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Abstract
This work compares a recently developed analytical expression for the maximum-

power point voltage with experimental data, to test its usability for crystalline
silicon solar cells. The experimental data covers measurements from 18 mul-
ticrystalline silicon solar cells with different bulk resistivities and cell archi-
tectures. We show that the expression is able to predict the maximum power
obtainable by the measured cells with relative discrepancies below 1%. Ad-
ditionally, we compare the accuracy of this new expression with two already
existing models.

1 Introduction
The maximum-power point of solar cells that follow Shockley’s diode equation has
been studied from an analytical perspective in a number of works, such as Refs. [1]
and [2]. There, the authors showed that Lambert’s W function [3] allowed for a simple
analytical expression of the maximum-power point voltage, Vmpp, and, consequently
the maximum-power point current and power, impp and Pmpp, respectively.

Some work has been done aiming to quantify analytically the effect of series
resistance on various solar cell parameters [4, 5, 6, 7]. Particularly in Ref. [6], Singal
obtained an approximate closed-form expression of Vmpp in terms of the open-circuit
voltage, Voc.

Recently, a new expression for Vmpp that accounts for the effect of series resistance,
and is comparable in simplicity to the expression derived by Khanna in Ref. [1], has
been derived and tested against a numeric one-diode model for a number of different
bandgaps [8].
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In this paper, we aim to test the applicability of this new expression for Vmpp in
crystalline silicon (c-Si) solar cells. The current-voltage (I-V ) characteristics of 18
compensated multicrystalline silicon (mc-Si) solar cells, as well as the series resistance
and sample characteristics, were measured at various temperatures. We compare the
measured values of Vmpp, impp and Pmpp of the measured cells to their corresponding
counter parts predicted by the expression derived in Ref. [8]. Additionally, we test the
accuracy of the expressions derived in Ref. [8] against Singal’s expressions (Ref. [6])
and a numerical model.

2 Theoretical Framework
When series resistance is accounted for in Shockley’s diode equation [9], the total
current, i, produced by a solar cell is given by [10]

i = iG − i0 exp

(
V + iR

Vt

)
(1)

where iG and i0 are the generation and the thermal recombination [11] currents,
respectively; V is the voltage and qVt = kT with q and k being the elementary
charge and Boltzmann’s constant; and R is the series resistance. Banwell et al.
showed in Ref. [4], that Lambert’s W function, defined by x = W(xex) allows for
Eq. (1) to be expressed in closed-form as

i = isc −
Vt

R
W

(
iscR

Vt

exp

[
V

Vt

− Voc

Vt

+
iscR

Vt

])
, (2)

where we have approximated iG by isc and made use of the identity i0 = isc/ exp (Voc/Vt).
The latter follows from Eq. (1) by noting that i(Voc) = 0 [10].

At the maximum-power point, it holds that dP/dV = 0, with P being given by the
product P = i ·V . Inserting Eq. (2) results into an transcendental equation in V that
does not have an analytical solution and needs to be solved numerically. However,
some approximate analytical solutions can be found in the literature.

2.1 Without Lambert’s W function

Already in 1981, Singal derived in Ref. [6] approximate analytical expressions for
Vmpp, impp and Pmpp. In his derivation, Singal did not make use of Lambert’s W
function. Instead, he noted that, for most solar cells, Voc >> Vt, which allowed him
to take a series of approximations that converted the transcendental problem into
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an analytically solvable equation. The proposed expressions for the maximum-power
point were

Vmpp = Voc

[
1− 1

v
log(1 + f(v)) +

1

v
log

(
1 +

2iscR

Voc

vf(v)

(1 + f(v))2

)

− iscR

Voc

f(v)

1 + f(v)
+

(
iscR

Voc

)2
2vf(v)

(1 + f(v))3

]
, (3)

impp = isc

[
1− 1

1 + f(v)
− 2iscR

Voc

vf(v)

(1 + f(v))3

]
, (4)

where v = Voc/Vt and f(v) = v − log(v). The corresponding expression for Pmpp is
obtained by multiplying Eqs. (3) and (4).

2.2 With Lambert’s W function

Sanchez and Strandberg showed in Ref. [8] that approximating Lambert’s W function
by its argument in the derivation of Vmpp allowed for an approximate analytical
solution of the transcendental problem. The obtained expression was

Vmpp = iscR + Vt

(
W

[
exp

[
1 +

Voc

Vt

− 2
iscR

Vt

]]
− 1

)
. (5)

From Eq. (2), it is possible to calculate the maximum-power point current, impp,
and power, Pmpp, by inserting Eq. (5) into Eq. (2) and then calculating the product
impp · Vmpp. The authors in Ref. [8] also proposed two approximate expressions for
these quantities,

impp = isc

(
1− 1

W [α(R)]

)
, (6)

Pmpp = i2scR

(
1− 1

W [α(R)]

)
+ iscVt

(
W[α(R)]− 2 +

1

W [α(R)]

)
, (7)

where α(R) equals the argument of Lambert’s W function in Eq. (5).
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2.3 The ideality factor

Foreseeing its usability in the comparison with our experiments, it is worth dedicating
a section to the ideality factor, n. At the beginning of this section, we introduced
the recombination term of the diode equation as i0 exp [V/Vt]. This is true only for
solar cells that follow the ideal diode equation, which assumes that all recombination
occurs in the cell bulk through band-to-band transitions or through Shockley-Read-
Hall (SRH) recombination. Real cells experience other types of recombination and,
also, in different areas of the device [10]. In order to account for these, we need to
introduce an ideality factor, n, in the exponent as qVt → qnVt = nkT . The ideality
factor is then a measure of how ideal the cell in question is [10].

The ideality factor of a cell may be extracted from the experimental data by
fitting the obtained I−V characteristics to Shockley’s diode equation. Let us instead
propose an alternative method that requires less computational power. From Eq. (1),
we can solve for nVt and obtain

nVt =
V + iR− Voc

log
(
1− i

isc

) . (8)

Here, we have also approximated iG by isc and made use of i0 = isc/ exp (Voc/Vt).
Eq. (8) is only defined in the real axis within the interval 0 < i < isc, i.e., for all
points in the I − V curve except Voc and isc. Assuming that the ideality factor
is constant throughout the I − V characteristic, we can evaluate Eq. (8) at the
maximum-power point and express n as

n =
q

kT

Vmpp + imppR− Voc

log
(
1− impp

isc

) . (9)

All the physical quantities appearing in Eq. (9) can be extracted from the mea-
surements, which allows for the determination of n at different temperatures.

In Ref. [12], Townsend proposed a method for estimating the performance of
coupled photovoltaic systems. To this end, he compared various models that could
be potential candidates. It is worth mentioning that Townsend arrived at Eq. (9)
when obtaining a solution for what he denoted the "Lumped, 1 Mechanism with 4
Parameters" model [12].

3 Experimental Method
To compare the analytical expression with experimental data, 18 compensated p-
type mc-Si solar cells were studied. The cells were fabricated from three different
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ingots with different bulk resistivities, ρ, and different cell architectures. The cells
can be divided into three groups: (a) ρ = 0.5 Ω · cm, Passivated Emitter Rear Cells
(PERC), (b) ρ = 1.3 Ω · cm, PERC, and (c) ρ = 1.3 Ω · cm, Aluminum Back Surface
Field (Al-BSF) cells. Each group contains six cells from various brick positions,
numbered from 001-060, with position 001 at the bottom of the brick and position
060 at the top. The measurements were performed using a NeonSeeTM AAA Sun
simulator, enabling acquisition of the I − V characteristics of the cells, as well as
the series resistance, at various temperatures ranging from 293K to 343K. The cell
temperature was controlled using a built-in water heater.

4 Numerical Method
We denote with the label "exp", the experimental values of Vmpp, impp and Pmpp.
The experimental values of Voc, isc and R are used as inputs to evaluate Eqs. (5), (6)
and (7) to calculate Vmpp, impp and Pmpp at multiple temperatures. We denote these
with the label "mod". Singal’s model, i.e., Eqs. (3), (4) and the corresponding Pmpp,
will be labeled "S". As all the expressions presented in sections 2.1 and 2.2 result
from approximations, it may also be of interest to compare the experiments with the
value of Vmpp, impp and Pmpp that we can obtain directly from Eq. (2). To do so, we
calculate values of Vmpp by finding numerically the voltage that maximizes P = V i,
with i being given by Eq. (2). In order to do this, we first make use of experimental
values of Voc, isc and R and insert them in Eq. (2). We then make use of an auxiliary
function, f(V ) = −V i, and find the voltage that minimizes it. We denote by V num

mpp ,
the values of Vmpp obtained in this way. The corresponding impp and Pmpp are also
denoted by the label "num".

4.1 Simultaneous determination of the ideality factor and the
series resistance

Before we compare with the experiments, we need to address the way R is obtained
from the experimental I − V characteristics. In our case, the NeonSeeTM AAA
Sun simulator software estimates the value of the series resistance from the I − V
characteristics by computing the negative reciprocal of the slope at V = Voc. As
noted in, e.g., Ref. [12], this method overestimates the value of R. This can be
analytically shown from Eq. (1) by taking the derivative of i with respect to V ,
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evaluating at V = Voc and solving for R. We obtain

R = − 1

∂i
∂V

∣∣∣∣
V=Voc

− 1
qi0
nkT

exp
[
qVoc

nkT

] = R0 −
nkT

qisc
, (10)

where we have introduced R0 as the estimate of the R that the software gives and
again made use of the identity i0 = isc/ exp (Voc/nVt). From Eq. (10), we note that R
is always going to be smaller than the given estimate, R0 [12].

In order to being able to compare with the experiments, we need to not only
accurately estimate R but also n. A straightforward method would be to extract
these parameters from the measured I−V characteristics by, e.g., least-square fitting
the data points to Eq. (1). Alternatively, we can note from Eqs. (9) and (10) that
we have n(R) and R(n), respectively. Solving the system of equations in closed-form
yields

n =
q

kT

isc
impp

imppR0 + Vmpp − Voc(
1 + isc

impp
log
[
1− impp

isc

]) , (11)

R = −
Vmpp − Voc − iscR0 log

[
1− impp

isc

]

impp + isc log
[
1− impp

isc

] , (12)

which again requires less computational power.
As a final note, it is worth pointing out that the NeonSeeTM AAA sun simulator

software has been updated since these measurements were obtained and now the
"Variable Intensity Method" is used to extract the series resistance from the I − V
curves [13].

5 Numerical Results and Discussion
In Figs. 1, 2 and 3, we display Vmpp, impp, and Pmpp, respectively, as a function of the
cell temperature. The values correspond to the cell in brick position 012 of group
(a). In all three figures, the experimental values of the corresponding parameters are
represented with blue crosses. The values corresponding to the numerical model are
represented with continuous black lines. The "mod" parameters, i.e., Eqs. (5), (6)
and (7), are represented with continuous gray lines. Finally, Singal’s model, i.e.,
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Eqs. (3) and (4), is represented with dashed red lines. In all three figures, it is
assumed an ideality factor of 1 in both the numerical and the analytical models.

Starting with Fig. 1, we see that the values of V num
mpp and both the approximate

analytical models overlap well, but all three models appear to underestimate V exp
mpp

by 3.5%, on average. As for Fig. 2, we we see that the numerical and the analytical
models overlap well, but overestimate the experimental values of impp. Since there
is a good agreement between the "num", "mod" and "S" Vmpp and impp values, we
also find a good agreement between Pmod

mpp , P S
mpp and P num

mpp , as we can see in Fig. 3.
All three methods appear however to underestimate the experimental values.

Figure 1: Vmpp as a function of the temperature for the cell from brick position 012 in
group (a). The experimental values are represented with blue crosses. The numerical
model, corresponding to V num

mpp in section 4, is represented by continuous black lines.
The analytical models, corresponding to Eqs. (3) and (5), are represented by dashed
red and continuous gray lines, respectively.

5.1 The effect of the ideality factor

Understandingly, we may find discrepancies between the experiments and both ana-
lytical models, as the latter result from approximations of the numerical model. But
one would expect the numerical model to accurately describe the experiments as it
is derived from the (modified) diode equation, Eq. (1).

One possible reason for the mismatch between the models and the experiments
is the ideality factor of the measured cells. To compute Figs. 1, 2 and 3, we have
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Figure 2: impp as a function of the temperature for the cell in position 012 in group
(a).

Figure 3: Pmpp as a function of the temperature for the cell from brick position 012
in group (a).

assumed n = 1 which, as noted in section 2.3, is only true for solar cells that follow
the ideal diode equation. Indeed, the measured cells do not behave like ideal diodes.
To see this, we display in Fig. 4 the I − V characteristics corresponding to the cell
from brick position 005 of group (c) at T = 298 K (black dots), as well as three
simulated cases where the ideality factor was obtained using different methods: (i, in
blue) by fitting the experimental I − V curve to Shockley’s diode equation (Eq. (1)
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Figure 4: I−V characteristics corresponding to cell from brick position 005 of group
(c) at T = 298 K. The experimental values are represented with black dots. The
dashed blue line is obtained by evaluating Shockley’s single diode equation (Eq. (1)
with R = 0) with the measured voltages and an ideality factor obtained from a least-
square fit. The orange dashed line is also obtained from the single diode equation
but evaluated with an ideality factor obtained from Eq. (9), setting R = 0. Finally,
the green dashed line is obtained by evaluating Eq. (2) with the measured voltages
and an ideality factor obtained from Eq. (9) with the measured values of the series
resistance, R0. At the bottom, we display a residual plot.

with R = 0) and extracting n from the fit, (ii, in orange) by evaluating Eq. (9) with
R = 0 and the experimental values of Voc, isc, Vmpp and impp corresponding to the
displayed I−V curve and (iii, in green) by evaluating Eq. (9) with R = R0 (the series
resistance value provided by the Sun simulator software) and the experimental values
of Voc, isc, Vmpp and impp. At the bottom of Fig. 4, we display the corresponding
residual plot, i.e., a plot of the difference between the models and the obtained
experimental values. The obtained ideality factor is different from one in all three
represented cases; 1.37 and 1.32 for methods (i) and (ii), respectively and 0.80 for
method (iii).

In Fig. 5, we display the relative discrepancy between the experimental values
of Vmpp (dots) and Pmpp (crosses) and the corresponding values obtained from the
analytical models for the cells in group (a) at T = 298 K. The "mod" parameters
(Ref. [8]) are represented with the color blue and the "S" parameters (Ref. [6]), with
the color red. Here, we have introduced the ideality factor of the corresponding cells
calculated with Eq. (9) and the measured value of the series resistance, R0 (method
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Figure 5: Relative discrepancy between the experimental and the modeled values
of Vmpp (dots) and Pmpp (crosses) for all cells in group (a) and at T = 298 K. The
Ref. [8] points correspond to the "mod" parameters, i.e., Eqs. (5) and (7). Ref. [6]
points correspond to the "S" parameters; Eqs. (3) and P S

mpp given by Eqs. (3) ×
Eqs. (4). All expressions are evaluated at the series resistance provided by the Sun
simulator software, R0, and at n(R0) with n being given by Eq. (9).

(iii) above). In the case of Vmpp, accounting for the ideality factor of the cells reduces
the relative discrepancy between the experiments and both the numerical and the
analytical models by approximately 50%. From Fig. 5, we see that both Eq. (7) and
Singal’s expression predict the experimental values of Pmpp for all brick positions
with a relative error below 0.5% for all cells in all three groups.

5.2 Extraction of n and R

Even though we obtain a reasonable relative discrepancy with the experiments when
comparing the Pmpp values, the results for Vmpp are not ideal. We can reduce the
relative discrepancy between the models and the experiments by extracting R and
n directly from the I − V curves. As noted in section 4.1, this may be done by
fitting the obtained I − V characteristics to Eq. (2) or by making use of Eqs. (11)
and (12). The results of this procedure are displayed in Figs. 6 and 7, where we show
the relative discrepancy between the experimental values of Vmpp and Pmpp and the
corresponding values obtained from the analytical models for the cells in groups (b)
and (c). As it can be seen from the figures, making use of Eqs. (11) and (12) to
extract n and R results in a more accurate estimation.
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Figure 6: Relative discrepancy between the experimental and the modeled values of
Vmpp (dots) and Pmpp (crosses) for all cells in group (b) and at T = 298 K. Here and
also in Fig. 7, we have obtained n and R from Eqs. (11) and (12), respectively.

Figure 7: Relative discrepancy between the experimental and the modeled values of
Vmpp (dots) and Pmpp (crosses) for all cells in group (c) and at T = 298 K.

11



Regarding the accuracy of the analytical models, we see from the figures that
both models predict similar values when provided with the same input. We can
therefore regard them as equally capable to predict experimental values. The main
improvement that Eqs. (5), (6) and (7) may present compared to Singal’s model is
a simplification of the mathematical expressions.

6 Conclusion
In this work, we have tested the usability of a model for the maximum-power point,
previously derived in Ref. [8], with mc-Si solar cells. To this end, we studied 18
compensated p-type mc-Si cells at multiple temperatures. To allow a comparison
with the experiments we have also developed an analytical method, based on the
works of Townsend in Ref. [12], that allows for the simultaneous extraction of n
and R from the I − V curves. We have shown that, when provided with the right
input, the analytical model is able to predict experimental data with low relative
discrepancy. We have also compared this new model to two already existing models;
one numerical and one analytical, previously derived by Singal in Ref. [6]. Both
analytical models are very similar in accuracy. The main difference between the two
lies in the simplicity of the mathematical expressions. Overall, we may conclude that
the model presented in Ref. [8] accurately predicts the experimental values of Vmpp

and Pmpp and can be successfully applied to mc-Si solar cells.
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