect CSI

In this task, we follow the same formulation as in [72]. The interference channel
gain from the transmitter of the j-th D2D pair to the i-th CU, i.e., hCj,i

, is con-
sidered to be estimated with minimum cooperation between the cellular and D2D
networks. Thus, the interference channel gain is assumed to be exponentially dis-
tributed (Rayleigh fading) and is denoted by h̃Cj,i

; 1 ≤ i ≤ NC , 1 ≤ j ≤ ND. Due
to imperfect CSI, the resource allocation optimization problem presented in (E.1)
incurs the following modifications: (i) the objective function, and (ii) the stochastic
minimum SINR constraint for the CUs.

The stochastic SINR constraint (E.2b) can be replaced with probabilistic con-
straint to guarantee a minimum outage probability ϵ, expressed as:

Pr

{
PBi

gBi

N0 + PDji
h̃Cj,i

≥ ηCmin

}
≥ (1− ϵ) if βij = 1, ∀i, j (E.3)

The probabilistic SINR constraint can be expressed in a closed form expression for
a given statistical distribution of hCj,i

. Thus, constraint (E.3) can be equivalently
expressed as:

PBi
gBi

N0 + PDji
F−1

h̃Cj,i

(1− ϵ)
≥ ηCmin (E.4)

where, F−1

h̃Cj,i

(1 − ϵ) is the inverse cumulative distribution function (CDF) for h̃Cj,i

evaluated at (1− ϵ).
Next, focusing on the stochastic objective function, the objective function (E.1a)

can be replaced by the criterion to maximize the minimum network rate exceeded
for (1 − ϵ) portion of the time. The minimum network rate can be considered by
analyzing the lower bound of the total rate at channel i, which is defined as RLB

i :=

(1−
∑

j∈D βi,j)RCi,0
+
∑

j∈D βi,j[RDj,i
+RLB

Ci,j
], where, RLB

Ci,j
denotes the lower bound

(which must be at least achieved (1−ϵ) portion of the time) of the rate of the i-th CU
when sharing the channel with the j-th D2D pair (βij = 1). Since h̃Cj,i

is random,
we can compute RLB

Ci,j
= Γ(zLBCi,j

) where zLBCi,j
: Pr{zLBCi,j

≤ PBi
gBi

/(N0 + PDji
h̃Cj,i

)} =
1− ϵ. The minimum sum rate is therefore R(B,PB, PD) :=

∑
i∈C R

LB
i . The fairness

part is the same.
Once again, note that the resource allocation problem (E.1) with minimum net-

work rate objective and minimum SINR constraint for CUs expressed in (E.4), is
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a non-convex mixed-integer program and obtaining the optimal solution requires
combinatorial complexity. An efficient close-to-optimal solution to the resource al-
location problem for the case of imperfect CSI is provided in [72], where once again
the joint power allocation and channel assignment problem is decoupled, without
loss of optimality, in several power allocation and channel assignment subproblems.
The decoupled power allocation subproblems are solved using iterative fractional
programming, whose solutions are later used to obtain channel assignment by inte-
ger relaxation. Notice that due to the iterative fractional programming in solving
the power allocation sub-problem, generating large datasets to train a DNN is cum-
bersome work due to larger computational complexity. Thus, in the next section, we
explore the similarity between these two tasks: (i) resource allocation in the perfect
CSI case, and (ii) resource allocation in the imperfect CSI case to exploit transfer
learning.

E.3 Transfer Learning based Resource Allocation

The fundamental requirement in transfer learning is to establish a similarity between
the tasks over which TL is performed. For the presented resource allocation problem,
the similarity between two tasks: (i) resource allocation in perfect CSI and (ii)
resource allocation in imperfect CSI can be established by following Lemma.

Lemma E.3.1. Under the assumption that the interference channel gains h̃Cj,i
fol-

lows an exponential distribution with the mean denoting the true channel gain value
in the perfect CSI case, the two resource allocation tasks for perfect CSI and imper-
fect CSI coincide for outage probability ϵ = 1

e
.

Proof: Notice that the minimum network rate objective function with the mod-
ified constraint (E.4) for resource allocation in the imperfect CSI case, is the same
as for the perfect CSI case when F−1

h̃Cj,i

(1− ϵ) = hCj,i
. For exponential distribution,

F−1

h̃Cj,i

(1− ϵ) = E[h̃Cj,i
] ln

(
1
ϵ

)
. Since the true CSI is equal to the mean of h̃Cj,i

, i.e.,

hCj,i
= E[h̃Cj,i

], the two tasks are the same for ϵ = 1
e
= 0.3679.

Next, we briefly discuss the DNN architecture, which is used in this work to obtain
the resource allocation solution for the perfect CSI case.

E.3.1 Fully-connected DNN Architecture

A deep neural network (DNN) architecture consists of multiple numbers of layers
between the input and output, each of which consists of a linear operation followed
by a point-wise non-linearity, also known as the activation function.

Consider a feed-forward DNN with L layers, labelled l = 1, ...., L and each with
a corresponding dimension ql, as shown in Figure E.2. The layer l is defined by
the linear operation Wl ∈ Rql−1×ql followed by a non-linear activation function
σl : R

ql → Rql . Layer l receives input from the l− 1 layer denoted as, Wl−1 ∈ Rql−1 ,
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Figure E.2: Architecture of fully-connected DNN with input and output.

the resulting output of the layer l, Wl ∈ Rql , is then computed as Wl := σl(WlWl−1),
where σl(·) is point-wise activation function. The final output of the DNN, WL, is
then related to the input W0 by propagating through the various layers of the DNN
as WL = σL(WL(σL−1(WL−1(....(σ1(W1W0)))))). The DNN learns the layer-wise
weights W1,W2, ...,WL. Our input to DNN is channel gains and output is channel
assignments and power allocations. The activation function σl includes a rectifier
function (commonly referred to as ReLU), defined as σl(x) = 0 for x < 0 and x for
x > 0.

E.3.2 Output Discretization and Scaling

In order to satisfy constraints (E.1b) and (E.2a), the output vector in the resource
allocation problem, that is, the channel assignments and power allocations, are
discretized and scaled respectively. A binary channel assignment to j-th D2D pair
is assigned as 1 if the channel is assigned and 0 if the channel is not assigned.
Since each channel can be assigned to at most one of the ND D2D pairs, for a j-th
D2D pair, we discretize maximum among NC possible channel assignments values
{βi,j}i∈C to one and other assignments to zero. Similarly, the power value should
range between 0 and Pmax. However, the obtained output power values may be
higher than Pmax and lesser than 0. Thus, in order to bring it to the specified range,
the power value is thresholded with 1 such that if the power is more than 1, then
it will be mapped to 1 and if it is less than 0, then it is mapped to 0, followed by
multiplication by Pmax.

E.3.3 Transfer Learning Strategy

In transfer learning, a DNN model trained for some specified task is transferred to
perform a similar task decreasing substantially the retraining [91]. A given target
task can be trained with fewer data by taking the trained model of a similar task
as the baseline model. Here the trained baseline DNN model refers to the model
trained for resource allocation in the perfect CSI scenario and the target task is
resource allocation for the imperfect CSI scenario.
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Thus, for this work, we train a baseline model for the perfect CSI case using a
large dataset generated by the computationally efficient algorithm presented in [70].
Next, we use this baseline model to initialise the weights of the DNN model and fine-
tune it for the imperfect CSI scenario, where we assume that we have an insufficient
amount of dataset (generated from [72]) for training and testing, due to the huge
complexity of the considered algorithm.

E.4 System Setup

The proposed DNN and TL-based approaches are implemented in Python 3.7.3 with
TensorFlow 2.2.0 on a Windows 10 laptop having an Intel Core i5 8th generation
processor, Intel UHD Graphics 620, and 16 GB of memory. The original solver for
the perfect and the imperfect CSI model of resource allocation is implemented in
MATLAB R2018a. Therefore, we have compared the computational performance
of the perfect and imperfect CSI model with the proposed DNN and TL-based
approach.

E.4.1 Data Generation

The simulation setup to generate data comprises a circular cell of a 500m radius in
which the CUs and D2D transmitters are placed uniformly at random. Each D2D
receiver is placed uniformly at random inside a circle of radius 5m centred at the
corresponding transmitter. The channel gains are calculated using a path-loss model
with exponent 2 and gain −5 dB at a reference distance of 1m. We assume h̃C to be
exponentially distributed with the mean value obtained from the mentioned path-
loss model. Averages over 100,000 independent realizations of the user locations
with parameters BW = 15 kHz, γ = 50 × BW, ND = 5, NC = 5, N0 = −70dBW
(γ is scaled with BW to ensure that the unfairness and the achieved rate are of
comparable values) are performed. Thus, the input to the DNN is the set of channel
gains, that accounts for 40 inputs. The output to the DNN is a joint set of 50 power
allocations and 25 channel assignment variables. For training the baseline model
with perfect CSI, we consider 100,000 input-output pair samples.

E.4.2 Parameter Selection

To obtain a satisfactory baseline model, we train DNNs with a different number
of hidden layers, each having a variable number of neurons. Since output values
(channel assignments and power allocations) are positive, the activation function to
the hidden layers is a rectified linear unit (ReLU) and the output layer is linear.
The weights of the baseline DNN are initialized randomly. We use mean square
error (MSE) as the loss function and ADAM optimizer with a learning rate of 0.001
for stochastic optimization. We standardize the dataset by taking the mean and
scaling to unit variance. We use a mini-batch of 256 samples. Training epochs are
set empirically.
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E.4.3 Training and Testing Stage

For the baseline DNN training, we divide the whole data into 80:20 ratio, that is,
80 % for training and 20 % for testing. During testing, for each channel realization,
we pass it through the trained network and collect the optimized power allocation
and channel assignments. Then, we also evaluate the satisfaction of power con-
straints (E.2b), SINR (E.2c), and (E.4).

E.5 Results and Discussions

This section presents numerical results and a discussion to showcase the effectiveness
of the proposed DNN and TL-based approach. The performance accuracy of the
model is evaluated in terms of MSE. There are 100,000 input-output samples in
both scenarios.

Table E.1 presents the different training and testing errors that are carried out
for the perfect CSI scenario to train the DNN model and set it as our baseline model
for TL. It can be observed that the DNN model having 3 hidden layers (highlighted)
is performing better as compared to the other combinations. The accuracy, i.e., test
MSE, are comparable to the training part, thus illustrating no over-fitting in the
model. Moreover, the percentage of constraint satisfaction (E.2b) and (E.2c) in the
testing stage are high and nearly the same as its counterpart in training.

Table E.2 shows the results for the imperfect CSI scenario with outage probability
ϵ = 0.1 when (i) trained via a DNN model with the same training-testing split and
configurations as in the perfect CSI scenario, and (ii) trained with a baseline model
learnt from perfect CSI (TL) with 50% training-testing split. It can be noticed that
the TL-based approach has obtained nearly the same MSE as the direct DNN-based
approach with the random initialization, and has a similar percentage of constraint
satisfaction. This indicates that our baseline model obtained/transferred from the

Table E.1: Model learning for Perfect CSI

Number of hidden layers 3 6 3 6
Input layer neurons 40 40 40 40
Hidden layer activation function ReLU ReLU ReLU ReLU
Hidden layer neurons 40,20,5 40,20,5, 40,60,80 40,60,80,

20,40,60 100,80,60
Output layer activation function Linear Linear Linear Linear
Output layer neurons 75 75 75 75
Test MSE 0.038 0.039 0.205 0.090
Train MSE 0.039 0.039 0.206 0.090
Test E.2b; E.2c constraints 94.53; 94.69; 81.78; 84.67;
satisfied (in %) 100 100 86.70 92.96
Train E.2b; E.2c constraints 94.55; 94.58; 81.78; 84.53;
satisfied (in %) 100 99.99 86.62 92.93
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Table E.2: Model learning for Imperfect CSI

Test Train Test Train Test Train
MSE MSE E.2b E.2b E.4 E.4

constraint constraint constraint constraint
satisfied satisfied satisfied satisfied

DNN 0.017 0.017 95.28 95.32 100.0 100.0
TL 0.017 0.017 95.01 94.92 100.0 100.0

perfect CSI scenario improves the learning for the imperfect CSI case with less
amount of training data (usually termed as sample-complexity).

The amount of training data required to retrain the baseline model depends on
the degree of task mismatch. It can be observed from Figure E.3 that when two
tasks are similar, i.e., outage probability ϵ = 0.3679, then just with 20% of training
data, the MSE of TL is 0.04. Moreover, with 30% of training data, the transferred
baseline model is completely trained. However, as illustrated in Figure E.4, when
a lot of mismatch presents between the two tasks, ϵ = 0.05, then almost 80% of
training data is required for retraining the transferred baseline model. Since the
problem is highly non-convex, the solution that is achieved may correspond to local
minima. In Figure E.4, the training of the DNN seems to converge to a local optima
when the amount of training data is below 70%, but then it achieves a better solution
with 80% of the training data.
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Figure E.3: Percent of training data vs MSE (No. of epochs=10).
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Figure E.4: Percent of training data vs MSE (No. of epochs=10).
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Figure E.5: Sum-rate for different values of outage probability ϵ.

Figure E.5 shows the plot of sum-rate obtained for different values of outage
probability ϵ, that is, 0.05, 0.1 and 0.3679, for the case of imperfect CSI [72]. The
black dashed line is the sum-rate obtained by averaging the 100,000 realizations of
the original solutions calculated numerically using optimization method [72]. The
blue and red dashed lines, respectively, are the sum-rates obtained by training the
imperfect CSI model via DNN and TL with 50% training-testing separation of sam-
ples. It can be noticed that the sum-rate of TL is higher than the one obtained for
the DNN, showing a better performance. Specifically, the TL is achieving the same
sum-rate as the original for ϵ = 0.3679, a condition in which the two resource alloca-
tion tasks for perfect CSI and imperfect CSI (under outage probability ϵ = 0.3679)
are similar. This signifies that even with a small number of training samples, TL
achieves nearly the same performance as the original, and superior performance,
as compared to using a DNN without TL, hence resulting in saving computational
resources.

Table E.3 presents the comparison of computational performance of the proposed
TL-based approach with the DNN-based approach (both implemented in Python)
and with the numerical optimization methods proposed in [70, 72] (implemented in
MATLAB). It can be noticed that the MATLAB implementation of both algorithms
requires substantially more computational time as compared to the TL-based ap-
proach. Moreover, the case of imperfect CSI requires a lesser number of epochs to

Table E.3: Computational performance for perfect and Imperfect CSI

Optimization
methods [70,72]

DNN TL

Scenario Time Train
epochs

Test
time

Train
epochs

Test
time

(second) (80,000 (second) (50,000 (second)
samples) samples)

Perfect 46.0 51 0.166 - -
CSI
Imperfect 214.0 13 0.161 19 0.125
CSI
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train the DNN as compared to the perfect CSI for the same training data. The
TL-based approach requires a lesser number of training iterations, that is, 950,000
(19 epochs × 50, 000 samples) as compared to the imperfect CSI, which is 1040,000
(13 epochs × 80, 000 samples). As expected, the TL-based approach requires less
training data (sample complexity), thus saving computational resources.

E.6 Conclusion and Future Work

In this paper, we have first designed a DNN-based algorithm for wireless resource
allocation in the case of a perfect CSI model. The optimal DNN model is considered
as the baseline for transfer learning in order to train an imperfect CSI model. Our
results show that for the joint problem of channel assignments and power allocations
over D2D communications, DNNs can approximate accurately this solver between
cellular users and D2D pairs, with the knowledge of the channel-state-information
(CSI). Moreover, the transferred model to the imperfect CSI scenario performs better
than the DNN model without transfer learning and requires less amount of training
data, reducing the sample complexity. Our results show that DNN has great po-
tential to solve real-time wireless resource allocation problems and transfer learning
can reduce the data-hungry nature of DNN, saving computational resources. TL
can lead to a good performance across similar problems with a limited amount of
training data.
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