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Preface

The Large Hadron Collider (LHC) is the most powerful particle collider ever built
worldwide, providing thousands of researchers opportunities for groundbreaking dis-
coveries. The LHC accelerates proton and heavy ions to speeds approaching the
speed of light—300 thousand kilometers per second—and collides them to reveal new
physics and answer the grandest questions of our universe. The scientific discoveries
of the LHC and technological advancements at CERN have delivered tremendous
contributions to our daily lives; some of the outstanding examples are the World
Wide Web, touchscreen technology, hadron tumor therapy, and PET scanners for
medical imaging. The Compact Muon Solenoid (CMS) experiment is one of the two
general-purpose particle physics detectors at the LHC and it explores a broad range
of particle physics, like the search for the Higgs boson, extra dimensions, and dark
matter. The discovery and characterization of the Higgs boson, which is among the
distinguished contributions of the data collected by the CMS experiment, is the lat-
est major discovery in physics and adds a piece to the puzzle of the exciting world
of subatomic particles. The particle collisions at the LHC produce an enormous
amount of data at the energy and intensity frontiers of high-energy physics, and
the CMS detector employs numerous sensors to acquire the data at high data rates.
The detector has recently undergone crucial upgrades—leveraging new technologies
to achieve the high luminosity LHC program; its components are growing more
complex to support high radiation exposure, strong magnetic fields, and remarkable
particle acquisition rates. Such extraordinary attributes pose tremendous challenges
for the experiment and data processing. Ensuring the quality of physics data requires
timely monitoring and the resolution of detector anomalies. Recent advancements in
machine learning tools demonstrate promise in addressing high-energy physics chal-
lenges, such as detector simulation, real-time analysis and triggering, particle event
reconstruction and identification, calibration, detector monitoring, and preemptive
maintenance. Our study presents deep learning models for automated monitoring
of the Hadron Calorimeter (HCAL) of the CMS experiment using high-dimensional
diagnostics and data quality monitoring data sets.
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Abstract

Machine Learning (ML) tools have gained immense popularity due to the prolif-
eration of sensor data for monitoring, prognostic, and diagnostic applications in
various industrial domains. The growing system complexity and monitoring data
volumes of the Large Hadron Collider (LHC) at CERN accentuates the need for
automation through advanced ML tools. Detection, identification, and resolution of
anomalies are essential to generate more physics collision data of the highest qual-
ity. Developing ML tools for complex systems often involves expensive data curation
and modeling efforts; it requires adequate, cleaned, and annotated data sets, and ad-
dresses the challenges of heterogeneity and curse-of-dimensionality of large data sets.
The Compact Muon Solenoid (CMS) experiment—one of the large general-purpose
colliders at the LHC—has dedicated substantial monitoring efforts for detector sys-
tems and particle data quality; the control and safety systems (DCS/DSS) actively
monitor safety-critical problems, and the data quality monitoring (DQM) system
mitigates data loss by identifying and diagnosing physics data problems. The ex-
isting monitoring systems need to incorporate a wide range of monitoring variables
and adapt to the evolving conditions of the detectors. This dissertation focuses
on the development of unsupervised anomaly detection (AD), anomaly prediction
(AP), and root-cause analysis (RCA) on multivariate time series data sets. We have
developed deep learning models for frontend electronics of the Hadron Calorimeter
(HCAL) of the CMS detector using diagnostic sensors and high-dimensional particle
acquisition channel-monitoring data sets. We have employed subsystem-granularity
modeling using a divide-and-conquer approach to monitor the complex HCAL sys-
tems with thousands of sensors. Our monitoring tools have detected and identified
previously unknown and hard-to-monitor anomalies, and extended the monitoring,
diagnostics, and prognostics automation of the HCAL. The developed tools are de-
ployed at CERN and are currently providing essential real-time and offline anomaly
monitoring and diagnostics on the frontend electronics of the HCAL and the online
DQM system. Our scientific contribution in tackling the challenges for complex
system monitoring includes: 1) enhancing multivariate sensor AD, 2) a promising
AP approach, 3) context-aware high-dimensional spatio-temporal AD, 4) transfer
learning on multi-network deep learning models, 5) lightweight interconnection and
divergence discovery for multi-systems with multivariate sensors, and 6) enhancing
computational efficiency of anomalies causality discovery on binary anomaly data.
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Sammendrag

Maskinlæringsverktøy (ML) har fått enorm popularitet på grunn av spredning av
sensordata for overvåking, prognostiske og diagnostiske applikasjoner i ulike indus-
trielle domener. Den økende systemkompleksiteten og overvåkingen av datameng-
dene til Large Hadron Collider (LHC) ved CERN understreker behovet for automa-
tisering gjennom avanserte maskinlæringsverktøy. Deteksjon, identifisering og op-
pløsning av uregelmessigheter er avgjørende for å generere flere fysiske kollisjons-
data av høyeste kvalitet. Utvikling av maskinlæringsverktøy for komplekse syste-
mer innebærer ofte kostbar datakurering og modellering. Det krever tilstrekkelige,
rensede og kommenterte datasett, og adresserer utfordringene med heterogenitet og
forbannelse av dimensjonalitet av store dataset. Compact Muon Solenoid (CMS)
eksperimentet—en av de store generelle kolliderne ved LHC—har dedikert bety-
delig overvåkingsinnsats for detektorsystemer og partikkeldatakvalitet; kontroll- og
sikkerhetssystemene (DCS/DSS) overvåker aktivt sikkerhetskritiske problemer, og
datakvalitetsovervåkingssystemet (DQM) reduserer datatap ved å identifisere og di-
agnostisere fysikkdataproblemer. De eksisterende overvåkingssystemene må inklud-
ere et bredt spekter av overvåkingsvariabler og tilpasse seg de utviklende forholdene
til detektorene. Denne avhandlingen fokuserer på utvikling av uovervåket anoma-
lideteksjon (AD), anomalidediksjon (AP) og rotårsaksanalyse (RCA) på multivariate
tidsseriedatasett. Vi har utviklet dype læringsmodeller for frontend-elektronikk av
Hadron Calorimeter (HCAL) av CMS detektoren ved hjelp av diagnostiske sensorer
og høydimensjonale partikkelinnsamlingskanalovervåkingsdatasett. Vi har brukt
delsystem-granularitetsmodellering ved hjelp av en splitt-og-hersk-tilnærming for
å overvåke de komplekse HCAL-systemene med tusenvis av sensorer. Våre overvåk-
ingsverktøy har oppdaget og identifisert tidligere ukjente uregelmessigheter som er
vanskelige å overvåke, og utvidet overvåking, diagnostikk og prognoseautomatiser-
ing av HCAL. De utviklede verktøyene er distribuert på CERN og gir for tiden
viktig sanntids og offline avviksovervåking og diagnostikk på frontend-elektronikken
til HCAL og online DQM-systemet. Vårt vitenskapelige bidrag til å takle utfor-
dringene for kompleks systemovervåking inkluderer: 1) forbedring av multivariat
sensor AD, 2) en lovende AP-tilnærming, 3) kontekstbevisst høydimensjonal romlig-
temporal AD, 4) overføringslæring på multi-nettverk dype læringsmodeller, 5) lett
sammenkobling og divergensoppdagelse for multisystemer med multivariate sensorer,
og 6) forbedring av beregningseffektiviteten av anomalies kausalitetsoppdagelse på
binære anomalidata.
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Chapter 1

Introduction

This research is part of the collaboration between UiA and CMS experiment under
the project name of DEtector System MOnitoring and Diagnostics (DESMOD),
which focuses on artificial intelligence (AI) development for particle detector moni-
toring (see Fig. 1.1).

DESMOD aims to rapidly detect anomalies at the Hadron Calorimeter (HCAL)
of the CMS experiment at the Large Hadron Collider (LHC) through contextual
time-aware AD models for detector monitoring; it consists of ML tasks for diagnos-
tics sensors, data quality monitoring, and fault causal discovery (see Fig. 1.2).

This chapter discusses the background and motivation of the study, highlights
the research questions and the general methodology of the study, and provides the
thesis roadmap.

Figure 1.1: Ph.D. study collaboration and research focus.

Figure 1.2: Detector system monitoring and diagnostics system (DESMOD).
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1.1 Machine Learning in High-Energy Physics

This section briefly discusses ML development for high-energy physics applications
at the LHC.

Physicists are searching for experimental evidence of particle physics—
fundamental constituents of matter and the forces of nature—from the high-energy
collision data of the LHC. While the standard model (SM) of particle physics has
been extremely successful in describing the experimental data accumulated so far,
many open questions remain for physics beyond the SM (BSM). The BSM searches
for new rare phenomena that the adopted strategy for SM might miss; it is a key
aspect of the physics program of present and future colliders [21]. The experimental
high-energy physics program revolves around two main objectives: probing the SM
with higher precision and searching for new physics [22].

The high-energy physics field is benefiting from advances in machine learning,
but the complexity of the field demands unique solutions with further research and
development [23]. The incorporation of ML in high-energy physics workflows is a
fast-growing field and is expected to significantly improve tasks—including particle
reconstruction and analysis, event simulation, pattern recognition and calibration,
data compression, and real-time processing [22, 23]. The end-to-end learning capa-
bility of the recent deep learning method on high-energy physics has far-reaching
leverage. Since low-level collision data tend to be high-dimensional and sparse, most
high-energy physics analyses depend on high-level features curated by extensive do-
main knowledge from the collision data [22]. Deep learning offers end-to-end feature
extraction from raw data—extracting high-level features without much reliance on
domain knowledge. This can be beneficial for high-energy physics learning, with new
opportunities to explore closely the raw data in LHC analyses. Recent advances in
ML tools show promise in high-energy physics related to physics analysis study and
the LHC performance [21–23].

ML tools operate either by enhancing the existing techniques such as the matrix
element (ME) method [22, 24] or employ generic approaches like anomaly detec-
tion [21,25–33] when searching rare physics in the high-energy physics. The ME is a
popular technique for measuring physical model parameters and searching for new
phenomena, but its computational cost limits its applicability. The LHC has used
it to measure the Higgs and top quark of the SM [22]. The dramatic speed gain
of modern ML can potentially address the limitation of ME and enable a greater
reach for new physics discovery on the high luminosity LHC data [24]. The AD
approaches formulate the searching for rare physics as catching unusual anomalies,
where anomalies manifest as population particles detected collectively or individu-
ally [21]. Several studies recognize the high-efficiency potential of AD using deep
learning algorithms for new physics searches [25–33]. While un(semi-)supervised
approaches using autoencoder (AE) [27–30], variational AE (VAE) [31–33], and
generative adversarial networks (GAN) [26] are popular in AD for searching for new
physics, weakly supervised approaches with self-supervised learning are also gaining
attention for performance improvement [34]. Refs. [34] and [29] propose transformer
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and graph neural networks (GNN), respectively, to improve the learning mechanisms
of AD models for high-energy physics. Refs. [35,36] explore quantum machine learn-
ing (QML) as a candidate future tool for analyzing high-energy physics data. Al-
though Ref. [36] claims there is no sufficient evidence that the current state of QML
provides an advantage over classical ML, Ref. [35] presents AD using a quantum AE
that outperforms classical AE—in accuracy and training efficiency—for resonant
heavy Higgs signals detection.

The performance at the LHC is enhanced by leveraging ML models in several
applications: 1) detector response and physics simulation, 2) real-time analysis and
triggering, 3) particle event reconstruction and identification, 4) pile-up mitigation,
and 5) detector monitoring [22,23,37–41]:

• Detector response and physics simulation: Scientists compare detector re-
sponse data to the SM or new physics models to discover particles. Analytically
computing detector response is impossible, so Monte Carlo simulation tools
like GEANT [42] and PYTHIA [43] are being utilized. The simulators capture
the relevant physics on a hierarchy of scales, starting with the microscopic
interactions within a proton-proton collision and ending with the interaction
of particles in the enormous LHC detectors [44]. Trillions of simulated col-
lisions are needed for precision hypothesis testing, but such simulations are
expensive [37]. High-fidelity fast generative models like GANs and VAEs offer
a promising alternative by learning from existing data samples [24, 45,46].

• Real-time analysis and triggering : The CMS trigger systems analyze the par-
ticle physics data in realtime to select interesting events with reasonable ef-
ficiency and distribute them for later offline physics study. Triggering starts
the physics event selection process at a rate of 40 MHz. The growing high
luminosity of the LHC poses a challenge for real-time triggering data analysis;
machine learning offers the possibility of performing real-time analysis while
improving the efficiency of triggering [47].

• Event reconstruction and particle identification: The physical processes of in-
terest in high-energy physics experiments occur on time scales too short to
be observed directly by particle detectors. To obtain a more accurate recon-
struction and identification of the physical process, algorithms convert raw
measurements from detector electronics into higher-level data objects, which
correspond to the detected physical particles. Machine learning algorithms
are applied at various steps of the reconstruction process, such as feature ex-
traction, pattern recognition, object characterization, and multiple calorimeter
combined reconstruction and particle identification [48].

• Pileup mitigation: A particle bunch crossing at the LHC has multiple nearly
simultaneous proton-proton collisions. The collisions create a low transverse-
momentum noise (pileup) to target high transverse-momentum events. The
pileup affects the reconstruction accuracy of many physics observables. Pileup
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mitigation becomes a key ingredient of online and offline event reconstruction;
ML models are proposed to improve pileup rejection performances [38].

• Detector monitoring : ML-based anomaly detection models are useful to learn
from data and produce an alert for deviation caused by previously known or
unknown problems. AD algorithms allow monitoring of a larger number of
variables and can aid preemptive maintenance when sensitive to subtle signs
forewarning of imminent failure [39–41,49–51].

Several deep learning applications have been explored for—including but not
limited to classification, regression, forecasting, and anomaly detection tasks. The
applications employ models, such as deep neural network (DNN), convolutional
(CNN), recurrent (RNN), graph (GNN), transformer, diffusion models, and nor-
malizing flows. The models follow architectures like autoencoder (AE), variational
AE (VAE), and GAN; trained using supervised, unsupervised, semi-supervised, re-
inforcement learning, and quantum machine learning mechanisms. Chapter 3 will
provide a technical discussion of the methods; we limit our discussion in this section
to AD applications in high-energy physics. We refer readers to the survey studies
in Refs. [22, 37, 44] for a comprehensive discussion on the drivers and challenges of
ML for high-energy physics. Ref. [22] presents promising future research and de-
velopment areas with a roadmap for their implementation, and Ref. [37] provides a
comprehensive list of citations of ML approaches to experimental, phenomenological,
and theoretical analyses in high-energy physics.

1.1.1 Anomaly Detection for LHC Monitoring

Anomaly detection (AD) methods are employed in high-energy physics to identify
abnormal events in the search for new physics phenomena beyond the SM and to
capture faults in colliders [37]. Researchers are actively exploring AD for monitoring
various LHC systems, such as the accelerator, detector, and data quality monitor-
ing [39,40,49–54]. Refs. [53] and [54] propose an automated detection for anomalous
behavior of the injection kicker magnets of the LHC accelerator using the Gaussian
mixture model (GMM) and isolation forest on 2015-2016 and 2016-2019 data sets,
respectively. The anomalies are predicted from time-window segments using moving
average [53], and Fourier features [54]. Refs. [52, 55, 56] employ LSTM and GRU
models to detect quenches and power abort anomalies on the LHC superconducting
magnets. The authors propose using data binned by an adaptive signal quantizer to
reduce computation latency. They utilized 2500 voltage and current data samples
acquired during quench time. Ref. [39] proposes CNN AD using the rechit occu-
pancy map data of the DQM for the ECAL and HCAL—moving from a rules-based
assessment towards supervised and unsupervised ML models. The authors employed
2016-2017 data sets with 40K good samples and 8K artificially generated anomalies.
Ref. [40] presents CNN and DNN models for monitoring drift tube chambers of the
muon spectrometer of the CMS detector using occupancy map data. The authors
have assessed the misbehavior of drift tubes with high granularity and combined the
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results to probe different detector components. They employ image-based feature
extraction on a dataset containing 21K samples of 2D occupancy histograms from
250 chambers across 84 runs from LHC Run-2 collision data. Ref. [51] has inves-
tigated AD for the trigger system of the CMS detector using a conditional VAE
(CVAE) model. The authors define a modified loss function that allows the CVAE
to learn the optimal reconstruction resolution and designed a Kullback-Leibler (KL)
divergence anomaly metric for improved performance. They utilize event paths data
sets from the trigger L1 and HLT that contain 100K samples with 3% anomalies.
A deep autoencoder has detected anomalies in JetHT particle data collected in the
2016 LHC collision run by the CMS experiment in Ref. [50]. The model achieves a
promising low false-positive rate on 160K samples. The authors employ a feature
selection approach that mimics the logic of the CMS procedure—utilizing the statis-
tical features of collision data. Developing machine learning models using the DQM
monitoring quantities comes with some impediments, such as data normalization to
handle variation in experimental settings, the granularity of the failures to spot, and
limited availability of the ground truth labels [40]. Only a few employed temporal
end-to-end DL models on spatial data [39,40].

1.2 The CMS Detector System Overview

This chapter describes the use-case system of our study—the HCAL of the CMS
experiment. We will first briefly explain the LHC and the CMS experiment and then
describe the HCAL systems. Our study focuses on the readout boxes (RBXes)—the
frontend electronics of the HCAL—and we will discuss the operation and major
system components of the RBXes—illustrated in Fig. 1.3.

The LHC is the largest energy particle collider ever built worldwide that com-
menced operation in 2008. It is designed to conduct experiments in physics and
increase our understanding of the universe, with the expectation that new findings
will lead to practical applications. The aim is to reveal BSM physics with the center
of mass proton-proton collision energies of up to 14 TeV and nominal luminosity
of 1034 cm−2s−1 [57, 58]. It collides heavy lead ions with an energy of 2.8 TeV per
nucleon and a peak luminosity of 1027 cm−2s−1 [58].

The LHC consists of a 27-kilometer ring tunnel located 100 meters underground
at the France-Switzerland border near Geneva [57]. The LHC is a two-ring supercon-
ducting hadron accelerator and collider capable of accelerating and colliding beams
of protons and heavy ions with unprecedented luminosity at a velocity close to the
speed of light—3× 108 ms−1 (see Fig. 1.4). The protons and the heavy ions of the
collision experiments are generated from hydrogen gas and predominantly solid lead
metal, respectively, and form a plasma. The plasma passes through several small
boosters and accelerators to speed up before reaching the LHC rings. The super
proton synchrotron (SPS) accelerates the plasma and injects beams into the LHC
in opposite directions—one beam traveling clockwise and the other going counter-
clockwise. Inside the LHC, the beams continue to accelerate up to the speed of light
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Figure 1.3: Hierarchical system diagram of the RBX system of the HCAL.

within 20 minutes before the beams converge and collide at one of the LHC detector
sites. The LHC consists of three major systems to accelerate and collide beams: 1)
radiofrequency metallic chambers to resonate at specific frequencies that allow radio
waves to transfer energy and push forward the passing particle bunches, 2) various
types of magnets to focus the beam particles closer together and keep the beams in
the circular path, and 3) particle detectors are placed around the collision point to
record the particles that emerge from the collisions.

The LHC consists of several experiments on its sites, and its ring holds several
detectors for these experiments. The four major detectors of the LHC are A Toroidal
LHC Apparatus (ATLAS), Compact Muon Solenoid (CMS), LHC beauty (LHCb),
and A Large Ion Collider Experiment (ALICE) (see Fig. 1.4). Each detector studies
particle collisions from a different perspective with different technologies. ATLAS at
point 1 (P1) and CMS at point 5 (P5) are the two high-luminosity general-purpose
detectors at the LHC, located in diametrically opposite sections; the detectors em-
ploy different technical approaches but aim to support each other’s findings.

The CMS experiment is a general-purpose detector for high-energy physics at the
LHC and located at P5 in the village of Cessy, in France [3,59]. The experiment aims
to investigate collisions at the TeV scale, study the properties of the Higgs boson,
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Figure 1.4: LHC particle injection, acceleration and collision chain [1]. Proton-
proton collision: LINAC 2 → PS → SPS → LHC. Heavy-ion collision: LINAC 3
→ LEIR → SPS → LHC. The PS, SPS, and LHC are 628 m, 7 km, and 27 km in
circumference, respectively.

and search for evidence of new physics beyond the SM. Particle data collected with
the CMS detector are utilized in many aspects of modern particle physics studies,
notably the discovery [60] and characterization [61] of the Higgs boson. The CMS
detector consists of two calorimeters—the electromagnetic (ECAL) and the hadronic
(HCAL) to detect electrons, photons, and hadrons—and several muon detectors (see
Fig. 1.5) [59]. The calorimeters measure the energy deposition of incident particles
by causing them to interact and lose their energy in the calorimeter materials (see
Fig. 1.6). The CMS also contains a Silicon tracker for particle momentum estimation
by measuring the spatial trajectory of the particles. The energy and momentum
profiles allow particle type identification.

The calorimeters of the CMS detector are highly segmented to improve the ac-
curacy of energy deposition profile measurement and particle identification. The
segmentation geometry of the detector is represented using η and ϕ spaces—also
known as pseudo-rapidity and azimuth, respectively (see Fig. 1.7a). The z-axis lies
along the incident beam direction and the ϕ is azimuthal angle between the x and
y axis, while η is calculated from the polar angle θcm between z and xy−plane as:

η = − ln(tan(θcm/2)) (1.1)

where the x, y, and z are orthogonal axis of the the cylinder, the θcm is the center-
of-mass scattering angle, and the ln is a natural log function. The η − ϕ space
corresponds to a rectangular coordinate system representing an outgoing particle’s
direction from the center of the detector (where the collision occurs) (see Fig. 1.7).
Particles traveling in the same direction lie near each other in η − ϕ space.
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Figure 1.5: Overview of the CMS detector [2,3]. The detector is built around a huge
solenoid magnet that generates a magnetic field of 4 Tesla—about 100K times that
of the Earth.

Figure 1.6: A transverse slice through one segment of the CMS detector indicating
the responses of the various detecting systems to different types of particles [4].
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(a)

(b)

Figure 1.7: The pseudo-rapidity (η) and azimuth (ϕ) segmentation of CMS: a)
geometry axes and angles of the CMS with respect to collision intersection point [5],
and b) range of η and ϕ values for the tracker, calorimeters, and muon detectors [4].
The CASTOR and ZDC detectors are small dedicated Cerenkov calorimeters with
hadronic and electromagnetic sections and a few hundred readout channels.

1.2.1 The Data Acquisition System

The LHC provides proton-proton and heavy-ion collisions at high interaction rates.
It embraces a sophisticated data acquisition system (DAQ) to effectively process,
store, and distribute the immense volume of collision data. The beam crossing in-
terval at the LHC is 25 ns for proton beams—corresponding to a crossing frequency
of 40 MHz. A drastic rate reduction has to be achieved since storing and process-
ing the large amount of data associated with the resulting high number of events
is impractical. The CMS employs a trigger system to drastically reduce the rate
by O(106) [59]. The trigger system performs the physics event selection process in
two steps: 1) the hardware-based level-1 trigger (L1), and 2) the software-based
high-level trigger (HLT). The L1 trigger reduces the incoming average data rate to a
maximum of 100 kHz by processing fast trigger information on coarsely segmented
data from the calorimeters and the muon system while holding events with inter-
esting signatures in pipelined memories in the frontend electronics. The HLT is a
faster and streamlined version of the CMS offline reconstruction software performing
complex calculations to filter physics events on a multi-processor farm and further
reducing the rate by O(103). It consists of several evolving algorithms to meet the
trade-offs between the complexity of the execution on the available computing power
sustaining output rate and the particle event selection efficiency [62].

The collision data of the CMS experiment is stored with unique run identification
(known as RunId)—each run contains thousands of luminosity sections (also called
lumisections). A lumisection (LS) corresponds to approximately 23 seconds of data
taking and comprises hundreds or thousands of collision events—particle hits. The
LHC uses "Tiered" computing infrastructure to handle further analysis and event
reconstruction after the HLT. The worldwide LHC computing grid (WLCG) unites
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high-energy physics institutions worldwide in distributed computing infrastructure.
The WLCG aims to develop tools to make access to resources transparent and
achieve efficient distributed computing services. The WLCG combines about 1.4
million computer cores and 1.5 exabytes of storage from over 170 sites in 42 countries
distributed in three tiers: 20% at Tier-0 (CERN), 40% at Tier-1 (13 big scientific
and academic institutions), and 40% at Tier-2 (150 institutions). The data stream
is split into primary datasets (PD) based on the HLT results to group events with
related topology in the same PD to ease consumption and limit replication of events.

1.2.2 The Hadron Calorimeter

The Hadron Calorimeter (HCAL) of the CMS detector is responsible for measuring
the energy of hadronic showers originating from the LHC collisions (see Fig. 1.6).
The HCAL also assists in indirectly measuring uncharged particles such as neutrinos.
The HCAL has four major subdetectors covering different segments in the CMS
detector: the HCAL Barrel (HB), HCAL Endcap (HE), HCAL Outer (HO), and
HCAL Forward (HF) [3, 6, 63–66] (see Fig. 1.8). The HB and HE are sampling
calorimeters with a brass absorber and active plastic scintillators to measure the
energy depositions [64, 65]. The HO is a tail-catcher for hadronic showers that is
useful for muon identification [65], and the HF is a Cherenkov calorimeter with
a steel absorber and quartz fibers that collect Cherenkov light [66]. The central
HB and HE subdetectors surround the ECAL and are fully immersed within the
strong magnetic field of the solenoid, where the HB are joined hermetically with
the barrel extending out to |η| = 1.4 and the HE covering the overlapping range
1.3 < |η| < 3.0. The HF is located 11.2 meters from the interaction point and
extends the pseudo-rapidity coverage—overlapped with the HE—from |η| = 2.9 to
|η| = 5. The central shower containment for |η| < 1.26 is improved with the HO—an
array of scintillators located outside the magnet.

Figure 1.8: The HCAL subdetectors in CMS: the HB, HE, HO, and HF [3].
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1.2.3 The HCAL Front-End Electronics

The HCAL electronics systems are composed of two sections, known as the front-
end electronics (FE) and the back-end electronics (BE) (see Fig. 1.9) [6]. The FE
consists of the HCAL components that are responsible for particle reading and digi-
tization, and the BE receives optical data streams through 4.8 Gbps fiber links from
the HE and is composed of data preprocessing systems. The FE is contained in com-
pact modules that plug into a backplane and mechanical assembly firmly mounted
on the detector. The FE electronics are divided into sectors of readout boxes—
hereafter called RBXes—that house the FE electronics components and provide
voltage, backplane communications, and cooling. The FE of the HCAL subdetec-
tors have a common purpose and share similar designs and technologies but also
include differences. Keeping the designs similar allows resource sharing, reduces
the overall engineering needed, and simplifies long-term maintenance. The HCAL
uses a continuous readout FE—no memory in the pipeline—transmitting the read-
ing for every bunch-crossing to the back-end electronics. This strategy allows the
data processing to be adjusted in the firmware of the BE and new features added
without challenging and risky modifications to the FE. The HCAL BE connects to
the CMS trigger, DAQ, and DCS systems. It adopts the µTCA architecture from
the telecommunications standard, and the structure of each crate typically includes
twelve µTCA HCAL trigger/readout (uHTR) cards and an advanced mezzanine card
(AMC13). The uHTR cards are responsible for receiving the front-end data links,
calculating and transmitting event trigger primitives, and holding the L1 readout
pipeline—retaining the data samples waiting for the L1 decision. The AMC13 card
in each crate is responsible for data acquisition and distribution of the LHC clock
and fast control signals.

Figure 1.9: Crate layout structure diagram of HCAL front-end (FE) and back-end
(BE) electronics (plot inspired by [6]).

The FE follows a common design across the HB, HE, and HF calorimeters [6].
Each HCAL subdetector is composed of RBXes that house several electronic com-
ponents that are common across the designs. We will describe the RBX system
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components and their operations since we focus on monitoring the RBX of the HE
and HB subdetectors. The HB and HE subdetectors (HBHE) are arranged into the
minus and plus hemispheres—HBP and HEP, and HBM and HEM, respectively.
Each half is further divided into eighteen identical wedges, and one RBX receives
light signals from each wedge. Fig. 1.10 illustrates the RBX numbering and ge-
ometry of the HE. The RBX represents the smallest unit of front-end control and
power—with each RBX consisting of a water-cooled aluminum shell housing the
FE particle data acquisition, control, and communication electronics [6, 63, 64, 66].
The RBX electronics components consist of low voltage distribution, high voltage
distribution, digitization readout modules (RMs), control and synchronization next-
generation clock and control module (ngCCM), and a calibration unit (CU) (see Fig.
1.11). Fig. 1.3 illustrates the hierarchical decomposition structure of the electronics
components of the FE of the HE.

Figure 1.10: The HE on CMS detector: (left) arrangement of eighteen RBXes, and
(right) installation position of the HE on the CMS.

(a)
(b)

Figure 1.11: Readout box of the a) HE and b) HB [7]. The RBX consists of four
RMs, a ngCCM, a CU, and power supply and communication modules.

The RMs receive analog light pulses from the calorimeter, digitize them in 25
ns time-slices using charge integrating and encoding (QIE) electronics, and transmit
the resulting digital data through optical fibers. The ngCCM provides backend-to-
frontend communication, control, and clock distribution for the FE of the detector.
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Failures in the ngCCM induce communication loss to the RBX—affecting a signifi-
cant number of detector channels, and such occurrences would be a severe fault. The
ngCCM is thus designed to be robust against failures on the parts of the ngCCM
card and the optical fiber links. The ngCCM of the HBHE has two control cards—
designated as J14 and J15—that work in a master-slave fashion. Each frontend
electronics crate will contain one CU, and its purpose is to simulate analog light
signals using an LED pulser—without actual particle collision—during the detector
operation testing phases.

The HBHE front-end particle detection system is built on brass and plastic scin-
tillators, and the produced photon is transmitted through the wavelength-shifting
fibers to Silicon photomultipliers (SiPMs) (see Fig. 1.12). Each RBX houses four
RMs for signal digitization [8]. Each RM has 64 (48) SiPMs—64 for HB and 48
for HE—and each SiPM is connected to its corresponding QIE chip (ASIC). A
QIE integrates charge from one SiPM at 40 MHz, and four field programmable gate
array (Microsemi Igloo2 FPGA) based QIE cards serialize and encode the data
from 16 (12) QIE chips (see Fig. 1.12). The encoded data is optically transmitted
to the back-end system through the CERN versatile gigabit transceiver (GBT) at
4.8 Gbps. The GBT is packaged either as a transceiver (VTRx) or a dual-twin-
transmitter (VTTx) in an enhanced small form-factor pluggable (SFP+). Seventeen
detector scintillator layers are read out in four and seven groups—referred to as
depths—for the HB and HE, respectively. The light from scintillators in any given
group is optically added together by sending it to a single SiPM. More channels
allow for a more refined depth segmentation, which is ideal for precisely calibrating
the depth-dependent radiation damage on the HCAL. The performance for physics
quantities is recovered with the increased light yield and better calibration [49].

Figure 1.12: The data acquisition chain of the HE—including the SiPMs, the FE
readout QIE card, and the optical link to the BE electronics [8]. The QIE card
contains twelve QIE11 chips for charge integration, one Igloo2 FPGA for data seri-
alization and encoding, and one VTTx optical transmitter.
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1.2.4 Major Upgrades on the HCAL Front-end Electronics

The LHC has undergone a series of two long shutdowns—designated as LS1 (2013-
2014), and LS2 (2018-2022)—and three operation runs—named Run-1 (2009-2013),
Run-2 (2015-2018) and Run-3 (2022-). The LHC was maintained and upgraded
during the LS2 to implement the high luminosity LHC (HL-LHC) project, which
aims to increase luminosity by a factor of ten [6]. The CMS upgrade program during
LS2 took advantage of new technologies and implemented three major upgrades: a
new pixel detector with high data rates, an improved L1 with higher granularity and
additional processing capabilities, and an upgraded photo-detector and electronics
to reduce background signals and improve measurement of jets and missing-energy
at high pileup [6–8].

The HB, HE, and HO calorimeters were all originally fitted with hybrid pho-
todiode (HPD) transducers—chosen for their magnetic field tolerance and gain of
> 2×103; each HPD is segmented—providing channels of optical-to-electrical conver-
sion. Several weaknesses were identified in the HPDs during operation—mostly due
to the high electric field required (8 kV across a 3 mm gap) [6]. The most significant
of these was the appearance of electrical discharges in the device when high voltage
was applied. The effect was particularly severe for the HO calorimeter—required
substantial reductions in voltage from 8 kV to 6.5 kV in much of the detector. The
discharge effect was a source of high-amplitude noise and response gain drift that
risked the reliability and longevity of the phototransducers. The CMS research and
development program has invested significant effort to replace the HPDs with SiPMs,
bringing better and more stable performance to the HB and HE detectors [7, 8].
The SiPM—a multipixel Geiger-mode avalanche photodiode (APD) device—is an
efficient, relatively compact, and low-cost alternative; it provides gains between 104

and 106 using voltage supply of less than 100 V, and photon detection efficiencies in
the range of 20% to 40%. The high performance of the SiPM devices—coupled with
recent developments in data link technology—significantly increases the segmenta-
tion in the HB and HE calorimeters (see Fig. 1.13). A finer segmentation allows
better tracking of hadronic shower development—important for particle-flow anal-
ysis [6, 7]. It also enables better management of the radiation damage that occurs
in the high η region of the HE calorimeter, reducing the response of the individual
tiles. We have studied machine learning for the HB and HE particle acquisition
monitoring using online DQM histogram map data from 2018 (Run-2) and 2022
(Run-3). The HPD upgrade to the SiPM was accomplished for the HE in 2018 and
the HB in 2019.

1.3 The CMS Experiment Monitoring Systems

The CMS experiment dedicates significant effort to continuously monitor its parti-
cle data quality and infrastructure. The detector control and safety systems (DC-
S/DSS) provide real-time and retrospective monitoring of the detector infrastruc-
ture. The data quality monitoring (DQM) detects and diagnoses particle data
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(a) 2018 (b) 2019

Figure 1.13: Longitudinal segmentation (per given phi) of the HBHE subdetectors
[7]. The numbers and colors denote iη and depth segment, respectively. iη is an
integer denotation of the η axis. The HB cover the inner |iη| ≤ 16 followed by the
HE on 16 ≤ |iη| ≤ 29. The HE was upgraded to seven depths in 2018, while the
HB had two depths in 2018 and was upgraded to four in 2019.

quality issues [39]. There are limited works on infrastructure monitoring, whereas
promising studies have been proposed leveraging the DQM automation with ML
algorithms [39,40,50,67]. We will briefly describe the DCS/DSS and DQM systems
in the following subsections.

1.3.1 The Detector Control Systems

The CMS experiment employs the detector control and safety systems (DCS/DSS) to
ensure safety protection and proper operation during experiments, respectively [57,
59]. The DCS ensures the proper functioning of the CMS experiment—monitoring
the detector’s subsystems, electronics, and surrounding environment—to capture
high-quality data. It provides bookkeeping of detector parameters and safety-related
functions—including alarm handling and controlling critical components through
software access [59]. The DCS communicates with external entities like the run
control of the DAQ and serves as the interface between CMS and the LHC. It uses
SCADA software to model detectors and support services as finite state machine
nodes arranged in a tree-like hierarchy, representing the logical structure of the
detector, where commands flow down, and states and alarms are propagated up.
Both DCS and DSS require high availability and reliability [57].

The DCS actively monitors CMS throughout active collision data-taking and
manages several monitoring and control tasks, such as high voltage (HV) and low
voltage (LV), gas system and environmental parameters, and communication with
external systems [57]. The monitored quantities include but are not limited to volt-
age levels at specific points in the system, electrical currents, temperature and hu-
midity of components, optical light levels, error counts for data transmission between
modules, etc. The DCS provides a real-time status log of several CMS components,
such as detectors, trigger systems, communications modules, and power supplies. It
is an essential tool for shift crew members, detector subsystem experts, operations
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coordinators, and those performing physics analyses.
The potential limitation of the DCS is that only a relatively small set of sensors

are monitored in realtime to alert physicists about rather critical problems. Most
of the logged quantities are currently accessed reactively for debugging purposes
when significant issues are encountered in the detector components. The proactive
monitoring relies on threshold-based alerts on quantities like temperature or bias
voltage, while the retrospective debugging involves visually inspecting a large and
diverse set of diagnostic sensor signals [22]. The shortcomings of this approach are
1) only a small subset of quantities is monitored in realtime, 2) the decision preset
ranges are static, and 3) potentially useful correlations among quantities are not
considered. The approach has scalability issues—human resources—to analyze large
quantities, and the monitoring is naturally subject to human arbitration. Predicting
faults of the detector FE electronics is essential to maintain the acquisition system
capability and yield data with greater quality [68]. Active monitoring of detector
system anomalies on more comprehensive variables extends the monitoring range
to catch previously missed faults [22]. Machine learning models are thus being
explored for system monitoring through AD automation on sensor data at the LHC
[41, 52, 56, 69, 70]. AD models enable the automatic monitoring of large sets of
variables and have the potential to capture detector performance issues that escape
the DCS monitoring.

1.3.2 The Data Quality Monitoring

The detector and collision data offline processing complexity requires continuous
data quality monitoring. Shifters and physicists at CMS monitor the collision qual-
ity and select data usable for analysis; they look for unexpected issues that could
affect the data quality—e.g., noise spikes, dead areas of the detector, and calibra-
tion problems [9]. The data quality monitoring (DQM) system of CMS provides
online and offline monitoring [49] (see Fig. 1.14): 1) the online DQM is real-time
monitoring during data acquisition streamed from the HLT, and 2) the offline DQM
provides the final fine-grained data certification 48 hours after the collisions were
recorded. The online DQM identifies emerging problems using reference distribu-
tions and predefined tests to determine known failure modes [71, 72]. It populates
a set of histogram maps on a selection of events that are sensitive to detector func-
tioning and operations for real-time data quality monitoring. The experts inspect
summary plots and alarms—produced by expert-defined algorithms and rules—of
the online DQM to spot and diagnose problems. The list of runs and lumisections
where all sub-detectors are in a good state are stored in a "Golden JSON " file.

ML leverages the DQM to address particular challenges, such as:

• Latency : Human intervention or/and thresholds require sufficient statistics.

• Volume budget : The amount of data a human can process in a finite time is
limited.
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Figure 1.14: The DQM system of the CMS experiment [9]. The run registries
hold the configuration and DQM status of the collision runs. The DQM generates
"Golden JSON" that records the validated good runs for further physics analysis.

• Scaling : Rule-based approaches do not scale and assume limited potential
failure scenarios.

• Dynamic running conditions : Reference samples change over time.

• Human resources : Training shifters and maintaining instructions is expensive.

Developing ML models using the DQM quantities comes with some constraints—
including data normalization to handle variation in experimental settings, the gran-
ularity of the failures to spot, and limited availability of the ground truth labels [40].
Machine learning algorithms have been considered for DQM AD applications across
several CMS subsystems [39, 40, 49, 50]; but, only a few employ end-to-end DL on
spatial DQM data, and temporal models are relatively unexplored [39,40].

1.4 Research Questions and Proposed Solutions

Physicists and shifters continuously monitor the data-taking process of the current
complex LHC detectors through hundreds of expert-defined histograms. These his-
tograms alert them to unexpected deviations from a reference. New types of prob-
lems sometimes go unnoticed for a significant period of time because the experts
did not foresee it [22]. We will present below the research gaps in detector moni-
toring and outline our research questions along with the highlights of our proposed
solutions.
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1.4.1 Infrastructure Monitoring

The ongoing complexity of the LHC has led to a need for greater automation. The
quality of the collected data depends on the detectors’ operational well-being dur-
ing particle data-taking. Rapid identification and resolution of detector system
anomalies will result in a better quality of high-precision particle data. Several
issues—including detector malfunctions and software problems—can affect the col-
lision particle quality acceptance rate. The sensors of detector systems—e.g., volt-
age, current, temperature, humidity, etc.—are continuously monitored to ensure the
quality of the recorded data in CMS. The CMS experiment partly relies on retro-
spective monitoring and debugging approaches—involving the visual inspection of a
large and diverse set of diagnostic sensor signals of the electronic components of the
detectors. Data-driven AD on the monitoring variables can be employed to trigger
flags related to the detectors’ operational status. There has been thus far limited
effort to exploit time series sensor data sets despite the acknowledged potential for
future CERN automation technology challenges [39]. Refs. [52, 56] have explored
deep learning on time series data for safety monitoring of the magnetic systems of
the LHC accelerator. There have been limited tangible efforts in exploring ML to
support system monitoring automation of the HCAL through anomaly detection
models [69].

We have identified the following three research questions on machine learning for
diagnostics sensor monitoring of the HCAL given the aforementioned challenges:

• RQ1: How can machine learning enhance the automated identification of
anomalous behavior in the HCAL detector systems?

• RQ2: How can machine learning techniques enable the prediction of anomalous
behavior in the HCAL detector systems?

• RQ3: How can anomaly causal discovery improve system understanding and
aid root-cause identification of problems?

We highlight below our solutions addressing the above research questions:

• We will present ML for AD that automates and enhances the identification
of HCAL anomalies from diagnostics monitoring sensor quantities to answer
RQ1 (Paper-1 in Ref. [41]). We propose CGVAE—a data-driven unsupervised
anomaly detection using a deep learning model—for the HCAL Encap detec-
tor ngCCM system monitoring from multivariate time series sensor data. The
CGVAE model comprises a variational autoencoder with convolutional and
gated recurrent unit networks for fast localized feature extraction, long tem-
poral characteristics capturing, and descriptive representation learning. The
CGVAE employs encoded latent feature- and reconstruction-based metrics for
anomaly detection to mitigate signal reconstruction overfitting on anomalous
patterns. The model integrates feature attribution algorithms to explain the
contribution of the input sensors to the detected anomalies. The experimental
evaluation on large sensor data sets of the HCAL demonstrates the efficacy of
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the proposed model in capturing a wide range of anomalies—including slow
drifts.

• We address RQ2 through an end-to-end deep learning approach for anomaly
prediction using early warning symptoms on multivariate time series sen-
sor data (Paper-2 in Ref. [70]). We will introduce AnoP—a long multi-
timestep anomaly prediction system based on unsupervised attention-based
causal residual networks—to raise alerts for anomaly prevention. The experi-
mental evaluation of AnoP on the HCAL RBX sensors shows an encouraging
efficacy. The AnoP predicts anomalies up to seven days ahead. We have also
discovered previously unknown anomalies in the HCAL sensors.

• We will present two solutions to address RQ3: 1) lightweight mechanism for
system and sensor interconnection discovery, and 2) computationally efficient
graph causality model discovery approach on sparse time series anomaly data.

We propose a lightweight mechanism for discovering the interconnection of
sensors that enables fast detection of divergent behaviors in large sets of mul-
tivariate environments (Paper-6 in Ref. [73]). The method generates clusters
and association links—allowing us to identify abnormal system states and
the cause of abnormality—faulty sensors. We apply the exploration approach
using a similarity distance matrix to detect diverging sensors and systems be-
havior on the multivariate monitoring sensor data of the RM from thirty-six
RBXes systems of the HE detector. The results demonstrate the clustering of
systems and sensors consistent with the actual expected configuration of the
detector and systems with unusual sensor readings form divergent clusters.

The causal discovery can lead to quicker and more effective fault diagnostics
once an anomaly is detected in the realm of system monitoring (Paper-7 in
Ref. [74]). Identifying anomaly causes on large systems involves investigating
a more extensive set of monitoring variables across multi-subsystems. Causal
graphs provide an intuitive presentation, but the computational cost of graph
learning quickly increases for large and high-dimensional data sets. We propose
AnomalyCD—a computationally efficient approach for discovering causality—
exploiting the unique attributes of large-scale anomaly flag data sets. The
framework consists of multiple strategies to overcome the challenges of gener-
ating causality graphs through unsupervised online AD, sparse data and link
handling, anomaly data behavior aware custom independence test, and causal
graph learning using the PCMCI algorithm. The experiment on the RM of
the HE-RBX demonstrates that the approach accurately detects outliers and
generates causal networks consistent with the actual physical circuit connec-
tions and environmental associations. The proposed framework substantially
reduces the computational cost of causal graph discovery as evaluated on real
and synthetic data sets.
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1.4.2 Data Quality Monitoring

A small team at CMS has been investigating and developing ML-based automation
for DQM (ML4DQM) since 2016 [39, 40, 50, 67]. The synergy in ML model devel-
opment has thus far achieved promising results on spatial 2D histogram maps of
the DQM for particular types of anomalies of the ECAL [39] and the muon de-
tectors [40]. ML automation for the DQM of the HCAL has not been adequately
explored. Monitoring the particle data acquisition sensors of the HCAL poses mul-
tidimensional challenges—3D histogram maps—due to its depth-wise segmentation.
Previous studies have only considered extreme anomalies—no reading dead and high
noisy reading hot—of the particle sensing channels. Detecting degrading channels
is relevant for quality deterioration monitoring and early intervention, but they are
often challenging to detect; for instance, the improperly tuned bias voltage on the
HCAL physics particle sensing channels caused non-uniformity in the particle hits
map of the DQM, but the channels were neither dead nor hot [75]. The previous
efforts have not been focused on temporal models despite the acknowledged poten-
tial in exploiting temporal context for enhancing the AD efficacy [39,52]. Capturing
subtle anomalies—slow system degradation—makes temporal models appealing in
raising early alerts before ultimate system failure. Developing ML monitoring tools
for the DQM with dynamic behavior is challenging due to the difficulty of data
renormalization and the lack of adequate annotated ground truth with different
operating conditions—the LHC beam and intensity configurations.

We have specified the following two research questions on machine learning for
online DQM of the HCAL:

• RQ4: How can temporal attributes be exploited to leverage the automated
ML-based AD of the DQM with enhanced detection of anomalies manifested
at the lumisection granularity of the HCAL?

• RQ5: How can employing transfer learning for TSAD mitigate the challenge
of limited annotated data for varying operating conditions in the HCAL?

We highlight below our solutions addressing the above research questions:

• We address RQ4 by developing a semi-supervised spatio-temporal (ST) AD
monitoring for the physics sensing channels of the HCAL using the three-
dimensional particle hit maps of the DQM (Paper-3 in Ref. [76] and Paper-4
in Ref. [77]). We present GraphSTAD, which employs convolutional, graph,
and recurrent neural networks to detect anomalies by capturing ST charac-
teristics induced by particles traversing the calorimeter and shared backend
circuitry. We validate the accuracy of the proposed AD system in capturing
abnormal channels in the LHC collision data. The system achieves production-
level accuracy and is integrated into the CMS core production system—for
real-time detection of several anomaly types.

• We address RQ5 using transfer learning (TL) to accelerate model training and
enhance accuracy for the DQM AD models in varying environments (Paper-
5 in Ref. [78]). The deployment of AD models in new environments is often
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hindered by the limited amount of cleaned data [79] despite the promising ac-
complishment of unsupervised approaches in monitoring applications [80–82].
We present both the potential benefits and limitations of TL within the con-
text of AD in CMS. We have transferred models trained on data collected
from one HCAL Endcap to the HCAL Barrel subdetector. We discuss dif-
ferent TL configurations on the GraphSTAD model transferred from the HE
to the HB subdetector. Our results demonstrate that TL can effectively ex-
tract and reconstruct ST features on a new target dataset. The TL achieves
promising AD accuracy while substantially reducing the number of trainable
parameters. The TL also improves robustness against anomaly contamination
in the training dataset.

1.5 Methodology Overview

This study focuses on developing data-driven monitoring tools for the HCAL front-
end electronics systems. The HCAL presents challenges for machine learning model-
ing: 1) large, heterogeneous, and high-dimensional data sets, 2) mostly unannotated
data sets, and 3) diverse operation configurations. The modeling requires intensive
data curation, preparation, and scalable modeling approaches. We follow general-
and problem-specific methodologies to address the challenges. Our approach in-
volves a divide-and-conquer method, contextual modeling on multivariate temporal
data, and unsupervised end-to-end deep learning designs (see Fig. 1.15).

Figure 1.15: Diagram of the general methodology.

We embarked on our study by identifying HCAL system monitoring challenges
and proceeded to formulate the research questions. We have developed and de-
ployed pertinent ML models for the CERN monitoring systems (see Fig. 1.16). We
have modeled the complex systems with thousands of sensors through a divide-and-
conquer approach in which the modeling is carried out at subsystem-level granular-
ity. We have employed time context-aware end-to-end unsupervised deep learning
models and transfer learning to account for variations in operation conditions and
system configurations. Exploiting temporal context can significantly enhance AD
performance by utilizing time-aware models; these models are ideal for early alert
raising before total system failure by detecting subtle anomalies like gradual system
degradation.
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Figure 1.16: Our research workflow diagram.

1.5.1 Data Collection

Our study data sets were collected in 2018-2022 by the CMS experiment from the
Run-2 and Run-3 collision operations of the LHC. The front-end electronics diag-
nostics sensor data and collision data quality monitoring digi-occupancy map files
are retrieved from the ngCCM server and the DQM system of the CMS experiment,
respectively. We familiarized ourselves with the monitoring variables by collaborat-
ing closely with CMS and HCAL experts, referencing HCAL documentation, and
conducting extensive data exploration.

1.5.2 Machine Learning Models

We have primarily explored unsupervised deep autoencoder models for building con-
textual and robust multivariate time series anomaly monitoring systems. The model-
ing neural networks include convolutional neural networks (CNN) for robust feature
extraction and capturing correlation among multivariate variables, long short-term
memory networks (LSTM) and gated recurrent unit networks (GRU) for captur-
ing long temporal dependency, graph neural networks (GNN) for their ability to
learning non-Euclidean representation of data. We have utilized variational AE [83]
to generate normally distributed probabilistic latent representation and regularize
our autoencoder models. Multivariate reconstruction errors of the AD models and
post-hoc ML output explanation methods, such as SHapley Additive exPlanations
(SHAP) [84] and Integrated Gradients (IG) [85], are utilized for anomaly model
output explanation. We have leveraged a constraint-based Peter-Clark momentary
conditional independence (PCMCI) algorithm [20, 86] for causal discovery in time
series anomaly data.
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1.6 Thesis Roadmap

We organize the dissertation as follows:

• Chapter-1: Introduction: Discusses machine learning applications in the field
of high-energy physics, describes the CMS experiment, presents our research
questions and general methodology, and highlights our proposed solutions.

– Section-1: Machine Learning in High-Energy Physics: Discusses machine
learning in high-energy physics applications at LHC.

– Section-2: The CMS Detector System Overview: Describes the use-case
system of our study—the CMS-HCAL systems. It explains the LHC,
CMS, and hardon calorimeter systems.

– Section-3: The CMS Experiment Monitoring Systems: Describes the ex-
isting monitoring systems of the CMS experiment and their limitations.

– Section-4: Research Questions and Proposed Solutions: Presents the re-
search gaps, research questions, and highlights of our proposed solutions.

– Section-5: Methodology Overview: Describes our general and problem-
specific methods for addressing our research questions.

• Chapter-2: Anomaly Detection and Prediction in Industrial Systems: Reviews
the related works on ML applications for fault monitoring applications—
particularly in anomaly detection and prediction, transfer learning mecha-
nisms, and anomaly causal discovery methods.

• Chapter-3: Machine Learning for Time Series Modeling: Discusses time series
modeling and presents the architectures and the working principles of various
popular deep learning models.

• Chapter-4: Anomaly Detection: Presents our study on (RQ1) deep learning
models for infrastructure monitoring of the HCAL using diagnostics sensors of
ngCCM and RM systems of the HE-RBXes, and (RQ4 and RQ5) online data
quality monitoring through deep learning models on high dimensional DQM
histogram maps.

• Chapter-5: Anomaly Prediction: Presents our study on (RQ2) long-horizon
anomaly prediction on multivariate diagnostics sensors of the ngCCM system
of the HE-RBXes.

• Chapter-6: Anomaly Diagnostics: Presents our study on (RQ3) multivariate
multi-system interconnection exploration and scalable anomaly causal discov-
ery on large sparse anomaly flags data streams of the HCAL.

• Chapter-7: System Integration and Deployment: Presents the deployment of
our machine learning tools in the DESMOD dashboard and the CMS core
production systems—the CMSSW.
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• Chapter-8: Conclusions: Provides the summary of the scientific contribution
of our study, discusses the research impact, and presents future research ques-
tions.

We will frequently use the mathematical notations presented in Table 1.1
throughout the thesis. We provide a generic explanation of the notations that remain
valid unless explicitly stated.

Table 1.1: Mathematical notations used in the thesis.

Notation Remark
Fβ(X) Function—e.g., neural network model—with parameter β and input data X.
X Multivariate matrix data with variable and time dimensions—X ∈ RN×T .
x Univariate vector data—x ∈ R1×T or x ∈ RN×1.
xt or x(t) Univariate data reading at time t.
X̄ Predicated or reconstructed data of X.
z Latent representation feature data of X—z ∈ RNz×1.
ei Prediction or reconstruction or error of the ith variable.
si Anomaly score of the ith variable.
ai Anomaly flag of the ith variable.
Eθ Encoder network function with θ trainable parameters.
Dω Decoder network function with ω trainable parameters.
G(V,Θ) Graph network with nodes in V and edges Θ parameters.
D Probability density or mass distribution.
P Probability function.
E Expectation operator.
R Set of all real value numbers.
Z Set of all integer value numbers.
K A thousand.
M A million.
m Meter.
mm Millimeter.
cm Centimeter.
km Kilometer.
s Second.
ns Nanosecond.
kV Kilovolt.
TeV Tera electron volt.
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Chapter 2

Anomaly Detection and Prediction
in Industrial Systems

This chapter discusses machine learning applications for fault monitoring applica-
tions and reviews related works in anomaly detection and prediction, transfer learn-
ing mechanisms, and anomaly CD methods on time series and spatial-temporal
data.

2.1 Time Series Anomaly Detection

An anomaly is a peculiar observation that deviates so much from other observations
as to arouse suspicions that a different mechanism generated it. The terms anomaly
and outlier are often used interchangeably, but there is a subtle difference between
them. Outliers are observations that do not follow the expected behavior–could be
noise or rare normal events–whereas anomalies are outliers caused by interesting
underlying problematic phenomena [80, 87]. We utilize the terms interchangeably
unless we explicitly specify (see Definition 1). Depending on the setting and appli-
cation domain, anomaly detection methods aim to catch anomalies, abnormalities,
deviants, outliers, discords, failures, intrusions, exceptions, aberrations, peculiari-
ties, or contaminants (see Definition 2) [81,87,88].

Definition 1. An anomaly is an unusual behavior–potentially caused by or able
to cause a system fault–with a deviating signature as compared to normal signal
patterns.

Definition 2. Anomaly detection refers to a method or algorithm for detecting or
capturing anomalies on a given observational data. The AD model generates binary
status AD(x) : Λ→ {0; 1} for a given input data x such that:

AD(x) =

{
0, if x is normal

1, if x is anomalous
(2.1)

Early efforts on AD employ traditional methods, such as local outlier factor
(LOF) [89], isolation forest (IF) [90,91], principal components analysis (PCA) [92],
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one class support vector machine (OCSVM) [93], and k-nearest neighbor (KNN) [94].
These approaches are ineffective for learning high dimensional data, nonlinear behav-
ior, and temporal dependencies [87]. Deep learning has become effective in capturing
complex nonlinear structures, extracting end-to-end automatic features, and scaling
for high dimensional and large volume data sets [80,81,87]. Several DL models have
been proposed in the literature on diverse data types—including but not limited to
structural data [80], time series data [41,52,55,95–108], image data [109,110], graph
data [111–115], and spatio-temporal data [110–121].

Time series anomaly detection (TSAD) deals with capturing temporally contex-
tual anomalies. A wide range of algorithms has been proposed in the literature
to perform detection of common outlier scenarios on time series data—point-wise
detection for a time data point outlier, and pattern-wise detection for subsequences
outlier [10,88] (see Fig. 2.1). A point outlier is a datum that behaves abnormally in
a specific time instance when compared either to the rest of the time series data—
global outliner—or to its adjacent neighboring points—local or contextual outlier.
Subsequence outlier—also known as collective outliers and includes shapelet and
seasonal outliers—are consecutive points with joint unusual behavior despite each
observation individually not necessarily being a point outlier. Subsequence outliers
can be categorized into shapelet, seasonal, and trend outliers depending on the dis-
tortion scenario. Refs. [11, 122] categorize trend anomalies based on the nature of
the drift into different types, such as sudden drift, incremental drift, gradual drift,
and reoccurring drift (see Fig. 2.2).

Anomaly detection studies can be categorized based on the number of moni-
tored variables into univariate and multivariate AD [88]. Although most of the
research studies concentrate on univariate AD, multivariate AD brings richer sys-
tem information for complex systems from multiple sensors. Detecting anomalies
in multivariate time series data is particularly challenging. This is partly caused
by the difficulty of capturing potential interaction of the multivariate due to curse-
of-dimensionality and heterogeneous temporal characteristics. Two main strategies
are often proposed to mitigate this challenge: 1) dimension reduction—e.g., using a
PCA, and 2) sequence similarity measuring methods such as dynamic time warping
and correlation. These approaches have limited capability in capturing non-linear
and inherent characteristics from multivariate signals, which may reduce the efficacy
of the AD models. Time series models must consider the complex and diverse na-
ture of temporal data, such as the dimensionality, the stationarity, and the temporal
correlations among observations [82]. The recent advances in deep learning deliver
relevance in multivariate TS modeling through automated feature extraction [87].

AD paradigms can be categorized into supervised and unsupervised approaches.
The supervised approaches treat AD as a classification problem—requiring curated
labeled anomaly data to train the model; the unsupervised methods do not re-
quire label anomaly data and often involve modeling—trained on—of the healthy
data without anomaly contamination and employ nonconformity deviation metrics
to detect anomalies during inferencing. The lack of available labeled ground-truth
anomaly data and the cost of data annotation limits the pertinence of supervised
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Figure 2.1: Types of temporal anomalies proposed in Ref. [10]: a) global outlier, (b)
contextual outlier, (c) shapelet outlier, (d) seasonal outlier, and (e) trend outlier.

Figure 2.2: Different types of temporal drifts presented in Ref. [11].

AD models in real-world applications despite their superior accuracy. A less pop-
ular type of quasi-supervised learning for AD is weakly supervised AD (WSAD),
which addresses label data curation challenges by developing AD models with in-
complete, inaccurate, and inexact data [123]. Unsupervised approaches are relatively
more pragmatic in many real-world settings because of their flexibility—no labeled
anomaly data requirement—and leverage for detecting previously unseen anoma-
lies [88, 124]. Unsupervised AD models trained with only healthy observations are
also called semi-supervised AD approaches. Recent deep anomaly detection (DAD)
approaches are becoming more popular for end-to-end modeling and capturing non-
linearity temporal behavior [95–101,103,108,125–129]. The DAD approaches include
clustering, probabilistic, prediction deviation—reconstruction and forecasting—AD
paradigms (see Fig. 2.3) [12]. The clustering and probabilistic paradigm measure the
similarity of the time series segments on the latent embedding space [41]. The state-
of-the-art time series unsupervised DAD generally employs mostly prediction mod-
els, such as forecasting [95,99–101,126] and reconstruction paradigms [41,95–98,125]
to detect anomalies. High prediction error in forecasting or reconstruction suggests
the presence of anomaly (see Fig. 2.3). These approaches can be formulated as:

A = ∥xt − x̂t∥ > α (2.2)

where the xt is the target TS data at time t and the x̂t is its predicted data—
reconstructed or forecasted. The ∥.∥ is prediction anomaly score and the α is the
decision threshold to generate anomaly flag A. The reconstruction paradigms try
to recover the information present in the time series input data that may also in-
clude some irrelevant information or noise; they may not perform well on certain
anomalies [10,12,81,130]. The forecasting paradigm predicts future values from past
data points and is relatively robust against noise; but is constrained when data is
too complex and highly nonlinear for forecasting [12, 130]. Some studies propose
hybrid approaches such as reconstruction and forecasting [95], and reconstruction
and latent outlier detection [41] to mitigate the limitation.
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Recent works have also attempted generative adversarial networks (GAN) [103,
127, 131, 132]. The GAN consists of two networks operating in an adversarial
fashion—generator G and discriminator D networks (see Section 3.3.4 for technical
details). Anomaly detection using GAN employs either the discrimination capabil-
ity of the D or the generation capability of the G [131, 133, 134]. The generation
AD is essentially similar to a reconstruction paradigm, while the discrimination AD
follows a direct approach as:

A = D(G(f(xt))) (2.3)

where the G and D are the generator and discriminator of the GAN, respectively,
and the D determines the anomaly class label for the generated time signal of G from
the latent feature of the input TS data xt encoded by function f . Ref. [131] em-
ploys a Wasserstein GAN (W-GAN) and autoencoder (AE) for AD on the Airbus’s
helicopter accelerometer health monitoring. The AD approach follows a reconstruc-
tion paradigm using AE, but the decoder network is a frozen generator network
of the W-GAN. The authors have trained the W-GAN on the healthy dataset and
generator samples from random noise; the AE is trained with a frozen decoder so
that its encoder network provides the latent vectors as input random samples to the
decoder—generator—for reconstruction. Ref. [134] adopts AnoGAN [133] for AD
on EEG time series data—converted to image data. The authors have trained the
AnoGAN on normal healthy data and employed reconstruction via the generator
to detect anomalies. AnoGAN optimizes the generator’s input latent vector using
gradient descent to approximate the input and generated data. Generative modeling
for large multivariate data is challenging due to the complex temporal correlations
present in TS data.

Figure 2.3: Popular unsupervised paradigms of deep learning-based AD approaches
for time series data [12].

Refs. [95, 108, 129] propose graph neural networks (GNNs) for AD to enhance
learning multivariate data and provide interpretability from graph edge links. Most
studies propose correlation-based scores to build the link among the sensors, where
top links are selected to reduce the computational complexity [95, 108]. Building
a graph network that captures the non-linear relationship among the TS signals
remains an open challenge. Ref. [129] attempts to address this challenge and also
to avoid the quadratic processing cost of the correlation computation for a graph-
based AD approach. Ref. [95] applies graph attention network (GAT) based feature
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extraction on the variable and time dimension for TSAD. The AD is inferred from re-
construction and forecasted data points through a CNN AE architecture. Ref. [108]
presents a graph deviation network (GDN) using a graph attention-based forecast-
ing network for TSAD. The GDN involves trainable sensor embedding layers and
building the adjacency matrix by taking the top-K nearest nodes of the dot product
of the embedding. They demonstrate that edges in the learned graph provide inter-
pretability by indicating which sensors are related to one another. A similar study
by Ref. [129] proposes a convolutional information propagation (IP) mechanism to
learn the global topological connections among sensors using a Gumbel-softmax
sampling trick and reducing the computation complexity by removing the need for
dot product calculation among node embeddings. The IP comprises a multi-scale
dilated convolution with residual connection, graph convolutional network (GCN),
and transformer to build a time series forecasting (TSF) model for AD application.

Transformers have also found their application in time series AD tasks [135–138].
TranAD [136], MT-RVAE [137], and TransAnomaly [138] propose to combine trans-
former with generative models, such as VAEs and GANs, while others combine
transformer with GNN [129] to enhance reconstruction- and forecasting-based in
AD, respectively. Both the MT-RVAE and TransAnomaly combine VAE with trans-
former networks but for different purposes. TransAnomaly combines VAE with a
transformer to allow more parallelization and reduce the training cost by nearly 80%.
The MT-RVAE employs a multiscale transformer to extract and integrate time series
information at different scales. It overcomes the shortcomings of vanilla transform-
ers, where only local information is extracted for sequential analysis. AnomalyTrans-
former [135] employs the self-attention mechanism with association discrepancy. It
combines transformer and Gaussian prior association to make rare anomalies more
distinguishable. The insight is that temporal anomalies are associated with adjacent
data points but struggle to have strong associations with the whole data series. The
AnomalyTransformer performs weakly and the association learning fails for small
time-window sizes, e.g., less than 100. The transformer has quadratic complexity
with respect to the window size, and a trade-off is needed for real-world applications.

Ref. [139] explores a self-supervised technique for TSAD inspired by AD on image
data from Ref. [140]. The authors convert an unsupervised mechanism into a clas-
sification problem using a self-supervision method. The MS2D-Net [139] employs
multi-resolution scaling—generates augmented segments with different downsam-
pling rates—for the self-supervision classification on the sudo class labels for each
sampling rate.

The research community struggles to provide a consistent and comprehensive
overview of their research accomplishments in time series AD [12,15,81,130]. Many
exhibit heterogeneity in their methods for AD and runtime evaluation. The lack of
adequate well-labeled benchmark data sets to evaluate various anomaly properties—
including anomalies that are uni- or multi-variate, point or sequence, unique or
repeating, trend, shape and magnitude—make the evaluation and comparison dif-
ficult [10, 15, 130]. Most TSAD studies thus focus on particular domains—severely
restricting the scope of their study or model evaluations. The data sets in the stud-
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ies do not adequately cover the different types of anomalies. Refs. [12,15,130] have
shown that simpler methods perform similarly to more sophisticated deep learn-
ing methods. The DL approaches outperform simpler anomalies in detecting global
point anomalies and trend drifts—the easiest and the hardest to detect, respec-
tively [12, 130]. The MTAD-GAT [95]—among the deep models—fails in detecting
collective anomalies despite being a hybrid of construction and forecasting AD [12].
The one-class SVM easily detects global point and collective shapelet anomalies but
still presents decent results for other anomaly types [12].

The recent hybrid DL using variational networks [41, 136, 137] or association
learning [135] apprised enhancing TSAD are not adequately covered in the above
review studies [12, 15, 130]. The review studies demonstrate that no one-fits-all
solution clearly performs best; different algorithms have specific strengths instead.

2.1.1 Spatio-Temporal Anomaly Detection

Spatio-temporal (ST) data contains data points with spatial and time attributes.
A unique quality of ST data that differentiates it from other classic data is the
presence of dependencies among measurements induced by the spatial and temporal
attributes, where data correlations are more complex to capture by conventional
temporal or spatial techniques [141]. ST data is available in diverse domains, such
as visual streaming data [116–121, 142], transportation traffic flows [111, 112], sen-
sor networks [113–115], geoscience [109], medical diagnosis [110], and high energy
physics at the LHC [59].

DAD algorithms have become increasingly prevalent for reliability, safety, and
health monitoring in several domains with the proliferation of sensor data [80–82].
AD applications on ST data covers several tasks, such as machinery fault diag-
nosis and prognosis [143, 144], electronic device fault diagnosis [41, 52, 55, 145],
medical diagnosis [96, 106, 110, 146], cyber-security [102, 113, 114], crowd monitor-
ing [116–121,142], traffic monitoring [111,112], environment monitoring [109], inter-
net of things [82, 101], and energy and power management [104, 147]. The concept
of ST anomaly can be defined as an ST point or cluster of points that deviates
from the nominal ST auto-correlation structure of the normal points. Ref. [116]
presents an appearance and motion DeepNet (AMDN) approach to address anoma-
lous event detection on video data. The work revolves around fusing learning feature
representations and combining appearance and motion information using denoising
autoencoders for AD in intelligent video surveillance. Ref. [117] discusses a similar
fusion method with sparse coding. Ref. [117] investigates a convolutional ResNet
autoencoder with separate data representation encoders for the spatial and temporal
dimensions to detect an abnormal event in videos with ST dissociation. Ref. [118]
proposes AD in a sequence of image frames in videos using two parallel stacked
RNN autoencoders. Temporally-coherent sparse coding is suggested after multi-
patched feature extraction using ResNet layers. Ref. [120] devises AD using CNN
AE through learning temporal regularity in video sequences. A variational RNN
(VRNN) [111] employs graph convolutional network (GCN) for AD on graph traffic
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flow time series data. The previous works on visual data sets tend to focus on CNN
for regular spatial feature extraction, whereas graph-based models are becoming
more attractive for ST data that exhibit irregular spatial characteristics, such as
traffic data with non-Euclidean distance among spatial nodes.

2.1.2 Online Anomaly Detection

Not all of the variables are monitored by trained ML models in large systems. Var-
ious factors contribute to coverage limitations—including curse-of-dimensionality
degrading model performance, and preparing time-synchronized curated data from
many variables across several subsystems is often challenging. Unsupervised scal-
able AD approaches are relevant to detect anomalies flexibly on demand on the
variables that the trained ML models do not actively monitor [124]. There are
many challenges in designing unsupervised and online time series AD [124,148,149]:

1. Lack of labels : Data annotation on high-dimensional time series is expensive,
whereas unsupervised approaches are a reliable and affordable method for
identifying new patterns without the need for supervision.

2. Concept drift of normal behavior : AD models need to update their regular
behavior considerations when the characteristics of the regularity change.

3. generalization: There are different time series anomaly patterns, and it is cru-
cial for AD services to perform efficiently on diverse patterns. Unfortunately,
current methods lack generalization for diverse patterns.

4. efficiency : The online detection procedure must be completed within a limited
time for real-time monitoring and facilitating fault diagnostics on large data
sets. Complex deep models—with large time complexity—are often of little
use in an online scenario despite their better accuracy, as efficiency is one of
the major prerequisites for an online AD.

5. avoid alert spamming : AD models should focus on crucial alerts when report-
ing detected outliers to human operators. Reducing false flags is essential to
mitigate the "cry-wolf effect"—operators may ignore the reports when moni-
toring tools send high false detections.

Supervised AD models are superior in accuracy, but they need labeled data.
There is a need for unsupervised online methods with enhanced accuracy, efficiency,
and generalization since it is not feasible to label and train on every anomaly sce-
nario [149]. An online unsupervised AD method detects the anomaly on incoming
data without prior training. Statistical and light-weight machine learning meth-
ods have been shown to outperform deep learning on the unsupervised AD prob-
lems [148]—particularly on point and collective anomalies [12, 130]. Conventional
statistical models can be quickly adopted for online services, but most have insuffi-
cient accuracy in real-world industrial applications [150–152].
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Time series signals can be decomposed into different components such as trend,
cyclical, and residual components. Different applications may have different expec-
tations in detecting anomalies corresponding to these different components. The
residual noise component is dominantly employed for detecting anomalies, and the
trend is often used in change-point detection, drift detection, and time series seg-
mentation tasks [153]. Trend drift is a continuous and gradual trend change in time
series signals; trend drift detection is a nontrivial task, and domain criteria are of-
ten utilized to leverage accuracy. Refs. [11, 122] categorize TS drifts into different
types—including sudden drift, incremental drift, gradual drift, and reoccurring drift
(see Fig. 2.2). We employ an ensemble of statistical time-domain and frequency-
domain outlier detection algorithms for unsupervised time-aware online AD since
statistical methods enable faster analysis, training, and prediction times [148]. Our
method is an ensemble of temporal outlier detection, trend drift detection, and
spectral outlier detection to detect several typical TS outliers.

2.2 Time Series Anomaly Prediction

Inadequate maintenance management methods can reduce the overall productive
capacity of equipment by up to 20%, and unplanned downtimes and reactive main-
tenance in industrial systems incur substantial costs each year [88, 154]. Predictive
maintenance (PdM) applications often refer to performing AD, diagnostics, and
prognostics system monitoring [155]. PdM—as one of the pillars of industry 4.0—
embraces early detection of anomalies that aims at predicting critical anomalies of
a system to improve asset availability by actuating early maintenance before major
system faults [156]. The term anomaly prediction (AP) [156–159] sometimes in-
terchangeable, used for AD [95, 97, 98, 100, 101, 126, 160]. However, we differentiate
the two terms in that the former is to detect an anomaly in given data, while the
latter refers to early detection of an anomaly or forecasting an anomaly that may
be encountered in the future from early-stage signals [70, 156–158]. AD methods
can only detect anomalies after they happen, which leads to information delay and
limits preparedness to handle them efficiently [156,157].

Industries conduct PdM conventionally using statistical tests, rule-based alerts,
and preset threshold limits [161]. Owing to technological advancements in sensor and
data processing technologies, recent PdM approaches emphasize machine learning
approaches to capture intricate hidden patterns [143, 155, 158]. The existing data-
driven approaches for PdM revolve around the development of supervised models
that aim at specific previously known anomalies or/and rely on feature extraction
signal processing tools such as variants of Fourier transform, wavelet transform,
statistics, and PCA [143, 156–159, 162, 163]. Efforts on automated feature extrac-
tion, via end-to-end deep learning, for prognosis mainly focus on remaining useful
time (RUL) estimation [164]. Adopting the above methods for multivariate complex
systems is constrained due to high cost or lack of annotation on heterogeneous sensor
data. Besides, early signs of anomalies are often not easily seen by experts and are
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challenging to annotate in large data sets from numerous monitoring sensors. Oper-
ational quality-altering anomalies, which do not lead to an ultimate breakdown, are
often overlooked. Thus, unsupervised end-to-end methods are essential for anomaly
prediction system development. Ref. [159] presents ML for AP by forecasting future
time series for mobile networks. The approach covers short sequences—forecast up
to a horizon with 16 timesteps—and relies on linear models such as linear regression,
PCA, and supervised logistic regression. We propose an unsupervised long-horizon
AP mechanism using deep learning models to monitor the high dimensional sensor
system of the HCAL [70]. The approach contains multivariate time series fore-
casting and AD models in a pipeline that are trained with and without anomaly
contamination, respectively.

2.2.1 Long Sequence Time Series Forecasting

Based on the number of horizon timesteps, time series forecasting approaches can
further be categorized into unit-timestep forecasting [165, 166] and multi-timestep
forecasting [70,167]. Further classification as short or long mult-timestep forecasting
can be given on the mult-timestep category—considering the length of the horizon.
Long sequences are harder to predict. We consider long horizons with a sequence
length greater than 100 despite the absence of definite consensus on the length in
the literature. Many real-world applications require long sequence TS predictions,
such as price forecasting in the stock market [168], e-commerce sell prediction [169],
traffic forecasting [170], electricity consumption projecting [168, 169, 171], weather
forecasting [168,171], and system monitoring [70]. The ability to effectively capture
long-range dependencies between predictor and target data is essential for long-
horizon forecasting models [167].

Long-horizon forecasting approaches employ generally sequence-to-sequence
(S2S) autoencoder paradigm using RNN variants [168–172] and transformer [167].
Learning long-range dependencies is a main challenge in long-horizon sequence pro-
cessing tasks. One key factor affecting the ability to learn such dependencies is the
path length of forward and backward propagation in the network. The shorter these
paths, the easier it is to learn long-range dependencies [14, 173]. RNN models may
exhibit some potential constraints in inference speed due to the recursive step-by-
step inferencing [167], and in performance because of deterioration when the length
of the input sequence increases [174]. To address these challenges, decoder models
with parallel generation are proposed using attention mechanisms [168,171,172,175],
multilayer-perceptron [169] and transformer [167]. These approaches operate only
with predefined horizons, which limits their scalability. The majority of the ex-
isting approaches deal with short horizons—fewer than approximately 40 data
points [168–170,172,176] except the recent ones [167,175,177–182]. Refs. [167,179]
demonstrate the efficacy of transformer encoder and decoder architecture with var-
ious long horizons in univariate and multivariate time series data sets. Ref. [177]
introduces a mix-hop propagation GNNs with a curriculum learning strategy for the
multi-step forecasting task. The curriculum strategy gradually increases the fore-

33



casting length to leverage the model training from simpler to harder tasks—short
to long-horizon.

Recent studies on multivariate TSF focus on transformers because of the par-
allel processing and learning capacity [178–181, 183, 184, 184]. Ref. [178] presents
temporal fusion transformer (TFT)—a multi-horizon forecasting model with static
covariate encoders, gating feature selection, and temporal self-attention decoder—to
enhance forecasting and preserves interpretability incorporating global and temporal
dependency. Autoformer [179] proposes an auto-correlation mechanism operating as
an attention module and devises a simple seasonal-trend decomposition architecture
to improve TSF substantially. FEDformer [184] integrates frequency domain with
Fourier transform and wavelet transform with attention operation. The frequency
mapping is proposed to accomplish a linear complexity by selecting a fixed-size sub-
set of frequency. SSDNet [180] combines transformer with state space models (SSM)
to provide probabilistic forecasts. It employs a transformer to estimate parameters
of SSM from the temporal data and applies SSM to perform the seasonal-trend
decomposition and maintain the interpretable ability. ProTran [181] designs gen-
erative modeling and variational inference procedures using a transformer for TSF.
Pyraformer [182] employs low-complexity pyramidal attention for long-range time se-
ries modeling. The hierarchical pyramidal attention module fosters forecasting with
a binary tree following the path to capture temporal dependencies of different ranges
with linear time and memory complexity. Ref. [185] reviews recent transformers for
time series forecasting applications and highlights their strengths and limitations.
The authors show that the prediction accuracy of transformers rapidly deteriorates
as input length and network depth increase—limiting the capability of many care-
fully constructed transformers for complex modeling such as long-term forecasting
tasks. Generation for variable horizons—longer than the training horizon—requires
training of separate models for each target horizon [167]. It is possible to deploy
the transformer models into S2S mode—the predicted time segments are reused to
forecast new segments; but, the prediction error would get worse as the forecasting
error transverses through the whole network of the encoder and decoder instead of
using only the decoder network like the RNN S2S model. The question of build-
ing a suitable and multi-layered transformer architecture that increases the model
performance is still an open research challenge [185]. Real-world sensor data of-
ten contains missing or invalid values—leading to variable-length reading segments;
incorporating RNN variant models remains relevant for handling variable length,
better generalization, and less susceptible to overfitting in time series data [186].

2.3 Transfer Learning

The effectiveness of deep learning in handling large data sets has caught the at-
tention of both academia and industries in the last decade. Its ability to learn
nonlinear behavior along with end-to-end automatic feature extraction allows it to
find complex patterns within high-dimensional large data sets. Most deep learn-
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ing applications require extensive modeling data sets that can be expensive and
time-consuming to curate—especially in the case of multivariate time series data.
Techniques like transfer learning—adopting pre-trained models into a new task—are
potential solutions to develop DL models with limited cleaned data [187–190].

Transfer learning is a paradigm where knowledge from a source pre-trained model
on different domains or tasks is utilized as auxiliary knowledge to improve the train-
ing efficacy of a target model [191]. One of the common broad categorizations of TL
approaches is based on the similarity and difference of the task and domain between
the source and target [126, 191, 192]: 1) inductive TL: the source and target tasks
are different regardless of their domains, 2) transductive TL: the tasks remain the
same but the domains, and 3) unsupervised TL: inductive transferring on different
but related tasks with unlabeled data sets. TL can be carried out on 1) model pa-
rameters: all or some parameters are transferred from a pre-trained source model,
and 2) data: all or part of the source domain data instances are utilized to train
the target model. We refer to TL to signify the use of learned network parameters
(weights and biases from a source model pre-trained on adequate data sets) on a
target model for a related task on a different data set, with or without fine-tuning
of the parameters [126]. The target data set may be smaller than the source data
set.

Computer vision (CV) and natural language processing applications (NLP) have
hugely benefited from TL [191, 193]. The recent successes of GANs and transform-
ers on image and sequential data have ameliorated the adoption of TL methods
on several applications [193]. The notable contribution of TL to CV and NLP
is particularly in transferring feature extraction networks that are trained on im-
mense data sets with very expensive computation grids. Robustly extracted features
simplify the complexity and training cost of the final decision networks while simul-
taneously enhancing the model accuracy of a target task. We refer to such TL
mechanism as freeze and fine-tune approach. TL is relatively less explored for TS
data like sensor measurement despite the abundant studies in images and language
data sets [126,192]; TS data sets are not readily available or accessible—unlike im-
ages and texts on the internet—and are often multidimensional and so diverse that
require domain-specific knowledge for data curation and preparation.

Transfer learning on temporal data has been investigated in diverse
applications—including machine monitoring [187], electricity loads [188], medi-
cal [189], and dynamic systems [190]. Ref. [187] employs freeze and fine-tune TL to
improve the training speed and accuracy using pre-trained very deep convolutional
networks (VGG) on machine sensor data—converted to images by conducting a
wavelet transformation to obtain time-frequency distributions. The initial network
layers of pre-trained VGG—the feature extraction networks—are frozen, whereas the
lower layers—decision networks—are fine-tuned. Ref. [188] has frozen a temporal
learning LSTM model when training only the forecasting fully-connected networks
(FC) for univariate electricity data. The authors have demonstrated the effective-
ness of TL in learning different TS signal patterns and robustness against noise on
small training data sizes. Ref. [189] proposes TL on a deep GRU for multivariate
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classification for clinical data sets. The authors adopted a GRU model—pre-trained
on several classification tasks—to provide generic features for simpler linear logis-
tic regression models on new target tasks. They have shown that models trained
with TL outperformed task-specific GRU models and are more robust to the size
of labeled data. Ref. [190] investigates the potential of TL on fully convolutional
networks (FCN) and residual neural networks (ResNet) for chaotic time series clas-
sification in dynamic systems. They trained the models on a given chaotic signal
pattern and tested them on different chaotic univariate signals. MU-Net [126] em-
ploys TL from univariate FCN U-Net network to multivariate AD task using freeze
and fine-tuning TL for classification tasks. They apply pre-trained U-Net to each
multivariate input variable for feature extraction when scaling to the MU-Net.

There are a few efforts in adopting TL for spatio-temporal (ST) data [79,194,195].
[194] applies TL for cross-city crowd-flow prediction task, where feature extraction
ConvLSTM network of the forecasting model trained on one city is fine-tuned on an-
other city data set. Ref. [79] presents an end-to-end TL framework for cross-domain
urban crowd-flow prediction using a deep adaptation mechanism on ConvLSTM net-
works. The deep adaptation network matches the embedding representations of the
source and target domain distributions to learn the transferable features between
two domains [79,196]. Ref. [195] fine-tunes an AE model for cross-city collaborative
filtering to conduct chain store site recommendations.

Recent DL models built on hybrids of CNNs [117, 119, 120], RNNs [111, 118],
and GNNs [111, 112] have gained momentum for TS and ST data in AD and other
data mining applications [79,194,197,198]. Most TL studies thus far focus on feature
extraction encoding networks and predominantly on forecasting tasks [196]. We have
studied the transferability of CNN, GNN, and RNN networks on both the encoder
and decoder networks of an ST AD autoencoder and qualitatively evaluated the
effectiveness of the TL on reconstruction and AD tasks.

2.4 Anomaly Causal Discovery and Analysis

We will review the literature on anomaly cause discovery in this section—focusing
on causal graph learning for time series data.

In the realm of system monitoring for complex systems, it is imperative to delve
beyond predictive or descriptive machine learning tasks to fully comprehend the
causal relationship—cause and effect—among different variables and systems [199,
200]. The investigation of causality is a prominent area of interest in diverse fields—
including but not limited to IT systems [201, 202], transportation [203], medical
science [204, 205], meteorology [199], and social science [206]. The causal discovery
(CD) can lead to quicker and more effective fault diagnostics once a problem has
been detected. Causal presentation of multivariate is an essential component in root-
cause analysis (RCA)—the identification of the underlying root causes and provides
an explanation of how the faults are impacting the monitored system [202, 207,
208]. Causality models may answer additional diagnostic questions, such as what
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would happen if faults occur in particular variables and predicting how specific
variables trigger faults in other variables or systems. Causal discovery and analysis
are becoming increasingly essential in the industry for identifying the underlying
behaviors and evolution of process faults [199,209].

Anomaly detection and causality analysis on large systems are often highly in-
tractable due to diverse operational configurations, disparate data types, and com-
plex fault propagation mechanisms [200]. The relationship among different variables
or components often involves multiple time lags in modern cyber-physical industrial
systems. These time lags produce a delay of the fault propagation on the causally
connected process variables [210]. Although temporal data provides valuable context
that enhances AD and CD, it requires special handling to address the specific chal-
lenges often posed by the temporal data characteristics or the complexity of causal
processes; reliable CD needs to address the causal process dynamics—including
slower data acquisition rate than the underlying rate of changes, missing data, mea-
surement error, non-stationarity, unmeasured confounding factors, and causality
heterogeneity and non-linearity—concept drift on the causal relationship [199,209].

We provide definitions below for commonly used terms in causality studies (see
Definition 3 to 9).

Definition 3. Causal discovery refers to causal graphs learning from data to build
qualitative causal knowledge.

Definition 4. Causal inference enables answering causality questions from discov-
ered causal interactions. It often integrates statistical and machine learning methods
to answer causal questions from data.

Definition 5. Causal effect estimation is a special case of causal inference that
answers causal or effect questions.

Definition 6. Root cause analysis (RCA) is the process of deducing and under-
standing the underlying cause of the occurring anomalies or faults.

Definition 7. Confounders are unobserved (unmeasured) causal variables that in-
fluence two or more variables in the observed data.

Definition 8. Directed acyclic graphs (DAGs) are directed (edges with direction)
graphs with no directed cycles.

Definition 9. Partial directed acyclic graphs (PDAGs) are acyclic graphs with both
directed and undirected edges.

Data-driven approaches which include statistical [211–216], information the-
ory [213], and machine learning algorithms [200, 210, 212, 217, 218] have been pro-
posed for CD and RCA. Ref. [213] presents kernel-PCA transformation and symbolic
transfer entropy to reduce causality analysis computation for RCA fault diagnosis
on multivariate nonlinear variables. The residual data of kernel-PCA detects system
faults, and normalized transfer entropy determines the causal pathways from pro-
cess variables to the residual signal. The proposed method identifies only potential
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root causes and does not provide causal interactions among TS variables. Ref. [211]
proposes convergent cross-mapping to build a causal network for TS alarm data root
cause tracing in industrial processes. The approach assumes only deterministic sys-
tem theory that the data is a chaotic time series generated by a nonlinear determin-
istic system. Ref. [212] combines multivariate nonlinear chirp mode decomposition
with Granger causality to detect and analyze root causes for multiple plant-wide
oscillations in a process control system. The approach involves oscillating variable
clustering and Granger causality to each group to obtain the root causes. Ref. [200]
employs a spatio-temporal pattern network for RCA on TS anomalies in distributed
complex systems. The anomalies are detected from changes in the causality depen-
dency network—from a restricted Boltzmann machine model trained on symbolic
representation of the healthy TS data. The energy strength of switching or flipping
a symbolic pattern indicates potential root causes. Ref. [203] discusses fusing ex-
pert knowledge with a data-driven semantic rule mining for adaptive AD and RCA
for predictive maintenance of trains. They employ matrix profiling [216]—a sliding
time window pattern matching through z-normalized Euclidean distance—to find
abnormal discords in sensors and match incoming patterns against those previously
confirmed anomalies. Ref. [215] discusses fine-tuning Spearman’s rank correlation
analysis with domain knowledge rules to build a Bayesian network for fault detection
and diagnosis. Ref. [214] utilizes PCA-based fault detection and variable selection
using feature importance from extreme gradient boosting for RCA. The study adopts
the temporal CD network from [219] to analyze the root cause of faults without his-
torical fault information. [217] employs deep graph convolution neural networks to
solve the sparse and nonlinear problem of the SSM for RCA.

Recent approaches have integrated causality inference into the AD deep learning
models [210,218]. Ref. [218] presents an MTCMS framework using temporal convo-
lution and multi-head self-attention networks for CD and a contrastive causal graph
for RCA in multivariate time series. They propose modifying the CNN with feature
reconstruction and skip connections to improve feature extraction and detect delay-
time causalities. The multi-head self-attention employs threshold normalization for
quantifiable causal inference. Ref. [210] proposes a sparse causal residual neural
network (SCRNN) to extract multi-time-lag causal relations for industrial process
fault diagnosis concurrently. The parameters of the SCRNN model describe the in-
tegral causal structure by optimizing an MTS forecasting objective with hierarchical
sparsity constraints.

Causal graph networks are popular—for their intuitive presentation capabil-
ity [201,207,208,220]; a causal graph provides a visual presentation of the causality
using graphs. The graphs show influence and effect paths, provide strength and
direction of leakage, and allow calculation of influence propagation on the paths;
these attributes make causal graphs popular for identifying the CD and RCA ap-
plications [207,208]. CloudRanger [201] utilizes the non-temporal Peter-Clark (PC)
algorithm for TS data to discover the causal graph between anomalies and identifies
root causes through a random walk on a transition matrix. They employ corre-
lation between variable pairs to generate the transition matrix. MicroCause [202]
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enhances the CloudRanger by inferring the causal graph discovery using the PCMCI
algorithm [86]—an extension of the popular constraint-based PC algorithm for time
series data. The MicroCause estimates the partial correlation between causally re-
lated variables given their parents in the graph to compute the transition matrix
for the random walk. WhyMDC [220] identifies root causes from non-temporal
data by searching for changes in causality on a given directed acyclic causal graph.
CausalRCA [207] employs Shapley value [221] to quantify contributions and rank
root causes of a point anomaly score using non-temporal structural causal models.
EasyRCA [208] identifies the root causes of collective anomalies in TS data from
an acyclic causal graph. The approach utilizes a summary causal graph—without
time lag specification—of the TS data in a normal operation. EasyRCA finds the
root causes for each group either directly from the graph and appearance time of
the anomalies or by comparing causal effects in the normal and abnormal regimes.
The study does not address the problem of causal graph discovery, and it assumes
that the graph already exists, which is a challenging assumption to hold in sev-
eral real-world complex systems. The above recent approaches for anomaly RCA
either consider non-temporal modeling approaches, requiring the availability of a
causal network of the normal operation, or are not adequately optimized for binary
anomaly flag data [201,207,208,220].

2.4.1 Causal Graph Discovery Methods

The first step of graph-based causality analysis is to construct the graph causal model
of the variables (see Definition 10). Causal graph network discovering methods aim
to capture direct dependencies and shared drivers among multiple data variables—
graph nodes.

Definition 10. Graph causal model (GCM) states that if two variables have an edge
in between X → Y in the directed graph, then (X is a direct cause of Y ) that there
exist interventions on X that will directly change Y (distribution or value). The
edge of GCM between variables X and Y can model 1) a direct causal relationship
(X → Y or Y → X), 2) a causal relationship in either direction (X—Y ), and 3) a
non-causal association (X ↔ Y ) due to external common causes.

Causal discovery studies rely on assumptions to infer underlying causal depen-
dencies from observational data [204,209,222]:

• Causal faithfulness assumption: data independencies (X⊥Y |Z) arise rather
from causal structure, not from coincidence or expressed differently. If two
variables are independent given some other subset of variables, then they are
not connected by a causal link in the graph.

• Causal sufficiency assumption: the measured variables include all common
causes—there is no unobserved confounding variable.

39



• Causal Markov assumption: all variables are independent of their non-effects—
nondescendants in the causal graph conditionally to their direct causes (par-
ents). All the relevant probabilistic information that can be obtained from
the system is contained in its direct causes or expressed differently. If two
variables are not connected in the causal graph given some set of conditions,
then they are conditionally independent. A Markov equivalence class is a set
of directed graphs with the same skeleton—encodes the same set of conditional
independence—and V-structure (X → Y ← Z) regardless of the directions of
the remaining edges.

Data-driven causal graph structure learning methods can broadly be categorized
into:

• Constraint-based : Relies on conditional independence (CI) relationships
X⊥Y |Z—X independent of Y condition on Z—to infer the causal DAG struc-
ture. Some of the popular methods include Peter-Clark (PC) [204], grow-
shrink (GS) [223], incremental association (IAMP) [224], max-min parents
and children (MMPC) [225], and fast causal inference (FCI) [204]). The PC
algorithm in [204, 226] is a popular method that builds a causal graph by
adding edges based on CI tests. It learns a partial directed acyclic graph
(PDAG) representing the dependencies based on the causal Markov condition
and the faithfulness assumption. When there is no latent confounder, two
variables are directly causally related—with an edge in between—if and only
if there is no subset of the remaining variables conditioning on which they
are independent. Three main steps are involved in the PC: 1) identifying the
graph skeleton—undirected graph—induced by those CI relations, 2) identify-
ing V-structure, and 3) deriving edge directions. FCI [204] relaxes the causal
sufficiency assumption of PC to deal with unmeasured latent variables.

• Score-based : Employs optimization search for causal DAG structure to the
observed data based on a scoring metric [199,209,227,228]; e.g., hill-climbing
search (HC) [229], and greedy equivalent search (GES) [230,231]. These meth-
ods explore the space of PDAGs structure classes and minimize a global score—
e.g., the Bayesian information criterion (BIC) and Bayesian Dirichlet equiv-
alent uniform prior (BDue)—using add edge, remove edge, and reverse edge
operators to return the optimal structure [230,231].

• Hybrid : Combines the ideas from constraint-based and score-based algorithms
to enhance accuracy and computational efficiency; e.g., max-min hill climb-
ing (MMHC) [227] and greedy fast causal inference (GFCI) [232]. MMHC
algorithm first builds the skeleton network using CI tests and then performs a
Bayesian-scoring greedy HC to orient the edges [227]. GFCI embarks with Fast
GES to get a first sketch of the graph rapidly, then uses the FCI constraint-
based rules to orient the edges in the presence of potential confounders [232].

• Functional causal model (FCM): is recent CD approach that represents the
effect as a function of the causes and independent noise terms [227,232]; e.g.,

40



causal additive models (CAM) [233] and causal generative neural networks
(CGNN) [222] and others [199, 209]. FCM captures the asymmetry between
cause and effect variables for CD—representing the effect Y as a function of
the direct causes X and noise factor ϑ as:

Y ← fθ(X,ϑ; θ) (2.4)

where ϑ is the noise term that is assumed to be independent of X, the function
f explains how Y is generated from X, and θ is the parameter set of f .
Diverse FCM approaches have been proposed in the literature using regression
models, structural equation models, autoregressive models, and neural network
models [209,222,233]. FCM methods also differ on the data type—continuous,
discrete, categorical, and mixed—noise term distribution, and linearity [209].

Structured reviews on learning causality methods on GCM are available in
Refs. [199, 209], and a more detailed explanation of structural causal models in
a textbook [13]. We limit our discussion to studies related to TS data [20, 86, 210,
218,219,228,234–238].

Causal graph modeling for time series data is a growing area of study in several
scientific disciplines [234, 236]. Multivariate TS data become abundant in several
real-world domains with the growth of the sensor networks, but finding the causal
dynamics in such data is challenging for many reasons: non-linearity of the generat-
ing process, data non-stationarity, concept drift over time, varying data rates, and
missing data [209]. Time series GCM approaches aim to capture time-lag causal-
ity besides addressing the stated challenges of TS data (see Fig. 2.4). The typ-
ically utilized TS GCM methods include Granger causality [234, 235], constraint-
based [20,86,228,228,236–238], and machine learning [210,218,219].

Figure 2.4: A time series with time lag effect x1
t−1 → x2 and instantaneous effect

x1
t → x3

t [13].

Structural causal model describes a stochastic process (xt)t∈Z from the past q
values of all variables:

xi
t := f i

((
PAi

q

)
t−q , . . . ,

(
PAi

1

)
t−1 ,

(
PAi

0

)
t
, eit

)
(2.5)

where eit is jointly independent noise term. For s ∈ Z+ : 0 < s ≤ q, the symbol(
PAi

s

)
t−s denotes the set of variables xj

t−s, ∀j ̸= i, that influence xi
t.

Granger causality [239] formulates a notion of causality based on how well past
values of a time series yt could predict future values of another series xt. Let H<t be
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all the relevant history information up to time t− 1 and f (xt | H<t) be the optimal
prediction of xt given H<t. Granger defined y to be causal for x if:

var [xt − f (xt | H<t)] < var [xt − f (xt | H<t/y<t)] (2.6)

where var denotes variance, and H<t/y<t indicates excluding the values of y<t from
H<t. Granger assumes the identifiability of a unique linear model with N time series
variables as:

xi
t =

q∑
s=1

Aij
s x

j
t−s + eit, ∀j ̸= i (2.7)

where A1, . . . , AN−1 are N × q lag coefficient matrices with order N − 1. The et is
a noise or error term with a diagonal or nondiagonal covariance matrix. Granger’s
equation corresponds to the time series vector autoregressive (VAR) model being
treated as a simple causal model without or with contemporaneous causal effects at
t = 0. Ref. [240] presents nonlinear Granger methods using structured multilayer
perceptrons and recurrent neural networks. They combine sparsity-inducing convex
group-lasso penalties on the weights that attempt to extract the Granger causal
structure by encouraging specific sets of weights to be zero. The predictability
characterization of Granger may not directly imply a causal effect of y on x—
improving the prediction of x does not necessarily mean y causes x. The effectiveness
of the Granger method in deducing causal connections has thus been a subject of
ongoing discussion because of the assumption that predictability implies causality,
sensitivity to temporal aggregation and subsampling, and unmeasured confounder
effects [235]. Nonetheless, the Granger method remains a valuable tool for analyzing
TS data and is widely utilized across various domains—including economics, finance,
genomics, and neuroscience [235].

Refs. [20, 86, 228, 236, 237] introduce and extend variants of PCMCI—an exten-
sion of the PC algorithm [204] leveraged with false-positive cleaning momentary con-
ditional independence (MCI) for time series CD. The PCMCI methods with linear
and non-linear conditional independence tests outperform state-of-the-art techniques
in causality detection on large TS data sets across a range of research fields [86].
Ref. [228] proposes Latent-PCMCI (LPCMCI) that relaxes the causal sufficiency
assumption of PC extends PCMCI to enhance recall CD with unknown latent con-
founders using FCI. Ref. [237] extends the PCMCI to handle non-stationarity with
regime-dependent causal graphs using a time-windowing method. A slightly dif-
ferent approach is adopted in the time-aware PC (TPC); it employs the PC al-
gorithm for TS by considering time delay, bootstrapping, and pruning [238]. The
approach proceeds by unrolling the TS data—adding new nodes with time delay
tags—and generating DAG by applying a set of conditions: using causality cannot
apply backward-in-time to direct edges and weight thresholding to prune the graph
when rolling the DAG. The bootstrapping subsamples time window data iteratively
to fine-tune the DAG. Advanced ML models have been proposed for causal graph
discovery on TS data [219]. Ref. [219] presents a temporal CD framework (TCDF)
using the attention scores of the prediction convolutional network. The TCDF
consists of k-independent prediction networks based on the temporal convolutional
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network (TCN), where k is the number of TS. Each network performs CD through
the attention mechanism—obtaining causal time delay information through convo-
lutional kernel weight routes. The sequences other than the target TS are fed into
the network for the prediction process of a given target. The sequence with a high
attention score is the causal sequence of the target sequence. Training prediction
models for each variable may constrain the TCDF scalability when the number of
variables increases, which is the case in large complex systems.

The above-mentioned factors of TS data can influence the efficacy of the existing
causal graph discovery methods. The general problem of estimating the GCM for
TS is not close to being solved despite the progress in understanding how to deal
with these problems in various use cases [209].

The second stage of CD is parameterizing the links after discovering the causal
graph skeleton structure. Probabilistic parameterization methods such as Bayesian
networks allow flexible and faster querying for causal inference. A Bayesian network
(BN) is a probabilistic graphical model representing variables and their conditional
dependencies through a directed acyclic graph [241]. Bayesian Networks are pa-
rameterized using conditional probability distributions (CPD)—each node n in the
network is modeled as P (n | PA(n)) where PA(n) represents the parents of a node
in the network. Bayesian networks represent causal relationships between the vari-
ables using CPDs as measures of the causal strength between nodes. Causality
modeling with BNs from a given data involves two phases: 1) building the DAG
topology structure, and 2) estimating CPD parameters of the DAG. Although pa-
rameter estimation is considered a well-studied subject and can be achieved with
less computation cost even with limited data availability, learning the DAG struc-
ture is more difficult with exponential computational cost as the data and number
of variables grow.

Definition 11. A Bayesian network is a probabilistic representation of joint dis-
tributions over the variables using a DAG model. The CPD is computed using the
DAG from a given data using Bayes and chain rules of probability as follows:

P (A,B,C) = P (A|B,C)P (B|C)P (C) (2.8)

The joint distribution of all variables is the sum of all CPDs in the network as
shown by the above equation. Representing the joint distribution’s independencies
in a graph structure allows storing fewer BN parameters overall. Maximum likelihood
estimation and Bayesian parameter estimator are widely employed BN parameter
learning methods [229]. The maximum likelihood estimation (MLE) estimates the
CPDs simply using the relative frequencies with which the variable states have oc-
curred. The MLE has the problem of overfitting the data—e.g., it will be extremely
far off for small data that are not fully representative of the underlying distribution.
The Bayesian parameter estimator aims to mitigate the overfitting issue of MLE by
starting with already existing CPDs using prior histogram counts before the data
was observed. For instance, K2 prior adds prior initial pseudo-state counts—adds
1—to the actual counts before normalization. Those "priors" are then updated using
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the state counts from the observed data. Another choice of prior is BDeu—Bayesian
Dirichlet equivalent uniform prior [229].
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Chapter 3

Machine Learning for Time Series
Modeling

This chapter discusses time series modeling with machine learning and highlights
the working principle and the architecture of deep learning models in the field.

3.1 Time Series Modeling

Time series modeling is a subset of sequence modeling that refers to models and
algorithms operating on time series data. A time series data is an ordered collection
of pairs of measurements and timestamps. It can be mathematically defined as:

Definition 12. A time series (TS) data is matrix data X ∈ RT×N where the reading
data points are stored in sequence and indexed with timestamp t:

X = x1, . . . ,xt (3.1)

where x : {xi}, i ∈ {1, . . . , N}, and the N is the number of variables. The size of
N = 1 determines whether the data is univariate (UTS) for N = 1 or multivariate
(MTS) for N > 1. The MTS data can be further subcategorized into low, interme-
diate, and high dimensional based on the size of N or/and M despite there being
no clear common consensus in the literature where the boundaries lie; for instance,
Ref. [81] uses dimension thresholds of (1, 10], (10, 50], and [50,−) to categorize TS
anomaly detection data sets into the above three categories, respectively, whereas
Ref. [242] considers high dimensional for TS forecasting data set with a variable size
in the order of 100s or 1000s.

Definition 13 provides a generic formulation of a time series model for a given
input predictor X and output target Y TS data.

Definition 13. A time series model is a sequence model F that predicts Y from
X, F : X→ Y:

yt−S, . . . ,yt+H = F(xt−T, . . . ,xt) (3.2)

where T is the time length of the input, and N is the number of input variables;
y : {yi}, i ∈ {1, . . . ,M}, M is the number of output variables, and S and H are
past and future time length of Y, respectively.
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The F may belong to different categories depending on the number of variables
and time length. The TS model is designated as UTS or MTS model for N =

M = 1, and N ≥ 1 or/and M ≥ 1, respectively. The UTS models learn only the
temporal behavior of a single quantity, whereas the MTS models further capture
the interaction of multiple quantities. Considering the time length, a TS model can
be a unit-timestep or multi-timestep.

The type of modeling task and application can categorize TS models into classi-
fication, regression, forecasting, and clustering [167,188,190]:

• Classification: predicts known set of class labels C that Y ∈ Z to input TS X.

• Regression: predicts the values yt≤0 ∈ RS×N from X.

• Forecasting: predicts the future values of yt>0 ∈ RH×N from X.

• Clustering: measures similarity among the input TS segments X and maps
them into different clusters, Y ∈ Z.

High-level TS applications—including anomaly detection, anomaly prediction,
generation tasks, and causality analysis—can be achieved by employing one or more
of the above-defined tasks [41,70]:

• Anomaly detection: predicts anomaly status label at t = 0 from a given TS
segments xt≤0 ∈ RT×N .

• Anomaly prediction: predicts anomaly status label at t > 0 from a given TS
segments xt≤0 ∈ RT×N .

• Generation: generates Y from latent space embedding of X.

• Causality analysis: measures causal relationship and dependencies among the
X variables.

There are various categories for TS models based on the techniques used for
their training and inferencing. The models may employ supervised, semi-supervised,
and unsupervised approaches during model training based on varying degrees of
utilization of data labeling—full, partial, and no labels, respectively. There are three
categories of model training mechanisms: one-time learning, incremental learning—
e.g., reinforcement learning, and transfer learning—is a one-time training on source
data followed by fine-tuning on another target data.

Machine learning gains attraction for the learning capacity of complex patterns
and nonlinear characteristics. Conventional ML models often require feature prepa-
ration through selection and engineering before training; this limits their scalability
on a range of applications because of their heavy reliance on domain knowledge.
The recent progress of deep learning (DL) enhances the learning capacity with flex-
ible and deeper networks (more layers) and offers end-to-end modeling that enables
automatic feature extraction. Deep learning with recurrent neural networks (RNN),
convolutional neural networks (CNN), and their hybrids are popular for end-to-end
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learning on sequential data [41, 188, 190]. Transformer and graph neural networks
(GNN) present recently promising capabilities that alleviate some of the limitations
of RNN and CNN models [108, 167, 177]. Transformers enable parallel processing
with an attention mechanism for time series modeling; GNNs are mostly employed
to capture interactions of variables from multivariate data. Deep learning networks
are packaged in different architectures—including feed-forward architecture, autoen-
coder (AE), sequence-to-sequence (S2S), generative adversarial network (GAN), and
many more consisting of hybrid architectures—to build the final model for a given
application.

Numerous methods have been proposed in the literature for TS modeling; the
above discussion is thus not meant to be inclusive but rather aims to highlight the
widely used methods. We will describe various commonly utilized DL networks and
architectures for TS modeling in the following sections.

3.2 Deep Learning Networks

Neural networks—inspired by biological neurons—are the foundation of deep learn-
ing networks. The universal approximation theorem states that a two-layered feed-
forward neural network (FNN) Ffnn—also known as multi-layer perception (MLP)—
can approximate any arbitrary continuous function given sufficient neurons in the
hidden layer [243]:

y = Ffnn(x,W,b)

y = σo (Wo(σh (Whx+ bh)) + bo)
(3.3)

where x ∈ RNx and y ∈ RNy are the input vector and output variables with dimen-
sion of Nx and Ny, respectively. The Wh ∈ RNh×Nx , Wo ∈ RNy×Nh , bh ∈ RNh , and
bo ∈ RNy are the weights and bias, trainable network parameters of the neurons, for
the hidden and output layers, respectively. The σ is the activation function (linear
or nonlinear).

The activation function determines which information should be transmitted to
the next neuron. Nonlinear activation functions theoretically aim to enable neu-
ral networks to approximate any function—ensuring the outputs are beyond the
linear combination of the inputs [244]. The range and continuously differentiable
attributes are also important properties of activation functions. A finite range makes
the training gradient more stable, but an infinite range uses weights more efficiently.
Differentiable activation functions are beneficial for gradient-based model training.
Fig. 3.1 illustrates some of the widely used nonlinear activation functions, such
as sigmoid function (sigmoid), hyperbolic tangent function (tanh), rectified linear
unit (ReLU), leaky ReLU (LeakyReLU), parameterized ReLU (PReLU), and ex-
ponential linear unit (ELU) [245]. Each of the above functions has strengths and
weaknesses. For instance, the sigmoid, and tanh have bounded outputs (0, 1) and
(-1, 1), respectively, and are easily continuously differentiable but may have vanish-
ing gradients and slow convergence. The ReLU greatly accelerates the convergence
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and makes the network sparse by not activating all the neurons at the same time;
but, it is non-differentiable at zero—causing the gradients for negative inputs to
become zero, which hinders updating the weights in the region during backpropaga-
tion. The LeakyReLU, ELU, and PReLU aim to achieve continuously differentiable
and solve the dying ReLU for negative inputs. The LeakyReLU uses ρx, where
ρ is a tunable hyperparameter for small negative inputs; but, it still saturates for
large negative values. The ELU offers a generalization of the ReLU with a param-
eterized exponential function for small negative values that push the mean of the
activations closer to zero to boost training speed. The PReLU is also a generaliza-
tion of ReLU with an adaptive control parameter (wρ) that is tuned during model
training. There are other less known but promising activation functions such as
Swish [246] and Misra [247] with demonstrated improved performance in gradient
flow, accuracy, and generalization. The activation functions make sigmoid and tanh

nonboundary using f(x) = x.sigmoid(βx) and f(x) = x.tanh(softplus(x)), where
softplus(x) = ln(ex + 1), respectively.

Activation of the output layers (σo) highly depends on the target variables and
the model applications—for example, sigmoid for categorical output in binary clas-
sification and ReLU for continuous output in regression. The choice of activation
function also depends on the data set range or scale—for instance, using tanh in
the output activation would be a better option than ReLU for a regression task
on continuous target data with the range of [−1, 1]. Deep learning generally re-
quires data scaling for effective model training, considering the employed activa-
tion functions. Some of the typically employed data scaling techniques are data
normalization—e.g., min-max into [0, 1] and [−1, 1], and standardization—e.g., z-
scale into mean = 0, std = 1 (see Section 3.5 for further discussion).

Figure 3.1: Non-linear activation functions.

Learning algorithms find the best parameters during neural network training for
the W and b that map a set of inputs to their correct output by minimizing loss
function L(y,ya). The L measures the discrepancy between the target output ya

and the computed output y. Optimization algorithms like gradient descent (GD)
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are employed to minimize the loss—also called objective or cost—function. GD
calculates the opposite steepest descent using first-order derivation for finding a local
minimum through backpropagation and iterative optimization. The motivation for
backpropagation is to calculate the GD of the objective function ∆Ewij

with respect
to parameters using a chain rule as:

∆Ewij
=

∂E
∂wij

=
∂E
∂y

∂y

∂wij

=
∂E
∂y

∂y

∂σ

∂σ

∂wij
(3.4)

where E = L(y,ya), and the σ is a differentiable activation function. Using a
similar formulation, the backpropagation through the chain rule enables calculating
the gradient on a multi-layered deep neural network. Finally, each training iteration
updates network parameters following the direction of loss-minimizing GD as:

∆wij = −λ
∂E
∂wij

wnew
ij = wij +∆wij

(3.5)

where is λ is the learning rate.
One of the key innovations in deep learning is expanding the model complexity

by adding more network layers that leverage the network learning capacity on large
data sets. Training DL is a computationally intensive task, and stacking more layers
may lead to a quick reduction in accuracy due to overfitting, gradient vanishing or
explosion, and internal covariate shift. Overfitting occurs when the machine learn-
ing model memorizes the training data instead of learning the general context—the
model consists of more parameters than that data needs. Deep learning models
may suffer from gradient vanishing and explosion during training since the gradi-
ent’s partial derivative multiplication chain grows with the network depth [248,249].
The internal covariate shift phenomenon refers to the changes in the input data
distribution—means and variances—as it passes through the network layers during
training [249]. The randomness in the network parameter initialization and the ran-
domness in the input data contribute to this shift. Deeper networks amplify the
covariate shift as the shift propagates through multiple layers. Internal covariate
shift slows down the training by requiring lower learning rates and careful param-
eter initialization and makes it notoriously hard to train models with saturating
nonlinearities [249].

Several mitigation techniques have been proposed to address the above chal-
lenges. Model regularization techniques—including weight regularization, dropout,
and early-stopping—are among the popular methods for preventing overfitting. Net-
work weight regularization limits the value of the network parameters from growing
larger. A regularization term is explicitly added to optimize the model training loss
function.

Lr = L+ λw
∥∥W2

∥∥ (3.6)

where the Lr is loss function with l2 − norm weight regularization with factor of
λw ≤ 1. Dropout is another technique that limits the number of active network
weights during the training iteration to prevent overfitting [250, 251]. It randomly
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prunes weights (set zero) that make each layer receive input only from a random
subset of nodes in the previous layer:

w̄ij =

{
wij, with P (c)
0, otherwise

(3.7)

where wij, and w̄ij are the weight before and after weight dropout, respectively, and
the P (c) probability of keeping a weight. Early-stopping follows a different approach
in which the model training is halted before its performance drifts when evaluated in
separate validation data sets. The concept is that the training loss keeps dropping
as the model overfits the training data while the loss increases on unseen validation
data; the training is early-stopped when overfitting begins to occur by measuring
performance disparity on the training and validation data sets.

Residual learning successfully enables training several popular models with con-
siderable depth—e.g., the VGG model with 152 layers [252]—and complex models—
e.g., transformers [14] by preventing gradient vanishing. Residual learning eases the
training by explicitly reformulating the layers as learning residual functions (with
skip connections) with reference to the layer inputs:

Xl+1 = F l(Xl) +Xs (3.8)

where F l and Xl is the network function and input data at lth layer, respectively.
The Xs is a residual skip connection from the previous layer sth ≤ l. The residual
learning addresses the vanishing gradient problem as the gradient of training loss—E
with respect to the Xl+1—will have the term ∂E

∂Xl that prevents gradient vanishing
as depth grows. ResNet [252] introduces residual learning for CNN models on im-
age applications; the residual concept is not new to TS modeling with RNNs [248].
LSTM [248] addresses the vanishing gradient problem of RNNs with weighted resid-
ual connections—forget gates—enabling training very deep RNNs with a very long
time span.

We have employed batch normalization (BN) [249]—to mitigate internal covari-
ate shifting and accelerate train model training with more stable data distribution
between layers—for our models in Refs. [41, 70, 77, 78]. BN achieves normalization
by re-centering and re-scaling layer inputs at a batch level as:

y = γ
x− µx√
σx2 + ϵ

+ β (3.9)

where the mean µx = E[x] and variance σx2 = Var[x] are calculated per dimen-
sion over the training mini-batches, and γ and β are learnable parameter vectors
of size Nx. The ϵ is an arbitrarily small constant added in the denominator for
numerical stability. The BN substantially improves training convergence speed and
lessens the impact of random network initialization schemes. It enables the usage
of higher learning rates by smoothing gradient—alleviating vanishing or exploding
gradients [253]. BN technique has a regularizing effect on the network—improving
its generalization properties and reducing the need for dropout to prevent overfit-
ting. Some studies have argued that the performance returns of the BN is rather by
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smoothing the optimization landscape of the cost function, and its contribution in
internal covariate shift mitigation is limited [253]. Ref. [254] demonstrates deep BN

networks—BN in multiple deep layers—causes exploding gradient signals that grow
exponentially with depth and the issue can be mitigated using residual connections.

Attention mechanisms—another major progress in deep learning—enhance the
effectiveness of automatic searching or capturing of relevant parts from the input
data for predicting the target [14, 255, 256]. Attention [255] mitigates the fixed-
length vector bottleneck of language translation capability of an LSTM sequence-to-
sequence (S2S) model of [256]. Ref. [14] kindles a major revolution using multi-head
attention in their transformer models for large-scale natural language processing
(NLP).

We will explain below the working mechanism of DL networks that are prevalent
in TS classification, forecasting, and anomaly detection applications.

3.2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are the earliest and most utilized endeavors
of neural networks to handle sequential data through sequential learning mecha-
nism [88, 257–261]. RNNs have loops that enable sequential information to persist
by using previous state outputs as inputs (see Fig. 3.2).

Figure 3.2: Sequential data modeling using vanilla RNN.

For each element in the input sequence, each cell of RNN computes the following
function:

yt = Frnn(xt,W,b,ht−1)

yt = ht = σ (Wihxt +Whhht−1 + b)
(3.10)

where xt and yt are the input and output at t, respectively, and Frnn is RNN model.
The ht and ht−1 are the hidden states at t and t−1, respectively. The Wi∗ ∈ RNh×Nx ,
Wh∗ ∈ RNh×Nh , and b ∈ RNh are weight matrices and bias vector parameters with
the superscripts Nx and Nh refer to the number of input features and the number of
hidden units, respectively. The σ is the activation function, such as sigmoid ∈ (0, 1),
or tanh ∈ (−1, 1).

The RNN architecture offers several benefits—including processing input of any
length, computation considering past information, and shared weights across time.
Sluggish computation and vulnerability to vanishing and exploding gradient phe-
nomena when learning long-time sequence dependencies constrain the application
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of RNNs. The gradient issues occur due to the multiplicative gradient during back-
propagation, which substantially decreases or increases with the size of the time
length. Ref. [262] devises gradient clipping technique to deal with the exploding
gradient problem by capping the maximum value for the gradient. The long short-
time memory networks (LSTM) [248]—an enhanced variant of RNNs— remedy the
vanishing gradient problem. Ref. [174] presents the gated recurrent unit networks
(GRU) with fewer model parameters by simplifying LSTM. Both LSTM and GRU
basically employ specific RNNs combined with well-defined gates (Γ) that enable
enhanced control on the information reservation cross time:

Γ = σg (Wixt +Whht−1 + b) (3.11)

where Wi ∈ RNh×Nx , Wh ∈ RNh×Nh and b ∈ RNh are trainable coefficients specific
to the gate and σg is the activation functions of the gate.

LSTM contains three gates—the forget gate, the input gate, and the output gate.
The first gate ft determines whether to remember or discard the information from
the previous timestamp. The second gate it learns new information from the input,
while the third gate ot passes updated information to the next timestamp. Thus,
the LSTM cell generates short-term and long-term memory state vectors at t—the
hidden state ht and the cell state ct, and is formulated as:

it = σg (Wiixt +Whiht−1 + bi)

ft = σg (Wifxt +Whfht−1 + bf )

ot = σg (Wioxt +Whoht−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ σc (Wicxt +Whcht−1 + bc)

ht = ot ⊙ σh (ct)

(3.12)

where the Wi∗ ∈ RNh×Nx , W∗h ∈ RNh×Nh , and b ∈ RNh are weight matrices and
bias vector parameters with the superscripts Nx and Nh refer to the number of input
features and the number of hidden units, respectively. The σg (e.g., sigmoid), σc
(e.g., tanh), and σh (e.g., tanh) are the activation functions of the gates, cell states,
and hidden states, respectively. The ⊙ denotes the element-wise Hadamard product.

GRU simplifies LSTM to reduce the number of parameters and memory costs
while preserving the merits of LSTM. It consists of three gates—the reset gate rt,
the update gate zt, and the new gate nt:

rt = σg (Wirxt +Whrht−1 + br)

zt = σg (Wizxt +Whzht−1 + bz)

nt = σn (Winxt + rt ⊙ (Whnht−1 + bn))

ht = (1− zt)⊙ nt + zt ⊙ ht−1

(3.13)

where the σg and σn are the sigmoid and the tanh function, respectively.
There are several modifications of LSTM and GRU in the literature that aim

to either improve performance or extend the applications [255, 263–265]. Ref. [263]
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finds the contribution of the reset gate of GRU significantly overlaps with the update
gate, and proposes a light-gated recurrent unit (LiGRU) that removes the reset gate,
replaces tanh with the ReLU activation and applies batch normalization (BN). The
modification has led to a more efficient and compact single-gate GRU model while
the change in activation function coupled with the BN alleviates numerical issues
when learning long-term dependencies. Ref. [264] introduces a time-aware LSTM
(T-LSTM) that extends LSTM to handle irregular time intervals by introducing
time decaying to discount the cell memory content according to the elapsed time
gaps. Ref. [255] proposes an attention mechanism to enhance the language trans-
lation capability of an LSTM-based sequence-to-sequence model [256]. Ref. [265]
presents convolutional LSTM (ConvLSTM) that extends LSTM for learning spa-
tiotemporal data, where the convolution and LTSM handle spatial and temporal
learning, respectively.

3.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) have achieved promising performance in sev-
eral time series applications, and their leverage is often owning to the shared nature
of the kernels, also known as filters [41, 70, 95, 128, 177, 187, 190, 242, 266–268]. The
convolution refers to multiplying the input neurons with a set of kernel weights [244].
The kernel acts as a sliding window across the whole data, enabling the network to
learn features from neighboring data points. The same filters are applied throughout
the input data points within a layer—parameter sharing [269]. Parameter sharing
enables position-invariant feature extraction and substantially reduces the number
of trainable parameters compared to fully-connected neural networks. In TS model-
ing, 1D CNN handles the sequential data inputs, and it operates basically the same
as the classic 2D CNN, except it runs the convolution across the time dimension.
Some studies have proposed transforming the TS into 2D image data, then applying
the 2D CNN [134, 187]. For a given input TS data X ∈ Rn×Nx with n samples
and Nx variables, 1D CNN generates the output Y ∈ Rn×Ny using Ny kernels with
window size of Tk as:

Y(:, j) = b(j) +
Nx∑
d=1

W(:, j) ⋆ X(:, d) (3.14)

where W ∈ RTk×Nk and b ∈ RNk are the weight matrix and bias vector of the kernels,
respectively. The W(:, j) and Y(:, j) are the jth kernel and its corresponding output
vector. The ⋆ is a 1D cross-correlation operator. The kernels operate on consecutive
Nk data points and, thus, extract local behavior. The same kernels are applied
across the multivariate data, meaning extracting similar temporal features.

CNNs are often designed with multi-layer stacks in which the different layers
learn different contexts: higher-layer for wider context and deeper-layer for distill-
ing features. CNNs require very deep networks with downsampling or extremely
large filters to effectively cover a long time length [244, 270, 271]. Temporal convo-
lutional networks (TCN) [266, 270] employ multilayer dilated CNNs to capture the
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more elongated temporal characteristic. Dilated CNNs have an exponentially large
receptive field with a progressing dilation factor d that applies kernel by skipping
some d adjacent data points in the sequence; the dilated convolution reduces to a
regular 1D convolution for d = 1. Employing larger dilation permits an output to
represent a wider range of inputs—effectively expanding the receptive field of the
network [270]. We can adjust the receptive field size of CNNs—the number of lay-
ers, dilation factors, and kernel sizes—to control the model complexity for different
domain requirements.

CNNs are relatively easier to explain in contrast to RNNs since each filter ker-
nel can be visualized to assess the temporal characteristics they are responding to.
There are certain advantages over RNNs apart from the simplicity: 1) lower model
parameters to train because of kernel weight sharing, 2) advantage of parallelism
when performing convolutions, 3) localized feature extraction aids to reduce tempo-
ral dimension using pooling mechanisms, 4) the gradients are not in the temporal
direction but in the direction of the network depth, which can be handy for longer
time length, and 5) the gradients are relatively stable—particularly with the resid-
ual connections. The major drawback is during model inference: CNNs may require
more data storage than RNNs since it takes the entire time window sequence seg-
ment; RNNs keep only the summary in the form of a hidden state and need only
to process a single time step at a time [271]. We refer the readers to Ref. [244] for
further review of recent modifications, applications, and limitations of the CNNs.

3.2.3 Transformers

The recent development of transformer models combines the contribution of the pre-
vious achievement of attention, residual learning, and normalization techniques [14].
The notable innovation is the application of multi-head attention for parallel pro-
cessing of sequential data. Transformers have excelled in natural language pro-
cessing tasks and become promising in other applications—including computer vi-
sion [272], TS audio systems [273], and other TS applications [185]. Among the
many benefits, capturing long-term dependencies while achieving parallelization is
particularly appealing for TS modeling—resulting in exciting progress in various
applications [138, 167, 184, 274–276]. Transformers are DL models that employ par-
allel processing and the self-attention mechanism to weigh the importance of each
data point in a sequence of data points [14] (see Fig. 3.3); the attention mecha-
nism captures the temporal context for any position in the input sequence while
processing in parallel. Transformers employ position encoding mechanisms—e.g.,
sinusoidal encoding often used to encode time stamps—to encode the position of
the data points in the sequence [167]. Transformers have much higher bandwidth
since they can directly attend to every data point in the input sequence; RNNs have
constrained sequential access. The parallelization enables training on much larger
data sets. The recent massive pre-trained models—like the generative pre-trained
transformer (ChatGPT)—were trained on massive text corpus data sets in the size
of terabytes. Several variants of transformers have also been proposed to address
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challenges in various TS modeling tasks, such as forecasting [167,184,274,277], clas-
sification [138, 278], anomaly detection [129, 135, 136, 276, 279], and representation
learning [280].

(a)
(b)

Figure 3.3: Transformer network architecture of a) transformer encoder model archi-
tecture, b) (left) dot product attention, and (right) multi-head attention of several
attention layers running in parallel [14].

The vanilla S2S transformer follows an encoder-decoder stack architecture (see
Fig. 3.3). The transformer comprises self-attention mechanisms and feed-forward
neural networks in its encoder and decoder. The self-attention mechanism takes
the encoded input from the preceding encoder and weighs the importance of each
encoding in relation to the others to produce the output encodings. Each output
encoding is then individually processed by the feed-forward neural network. The
first encoders are input token—word—and token position encoding networks and
generate sequences of token embedding X. The transformer model learns three
weight matrices for each attention unit—the query weights WQ, the key weights
WK , and the value weights WV . The input embedding xi for each token i is
multiplied with each of the three weight matrices to produce a query vector qi =

xiWQ, a key vector ki = xiWK , and a value vector vi = xiWV . The attention
weights aij are calculated from token i to token j is the dot product between qi and
kj. The output of the attention unit for token i is the weighted sum of the value
vectors of all tokens weighted by the aij—the attention of i token to each token.
The attention calculation for all tokens can be expressed as one matrix calculation
among the matrices Q,K, and V, where rows are qi,ki, and vi, respectively:

A(Q,K,V) = softmax

(
QKT

√
Nk

)
V (3.15)

where the A is dot-product (multiplicative) attention. The Nk is the dimension
of the key vector, and the

√
Nk stabilizes the gradient during training and passes
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through a normalizing softmax. Separating the Q, and K matrices—WQ and WK

are separate FC networks—allows the attention to be non-symmetric: if token i

attends to token j—qi · kj becomes large—and this does not necessarily mean that
token j will attend to token i—qj ·ki becomes small. Inspired by the multiple kernels
in CNN for learning different characteristics, transformers also employ multi-head
attention:

Amulti(Q,K,V) =
[
A1 ∥ A2, . . . , ∥ Ah

]
WO

Ai = A
(
Wi

QX,W
i
KX,W

i
VX
) (3.16)

where the Ai is ith attention head, the WO is output final projection network,
and the ∥ is data concatenation operator. Parallel processing of attention heads
simultaneously can speed up the processing of the multi-head Amulti.

In time series modeling, the embedding layers of the transformers are mainly
modified to handle TS data—embedding of TS data using 1DCNN and encoding of
the timestamp using a circular positional encoding mechanism. The biggest chal-
lenge of vanilla transformers is the quadratic complexity O(n2) of the self-attention,
where the n is the dimension of input data dimension. which requires a quadratic
memory depending on the input time dimension [185, 281]. In a recent study on
time series, Reformer [282] presents the local-sensitive hashing (LSH) attention,
and Informer [167] extends the transformer with Kullback-Leibler divergence and
probabilistic sparsing mechanism to reduce from quadratic complexity of O(n2) the
self-attention to O(n log n) for long sequence multivariate time series forecasting
application. Both attempt to improve the self-attention mechanism of the vanilla
transformer to a sparse version following the point-wise dependency and aggrega-
tion. Autoformer [185] proposes auto-correlation series-wise connections along with
trend and seasonal decomposition to achieve state-of-the-art time series forecasting
performance [185].

We refer readers to Ref. [281] for further discussion in benchmarking transformer
architectures for long-term learning in text sequence and Ref. [185] for review of
transformers in time series forecasting. The studies show that no transformer is
best for every task, and the performance varies across different tasks. Ref. [185]
reviews transformers for time series forecasting applications and highlights their
strengths and limitations through a taxonomy. Ref. [185] evaluates recent MTS
transformers based on long sequence length and model size proportional learning
analysis. Ref. [185] reveals the prediction accuracy of different transformer models
rapidly deteriorates as input length and network depth increase—limiting the capa-
bility of many carefully constructed transformers for complex modeling in long-term
forecasting tasks. The question of building a suitable and multi-layered transformer
architecture that increases the model performance is still an open research challenge.
Transformers do not make any assumptions about the characteristics and patterns
of the data and need extensive data to prevent data from overfitting. Recent studies
incorporate periodicity [179] or frequency processing [184] as inductive biases into
a TS transformer to enhance performance significantly. Integration of GNN and
transformer attentions have improved performance and enhanced understanding of
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the spatio-temporal dynamics and causality [129].

3.2.4 Graph Neural Networks

The CNNs are robust at capturing hidden patterns of structured Euclidean data,
such as images, text, and regularly sampled time series data. Their effectiveness
is limited in non-Euclidean domains—e.g., graphs with complex relationships and
interdependencies between objects. In the realm of geometric deep learning (GDL),
graph neural networks (GNN) generalize CNNs by extending structured deep neural
network models to non-Euclidean domains [283]. Graphs consist of interconnected
nodes—each with a set of features. GNNs become prevalent across a wide range of
applications, such as computer vision [117–119,121], traffic monitoring [112], cyber-
security [114,115], environment monitoring [109], and the LHC [23,38,284,285].

Graph neural networks employ message-passing primitives that update the node
representations or features by aggregating information passed from neighboring
nodes [283]. Let a graph data G(V , E) is collection of nodes V (vertices) and edges
E ⊆ V × V between pairs of nodes. For nodes ∀u ∈ V with feature vector xu and
edge features euv : (u, v) ∈ E , the message passing neural networks on node u can
be expressed as:

hu = Φ

(
xu,

⊕
v∈Nu

Ψ(xu,xv, euv)

)
(3.17)

where the Nu is the set of one-hop neighbors of the node u, and Φ and Ψ are the
update and message functions of the network, respectively. The

⊕
is a permutation

invariant aggregation operator that can accept an arbitrary number of inputs (e.g.,
element-wise sum, mean, or max). The hu ∈ RM is the output feature vector of
node u with the dimension of M .

Graph convolutional networks (GCN) are variants of GNNs that perform
convolution-like operations on graphs [286, 287]. A GCN layer defines a first-order
approximation of a localized spectral filter on graphs. The convolution in GCN is
the same as in CNNs, where the model learns the features by inspecting neighboring
nodes. The major difference is that CNNs are built to operate on regular data, while
GCNs are the generalized version of CNNs where the numbers and order of node
connections vary [286,287]. Information propagates like a wave or signal across the
nodes in spectral GCNs. A GCN layer involves three operators: graph convolution,
linear layer, and nonlinear activation. It can be described from a message-passing
perspective—for each node, 1) aggregate neighbors’ representations to produce an
intermediate representation, and 2) transform the aggregated representation with a
linear projection followed by a non-linear activation [287]. The graph convolution
operation produces a normalized sum of the node features of the neighbors on a
given graph G(V , E):

hu = σ

(
1

du

∑
v∈Nu

Wxv

)
(3.18)

where the Nu is the set of one-hop neighbors of the node u with self-looping to

57



include u in the set. The du is the degree of the node, meaning the number of
neighboring nodes du = |Nu|. The du provides normalization to prevent numerical
instabilities and vanishing or exploding gradients during model training. The lower
the node degree, the stronger a node belongs to a certain group or cluster. The
σ(·) denotes an activation function. The hu ∈ R1×M is the node feature vector
with the dimension of M . The W is a shared weight matrix for node-wise feature
transformation.

Ref. [287] proposes symmetric normalization using Laplacian matrix D−
1
2AD−

1
2

to improve the learning dynamics; the layer-wise propagation mechanism for a multi-
layered GCN is formulated as:

H l+1 = σ
(
D−

1
2AD−

1
2HlWl

)
(3.19)

where H l ∈ RN×M is the matrix of node representation in the lth layer; H0 = X. A
is the adjacency matrix of the graph G, and D = diag

(∑
j Aij

)
is a degree matrix.

The graph attention networks (GAT) are another popular variant of GNN that
incorporates an attention mechanism to capture the context of importance among
the nodes [288]:

hu = σ

(
1

du

∑
v∈Nu

αuvWxv

)
(3.20)

where αuv is the attention coefficient from node v to u.
Ref. [289] presents a gated graph sequence neural network (GGS-NN) that adopts

GNNs for temporal data using RNNs for nodes with sequential features. The mes-
sage passing of GGS-NN employs GRU for updating node features per each time
step:

hu
t+1 = GRU

(
hu

t,
∑
v∈Nu

Whv
t

)
(3.21)

where ht is node features at the t time step, respectively.
GNNs have achieved promising performance in MTS forecasting [175, 177] and

AD [95, 108, 129]. There are specific challenges that need to be overcome when
modeling multivariate data using GNNs: 1) the heterogeneity of sensors that monitor
different quantities, and 2) more importantly, the graph edges—representing the
relationships between sensors—are initially unknown in most settings. Refs. [95,
108, 177] utilize signal processing—linear correlation maps—to generate the GNN
model input-output graph data. [129,177] propose graph edge learning during model
training. Training deep GNNs can generally be tough. The node characteristics
may converge to the same vector and become practically indistinguishable for deeper
GNN; this phenomenon is called over-smoothing [290]. Another challenge is the over-
squashing of information from many neighbors into fixed-size vectors. Researchers
have suggested using edge-wise dropout, pairwise distance normalization, node-wise
mean and variance normalization, and residual skip connections [291]. While these
strategies allow training GNNs with shallow layers, further research is necessary for
deep GNNs. An in-depth technical discussion of GNNs is available in Refs. [283,
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292,293] and survey in Refs. [294,295]. Very recent work in Ref. [296] reviews GNNs
for sequence molding in NLP.

RNNs and CNNs struggle to provide model decision and interaction explanations
among multivariate data despite their dominance in TS modeling. We still rely on
post-hoc model explanation tools—like Shapley additive explanations (SHAP) [221]
and integrated gradient (IG) [85], and class activation map (CAM) [297]—to ex-
plain models in TS data. Despite the demonstrated promising efficacy of inferred
post-hoc explanation in some TS data, a research gap exists to fully understand
their effectiveness and development of a method that accounts for sequential char-
acteristics [41, 297–300]. GNNs are emerging as promising approaches to explain
relationships between variables without post-hoc methods and offer the potential
to provide intuitive insights into complex data. Their network parameters—e.g.,
node attention scores—and generated graph networks—e.g., edge linkage and edge
weight—equip interpretable relations among graph nodes [108]. Self-explainable
models could benefit from future GNNs—particularly in influence prediction, causal
interaction, and AD based on interaction network deviations.

Deep learning networks for TS modeling can greatly benefit from the long-
sequence learning ability of RNNs and the parallel processing and attention ca-
pability of transformers. The multivariate interaction learning ability of GNNs
can complement these capabilities and lead to the development of robust and
interpretable models in future research [129, 185]. Hybrid models that incorpo-
rate different networks—RNNs, CNNs, transformers, and GNNs—tend to achieve
better performance and are commonly utilized in real-world industrial applica-
tions [41, 70,129,186].

3.3 Architectures for Time Series Modeling

We will highlight below deep learning architectures for TS modeling—including feed-
forward, deep autoencoders, deep variational autoencoders, generative adversarial
networks, and sequence-to-sequence modeling.

3.3.1 Feed-Forward Architecture

Feature extraction and decision-making are the two main network blocks of a feed-
forward architecture. The feature extraction block extracts important features
from the input data, and the decision block maps the extracted features to the
final output. This architecture is widely utilized for classification, regression, and
unit-timestep forecasting tasks on various data types—including time series, texts,
images, and graphs. The feature extraction network handles input data char-
acteristics, and the decision network is typically fully-connected neural networks
(FC) [297, 300, 301]; RNNs and 1DCNNs are widely employed as feature extrac-
tion networks to provide time invariant feature sets for FC classification decision
networks [297, 301]. The accuracy of feature extraction plays a crucial role and
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often requires extensive training. Well-learned features encourage complexity sim-
plification of the final decision networks. The two-network architecture also enables
transfer learning in that pre-trained feature extraction networks—trained on differ-
ent data or tasks—are utilized while fine-tuning only the decision networks on a
given target data. The feed-forward architecture is typical for supervised learning
approaches, whereas the encoder-decoder architecture is for unsupervised model-
ing. These architectures are often discussed in separate categories since the design
concept differs.

3.3.2 Deep Autoencoders

An autoencoder (AE) is an unsupervised learning architecture consisting of encoder
and decoder networks trained to reconstruct the input data. The encoder (Eθ)
maps the input X to a latent space representation z. The decoder (Dω) then tries
to reconstruct the input data X̄ from z. The AE function Fae can be formulated as:

X̄ = Fae(X)

z = Eθ(X)

X̄ = Dω(z)

(3.22)

where the θ and ω are trainable parameters for the encoder and decoder networks,
respectively. The networks commonly use RNNs, CNNs, and transformers to learn
temporal characteristics. AEs are trained by optimizing a reconstruction loss func-
tion L(X, X̄). Although there are several types of loss functions, mean absolute error
(MAE) and mean squared error (MSE) are among the widely employed.

Lmae = E[|X− X̄|]
Lmse = E[(X− X̄)2]

(3.23)

where E is an expectation operator.
Deep autoencoders are AEs with deep layers in their encoder and decoder net-

works (see Fig. 3.4). They are potent tools widely found in feature extraction,
dimensionality reduction, and data compression applications. Deep AEs often em-
ploy constrained—bottleneck—encoders to extract low dimensional latent features
z from the high dimensional input data X. Deep AEs offer robust function general-
ization when utilizing nonlinear Eθ and Dω networks, but they are also susceptible
to overfitting as the number of model parameters increases—necessitating careful
network design.

Deep AEs have been successfully employed for unsupervised AD modeling—
trained to effectively reconstruct only healthy patterns so that the reconstruction
error grows when encountering anomalous patterns. AD using AEs can be sensitive
to model complexity and may not always guarantee higher reconstruction errors for
anomalous patterns, as anomalous data may also be well reconstructed at times—
leading to the omission of anomalies [41, 132]. Limited model complexity would
hinder learning relevant patterns—resulting in higher reconstruction errors even
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Figure 3.4: Deep autoencoder model. The X and X̄ are the input and reconstructed
multivariate data, respectively.

for healthy patterns. Ref. [302] introduces the latent-insensitive autoencoder (LIS-
AE)—employs unlabeled data from a similar domain as negative examples to shape
the latent layer of the AE—to avoid reconstruction of anomalous patterns.

Anomaly detection can also be carried out on the latent space of an AE; it
assumes dissimilarity in the latent characteristics of healthy and anomaly pat-
terns [41, 303–305]. Algorithms based on such as density, probability, and distance
estimation are employed to measure or model the discrepancy in latent values for
AD [12]. These algorithms evaluate the difference between latent vectors of the input
data and healthy reference data. The density-based approach identifies anomalies
in data regions with low density or high variability. Probability- and distance-based
methods compare the closeness of latent vectors of input data compared to the
healthy data to detect anomalies. Since AEs may not entirely guarantee a variance
in the latent space, and overlapping latent regions are not uncommon, they require
careful design and model tweaking [302,304]. Employing both the reconstruction and
latent AD may thus leverage the performance of AD since hyperparameter tuning
of AEs heavily relies on empirical analysis [41,303,304].

3.3.3 Deep Variational Autoencoders

Variational autoencoders (VAEs) are probabilistic generative models with different
mathematical formulations from regular AEs (see Fig. 3.5). The reconstruction
decoder network becomes a data generator by taking input from random samples
on the latent space [83]. VAEs provide control over the latent space distribution of
the encoder to render continuous probabilistic latent representation that resembles
a known distribution—commonly a Gaussian distribution N (µ, σ).

The encoder and decoder model probabilistic conditional distributions in which
the encoder (Eθ) approximates the posterior distribution qθ(z | x) and the generative
decoder (Dω) models the prior likelihood distribution pω(x̄ | z), where θ and ω denote
network parameters. The θ minimizes the distribution disparity between qθ(z | x)
and pω(z | x) during VAE model training, and the ω reduces the reconstruction error
between the input x and the output x̄. Kullback-Leibler divergence (KL) distance
(DKL) is frequently used to measure the difference between the two distributions.
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Figure 3.5: Deep variational autoencoder model. The X and X̄ are the input and
reconstructed multivariate data, respectively. The z = µz + σz ⊙ ϵ, where the µz

and σz are outputs of the encoder, the ϵ ∼ N (0, I), and ⊙ signify an element-wise
product.

The training loss function Lvae combines the two losses as:

LKL = DKL [qθ(z | x), pω(z | x)] = Ez∼qθ(.|x)

[
ln
qθ(z | x)
pω(z | x)

]
Lvae = Lrec + βLKL

(3.24)

where Lrec and LKL are the reconstruction and regularizing KL loss, respectively.
The β is a hyperparameter weight factor of the KL regularization. When training
a VAE with the backpropagation, one cannot use the expectation operator E of
the LKL within the gradient operator. A reparameterization trick is employed to
overcome this problem forDKL [N (µz, σz),N (0, I)], that involves a standard random
number generator ϵ ∼ N (0, I) and z = µz + σ ⊙ ϵ. The ⊙ signify an element-wise
product [83].

Deep VAEs have also achieved promise in AD [41,97,125,306,307] besides their
typical application in synthetic data generation [83]. The contribution of the VAEs
for AD is relative robustness against overfitting in reconstruction and the proba-
bilistic latent representation [41,307]. The deviation in the KL loss can also provide
an additional metric for detection [307].

3.3.4 Generative Adversarial Networks

Generative adversarial networks (GANs) are another type of generative modeling
approach that is more robust than VAEs [308]. GANs utilize an adversarial training
process that includes two networks: a generative model Gθ, and a discriminative
model Dω. The Gθ captures the data distribution and generates data that is close
to the real training data, while the Dω estimates the likelihood that a sample came
from the training data instead of Gθ. The Gθ competes with theDω and the feedback
from Dω improves its accuracy. The improvement on Gθ aids the Dω to enhance its
discrimination sensitivity between real and fake data. The model training adversarial
loss function is given as:

min
Gθ

max
Dω

V (Dω, Gθ) = Ex∼Px(x)[logDω(x)] + Ez∼Pz(z)[log(1−Dω(Gθ(z)))] (3.25)
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Training GAN has several failure modes and still poses great theoretical and
empirical challenges [309–311]. Training through first-order optimization methods
such as gradient descent commonly fails to converge to a stable solution where the
Gθ and Dω cannot improve their objective [312,313]. Another challenge of GANs is
mode collapse failing to generalize properly—missing entire modes from the input
data [311]. This may happen when the generator learns quickly compared to the
Dω, a weak discriminative network that fails to notice the pattern of omission or
bad choice of an objective function [310]. GANs may suffer from a vanishing gradi-
ent problem when the Dω learns quickly and becomes perfect before the generator;
it can almost perfectly distinguish real and fake data—leaving the Gθ stuck in a
very high loss with a very small gradient to pursue the right direction. Ref. [311]
presents the Wasserstein GAN by modifying the discriminator and the loss function
to mitigate mode collapse and vanishing gradients issues. Ref. [312] proposes a pro-
gressive curriculum learning scheme that starts with simple generation and scales up
to achieve convergence on GAN. Ref. [313] discusses stable convergence GAN using
a two-time scale update rule (TTUR) method that employs a lower learning rate for
the generator to slowly drive the discriminator while capturing the required gener-
ation information. Building effective networks for the Gθ and Dω and formulating
optimal training loss functions are active research areas in GANs [314].

The G and D are made of sequential data handling networks such as the
RNNs [131, 315–318] and CNNs [134] for time series modeling. GANs have been
studied primarily in TS generation [315–318] and AD applications [131, 134]. AD
using GANs differs from AE-based AD mechanisms and can be more complicated.
The discriminator can be used directly to detect anomalies; the generator compli-
cates the AD since GANs do not allow direct estimation of latent variables from
input data [131,134].

3.3.5 Sequence-to-Sequence

Sequence-to-sequence (S2S) is an encoder-decoder architecture and is essentially sim-
ilar to TS AEs—both first extract representational context features from the input
sequence data and construct the target sequence data from the context features [256].
An encoder-decoder architecture can be employed for input data reconstruction—
like AEs—or prediction of different target variables with different time and feature
dimensions—like S2S. The sequential generation of S2S is also slightly different:
the decoder uses the context vector of the encoder and the hidden state of the de-
coder along with the previously generated token to iteratively generate the output
sequence—one or a sequence of tokens at a time [255, 256]. Sequence-to-sequence
modeling is widely applied to sequence prediction in language translation [255,256],
text summarization [319, 320], conversational models [319], image captioning [321],
and multi-time step forecasting [70,167,179,282]. The recent large pre-trained lan-
guage models (LLMs)—including Google’s BERT [322], Amazon’s AlexaTM [323],
Meta’s LLaMA [324] and OpenAI’s ChatGPT [325]—utilizes S2S modeling.

Sequence-to-sequence models are known for their flexibility in handling a wide
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range of tasks and variable-length input and output sequences [70,167,179,255,256,
282, 319, 321]. One of the major challenges is their computational expense during
training, which makes them difficult to optimize. S2S models may overfit the train-
ing data—leading to poor performance on new data—if not properly regularized.
They may also face difficulty handling very long input sequences as the context
vector may only capture some of the information in the input sequence—creating
a bottleneck [70, 255]. Attention mechanisms allow the network to focus on the in-
put sequence selectively and overcome the bottleneck—making it easier to handle
longer sequences [70,167,255]. Attention improves the encoder-decoder architecture
performance by allowing the model to automatically search for relevant parts of
a source sequence that are relevant for predicting the target output [255]. RNNs
with attention mechanisms dominate the S2S architecture arena [70, 255, 319, 320],
and recent studies on NLP tasks are also engaging transformers for their parallel
processing, multi-head attention, and faster training [167,179,282,321].

3.4 Explainable AI for Time Series Modeling

Deep learning models are black-box models that are challenging to explain or in-
terpret. This difficulty curtails the wider model deployment in many real-world
applications; black-box systems lack transparency and can be more difficult to mon-
itor and regulate. An explainable AI (XAI) aims to increase the confidence, stability,
and robustness of AI models [326]. XAI investigates various objectives—including
explainability, interpretability, trustworthiness, interactivity, stability, robustness,
reproducibility, and confidence [326]. Explainability and interpretability are the
two primary concepts examined to establish trustworthiness through XAI [326,326].
Although the definition of the XAI terms varies in the literature [327, 328], we use
the following definitions:

Definition 14. Explainability refers to the decision-making process explanation of
models from the input to the output.

Definition 15. Interpretability refers to the passive characteristic of models and
refers to the requirement of a meaningful or sensible explanation to humans.

XAI discusses post-hoc and ante-hoc methods in the literature for DL mod-
els [327, 329]. Post-hoc methods—predominantly utilized—involve approximating
ML model behavior by identifying relationships between feature values and predic-
tions. These methods can be model-agnostic or model-specific knowledge extraction
approaches [327]. A vast effort has been devoted to developing post-hoc methods to
understand and explain black-box DL models [221,330,331]. Ante-hoc methods inte-
grate explainability into the ML model architecture to create a fully self-explainable
model (glass-box) [329]. [329] strongly argues against black-box ML models for high-
stakes decisions in criminal justice, healthcare, and computer vision and advocates
for interpretable models instead to avoid bias and promote fairness.
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Researchers, developers, and policymakers are still debating the effectiveness
of post-hoc and ante-hoc approaches [329,332]. There is also an ongoing discussion
against explainability in relation to model complexity [333]. [333] argues that having
capable and complex models is more advantageous than a functionalist understand-
ing of models, while others argue the opposite [332, 333]. XAI is a broad concept
with diverse techniques in the literature, and we will limit our discussion below only
to selected studies on XAI for TS modeling.

The area of explainability for TS modeling has remained relatively unexplored
despite the advancements in XAI [326, 331, 334]. The XAI for multivariate TS
is significantly challenging—less intuitive than other data types like images [326,
335]. A few studies thus far have presented XAI approaches for TS modeling [326,
331, 334]. Refs. [326, 331] review XAI techniques applied to time series data. The
authors discuss the types of generated explanations and the limitations and point
out potential research directions. Ref. [15] presents elaborated measuring methods
to quantify explanations for MTS AD models.

Refs. [297,300] employ a class activation map (CAM)—enabled by global average
pooling in a CNN model—to discover contributing regions in the raw TS data for a
TS classification (TSC) task. GradCAM extends the capability of CAM into other
network types—beyond global pooling—using gradients to compute the CAM [299,
300]. Ref. [334] discusses visualizations of the most influential saliency input points
for a particular prediction through gradients for univariate TSC models. [41, 336]
demonstrate the feasibility of post-hoc explanations of Shapley additive explanations
(SHAP) [221] and integrated gradient (IG) [85] for TS AD explanation. The lack
of AD data sets with adequate causality annotation limits the research in XAI
on TS data [15]. TSViz [335] presents a visualization framework for demystifying
convolutional filters of DL models in TS analysis. They propose a visual saliency
explanation and clustering of the convolutional filters for determining the primary
sources of variation learned by the network through inverse optimization. They have
identified parts of the network responding to a particular stimulus with the computed
influences. The accuracy of the models degraded when filters with high influence
scores were pruned or slight perturbation was added at the saliency regions of the
input data. N-BEATS [337] builds an interpretable DL architecture with backward
and forward residual links—provide interpretable results by decomposing the time
series data into trend and seasonality on a univariate forecasting model.

Ref. [180] proposes the integration of a DL with state-space modeling (SSM) for
explainable TS modeling. The concept combines the learning complexity benefit of
DL with the easy interpretability of SSM. A transformer learns the temporal patterns
and directly estimates the parameters of the SSM; the SSM provides interpretability
by decomposing the time series data into trend and seasonality. The attention
of the transformer is also utilized to identify which parts of the past history are
most important for the prediction. This study did not provide interpretability from
the interaction of multivariate variables. We will discuss below the background
concepts of post-hoc explanation methods since we employ the methods to explain
the prediction of our black-box AD models.

65



3.4.1 Explanation using Feature Attribution

Post-hoc XAI methods are dominantly employed to explain the predictions of ML
models and facilitate model deployment into real-world settings. There are two main
post-hoc model explanation methods categories: prediction-level and dataset-level
explanations—also known as local and global interpretations [327]. Prediction-level
approaches describe individual predictions made by models—the contribution of
features or interactions that led to the specific prediction [336]. Dataset-level ap-
proaches focus on capturing the global relationships in the model—e.g., the global
feature importance rank by measuring prediction accuracy degradation when the
input variables exhibit randomly permuted values [338, 339]. Prediction-level in-
sights provide detailed information on individual predictions, but explanations from
specific predictions do not necessarily represent the global explanation of the model.
AD applications can benefit more from local interpretability since different anoma-
lies may require different explanations [41].

Several variants of prediction-level feature attribution explanation algorithms—
including LIME [330], SHAP [221], DeepLIFT [340], IG [85], SmoothGrad [341], and
GradCAM [299, 300]—have been proposed for deep learning models. The state-of-
the-art prediction-level explanation approaches generally follow perturbation [221,
330] and gradient [85, 299, 341] techniques. Perturbation-based methods, such as
LIME [330], and SHAP [221], generate the explanation by evaluating the output
change after replacing the features with randomly perturbed variables [221, 330].
They explain an output prediction of a given ML model by approximating it locally
with an interpretable linear model around the prediction [221,330]. Gradient-based
methods, such as IG [85] and SmoothGrad [341], explain predictions by tracking the
backpropagation gradients of the outputs with respect to input instances [85, 299,
341]. IG variants are axiomatic explanation algorithms that compute the relevance
score to input features by approximating the integral of gradients—sensitivity. In
our study in Ref. [41], we combine SHAP [221] and IG [85] to capture the importance
of the MTS input sensors on the detected anomalies.

SHapley Additive exPlanations (SHAP): The SHAP methods explain indi-
vidual predictions based on game theory for optimal Shapley values [221]. The
Shapley values show how to distribute the prediction among the features fairly, and
the explanation is represented as an additive feature attribution method:

F(X) ≈ G (X′) = ϕ0 +
∑
∀i

ϕix
′
i (3.26)

where the F and G are the original prediction and the explanation linear models,
respectively. The x′j ∈ {0, 1}M is simplified input features (1 denotes feature pres-
ence in the coalition, and 0 otherwise), and M is the number of simplified input
features. The ϕj ∈ R is the Shapley feature attribution value for an input feature
xi, and ϕ0 represents the model output with all simplified inputs missing. The ϕi

is estimated to meet the desirable properties of SHAP—local accuracy, missingness,
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and consistency:

ϕi =
∑

S∈N\xi

|S|!(M − |S| − 1)!

M !
[fx(S ∪ {xi})− fx(S)] (3.27)

where S is the set of non-zero indexes in x′, and N is the set of all input features.
There are several variants of SHAP proposed in the literature, such as a model-

agnostic KernelSHAP, TreeSHAP for tree-based models, and DeepSHAP for deep
neural networks. The KernelSHAP is computationally very slow and impractical to
compute Shapley values for many instances. The TreeSHAP is an efficient estimation
version of SHAP for tree-based machine learning models [84]. It defines the value
function using the conditional expectation instead of the marginal expectation—
KernelSHAP—which ignores feature dependence like most permutation-based meth-
ods. TreeSHAP reduces the computational complexity of computing exact Ker-
nelSHAP values from O

(
TL2M

)
to O (TLD2) by approximation for tree-based

models, where T is the number of trees, L is the maximum number of leaves in
the trees, and D is the maximum depth of any tree. The limitation of the condi-
tional expectation of TreeSHAP is that features that do not influence the prediction
function can get a TreeSHAP estimate different from zero; a non-zero estimate can
happen when the feature is correlated with another feature that actually influences
the prediction. The DeepSHAP combines the DeepLIFT [340] method with the
SHAP [221] framework for deep neural networks to improve ML model explanation.
Ref. [342] recently introduces baseline Shapley (BShap) for global interpretation and
local explanation of machine learning algorithms.

Integrated Gradients (IG): The IG is another local attribution method based
on an axiomatic model explanation algorithm—using sensitivity and implementation
invariance axioms [85, 341]. IG is also based on the Shapely concept but with a
generalization to include continuous settings [342]. It computes the relevance score
to each input feature by approximating the integral of gradients—sensitivity—of the
DL network model’s output with respect to the inputs along the path from given
baselines or references to inputs [85]. IG assumes that a given two networks are
functionally equivalent—invariance—when their outputs are equal for all inputs or
have identical attributions despite having very different implementations. Given
a target input X and a network function F , feature attribution methods assign
an importance score ϕi(F ,X) to the ith feature value representing how much that
feature adds or subtracts from the network output:

ϕIG
i (F ,X,X′) =

Difference from baseline︷ ︸︸ ︷
(xi − x′i) ×

∫ 1

α=0︸︷︷︸
From baseline to input

accumulate local gradients︷ ︸︸ ︷
δF (X′ + α (X− X′))

δxi
dα

(3.28)
where X is the current input, F is the model function, and X′ is some baseline input
that represents the "absence" of feature input. The subscript i denotes indexing into
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the ith feature. A large positive or negative ϕi indicates that the feature strongly
increases or decreases the network output, respectively; an importance score close
to zero indicates that the feature in question did not influence F . The IG method
is applicable only when the gradient of the prediction score with respect to the base
features is defined—deep learning networks; it does not apply to models like tree
ensembles since their response surface is not differentiable [342].

3.4.2 Quantifying Explainability and Interpretability

The consensus on evaluation mechanisms for explanation and interpretation algo-
rithms is still developing and recent studies have started to address it [15, 307,
327, 328, 331, 343]. The studies discuss the desired properties of the XAI mod-
els [328], evaluating the provided explanation [331, 343], guidance for effective
evaluation [327], and quantifying the evaluation based on the end target appli-
cation [15, 307]. Ref. [327] presents the PDR framework with three criteria for
selecting explanation methods for a given problem: predictive accuracy, descrip-
tive accuracy, and relevancy. Predictive accuracy refers to the ability of a model
to approximate the underlying data relationships. The descriptive accuracy mea-
sures the extent to which an explanation method can approximate what the model
has learned. Relevancy deals with the importance of the extracted explanation for
the target audience. Ref. [331] formulates sensitivity measuring metrics of post-
hoc XAI solutions, such as LIME [330], IG [85], and SmoothGrad (SG) [341], for
TS CNN models. Ref. [331] proposes several metrics—including max short-term
sensitivity (MSS), max long-term sensitivity (MLS), average short-term sensitivity
(ASS), and average long-term sensitivity (ALS)—to evaluate the sensitivity of the
XAI models on a synthetic and real TS data sets. The study indicates higher sensi-
tivity of the post-hoc methods for a smaller time window data, and changes in the
network parameters and data properties fluctuate their response. A recent study
in [15] introduces the Exathlon approach to explain collective anomalies—occurring
over a period of time—in multivariate TS data. The authors propose four evalua-
tion criteria to quantify the results of anomaly detection: anomaly existence, range
detection, early detection, and exactly-once detection (see Fig. 3.6). Anomaly exis-
tence refers to flagging the presence of an anomaly somewhere within the anomaly
interval, which consists of the root cause interval (RCI) and the extended effect in-
terval (EEI). Range detection measures the precise time range of an anomaly. Early
detection evaluates the latency between flagging the anomaly and the start time of
the corresponding RCI. Exactly-once detection measures the ability of the algorithm
to report each anomaly instance exactly once and avoid duplicate alerts. The au-
thors use customizable range-based accuracy evaluation metrics to assess how well
an AD algorithm can meet these four functionality levels.

Ref. [307] adopts a HitRate@P metric—from recommender systems in
Ref. [344]—to quantify the interpretation using the anomaly flag hit counts from each
TS variable for their OmniAnomaly AD model—employs GRU and non-Gaussian-
VAE. The AD model generates the contribution from all variables into a list ASt—
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Figure 3.6: The Exathlon evaluation criteria for MTS AD [15]. The precision eval-
uates prediction quality (green out of yellow for each Pi). The recall evaluates
anomaly coverage (green out of blue for each Ri).

ordered by their contributions—for a detected anomaly at. Let GTt be the ground
truth list containing the univariate variables indeed contributing to anomaly at, and
the HitRate@P is given as:

HitRate@P% =
Hit@top ⌊P%× |GTt|⌋

|GTt|
(3.29)

where |GTt| is the length of GTt and P set 100 or 150 in Ref. [344]. Hit@P% equals
the number of overlapping dimensions between ground truth GTt and the top⌊P%×
|GTt|⌋ contributing dimensions in ASt suggested by an AD model. Lets use a toy
example to explainHitRate@P% on a 4-variable observations with ASt = {2, 1, 3, 4}
and GTt = {1, 3}. This results in |GTt| = 2, and top⌊100%×|GTt|⌋ = 1, as only one
matched—{1}—with GTt from the top two of ASt → {2, 1}; the HitRate@100%

becomes 0.5. Similarly, HitRate@150% = 1.0, as the top⌊150% × |GTt|⌋ = 2 (two
matched, {1, 3}, from the top three, 150%|GTt| = 3, of ASt → {2, 1, 3}).

The Exathlon [15] extends the explanation formulation approach of Ref. [307]
for quantifying MTS AD results. The authors follow a similar approach of
HitRate@P [307, 344] for multivariate consideration and add more desired prop-
erties for local and global explanations, such as conciseness, consistency, and accu-
racy. The conciseness property corresponds to the number of features used in the
explanation. Consistency refers to anomalies of the same type—that occur in a sim-
ilar context—are expected to have consistent stability explanations. The accuracy
properties measure the accuracy of the explanation on similar anomaly instances
using a predictive model. Exathlon employs hit matching algorithms between GTt
and ASt to quantify conciseness. It utilizes a count metric of how many variables
in the MTS with anomaly reports have actual anomalies to measure conciseness.
A subsampling procedure is used from the same anomaly time range to measure
consistency—generating several subsamples and expecting the anomaly explanation
to remain the same.

It is important to measure the explanations generated by explainable AI to ensure
that the predictions made by deep networks are trustworthy. The measurement of

69



these explanations can also help distinguish a more robust model from a weaker
one, even when both models make identical predictions [299, 307]. Future research
on graph neural networks and attention mechanisms has the potential to enable
explanations in quasi-anti-hoc mode while exploiting the power of deep learning.

3.5 Impact of Data Normalization

Deep learning models involve multi-layer architecture involving several networks
and activation functions. Scaling the modeling data sets to the operating ranges
of the models is important to enhance training—mitigate saturation, and improve
regularization [345–347]. Multivariate data can have a different range of values, and
data normalization reduces the scaling heterogeneity that enhances learning and
speeds up convergence. There are several normalization techniques—including but
not limited to:

• Min-max : xs = (x − xmin)(smax − smin)/(xmax − xmin) + smin. Maps x ∈
[xmin,xmax]→ xs ∈ [smin, smax].

• Z-scale: xs = (x− µx)/σx. Maps x ∈ D(µx, σx)→ xs ∈ D(0, 1).

• Decimal scaling : xs = x/K. Maps x ∈ [xmin,xmax]→ xs ∈ [xmin/K,xmax/K].

• Sigmoid : xs = 1/(1 + e−x). Maps x ∈ [xmin,xmax]→ xs ∈ [0, 1].

• Tanh: xs = (ex − e−x)/(ex + e−x). Maps x ∈ [xmin,xmax]→ xs ∈ [−1, 1].

where x and xs are the raw and scaled data, respectively. The subscripts min,
max, and superscripts µ, σ denote the minimum, maximum, mean, and standard
deviation values, respectively. D(µ, σ) designates data distribution function with
mean µ and deviation σ.

The choice of normalization techniques can significantly affect the prediction
performance. Most DL models for TSAD have reported a low efficacy or exhibited
high sensitivity to hyperparameters when evaluated on new sittings [12,81,130]. The
lack of a robust generic normalization approach could be the reason for the reported
performance deterioration in several of the models. Autoformer [179] employs a
seasonal-trend decomposition for normalization for time series forecasting. It has
utilized a moving average trend decomposition to achieve a considerable accuracy
increase—by around 40%. Ref. [185] highlights the importance of normalization in
deep learning for time series modeling. The authors applied the seasonal-trend de-
composition from Ref. [179] to various recent time series forecasting transformers,
such as Autoformer [179], Fedformer [184], Informer [167], TFT [178], and SSD-
NET [180]. The results indicate that normalization contributes significantly to the
performance boost of 50% to 80%—significantly higher gain than the difference in
model architecture.

Machine learning models often encounter out-of-the-training data during model
inference—a data concept drift phenomenon that occurs when the training data
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do not adequately cover the statistical distribution of the data [41, 348]. Models
may struggle to keep accuracy even when trained with normalized data sets in
such situations. Ref. [242] suggests a simple initialization scheme for TCN weights-
CNN kernel weights initialized to generate average values—to alleviate the challenge
and avoid normalization. They also propose a normalized absolute deviation loss
function—total reconstruction error divided by the total target value. We found the
approach promising, but it might be challenging to apply the initialization scheme
to complex multilayer FC and RNN networks. Ref. [348] propose a simple reversible
instance normalization (RIN) method that can effectively improve the performance
of time-series forecasting models in the presence of out-of-range data distribution
shifts. The approach involves standardizing the data input per time window slice
and then applying a reverse operation to generate the final output. The RIN has
demonstrated significant performance progress across several models. Out-of-range
data normalization is necessary for various time series modeling problems beyond
forecasting tasks, and different modeling tasks may require specific normalization
techniques to achieve the desired outcome.
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Chapter 4

Anomaly Detection

This chapter presents our studies on deep learning modeling for multivariate
anomaly detection on infrastructure monitoring and data quality monitoring.

4.1 Unsupervised Deep Variational Model for Mul-
tivariate Sensor Anomaly Detection

The ever-increasing complexity of the CMS detector triggers a call for increasing au-
tomation since the quality of collected physics data hinges on the healthy operation
of the detector at the time of data-taking. We present a data-driven unsupervised
anomaly detection using a deep learning model (CGVAE) to rapidly identify detec-
tor system anomalies from multivariate time series sensor data of the HCAL. The
CGVAE model consists of a variational autoencoder with convolutional and gated
recurrent unit networks for fast localized feature extraction, long temporal charac-
teristics capturing, and descriptive representation learning. The CGVAE employs
encoded latent and reconstruction metrics for anomaly detection to mitigate signal
reconstruction overfitting on anomalous patterns. The model integrates feature at-
tribution algorithms to explain the contribution of the input sensors to the detected
anomalies. The experimental evaluation on large sensor data sets of the HCAL
demonstrates the efficacy of the proposed model in capturing temporal anomalies.

Several studies have proposed ML models for AD applications for the LHC sys-
tems [52,56] and DQM [39,40,50,52,56,67,127]. There have been few efforts carried
out thus far to exploit temporal sensor data despite the acknowledged potential in
the future CERN automation technology challenges [39]. Refs. [52,56] have explored
time-series deep learning for safety monitoring of the LHC accelerator magnetic sys-
tems. There are limited tangible efforts in exploring ML algorithms to underpin
system monitoring automation of the CMS detector through AD models [69]. This
study focuses on developing a time-aware, unsupervised AD model for HCAL from
multidimensional readout boxes (RBXes) monitoring signals. The multivariate time
series sensor data includes readings from voltage, current, and power sensors of
various components of the ngCCM of the HCAL.

Although abundant studies have presented deep AD models using different com-
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binations of convolution network, recurrent network, and variational autoencoder
for time series data [95–97, 125], our proposed model is the first to combine all the
three blocks for fast localized multidimensional feature extraction, long temporal
behavior capturing, and probabilistic representational learning, respectively. Previ-
ous studies on AE-based temporal AD models [95–98,125] rely on AD metrics either
from reconstruction error or latent features. AE-based AD models may struggle to
generate high reconstruction errors or distinguishable latent mappings for anoma-
lous signals [303]. We propose employing reconstruction and latent attributes to
mitigate over-fitting limitations on anomalous data.

We validate the efficacy of the proposed AD model in detecting temporal point
anomalies (spikes and dips) and discords (unusual time series subsequences) on 34
RBXes. We compare the AD performance with alerts generated from the ngCCM’s
error counter quantities—current fault monitoring variables at the HCAL. We in-
corporate an ablation study on the CGVAE model to demonstrate the relevance and
contribution of the model blocks. We integrate feature attribution algorithms into
our AD system to capture potential influence from the monitored sensors to the gen-
erated anomaly flags. We demonstrate that feature attributions can be combined to
provide end-to-end output explanation when a given system consists of more than
one model—deep autoencoder and novelty detector based on isolation forest in our
AD system. The key contributions of our work are highlighted below:

1. We present the first study on deep learning for time-aware AD for RBXes
monitoring from diagnostic sensor data.

2. We introduce CGVAE to detect multivariate temporally contextual anomalies
exploiting both reconstruction errors and novelty scores on encoded latent
features along with detection explanation—using pipelined feature attribution
methods.

4.1.1 Dataset Description

There are two distinct sets of data that come from the front-end electronics of the
HCAL: 1) physics data sets, which contain all the measurements used to reconstruct
the properties of particles detected by the HCAL, and 2) electronics sensor data sets,
which are recorded for detector health monitoring and diagnostic purposes, and do
not contain any measurements that are used for physics data analysis. These diag-
nostic sensor data are recorded whenever the electronics are powered on—regardless
of whether particles enter the calorimeter. Our study focuses on developing an AD
model on those diagnostic sensor data and does not use any physics data sets.

We utilized the ngCCM sensor data from the HE detector collected in 2018
using the ngCCM server. The ngCCM server is software that handles the commu-
nications of the front-end controller interface for accessing the ngCCM. The data
set contains one-minute 420M samples from around 3.4K monitored quantities of
34 active RBXes (HEP01-18 and HEM01-18, excluding HEM15 and HEM16) from
September 15 to December 10, 2018. From 100 monitored sensors for each RBX,
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69 relevant monitoring quantities are identified and categorized into 32 sensors with
continuous values, 32 counters with monotonically increasing discrete values, and
5 flag variables with categorical values—after quantities with constant values and
large missing periods are removed. We selected only twenty-eight sensors for the AD
modeling and certain counters for model validation. The sensor signals are composed
of current, voltage, and optical power measurements of various components of the
ngCCM. We downsampled the data into 10-minute intervals by averaging to cap-
ture the relevant temporal information, as most of the sensors remain constant for
smaller time intervals.

4.1.2 Methodology

The requirement of the AD model for complex systems of the HE RBXes poses
certain challenges: e.g., capturing system-level anomalies—from the interaction of
multivariate IS signals—and sensor-level anomalies, scalability to all RBXes, gener-
ating low-dimensional representations, and explainable AD. We employ a variational
autoencoder (VAE), which utilizes latent and reconstruction anomaly scores for ro-
bust AD and generates low-dimensional system representation. We propose a single,
unsupervised, and end-to-end deep AD model for monitoring all RBXes through
learning generalization—employed adaptive data preprocessing and training data
incorporation from multiple RBXes to achieve scalability.

We employ a deep VAE model for the AD system. The VAE F operates on the
MTS senosr data X = [x1,x2, . . . ,xNx ] ∈ RT×Nx—a multivariate sequence with Nx

UTS sensor variables in a time window [t − T, t]. The Fθ,ω : X → X̄, parametrized
by θ and ω, attempts to reconstruct the input X and outputs X̄ data. The encoder
network of the model Eθ : X→ z provides low-dimensional latent space, z = Eθ(X),
and the decoder Dω : z→ X̄, reconstructs the ST data from z, X̄ = Dω(z) as:

X̄ = Fθ,ω(X) = Dω(Eθ(X)) (4.1)

We present the CGVAE AD model that detects deviation- and proximity-based
anomalies using reconstruction errors and novelty scores from the distribution of
the encoded latent features, respectively (see Fig. 4.1). The AD model employs a
constrained VAE with convolutional (CNN) and gated recurrent unit layers (GRU).
We employ an isolation forest algorithm (IF) for novelty detection from the latent
space of the AE; the encoder of the AE acts as a feature extraction block for the
IF [349]. We propose a mechanism of aggregation of multiple feature attribution
(FA) algorithms—integrated gradients (IG) [85] and TreeSHAP [84]—to provide
output explanation for the detected latent anomalies from the input TS signals.

The proposed AD system is composed of two subsystems.

1. Sensor AD: detects anomalies for each UTS sensor x using reconstruction
deviation as abnormality scores.

2. System AD: detects anomalies manifested in MTS sensors using novelty AD
detection on the latent features and aggregate reconstruction anomaly scores
from the sensor AD.
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Figure 4.1: System design of our proposed AD system. The AE yields reconstruction
scores and encodes latent features from the input signals. The detector performs
anomaly detection decisions. The explainer yields the influence of the input MTS
signals on the detected anomalies.

The AD system estimates various anomaly scores using a sliding time window T .
Time windowed scores effectively capture sequence collective anomalies—discords—
and strong point anomalies. The sensor AD uses reconstruction error ei at time t
based on mean absolute error (MAE) as:

ei(t) =
1

T

t∑
t′=t−T

|xi(t
′)− x̄i(t

′)| (4.2)

where xi and x̄i are the input and reconstructed univariate data for the sth sensor.
We generate the anomaly flags As = [a1, a2, . . . , aN ] after applying threshold Ks =

[k1, k2, . . . , kN ] on the standardized anomaly scores S = [s1, s2, . . . , sN ] as:

si = (ei − µi)/σi

ai = si > ki
(4.3)

where µi = E[ei] and σi =
√
E[(ei − µi)2] are the mean and standard deviation,

respectively, calculated on the training data set. The reconstruction score is stan-
dardized to compensate for the reconstruction performance variations across the
sensors. Each sensor has its own adjustable decision threshold ki to enable sensitiv-
ity tuning of the AD without triggering the need for model retraining.

The system AD reports multivariate anomalies using latent AD through the IF
model and multivariate reconstruction AD. The IF model is formulated as:

SLD = H(z)
ALD = SLD > KLD

(4.4)

where the H is the IF model, and SLD and ALD are the latent outlier score and
anomaly flag of the latent AD.

The multidimensional reconstruction scores S, and flags A = [ai, . . . , aN ] from
the sensor AD are aggregated using Mahalanobis distance (MD) estimation [350]
and additive flag scoring (AFS) method [307], respectively. The MD is an effective
multivariate distance metric between a point (vector) and is calculated as:

dMD =
√

(sj − sµ)T · C−1 · (sj − sµ) (4.5)
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where dMD is the MD distance of the multivariate reconstruction error. The
vector sj is the multivariate anomaly score of the jth observation, the vector
sµ = µ1, µ2, . . . , µN contains the mean values of the univariate anomaly scores esti-
mated on the training dataset, and C−1 is the inverse covariance matrix of S. We
generate the MD anomaly flags through AMD = dMD > KMDµMD, where KMD is
the detection sensitivity, and µMD = E[dMD] is the mean distance of the healthy
data and calculated on the training dataset.

The AFS is a simple method that sums up univariate anomaly flags ai from each
sensor as a system anomaly score:

SAFS =
N∑
i=1

ai

AAFS = SAFS > KAFS

(4.6)

where SAFS and AAFS are the count score and anomaly flag of the AFS metric.
We employ AFS to spot group and isolated anomalies across the multidimensional
monitoring sensors.

The final system AD combines all the multivariate AD flags using a union ag-
gregation:

AMTS = ALD ∪ AMD ∪ AAFS (4.7)

Model Architecture and Training : The AE of the proposed CGVAE AD
model combines the merits of 1DCNN1 RNN 2 and VAE (see Fig. 4.2). We employ
three layers of CNNs for fast and effective localized feature extraction from the sen-
sor signals. The shared nature of the filters in the CNN allows for capturing similar
features throughout the multivariate sequences, reducing the number of trainable
parameters compared to fully-connected neural networks. We integrate two layers
of GRU networks into the AE to capture long-term temporal dependencies from the
extracted localized features. We chose GRU over the other RNN variants because of
its simplified network with fewer trainable parameters but capable of achieving com-
parable performance [351]. We apply VAE [83] to enforce continuous, smooth, and
normally distributed latent representations in which close latent points correspond
to very similar reconstructions. Previous studies in the literature demonstrate the
superior performance of the VAE over the conventional AE in AD [103,307,352].

The AD model training process comprises data preprocessing and model training
(see Fig. 4.3). We prepared the modeling data sets after master-slave configura-
tion adjustments, data cleaning, and data standardization. The control cards—
J14 and J15—of the ngCCM operate in a master-slave configuration; consequently,
some sensors depend on the configuration. The input preprocessing adjusts the
variables as "MASTER" and "SLAVE" after identifying the master card from the
signal variations. Obtaining clean data for the healthy instances and reducing con-
tamination in the training data is one of the main challenges of semi-supervised

1https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
2https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
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Figure 4.2: Autoencoder architecture: the CNN blocks (CBe and CBd) employ
pipeline of three networks Nd

c = Nd
c = 3—each consists 1DCNN with 32 ker-

nels, BN for network weight regularization, LeakyReLU for non-linear activation
and MaxPooling1D and MaxUnpooling1D for data translation insensitive feature
retrieval and reconstruction unsampling in the encoder and decoder, respectively.
The RNN blocks consist of two layers N e

r = Nd
r = 2—RBe : GRU(8) → GRU(2)

and RBd : GRU(2)→ GRU(8). The VAE z = µz+σz⊙ϵ uses fully-connected linear
networks for µz and σz. The ϵ ∼ N (0, I) and ⊙ signify an element-wise product.

Figure 4.3: Model training workflow of the proposed AD system. MonDB: database
for monitoring sensor data, MTS: multivariate time series, SR: saliency mapping
spectral residual for univariate time series data, and IF: isolation forest.
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learning [99]. We utilize a spectral residual algorithm (SR)—a state-of-the-art and
lightweight univariate TS outlier detection method—to clean potential outliers from
each univariate sensor reading in the training set [95,148]. We standardize the mul-
tivariate data (into µ = 0, σ = 1) using [25%, 75%] quantiles to avoid sensitivity
to any leaked outliers. The sensor measurements across different RBXes have some
discrepancies—e.g., DC-shifting due to offset voltage variations or maintenance. We
employ an adaptive normalizer that detects transitions between stable states using
an online edge-detection algorithm based on Canny detector [353]—applies convolu-
tion between a derivative of Gaussian kernel with the input signal to detect robust
signal edges and smoothing noise (see Algorithm 1). The adaptive normalizer es-
timates the localized median values for each time segment between detected edges.
This mitigates false-positive transitions—due to changes in the operating center
after maintenance or reconfiguration—the heterogeneity among sensor signals and
local variations among RBXes. The normalization enables us to incorporate data
from different RBX systems into the training dataset and train a single model for
all RBXes; it also relieves the need for large training data sets that comprehensively
cover all possible scenarios, which is impractical in most cases.

Algorithm 1 Time series signal adaptive normalizer
1: procedure TimeSeriesAdaptiveNormalizer(x, τ, kd)

▷ x is the input univariate TS signal ▷ τ is the minimum signal segment length
2: xf ← SignalSmoothing(x) ▷ smooth and clean signal using sliding median filter
3: xe ← SignalEdgeDetection(xf ) ▷ generate signal transition edges
4: s← [ ] ▷ placeholder for normalized signal
5: for y, ly ∈ GetT imeSegemnt(xe) : do ▷ TS segments between consecutive edges
6: if ly > τ then
7: yn ← GetInitialStableReading(y, τ) ▷ get stable signal segment for normalization
8: else
9: yn ← y

10: end if
11: ȳ← y/MEDIAN(yn) ▷ normalized signal segment
12: s← Append(s, ȳ) ▷ stable signal for normalization
13: end for

return s

14: end procedure

We utilize mean absolute error (MAE) as the reconstruction loss function Lrec

regulized with KL divergence loss to achieve variational latent space to the AE:

Lrec = E
[
|X− X̄|

]
LKL = −DKL [N (µz, σz),N (0, I)]

L = Lrec + βLKL + ρ∥W∥22

(4.8)

where the E is a mean operator. The Lrec is the MAE reconstruction loss, LKL is
the KL divergence loss with tunable regularization parameter β, and the last term
of the L is L2 weight regularization with a parameter of ρ. We trained the AE
using Adam optimizer using a learning rate of 10−4, β = 10−3, and ρ = 10−7 on
5000 epochs with early-stopping; we trained the IF outlier detection model on the
extracted latent vectors of the training dataset after training the AE.
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Anomaly Detection Explanation: The AE generates reconstructed signals and
low-dimensional latent features from input signals with a time length of T . The
AD system calculates reconstruction and latent anomaly scores to detect anoma-
lies. Feature attribution algorithms render the anomaly explanations. We present
a multidimensional anomaly output explanation based on a combination of feature
attributions across different stages (see Fig. 4.4).

Figure 4.4: System AD anomaly score explanation via feature attribution estimation
using Integrated Gradient and TreeShap. FA from TS input variables to latent AD
score.

Explanation of AD decision after detecting anomaly is essential to facilitate
the applicability of data-driven AD models [336]. There is limited effort in the
literature on post-hoc model explanation for TS models [297–300]. Refs. [297, 300]
employ CAM approach—that require a global pooling layer—for widely used in
classification CNN models. Ref. [298] utilizes SHAP [221] to explain the output of
a gradient-boosted ML model applied to time series medical data. The modeling
approach was not based on the raw TS data; the TS data was transformed into
non-temporal statistical features using time windowing before modeling. Similarly,
Ref. [336] engages SHAP for AD explanation on a non-temporal autoencoder model.
Gradient methods such as IG [85] provide good accuracy and are computationally
faster than KernelSHAP and DeepSHAP for differentiable DL models [299,341]; IG
is not applicable for models with non-differentiable prediction surfaces—e.g., tree-
based models [342].

We present an explanation aggregation mechanism to adopt post-hoc feature
attribution (FA) methods for the TS AD model. We integrate multiple explanation
methods to fully explain detected latent anomalies sLD since the CGVAE AD model
consists of a deep learning AE model and a tree-based IF algorithm. We employ
IG [85] to estimate the feature attribution ϕe(X, z) of the sensor inputs X ∈ RNx×T

on the encoded latent features z ∈ RNz×1; this generates FA ϕe(X, z) ∈ RNz×Nx×T ,
where Nz, Nx, and T are the size of latent feature dimension, number of the input
sensors and size of the time window, respectively. The TreeSHAP [84] estimates the
FA ϕnd(z, sLD) ∈ RNz×1—the attribution of the latent features z on the AD anomaly
score output sLD of the IF. The end-to-end temporal FA ϕ(X, sLD) ∈ R1×Nx×T is
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the aggregated ϕe after weighted by the ϕnd as:

ϕ̄(X, sLD) =
Nz∑
l=1

ϕe(X, zl)× ϕnd(zl, sLD) (4.9)

We finally rank the input sensors based on a final aggregate FA scores ϕ(X, sLD) ∈
RNx×1 over the entire time window—exploiting the additive property of the FA scores
as:

ϕ(X, sLD) =
T∑
t=1

ϕ̄(xt, sLD) (4.10)

4.1.3 Experimental Results and Discussion

We trained the AD model on one-month data—01 – 31/10/2018–from three stable
RBXes—HEM01, HEM07, and HEP11—with relatively low outlier contamination—
and evaluated the performance for the entire date range of three months—15/09 –
10/12/2018—on all the 34 RBXes. We set T = 4 hours sliding time window with
30-minute steps for the anomaly score estimation. We heuristically determined the
ki = 15 ∀i, KLD = 0.8, αs = KMD = 15 and KAFS = 0 to estimate the detection
decision thresholds.

The distributions of the extracted low-dimensional representation latent features
of the RBXes are illustrated in Fig. 4.5. The AE maps the distribution of the
regular instances into the center as forced by the variational layer of the VAE.
Fig. 4.6 portrays the distributions of the employed anomaly scores relative to the
latent features for HEM01. The plot illustrates the clustered correlation between
the latent and the anomaly scores—stronger anomalies are farther from the center.
Some anomalies still overlap with normal operations near the center but with high
reconstruction errors—demonstrating the need to employ latent and reconstruction-
based metrics to leverage an AD system (see Section 4.1.2).

The HCAL experts utilize error flag counter quantities to monitor the RBX
health status. We thus generated anomaly labels from the most relevant error coun-
ters of the ngCCM (see Table 4.1) to evaluate the capability of the AD model. The
error counters relate to faults in communication, backend power, and digitization
electronics. The anomaly labels were produced for incremental changes on any of
the counters. We utilize the widely used classification metrics such as precision (P),
recall (R), and f1-score (F1) metrics for the evaluation:

P =
TP

TP + FP
,R =

TP

TP + FN
,F1 =

2× P ×R
P +R

(4.11)

where TP is true positive, FP is false positive, and FN is false negative; the true
class represents the anomaly.

Fig. 4.7 portrays the classification performance on detection accuracy of the
AD model. Fig. 4.8 depicts the contribution of each sensor from the sensor AD.
The results demonstrate the robustness of the AD model in capturing most of the
potential anomalies that are flagged by the error counters across the RBXes (see
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Figure 4.5: Distribution of the latent features of all RBXes: (left) for the HEM, and
(right) for the HEP.

Table 4.1: Error counter variables of the ngCCM of the HE subdetector.

Counter Category Error Counter Variables
B2B B2B_RX_PLL_LOCK_LOST_CNT, B2B_RX_PRBS_ERROR_CNT,

B2B_RX_RSDEC_ERROR_CNT
FEC FEC_BKP_PWR_FLIP_CNT, FEC_DV_DOWN_CNT,

FEC_RX_PRBS_ERROR_CNT
FLAG FLAG_FILTERED-CG, FLAG_FILTERED-LG, FLAG_FILTERED-PG
MEZZ MEZZ_QIE_RESET_MISSING, MEZZ_RX_PLL_LOCK_LOST_CNT,

MEZZ_RX_PRBS_ERROR_CNT, MEZZ_RX_RSDEC_ERROR_CNT,
MEZZ_TMR_ERROR_COUNT

Fig. 4.7). The low precision and consequently diminished F1 scores in some RBXes
suggest that the AD model produced more alerts that can be either false flags or
potential anomalies missed by the error counters.

We have found most of the FPs are actual outliers and potential anomalies. The
error counters (given in Table 4.1) have partial correlations only with some sensor
quantities, which monitor the backbone power and communication, and anomalies
from the remaining sensor are not covered. Not all the anomaly flags from the
error counters are thus manifested in the sensor data and vice-versa. Most detected
anomalies in FPs correspond to a change in temporal fluctuation patterns, gradual
decay, and ramping-up in some sensors. Since we have excluded the error counters
for the slave ngCCM control card during label generation due to stability issues on
their values, isolated anomalies from the slave card sensors are classified as false
flags in HEM05, HEM13, HEP05, HEP13, and HEP14. Fig. 4.9 demonstrates
the F1 noticeably improves for most RBXes with detection threshold αs from 5
to 35—sensitivity reduces—demonstrating the high-level ngCCM performance error
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(a) (b)

(c) (d)

Figure 4.6: The representational latent features and anomaly scores of RBX-HEM01:
a) generated anomaly flags from error counters of the RBX, b) latent-AD IF nov-
elty score, c) Rec-AFS-AD score, and d) Rec-MD-AD score. From b to d portray
anomaly scores, and the color bars show the strength.

counters correlate with the stronger sensor anomalies of the low-level electronic
components; the F1 score increases from 0.76 into 0.78 that the precision of detection
increases—lowering FP—with limited impact on the recall—TP—as the αs increases
up to 30.

We present an ablation study to demonstrate the relevance of the model-building
network blocks of the proposed CGVAE model. The convolutional and variational
networks are removed one by one from the CGVAE model: 1) CGVAE- the pro-
posed AD model, 2) CGAE- CNN-GRU AE without the variational layer, and 3)
GAE- a GRU AE without the convolutional and variational layers; it uses X(28)→
GRU(32)→ GRU(32)→ GRU(2)→ GRU(32)→ GRU(32)→ GRU(28) → X̄(28)

to avoid under-fitting. Table 4.2 summarizes performance on the F1 score. The
ablation study shows that the modeling blocks contribute to the performance gains
of the proposed CGVAE AD model. The CNNs stacked with the GRUs signifi-
cantly enhanced the learning performance compared to the GAE. The variational
low-dimensional latent from the CGVAE has achieved a relatively higher score on
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(top to bottom) Latent-AD- (ALD), Rec-AFS-AD (AASF ), Rec-MD-AD (AMD), and
Latent-Rec-AD (AMTS)—union of all and improved the recalls or correct detection rate.

Figure 4.7: AD classification performance on different anomaly scoring approaches.
Low precision on the HEM08, HEM09, and HEP10; HEM08 has a sensor with
missing reading, and HEM09 and HEP10 have counter quantity log issues—failed
to record errors—and delivered fewer flags for comparison.

Figure 4.8: Sensor AD reconstruction TP anomaly flags. The color bar shows the
flag counts threshold at 500.
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Figure 4.9: Rec-AFS-AD performance with varied detection threshold αs values.

the latent AD—improving the overall AD.

Table 4.2: Ablation study on proposed AD model—F1 score.

Model Latent-AD Rec-ASF-AD Rec-MD-AD Latent-Rec-AD
CGVAE 0.725 0.763 0.716 0.727
CGAE 0.633 0.717 0.747 0.683
GAE 0.592 0.714 0.758 0.616

CGAE: without the variational layers.
GAE: without the convolutional and variational layers.

The scores are averaged over all the RBXes except HEM04, HEM08, HEM09, and HEP10 since
the label reference—error counter variables—did not adequately capture the actual outliers.

We chose RBX-HEM04 operation from 15 – 30/11/2018 to demonstrate the
feature attribution explanation of the AD system. The time window includes various
types of anomalies, such as spikes, dips, long trends, and multivariate anomalies (see
Fig. 4.10). Fig. 4.11 illustrates correlations among the latent features, anomaly
scores, and flags generated from the ngCCM error counters.

The model explainer proposes the topmost influential input sensors with attri-
bution strength on the temporal data points for a given system anomaly from the
latent AD. Fig. 4.12 presents the results returned by the model explainer for a
given detected anomaly. Fig. 4.13 provides more anomaly samples with generated
ranked explanations compared to the sensor reconstruction AD results. The high
agreement—a high hit rate—between per-sensor AD and the generated explana-
tion results demonstrate the promising effectiveness of our proposed AD explainer
approach for TS AD models.

4.1.4 Summary

We have presented our unsupervised anomaly detection model for the next-
generation clock and control system of the HCAL Endcap calorimeter. Our AD
model aims to achieve efficient localized feature extraction, temporal learning, and
descriptive abnormality representation of multidimensional inputs. The study has
demonstrated the effectiveness of using latent and reconstruction anomaly scores in
improving AE-based AD. We have successfully combined feature attribution scores
to provide output explanations of the AD system incorporating different machine
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Figure 4.10: Multivariate sensors of HEM04 with marked anomalies. Only sensors
with anomaly reports are depicted. Most sensors have global temporal outliers and
the FEC-SFP_RX_POWER_F sensor exhibits a trend drifting anomaly starting
on 17/11/2018.

learning models. Our study has revealed that the further relevant health status
of the ngCCM can be inferred from the automated monitoring of diagnostic sen-
sor signals—leveraging the existing ngCCM error counter variables. The developed
AD system will thus assist the HCAL in actively monitoring and debugging various
types of anomalies of the RBXes.
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Figure 4.11: Latent features and system anomaly scores on RBX-HEM04. Gradual
system drift during 17–30/11/2018 of the FEC-SFP_RX_POWER_F was not de-
tected by the error counters of the ngCCM (bottom plot), but our AD model has
captured it (see 3rd – 5th plots).
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The y-axis value is a deviation from the nominal value of the sensors.

Figure 4.12: AD explainer on a detected latent anomaly at 29/11/2018 15:40: (top)
illustrates the ranked influential input signals with the bar sizes designating the con-
tributions, and (bottom) depicts signal sections of the top three attributing sensors—
ranked from left to right—and the color bar shows the attribution strength with a
sign denoting the direction. The top-two sensors with strong attributions have also
reported univariate reconstruction anomalies, indicated by the red marker on the
title (see Fig. 4.10 and A6 in Fig. 4.13).
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(a)

(b)

Figure 4.13: Explanation on latent AD anomalies of RBX-HEM04: a) sample
anomalies—A1 at 18/11 04:10, A2 at 19/11 16:50, A3 at 20/11 22, A4 at 24/11
06:30, A5 at 25/11 13:20, and A6 at 29/11 15:40—and b) influential sensors from
our AD explainer, and the red-marker on the plots’ title indicates reconstruction
sensor AD flag at the same timestamp.
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4.2 Spatio-Temporal Anomaly Detection with
Graph Networks for Data Quality Monitoring
of the Hadron Calorimeter

The CMS experiment employs an online data quality monitoring (DQM) system to
promptly spot and diagnose particle data acquisition problems to avoid data quality
loss. Several studies have proposed ML models to leverage DQM automation; only a
few have dealt with temporal models to underpin system monitoring. ML monitor-
ing of DQM of the HCAL—relatively unexplored—poses a multidimensional chal-
lenge due to the calorimeter’s depth-wise segmentation. We present semi-supervised
spatio-temporal AD monitoring (GraphSTAD) for the physics particle sensing chan-
nels of the HCAL using three-dimensional particle hit map data of the DQM. The
GraphSTAD employs CNNs and GNNs to learn local spatial characteristics induced
by particles traversing the detector, and global behavior because of shared back-
end circuit connections and housing boxes of the channels, respectively. The RNNs
capture the temporal evolution of the extracted spatial features. We validate the
accuracy of the proposed AD system in capturing abnormal channels in the LHC
collision data sets. The system performs production-level accuracy and is integrated
into the CMS DQM production system—for real-time monitoring of several anomaly
types. We provide a performance comparison with alternative benchmark models
to demonstrate the promising leverage of the presented system.

The DQM system aims to guarantee high-quality physics data through online
monitoring that provides live feedback during data acquisition and offline monitoring
that certifies the data quality after offline processing [49]. The online DQM identi-
fies emerging problems using reference distribution and predefined tests to identify
known failure modes [71, 72] using summary histograms, such as a digi-occupancy
map of the CMS calorimeters. A digi-occupancy map contains the histogram record
of particle hits of the data-taking channels of the calorimeters. The CMS calorime-
ters may encounter problems during data taking—including issues with the frontend
particle sensing scintillators, backend hardware, and algorithms, that might appear
in the digi-occupancy maps. The growing complexity of detectors and the variety
of physics experimentation make data-driven AD systems essential tools for CMS
to identify and localize detector anomalies automatically. Recent efforts in CMS
have proposed DL for AD applications for the DQM [39, 40, 49, 50]. The synergy
in AD has thus far achieved promising results on spatial 2D histogram maps of the
DQM for the ECAL [39] and the muon detectors [40]. Previous studies only consid-
ered extreme anomalies—no reading dead and high noise hot calorimeter channels.
Detecting degrading channels is essential for quality deterioration monitoring and
early intervention, but they are often challenging to capture; for instance, the im-
properly tuned bias voltage on the HCAL physics particle sensing channels caused
non-uniformity in the hit map of the DQM, but the channels were neither dead
nor hot [75]. The calorimeter channels may degrade with subtle abnormality before
reaching extreme channel fault status. Capturing such subtle anomalies—e.g., slow
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system degradation—makes temporal AD models appealing for early anomaly pre-
diction before ultimate system failure. Time-aware models extract temporal context
to enhance AD performance. A few efforts have thus far been focused on tempo-
ral models despite the acknowledged potential in the future automation technology
challenges at the LHC [39,52]. Our study focuses on DQM automation through time-
aware AD modeling using 3D histogram maps of the HCAL. The digi-occupancy data
of the HCAL is 3D due to its depth-wise calorimeter segmentation. It poses multidi-
mensional challenges and it is relatively unexplored in ML endeavors. The particle
hit map data of the HCAL are highly dependent on the collision luminosity—a mea-
sure of how many collisions are happening in a particle accelerator—and the number
of particles traversing the calorimeter. The effort on normalization that enhances
learning generalization of ML models is still limited.

We address the above gaps while investigating the performance enhancement of
temporal AD DL models for the HCAL DQM. We propose to detect anomalies of
the HCAL particle sensing channels through a semi-supervised ST AD system—
GraphSTAD—from spatial digi-occupancy maps of the DQM. Anomalies can be
unpredictable and come in different patterns of severity, shape, and size—often
limiting the availability of labeled anomaly data covering all possible faults. We
employ a semi-supervised approach for the AD system; the concept for the AD is
that an autoencoder (AE)—trained to reconstruct healthy digi-occupancy maps—
would adequately reconstruct the healthy maps, whereas it yields high reconstruction
error for maps with anomalies. Since abnormal events can have spatial appearance
and temporal context, it is desirable to combine both the spatial and temporal
features for ST AD [109,111,113,116–121,142]. Our GraphSTAD system is a graph-
leveraged spatio-temporal AD system that detects various channel anomalies. The
spatial nature of the digi-occupancy map of the HCAL may exhibit irregularity;
adjacent channels with Euclidean distance are exposed to collision article hits around
their region, but the channels may belong to different backend circuits—resulting
in non-Euclidean spatial behavior on the digi measurements. The GraphSTAD
system captures the behavior of channels from regional collision particle hits and
electrical and environmental characteristics due to a shared backend circuit of the
channels to detect the degradation of faulty channels effectively. The AD system
attains these utilities using a deep AE model that learns spatial behavior, physical
connectivity-induced shared behavior, and temporal behavior using CNN, GNN, and
RNN, respectively.

We evaluate our proposed AD approach in detecting spatial faults and tem-
poral discords on digi-occupancy maps of the HCAL. We simulate different types
of synthetic anomalies—dead channels without registered hits, hot channels domi-
nated by electronic noise—resulting in a much higher hit count than expected, and
degraded channels with deteriorated particle detection efficiency—resulting in lower
hit counts than expected—to analyze the effectiveness of the AD model. The results
demonstrate promising performance in detecting and localizing the anomalies. We
further validate the efficacy in detecting real anomalies and discussed comparisons
to benchmark models and the existing DQM system.
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4.2.1 Dataset Description

We employed digi-occupancy data of the online DQM system to train and validate
the proposed AD system. The digi-occupancy data is 3D spatial maps with iη, iϕ,
and depth axes, and contains digi histogram records of the physics readout channel
sensor of the calorimeter referenced by iη = [−32, . . . , 32], iϕ = [1, . . . , 72] and
depth = [1, . . . , 7] axes (see Fig. 4.14). A digi—also called hit—is a reconstructed
and calibrated signal response of a particular ieta, iphi, and depth segment of the
calorimeter.

Several errors can arise in the calorimeter affecting the frontend particle sens-
ing scintillators, the digitization and communication systems, the backend hard-
ware, or the algorithms. These errors appear in the digi-occupancy map as holes,
under- or over-populated, or saturated bins. The value of the digi-occupancy varies
with the received luminosity—the recorded by CMS and hereafter referred to as the
luminosity—and the number of events—particles traversing the calorimeter. The
maps from a sequence of lumisections (LSs) constitute attribution of ST data with
correlated spatial and temporal relations [141].

The digi-occupancy root file data sets were collected in 2018 during the LHC
Run-2 collision by the CMS experiment. The data set—from the ZeroBias primary
dataset—contains approximately 20K LSs from 20 healthy runs pre-scrutinized by
the CMS certifiers, and declared in the "Golden JSON" of the DQM as of good
quality [354]. The maps—one per LS—were populated with the per LS received
luminosity up to 0.4 pb−1, and the number of events up to 2250. The digi-occupancy
maps from a sequence of LSs constitute attribution of ST data with correlated spatial
and temporal relations [141]. Our working ST data set contains 20K map samples—
each with a dimension of [iη = 64× iϕ = 72× depth = 7]).

4.2.2 Methodology

There is a lack of adequate labeled anomaly data covering all possible channel fault
scenarios for the HCAL, and the anomalies may follow unpredictable patterns with
different severity, shape, and size. We thus employ a semi-supervised approach for
the AD system—GraphSTAD system; we trained a deep AE model to reconstruct
healthy digi-occupancy maps with low contamination of anomalies. We present
an ST reconstruction AE to detect abnormality in the HCAL channels using recon-
struction deviation scores on ST digi-occupancy maps from consecutive lumisections
(see Fig. 4.15). The AE combines CNNs, GNNs, and RNNs to capture ST char-
acteristics of digi-occupancy maps. The spatial feature extraction of the CNNs
is leveraged with GNNs to learn circuit and housing connectivity-induced spatial
behavior irregularities among the HCAL sensor channels. There are approximately
7K channels—pixels—on the digi-occupancy map of the HCAL Endcap subsystem—
housed in 36 RBXes. The channels in a given RBX are susceptible to system faults
in the RBX due to the shared backbone circuit and environmental factors like tem-
perature and humidity. Our proposed GraphSTAD employs GNNs—in its spatial
feature extraction network pipeline—to capture the characteristics of the HCAL
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Figure 4.14: Digi-occupancy map (year=2018, RunId=325170, LS=15) of the HE.
The HE channels are placed in |iη| = [16, 29], iϕ = [1, 72], and depth = [1, 7] spatial
coordinates of the DQM. Each pixel in the map corresponds to the readout channel
of the calorimeter after a particle hit. The HCAL covers a considerable volume of
the CMS detector and has segmentations along three axes (iη, iϕ, and depth). The
missing section near the top-left of the map is due to two failed RBX (HEM15 and
HEM16) sectors during the 2018 collision runs.

channels owing to their shared physical connectivity to a given RBX. GNNs have
recently achieved promising results in several applications at the LHC [23,284] and
outperformed CNNs in learning irregular calorimeter geometry [285] and in pileup
mitigation [38]. The GraphSTAD system exploits both CNNs and GNNs [286,287] to
capture Euclidean and non-Euclidean spatial characteristics of the HCAL channels,
respectively.

The data preprocessing stages of our proposed approach involve two main tasks:
1) digi-occupancy map renormalization, and 2) graph-adjacency matrix generation.

Digi-occupancy Map Renormalization: The digi-occupancy (γ) map data of
the HCAL varies with the received luminosity (β) and the number of events (ξ)
(see Fig. 4.16). We devise a renormalization of the γ through a regression model
R to have a consistent quantity interpretation of the γ and build an AD model
that robustly generalizes previously unseen run settings—β and ξ variations. The
R estimates the renormalizing γ̄s at the sth LS using β and ξ as:

γ̄s = R(ξ, β) (4.12)

The model R is trained to minimize the MSE cost function, E[(γs− γ̄s)2], where
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Figure 4.15: The proposed channel localized AE reconstruction AD system. The AE
reconstructs the input ST digi-occupancy map, and spatial AD decision is performed
using the anomaly scores estimated from the ST reconstruction errors.

γs is calculated as:

γs =
∑
∀i

γ(s, i) (4.13)

where the γ(s, i) is the digi-occupancy of the ith channel in the map at the sth LS.
Finally, the per-channel γ(s, i) is renormalized by its corresponding γ̄s as:

γ̂(s, i) =
Kγ(s, i)

γ̄s
(4.14)

where the γ̂ is the renormalized γ, and the K is a scaling factor to compensate for
the difference in the number of channels on the depth axes.

We employ fully-connected (FC) neural networks to build the regression model
to effectively capture the non-linear relationships illustrated in Fig. 4.16:

input(ξ, β)→ ReLU(FC(64))→ ReLU(FC(64))→ ReLU(FC(7))→ output(γ̄s)

(4.15)
Fig. 4.17 depicts data distribution of the γs before and after renormalization with

R. The renormalization has successfully handled the discrepancies on the γs from
several runs—overlaps and centers distributions of γ̂s and minimizes the outliers.

Adjacency Matrix Generation for Graph Network: We employ an undi-
rected graph network G(V ,Θ) to represent the calorimeter channels in a graph net-
work based on their connection to a shared RBX system. The graph G contains
nodes υ ∈ V , with edges (υi, υj) ∈ Θ in a binary adjacency matrix A ∈ RM×M ,
where M is the number of channel nodes. An edge indicates the channels sharing
the same RBX as:
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Figure 4.16: Digi-occupancy and run settings—the received luminosity and the num-
ber of events—in LS granularity. The number of events did not fully follow the drop
in the luminosity (bottom plot) and the digi-occupancy (top-right plot); it portrays
the non-linear behavior of LHC. The different colors correspond to different collision
runs.

A(υi, υj) =

{
1, if Ω(υi) = Ω(υj)

0, otherwise
(4.16)

where Ω(υ) returns the RBX ID of the channel υ. There are about 7K channels
in a graph representing the digi-occupancy map of the HE calorimeter—each RBX
network contains roughly 190 nodes. We retrieved the channel to RBX mapping
from the HE segmentation map table (see Fig. 1.13).

Anomaly Detection Modeling

We denote the AE model of the GraphSTAD system as F . The ST data is X ∈
RT×Niη×Niϕ×Nd×Nf as a sequence in a time window tx ∈ [t−T, t], where Niη×Niϕ×Nd

is the spatial dimension corresponding to the iη, iϕ, and depth axes, respectively,
and Nf = 1 is the number of input variables—only a digi-occupancy quantity in
the spatial data. The Fθ,ω : X → X̄—parameterized by θ and ω—attempts to
reconstruct the input ST data X and outputs X̄. The encoder network of the model
Eθ : X → z provides low-dimension latent space z = Eθ(X), and the decoder
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Figure 4.17: Distribution of total digi-occupancy per LS before and after renor-
malization. From left to right: (top) the received luminosity, and the number of
events; (bottom) the digi-occupancy, and the renormalized digi-occupancy obtained
with the regression model described in the text. The different colors correspond to
different runs.

Dω : z→ X̄ reconstructs the ST data from z—X̄ = Dω(z) as:

X̄ = Fθ,ω(X) = Dω(Eθ(X)) (4.17)

The channel anomalies can be transients—live for a short time and impact only
a single digi-occupancy map—or persist over time—affecting a sequence of maps.
The spatial reconstruction error e is calculated to detect a transient anomaly as:

ei = |xi − x̄i| (4.18)

where xi ∈ X and x̄i ∈ X̄ are the input and reconstructed digi-occupancy of the
ith channel. The ei detects channel abnormality occurrence on isolated maps. We
engage an aggregated error in a time window T using mean absolute error (MAE)
to capture a time-persistent anomaly as:

ei,MAE =
1

T

t∑
t′=t−T

ei(t
′) (4.19)

We standardize ei to regularize the reconstruction accuracy variations among
the channels—allowing a single AD decision threshold α to all the channels in the
spatial map—as:

si =
ei
σi

(4.20)
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where σi is the standard deviation of the ei—or ei,MAE if the time window is
considered—on the training dataset. The anomaly flags ai are generated after ap-
plying α to the anomaly scores—ai = si > α. The α is a tunable constant that
controls the detection sensitivity.

Model Architecture and Training

Convolutional neural networks have achieved state-of-the-art performance in sev-
eral applications—mainly with image data [111,117–120]. The shared nature of the
kernel filters of the CNNs substantially reduces the number of trainable parame-
ters in the model compared to fully-connected neural networks. Directly supplying
the learned spatial features to temporal neural networks such as RNN could be-
come inherently challenging due to the considerable computational demand for high-
dimensional data. We employ CNN and GNN with a pooling mechanism to extract
relevant features from high dimensional spatial data followed by RNN to capture
temporal characteristics of the extracted features (see Fig. 4.18). We integrate vari-
ational layer [83] at the end of the encoder for regularization of AE overfitting by en-
forcing continuous and normally distributed latent representations [41,97,306,352].

Conv3D: 3D convolutional neural network; GCN: graph convolutional neural networks;
Deconv3D: 3D deconvolutional neural networks; BN: batch normalization; LSTM: long

short-time memory recurrent networks; FC: fully-connected neural networks.

Figure 4.18: The architecture of the proposed AE for the GraphSTAD system. The
GNN and CNN are spatial feature extraction on each time step, and the RNN
network captures the temporal behavior of the extracted features. The feature
extraction encoder incorporates the GNN for backend physical connectivity among
the spatial channels, CNN for regional spatial proximity of the channels, and RNN
for temporal behavior extraction. The reconstruction decoder contains RNN and
deconvolutional neural networks to reconstruct the spatio-temporal input data from
the low dimensional latent features.

The CNN of the encoder has Lc networks of Conv3D(·, kernel_size = [3× 3×
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3])3 for regular spatial learning followed by batch normalization (BN)4 for network
weight regularization and faster convergence, ReLU for nonlinear activation, and
MaxPooling3D5 for spatial dimension reduction. The model can be summarized as:

yct , ψ
c
t = Pool(ReLU(BN(Conv3D(xlt, N

l
c))))|l=1,...,Lc (4.21)

where xlt is the input spatial γ map data at time-step t and the N l
c is the feature size

of the lth network. The yct is the extracted feature set of the CNN at t. The Pool(·)
denotes MaxPooling3D(·, stride = [2 × 2 × 2]). The ψc

t holds the pooling spatial
location indices of the MaxPooling3D layers to be used later for upsampling in the
decoder during map reconstruction. The final extracted feature set Yc ∈ RT×Nc of
the CNN is an aggregation of all yct in the time window T—concatenated on the
time dimension—as:

Yc = [yc1, y
c
2, ..., y

c
T ] (4.22)

We have used Lc = 4 to map the input spatial dimension [64 × 72 × 7] into
[4× 4× 1], which yields a reduction factor of 2Lc and expands the feature space of
the input from Nf = 1 to Nc = 128. The N ′c : [4 × 4 × 1 × 128] = 2048 spatial
features are generated after reshaping.

The GNN of the encoder has Lg networks of a graph convolutional network
(GCN)6 with ReLU activation, and a final global attention pooling6. The networks
are summarized as:

ygt = Pool(ReLU(GCN(xlt, N
l
g)|l=1,...,Lg))

Yg = [yg1 , y
g
2 , ..., y

g
T ]

(4.23)

where the GCN layers have a feature size of N l
g, and the Pool(·) signifies the

GlobalAttentionPooling(·) at the end of the GNN. The GlobalAttentionPooling ag-
gregates the graph node features with an attention mechanism to obtain the final
feature set of the GNN Yg ∈ RT×Ng . Similar to the CNN, we set Lg = 4 and
Ng = 128 to generate the Yg.

The encoded ST feature set ζ ∈ R1×Nz is obtained by learning the temporal
context on the extracted spatial features Y = [Yc,Yg] with two layers of long short-
time memory (LSTM)7 as:

ζ = LSTM(Y, N l
r)|l=1,2 (4.24)

where N l
r is the feature size of the lth LSTM layer. The last layer (N2

r = Nz = 32)
generates the low-dimensional latent representation of the encoder. The VAE layer
of the encoder generates the normally distributed representation latent features z

as:
z = µz + σz ⊙ ϵ (4.25)

3https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html
4https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm3d.html
5https://pytorch.org/docs/stable/generated/torch.nn.MaxPool3d.html
6https://docs.dgl.ai/en/0.2.x/tutorials/models/1_gnn/1_gcn.html
7https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
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where ⊙ signifies an element-wise product with standard normal distribution sam-
pling ϵ ∼ N (0, 1) [306]. The µz and the σz of the VAE are implemented with FC8

layers taking the ζ as input.
The decoder network of the AE is made of RNN and CNN to reconstruct the

target ST data from the latent features. The decoding embarks with temporal
feature reconstruction using LSTM network as:

ζ̄ = LSTM(z, N l
r)|l=1,2 (4.26)

where ζ̄ is the reconstructed temporal feature set from the latent space z. Spatial re-
construction follows for each time-step t through a multi-layer deconvolutional neural
network. Each network starts with MaxUnpooling3D(·, stride = [2× 2× 2], ψc

l )
9 to

upsample the spatial data using localization indices ψc
l from the lth MaxPooling3D

of the encoder followed by a deconvolutional layer (Deconv3D(·, kernel_size =

[3×3×3])) [355], BN and ReLU. Eventually, Deconv3D(·, kernel_size = [1×1×1])
is incorporated for final output stabilization. The decoder network is summarized
as:

x̄t = ReLU(BN(Deconv3D(Unpool(ζ̄t, ψ
c
t ), N

l
c)))|l=1,...,Lc

x̄t = ReLU(Deconv3D(x̄t, Nf ))
(4.27)

where the x̄t is the reconstructed spatial data, and the Unpool(·) denotes
MaxUnpool3D(·). The final reconstructed ST data X̄ ∈ RT×Niη×Niϕ×Nd×Nf is ob-
tained as:

X̄ = [x̄1, x̄2, ..., x̄T ] (4.28)

We trained the AE on healthy digi-occupancy maps of LHC collision runs. The
modeling task becomes a multivariate learning problem since the target data con-
tains readings from multiple calorimeter channels in the spatial digi-occupancy map.
Appropriate scaling of the spatial data is thus necessary for effective model training;
we further normalized the spatial data per channel into a range of [0, 1]. We have
also observed that the γ distribution of the channels at the first depth of the spatial
map is different from the channels at the higher depths (see Fig. 4.14); distribution
imbalance on target channel data affects model training efficacy when well-known
statistical algorithm—e.g., MSE—is employed as loss functions. MSE loss minimizes
the cost of the entire space, and it may converge to a non-optimal local minimum
in the presence of imbalanced data distribution; this phenomenon is known as the
class imbalance challenge in machine learning classification problems. A widely used
remedy is to employ a weighting mechanism—assigning weights to the different tar-
gets. We applied a weighted MSE loss function to scale the loss from the different
distributions—the depth ∈ 1 and depth ∈ 2, . . . , 7—as:

L′ =
∑
j

ςj
Mj

∑
i∈Cj

(xi − x̄i)2 (4.29)

8https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
9https://pytorch.org/docs/stable/generated/torch.nn.MaxUnpool3d.html
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where xi is the γ̂ of the ith channel in the jth group set Cj, Mj is the number of
channels in Cj, and ςj is the weight factor of the MSE loss of the jth group. We
holistically set ς1 = 0.4 and ς2 = 1 after experimenting with different ς values.

The VAE regularizes the training MSE loss using the KL divergence loss DKL

to achieve the normally distributed latent space as:

L = argmin
W∈R

{
L′ − βDKL [N (µz, σz),N (0, I)] + ρ∥W∥22

}
(4.30)

where N is a normal distribution with zero mean and unit variance, and ∥.∥22 is the
squared Frobenius norm of L2 regularization for the trainable model parameters W .
The β = 0.003 and ρ = 10−7 are tunable regularization hyperparameters. We used
Adam optimizer with super-convergence one-cyclic learning rate scheduling [356] for
training.

4.2.3 Experimental Results and Discussion

AD studies for the DQM inject simulated anomalies into good data to validate
the effectiveness of the developed models since a small fraction of the data is af-
fected by real anomalies [39]. We trained the AE model using four GPUs on 10K
digi-occupancy maps—from LS sequence number [1, 500]—and evaluated on LSs
[500, 1500] injected with synthetic anomalies simulating real dead, hot, and degraded
calorimeter channels. We employed early-stopping using 20% of the training dataset
to estimate the validation loss during each training epoch (see Fig. 4.19). The model
training achieved good fitting and generalization, as demonstrated by the low loss
and closeness between the training and validation losses.

Figure 4.19: GraphSTAD AE model training (early-stopping = 20 epochs, learning
rate = 10−3, weight regularization = 10−7, training time = 82 minutes). The low
training loss indicates good model fitting—no under-fitting—to the data set, and
the low validation loss demonstrates good generalization—no over-fitting.

Fig. 4.20 demonstrates the capability of the proposed ST AE in reconstructing
normal digi-occupancy maps from a sequence of lumisections. The AE has accom-
plished a promising reconstruction ability on the ST digi-occupancy data. High
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reconstruction accuracy on the healthy data is essential to reduce false-positive flags
when a semi-supervised AE is employed for AD application. We will further dis-
cuss the reconstruction error distribution comparison on the healthy and abnormal
channels in the AD performance section.

Figure 4.20: ST digi-occupancy maps reconstruction on samples from the test
dataset (RunId: 325170, LS=[500, 750]). The figure illustrates the total digi-
occupancy across the seven depths—γ̂l. Our GraphSTAD AE operates on ST γ

map data, and we present the above plots—corresponding to the γl per LS—to
demonstrate capability of the AE in handling fluctuation across a sequence of LS.

We created synthetic anomalies to simulate dead, hot, and degraded channels and
then injected them into healthy digi-occupancy maps. We subsequently evaluated
the ability of the AD to detect the injected anomalies. The anomaly generation
algorithm involves three steps: 1) selection of a random set of LSs τ ∈ [500, 1500]
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from the test set, 2) random selection of spatial locations φ for each τ , where φ ∈
{iη× iϕ×depth} on the HE axes (see Fig. 4.14), and 3) injection of anomalies. The
anomalies are simulated using degrading factor RD that γa = RDγh, where γa and γa
are the healthy and anomaly channel γ values: the dead (RD = 0, and γa = 0), hot
(RD > 1, and γa >> γh), and degraded (0 < RD < 1, and 0 ≤ γa < γh). We have
kept the same τ and φ of the generated anomalies for consistency when evaluating
the AD performance of the different anomaly types.

Detection of Dead and Hot Channels: We have evaluated the AD accuracy on
dead—γa = 0, RD = 0—and hot—γa = RDγh, RD = 200%—channels on the 10K
maps—5K maps for each anomaly type. Table 4.3 and Table 4.4 present the AD
performance on transient anomalies—short-lived in isolated maps—and time per-
sisting anomalies—encroach consecutive maps in a time window, respectively. Our
model achieves good accuracy with precise localization of the faulty channels—0.99
precision when capturing 99% of the 335K faulty channels. Time-persistent anoma-
lies are easier to detect—the FPR generally improves by 13%-23% and 28%-40%
for the dead and hot anomalies, respectively, compared to the short-lived anomalies
on isolated LSs. We have observed that most false positives (FPs) occur on chan-
nels with low expected γh, where the model achieves relatively lower reconstruction
accuracy. The performance is not entirely unexpected since we trained the AE to
minimize a global MSE loss function (4.30). The reconstruction errors become rel-
atively high for channels with low γ ranges that limit effectiveness in distinguishing
the anomalies when capturing 99% of the time-persistent dead channels using (4.19).

We have monitored roughly 31.28M HE sensor channels—of which 335K (1.07%)
are simulated abnormal channels—from the 5K maps on the isolated map evaluation
in Table 4.3. The monitored channels grow to 156M with 1.68M (1.07%) anomalies
for the evaluation of time-persistent anomalies in Table 4.4 using time window five
maps resulting in 25K maps.

Table 4.3: AD on dead and hot channel anomalies on isolated digi-occupancy maps.

Anomaly Type Captured Anomalies P R F1 FPR

Dead Channel (RD = 0%)
99% 0.999 0.99 0.995 6.722× 10−6

95% 1.000 0.95 0.974 3.102× 10−6

90% 1.000 0.90 0.947 2.068× 10−6

Hot Channel (RD = 200%)
99% 0.999 0.99 0.994 9.113× 10−6

95% 1.000 0.95 0.974 1.939× 10−6

90% 1.000 0.90 0.947 1.196× 10−6

* P- precision, R- recall, F1- f1-score, and FPR- false positive rate

Detection of Degrading Channels: Table 4.5 presents the AD accuracy of time-
persistent degraded channels simulated with RD = [80%, 60%, 40%, 20%, 0%]; the
RD = 0% corresponds to a dead channel. We injected the generated channel faults
into 1K maps for each decay factor. We have monitored around 156M channels—
of which 1.74M (1.11%) are abnormal channels—in the total of 25K digi-occupancy
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Table 4.4: AD on time-persistent dead and hot channel anomalies.

Anomaly Type Captured Anomalies P R F1 FPR

Dead Channel (RD = 0%)
99% 0.999 0.99 0.995 7.691× 10−6

95% 1.000 0.95 0.974 2.715× 10−6

90% 1.000 0.90 0.947 1.616× 10−6

Hot Channel (RD = 200%)
99% 0.999 0.99 0.995 5.461× 10−6

95% 1.000 0.95 0.974 1.357× 10−6

90% 1.000 0.90 0.947 7.756× 10−7

maps—5K maps per in the time window. The AD system has demonstrated promis-
ing potential in detecting degraded channel anomalies. The FPR to capture 99% of
the anomaly is 2.988%, 0.155%, 0.022%, 0.002%, and 0.001% when channels operate
at 80%, 60%, 40%, 20%, and 0% of their expected capacity, respectively.

The relatively lower precision at the RD = 80% indicates that there are still a few
anomalies challenging to catch despite the very low FPR considering the accurate
classification of numerous true negative healthy channels (see Fig. 4.21); the chan-
nels operating at RD = 80% are mostly inliers—overlapping with the healthy oper-
ating ranges—and detecting them is difficult when the expected γh of the channel
is low. The significant improvement of the FPR by 88% and 95% when the amount
of the captured anomaly is reduced to 95% and 90%, respectively, demonstrates a
small percentage of the channels causes the performance drop at RD = 80%. Fig.
4.22 illustrates the overlap regions on the distribution of the reconstruction errors
of the healthy and faulty channels at the various RD values.

Table 4.5: AD on time-persistent degraded channels.

Anomaly Type RD FPR (90%) FPR (95%) FPR (99%)

Degraded Channel

80% 1.636× 10−3 3.614× 10−3 2.988× 10−2

60% 1.329× 10−4 3.834× 10−4 1.550× 10−3

40% 8.405× 10−6 2.764× 10−5 2.242× 10−4

20% 2.263× 10−6 5.173× 10−6 2.505× 10−5

0% 9.699× 10−7 1.778× 10−6 6.142× 10−6

Figure 4.21: AD classification performance on time-persistent degraded channels.

We have quantitatively compared alternative benchmark models to validate the
capability of the GraphSTAD (see Fig. 4.23). The benchmark AE models employ
a similar architecture as the GraphSTAD AE but with different layers. The results
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Figure 4.22: Reconstruction error distribution of healthy and anomalous channels at
different RD. The overlap region decreases substantially as the channel deterioration
increases (left to right).

demonstrate that the integration of the GNN has a significant performance im-
provement from 1.6 to 3.9 times in the FPR. The temporal models with RNN have
achieved a 3 to 5-fold boost over the non-temporal spatial AD model when capturing
severely degraded channels. The GraphSTAD has a substantial 25 times ameliora-
tion over the non-temporal model for subtle and inlier anomalies—e.g., channels
deteriorate by 20% at RD = 80%. Incorporating temporal modeling and GNN has
enhanced degrading channel detection performance.

Detection of Real Anomalies in the HCAL: Our GraphSTAD system has
caught five real faulty HE channels in collision data RunId=324841 using the digi-
occupancy maps. The faulty channels are located at [iη = 17, iϕ = 71, depth =

3], [iη = 18, iϕ = 71, depth = 3], [iη = 18, iϕ = 71, depth = 4], [iη = 18, iϕ =

71, depth = 5], and [iη = 28, iϕ = 71, depth = 4], and have impacted 52 consecutive
LSs (see Fig. 4.24). Fig. 4.24 and Fig. 4.25 illustrate the detected faults fall into
the dead channel category except in the last LS=57 where the channels operated
in a degraded state—the γ is lower than expected. Detecting degraded channels
is challenging since the γ reading is non-extreme like in dead and hot channels,
and the γ drop overlaps with other false down-spikes (see LS > 57 in Fig. 4.24).
The down-spikes in the digi-occupancy for LS > 57 are due to non-linearity in the
LHC—changes in collision run settings (see Fig. 4.24b); our normalizing regression
model has successfully handled the fluctuation during prepossessing before causing
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CNN: convolutional neural networks, GNN: graph neural networks, BiLSTM: bidirectional
LSTM, GRU: gated recurrent unit, and VAE: variational AE.

Figure 4.23: Comparison with benchmark models on time-persistent anomaly chan-
nels. The GraphSTAD (CNN+GNN+LSTM+VAE) achieves a significantly lower
FPR.

false-positive alerts (see Fig. 4.24a). Fig. 4.26 and Fig. 4.27 portray the spatial
anomaly scores during death and degraded status of the faulty channels; the high
anomaly scores localized at the faulty channels demonstrate the GraphSTAD AD
performance at a channel-level granularity. The existing DQM system in CMS—uses
rule-based and statistical methods—has also reported these abnormal channels at
run-level analysis; the results are only available at the end of the run after analyzing
all the LSs for the run [71]. Our approach is adaptive to variability in the digi-
occupancy maps and provides anomaly localization that detects faulty—including
non-extreme degraded—channels per lumisection granularity.

Cost Model Complexity: We developed the models with PyTorch and trained
them on four GPUs of NVIDIA Tesla V100 SXM3 32GB and Intel(R) Xeon(R)
Platinum 8168 CPU 2.70GHz. We utilized a time window T = 5 and batch size
B = 8 for training, and the dimension of a batch is [B × T ×Niη ×Niϕ ×Nd ×Nf ].
The training time of the GraphSTAD model is approximately 45 seconds per epoch.
The training iteration epoch 200 achieves good accuracy with a one-cycle learning
rate schedule [356]. The non-temporal model—CNN+FC+VAE—is the fastest, and
its leverage emanates from its non-recurrent networks that only analyze a single
map instead of sequential processing of five maps in a time window. The median
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(a)

(b)

Figure 4.24: Detected real faulty channels on digi-occupancy maps at LS=[6, 57] of
RunId=324841 : a) the digi-occupancy dropped to near zero for the faulty channels
(left and middle plots)—resulting in high anomaly scores (right), and b) collision
run settings and the total digi-occupancy per LS. Dead (LS=[6, 56]) and degraded
channel anomalies (LS=57 ) were captured on the highlighted LSs (red) in (a).

inference time of the GraphSTAD on a single GPU is roughly 0.05 seconds with
a standard deviation of 0.006 seconds. The integration of the GNN makes the
inference relatively slower compared to the benchmark models (see Fig. 4.28). The
processing cost is within an acceptable range for CMS production requirements since
the input digi-occupancy map is generated at each lumisection with a time interval
of 23 seconds.

4.2.4 Summary

Our study has presented a semi-supervised anomaly detection system for the data
quality monitoring system of the Hadron Calorimeter using spatio-temporal digi-
occupancy maps. We have extended the synergy of temporal deep learning develop-
ments for the CMS experiment. Our approach has addressed modeling challenges—
including digi-occupancy map renormalization, learning non-Euclidean spatial be-
havior, and degrading channel detection. We have proposed the GraphSTAD sys-
tem that combines convolutional, graph, and temporal learning networks to capture
spatio-temporal behavior and achieve robust localization of anomalies at a channel
granularity on high spatial data. The AD performance evaluation has demonstrated
the efficacy of the proposed system for channel monitoring. Our proposed AD sys-
tem will facilitate monitoring and diagnostics of faults in the frontend particle hit
sensing hardware and software system of the calorimeter. It will enhance the ac-
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(a)

(b)

Figure 4.25: Spatial view on real faulty channels detection from RunId=324841
collision run data: a) the 3D digi-occupancy maps with faulty dead channels on
the left at LS=6 and degraded channels on the right at LS=57, and b) the channel
anomaly flags on the 2D map per the depth axes—red for anomaly and green for
healthy. Previously known bad channels during model training are excluded in the
plots and are not detected as new.
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(a)

(b)

Figure 4.26: Spatial view on the detected real dead channels at the LS=6 from
the RunId=324841 : a) the 2D digi-occupancy maps at the depth axes of the faulty
channels, and b) the corresponding anomaly score maps. The GraphSTAD localizes
the anomaly scores on the faulty dead channels.
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(a)

(b)

Figure 4.27: Spatial view on the detected real degraded channels at the LS=57 from
the RunId=324841 : a) the 2D digi-occupancy maps at the depth axes of the faulty
channels, and b) the corresponding anomaly score maps. The GraphSTAD localizes
the anomaly scores on the faulty degraded channels with strength proportional to
anomaly severity—lower scores in the color bars than the dead channels.
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Figure 4.28: Model inference computational cost relative to the proposed Graph-
STAD model (CNN+GNN+LSTM+VAE). The GNN increases the inference delay,
whereas the non-temporal model (CNN+FC+VAE) has the speed advantage due
to its relatively lower number of model parameters and inference on a single map
instead of time windowing.

curacy and automation of the existing DQM system—providing instant anomaly
alerts on a broader range of channel faults in realtime; the improved monitoring of
the calorimeter will result in the collection of high-quality physics data. The meth-
ods and approaches discussed in this study are domain-agnostic and can be adopted
in other spatio-temporal fields—particularly when the data exhibits regular and
irregular spatial characteristics.
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4.3 Extending Anomaly Detection for the Data
Quality Monitoring through Transfer Learning
between Calorimeters

The proliferation of sensors for various purposes—including monitoring, diagnostics,
and prognostics of infrastructure—brings with it a large amount of data in many
domains. The sheer data volume makes data curation time-consuming, and deploy-
ing data analytics platforms in new environments thus becomes expensive. Transfer
learning (TL) utilizes previously trained models for new tasks and can mitigate the
lack of curated data and model complexity. We present in this study both the po-
tential benefits and limitations of TL within the context of spatio-temporal (ST)
anomaly detection for the HCAL of the CMS experiment at CERN. We transfer the
AD model trained on data collected from one calorimeter of the HCAL to another.
We investigate different configurations of TL on the GraphSTAD model discussed in
Section 4.2—transferring the convolutional, graphs, and recurrent neural networks.
The experiment results demonstrate that TL can effectively extract and reconstruct
ST features with and without fine-tuning on a new target data set. The TL achieves
promising ST reconstruction and AD performance while substantially reducing the
trainable parameters of the AD models. It also improves robustness against anomaly
contamination in the training data sets of the semi-supervised AD models.

Semi-supervised AD models have accomplished promising performance in relia-
bility, safety, and health monitoring applications in several domains [80–82]. The
deployment of these AD models in a new environment is often circumscribed by the
limited amount of clean data [79]. Data curation for ML modeling remains cum-
bersome and particularly challenging for temporal data despite data abundance.
Transfer learning mechanisms have been proposed for DL models to mitigate the
challenge of data insufficiency; it accelerates model training and enhances accu-
racy [79, 187–190, 194]. The aim is to achieve in-domain and cross-domain learning
by extracting useful information from the model or data of a source task and trans-
ferring it to a target task [191,193]. TL is widely employed in computer vision [191]
and natural language processing [193]; it has also been investigated in TS sensor
data for machine monitoring [187], electricity loads [188], medical [189], dynamic
systems [190], and ST data for crowd prediction [79, 194]. The TL on ST data for
AD application remains limited [193,197]. Further study on TL for ST AD models—
often involving combinations of spatial and temporal learning networks—is essential
considering the achievements of TL in other domains [193]. The most recent hybrid
DL models are commonly made of combinations of two or more variants of CNNs,
RNNs, GNNs, and transformers for various ST data mining tasks [79,194,197,198].
Our study investigates TL on ST semi-supervised AD AE models.

We discuss the GraphSTAD system—an AE model built on CNN, RNN, and
GNN— [77] to investigate TL for the ST AD task on the HCAL DQM. The Graph-
STAD has been proposed for particle acquisition channel monitoring of the HCAL
(see Section 4.2) [77]. It captures abnormal events using spatial appearance and
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temporal context on ST digi-occupancy maps of the DQM. The GraphSTAD model
is designed to use CNNs to capture the behavior of adjacent channels exposed to
regional collision particle hits, GNNs to learn local electrical and environmental
characteristics due to a shared backend circuit of the channels, and RNNs to detect
temporal degradation on faulty channels over time. We transfer the GraphSTAD
AE—pre-trained on the source HCAL Endcap (HE) subsystem—into a different
target subsystem—the HCAL Barrel (HB)—for the TL experiment. The HE and
HB are subdetectors of the HCAL; they are designed to capture hadron particles at
different positions of the calorimeter. The subdetectors share similarities but also
have differences in design, technology, and detector segmentations [8]. We provide
insights on TL using various training experiments with different network hierarchies
of the GraphSTAD AE. The experiment demonstrates the potential of TL on the
feature extraction—the encoder—and reconstruction—the decoder—networks with
and without fine-tuning on the target dataset. We also examine the impact of within
and across time-windows RNN state preservation on ST reconstruction when TL is
employed during model inferencing. The TL achieves promising ST reconstruction
and AD while substantially reducing the number of trainable parameters and provid-
ing better robustness against anomaly contamination in the training dataset. Our
study demonstrates the efficacy of TL on ST data in overcoming the limitation of
curated training data sparsity and computationally expensive model training.

4.3.1 Dataset Description

We utilized digi-occupancy data from the online DQM system to train and validate
our models. Since the obtained data is from the LHC Run-2 collision experiment,
we will describe the HCAL system and the data set configuration from 2018.

The digi-occupancy data sets were collected in 2018 during the LHC Run-2 col-
lision experiment with the received luminosity per lumisection up to 0.4 pb−1, and
the number of events up to 2250. The source and target data sets contain three-
dimensional digi-occupancy maps for the HE and HB subsystems of the HCAL, re-
spectively (see Fig. 4.29). The relationships between the source and target data sets
and tasks have been established to be important factors that impact the performance
of TL [126]. The digi-occupancy map contains a particle hit count of the calorime-
ter readout channels for a given period of time. The HCAL covers a considerable
volume of CMS and has a fine segmentation along three axes (iη = [−32, . . . , 32],
iϕ = [1, . . . , 72] and depth = [1, . . . , 7]), and a digi-occupancy measurement corre-
sponds to a hit record of the readout channels located at the segmentation positions
(see Fig. 4.29). The source system HE and the target system HB are subdetec-
tors that cover different segments of the HCAL. One of the key differences between
the HE and HB in the LHC collision experiment in 2018 was the frontend data ac-
quisition optical-to-electrical technology—the HE employed Silicon photomultipliers
(SiPMs) with QIE11 technology, and the HB utilized hybrid photodiode transducers
(HPD) with QIE8. We summarize the comparison of the digi-occupancy maps of
the source and target data sets in Table 4.6.
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(a)

(b) (c)

Figure 4.29: A sample digi-occupancy map (year=2018, RunId=325170, LS=15):
a) digi-occupancy map for the HBHE, b) the source system HE channels are placed
in |iη| = [16, 29], iϕ = [1, 72], and depth = [1, 7], and c) the target system HB
channels are placed in |iη| = [1, 16], iϕ = [1, 72], and depth = [1, 2]. The missing
sector at the top-left (HE) corresponds to the two failed RBXes in 2018.

4.3.2 Methodology

The GraphSTAD is a semi-supervised deep AE that detects an abnormality in the
HCAL channels using reconstruction deviation scores on digi-occupancy maps from
consecutive LSs. The AE combines CNN, GNN, and RNN to capture ST character-
istics. Approximately 7K and 2.6K channels are in the digi-occupancy map of the
HE and HB, respectively. We retrieved the readout channel to RBX mapping from
the HCAL segmentation map in 2018 (see Fig. 1.13). We have explained the AD
mechanism and model architecture of the GraphSTAD model in Section 4.2.2.
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Table 4.6: Description of source and target data sets.

Dataset Technology Channels/RBX No. of RBX Segmentation Sample Size
Source (HE) SiPM 192 36 |iη| = [16, 29], iϕ =

[1, 72], depth = [1, 7]

20K

Target (HB) HPD 72 36 |iη| = [1, 16], iϕ =

[1, 72], depth = [1, 2]

7K

Digi-occupancy Map Renormalization: We apply digi-occupancy renormal-
ization in the data preprocessing stages to normalize the values for the variation in
the luminosity and the number of event configurations of the collision experiments.
The digi-occupancy (γ) map data of the HCAL varies with the received luminosity
(β) and the number of events (ξ), and the per channel γ can range γ = [0, ξ] (see Fig.
4.30). The β and γ are retrieved from different systems at CMS; directly accessing β
for the real-time γ AD monitoring requires further effort. We renormalize the maps
(γ → γ̂) by the ξ, usually equal to their maximum γ channel value, to achieve a
consistent quantity interpretation of the γ maps. The remaining impact of β is left
to be learned by the AD model.

The γ and ξ follow the β but not always. The non-linearity at the LHC—when ξ
remains high while γ drops following β creates unpredictable spikes; renormalization
of the γ with only the ξ does not entirely avoid the issue, and the spikes may affect
the training performance temporal models. We employ additional reversible renor-
malization before and after invoking the AD model to mitigate the non-linearity of
the digi-occupancy spatial data; the renormalization exploits the symmetric prop-
erty of the iη and depth—the γ values are less diverse along the iϕ axis—and divides
the input γ of the channels per each iη and depth by their median values and reverse
the action on the model output.

Anomaly Detection Mechanism: We denote the AE model of the AD system
as F . It takes ST data X ∈ RT×Niη×Niϕ×Nd×Nf as a sequence in a time window
tx ∈ [t − T, t], where Niη × Niϕ × Nd is the spatial dimension corresponding to the
iη, iϕ, and depth axes, respectively, and Nf is the number of input variables; the
Nf = 1 since we monitor only a digi-occupancy quantity in the spatial data. The
Fθ,ω : X → X̄—parametrized by θ and ω—attempts to reconstruct the input ST
data X and outputs X̄. The encoder network of the model Eθ : X → z provides
low-dimension latent space z = Eθ(X), and the decoder Dω : z → X̄ reconstructs
the ST data from z—X̄ = Dω(z) as:

X̄ = Fθ,ω(X) = Dω(Eθ(X)) (4.31)

Anomalies can live short (impacting only a single digi-occupancy map) or persist
over time (affecting a sequence of maps). Aggregated spatial reconstruction error e
is calculated over a time window T using mean absolute error (MAE) to capture a
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Figure 4.30: Digi-occupancy of the HB and run setting per LS—the received lumi-
nosity and the number of events. The different colors correspond to different runs.

time-persistent anomaly as:

ei = |xi − x̄i|

ei,MAE =
1

T

t∑
t′=t−T

ei(t
′)

(4.32)

where xi ∈ X and x̄i ∈ X̄ are the input and reconstructed digi-occupancy of the ith

channel. We standardize ei,MAE to homogenize the reconstruction accuracy varia-
tions among the channels when generating the anomaly score si as:

si =
ei,MAE

σi
(4.33)

where σi is the standard deviation of the ei,MAE on the training data set. The
standardized anomaly score allows us to use a single AD decision threshold α for all
the channels in the spatial map. The anomaly flags ai are generated after applying
α to the anomaly scores—ai = si > α. The α is a tunable parameter to control the
detection sensitivity.

The use-case GraphSTAD AE model is made of CNN, GNN, and RNN networks;
it employs CNN and GNN with a pooling mechanism to extract relevant features
from spatial DQM data followed by RNN to capture temporal characteristics of the
extracted features (see Fig. 4.18). The encoder integrates variational layer [83] at
its end to regularize the AE by enforcing continuous and normally distributed latent
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representations [41, 97, 306, 352]. We normalize the spatial data per channel into a
[0, 1] for effective model training across the variations in calorimeter channels. We
trained the AE on healthy digi-occupancy maps of the target HB system using an
MSE loss function as:

LMSE =
1

M

∑
i

(xi − x̄i)2 (4.34)

where xi and x̄i is the input and reconstructed γ̂ of the ith channel, respectively,
and M is the total number of channels. The variational layer (denoted as VAE in
Fig. 4.18) of the AE regularizes the training MSE loss using the KL divergence loss
DKL to achieve the normally distributed latent space as:

L = argmin
W∈R

{
LMSE − βDKL [N (µz, σz),N (0, I)] + ρ∥W∥22

}
(4.35)

where N is a normal distribution with zero mean and unit variance, and ∥.∥ is the
Frobenius norm of L2 regularization for the trainable model parameters W . The
β = 0.003 and ρ = 10−7 are tunable regularization hyperparameters. We employed
Adam optimizer for training.

Transfer Learning Approach: Model parameter TL generally consists of four
basic steps: 1) selection of a source task with a related modeling problem and an
abundance of data where we can exploit the mapping knowledge from the inputs to
outputs, 2) development of the source model that performs well in the source task,
3) transfer source model to target model where whole or part of the source model
is employed as part of the target model, and 4) fine-tuning the target model on
the target dataset if necessary. We present knowledge transfer on GraphSTAD AE
models—trained on digi-occupancy maps of the source HE subsystem—to the target
HB subsystem of the HCAL. Brute-forcing the knowledge from the source into the
target irrespective of their divergence and thorough investigation of the several net-
work building modules would cause certain performance degeneration—impacting
the original data consistency in the target domain [191]. We have thus investigated
several transferring cases when employing the TL on two principal model training
phases—the initialization and training phases:

1. Init mode: the trainable network parameters (weights and bias) of the source
model are transferred into the target model initialization. The target model
is further trained on the target HB dataset—fine-tuning.

2. Train mode: The model parameters of the source model are directly reused as
the final inference parameters of the target model; the parameters are frozen
and excluded from fine-tuning on the target HB dataset.

LetM(Ψ,Ω) be an AD model with parameters Ψ and Ω affected and not affected
by TL, respectively, and Me(Ψe,Ωe) and Mb(Ψb,Ωb) are the source and target
models for the HE and HB, respectively. The TL modes T can be formulated
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mathematically as:

T
init mode

:Mb(Ψe,Ωb) →
fine-tuning

Mb(Ψ
′

e,Ω
′

b)

T
train mode

:Mb(Ψe,Ωb) →
fine-tuning

Mb(Ψe,Ω
′

b)
(4.36)

where the superscript ′ denotes the parameters that are updated after fine-tuning
theMb model on the target dataset.

We apply the above TL mechanisms to the different deep networks of the encoder
and decoder of the GraphSTAD AE to study the impacts on ST digi-occupancy
map reconstruction and AD accuracy (see Table 4.7). We analyze the effect of RNN
state preservation within and across time windows. We further investigate training
iteration epochs and learning rate scheduling methods. The discussion includes the
impact of the TL on model accuracy, overfitting, and training stability.

Table 4.7: Transfer learning experiment configurations.

Config.
Init Mode Train Mode (on Target Dataset)

Notation Description Notation Description
1 RANDOM Target model is initialized

randomly
No-TL Complete training (fine-

tuning)
2

TL-4

Target model is initial-
ized randomly, except the
spatial learning networks
(CNN and GNN) trans-
ferred from the source
model

No-TL
3 TL-1 The GNN of the encoder is

frozen (not fine-tuned)
4 TL-2 The CNN of the encoder is

frozen
5 TL-2d The CNN of the decoder is

frozen
6 TL-3 The CNN and GNN of the

encoder are frozen
7 TL-4 The CNN and GNN of the

encoder, and the CNN of
the decoder are frozen

8
TL-7

All the spatial and tem-
poral learning networks
(CNN, GNN, and RNN)
of the target model are
initialized by TL from the
source model

TL-5 The CNN, GNN and the
RNN of the encoder are
frozen

9 TL-6 The CNN and GNN of the
encoder, and the RNN of
the decoder are frozen

TL - Transfer learning is applied.
TL-1: TL (ENCODER: [GNN]), TL-2: TL (ENCODER: [CNN]), TL-2d: TL (DECODER: [CNN]),
TL-3: TL (ENCODER: [CNN, GNN]), TL-4: TL (ENCODER: [CNN, GNN], DECODER: [CNN]),
TL-5: TL (ENCODER: [CNN, GNN, RNN]), TL-6: TL (ENCODER: [CNN, GNN, RNN], DE-
CODER: [RNN]), TL-7: TL (ENCODER: [CNN, GNN, RNN], DECODER: [RNN]), TL-8: TL
(ENCODER: [CNN, GNN, RNN], DECODER: [CNN, RNN])

The implementation of parameter transferring on DL networks can be accom-
plished in two ways: 1) start with the source model and then reset—remove and
add—the networks that are not included in the TL, and 2) start with the target
model—random initialization—and update the parameter values of the networks
included in the TL from the corresponding source networks. The first approach is
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commonly used for DL TL—employed for feature extraction; the approach may not
be suitable to flexibly choose layers at different hierarchies, as the target models
might have slight variations. Several configuration setups of the AE are derived
from the spatial configuration of the input 3D map, which differs for the source HE
and target HB systems—e.g., variation in the depth spatial dimension between HE
and HB. We have found the second approach more convenient in our study, as we
intend to apply TL on different networks of the encoder and decoder of the AE
model.

4.3.3 Results and Discussion

We will present the results of TL on reconstruction accuracy, trainable parameter
reduction, and AD performance on the target HB digi-occupancy dataset. We ap-
plied TL for model initialization—init mode—without and with fine-tuning—train
mode—on the target HB dataset. We trained the models on NVIDIA Tesla V100
with 4 GPUs using 4K digi-occupancy maps from LS 1 to 500 and evaluated the
approximately 3K maps from LS from 500 to 1500. We utilized 20% of the training
dataset (the last time stamps) for validation loss calculation during training to de-
termine the best states for the models while training the models until the maximum
epoch. We set the learning rate at 0.001 and the batch size at 6 to train the models
with five lumisections per time window.

Spatio-Temporal Reconstruction Performance

We will discuss below the LMSE performance of TL applied on spatial—CNNs and
GNNs—and temporal—RNNs—learning networks. We will also briefly present a
comparison of the learning rate scheduling mechanisms.

Transfer Learning on Spatial Learning Networks: We have assessed the
transferability of DL model initialization and inference for the spatial learning
networks—CNNs and GNNs—on both the encoder and decoder networks on dif-
ferent numbers of training epochs (see Fig. 4.31). The TL has reduced the recon-
struction error LMSE of healthy maps by 32.5% to 20.7% when the number of epochs
is varied from 75 to 200 (see Figure 4.31b). The minimum gain of 13% is achieved
at epoch 150, just before the performance of the no-TL model starts to saturate.
The complete fine-tuning—TL for initialization followed by fine-tuning the whole
network—accomplished around 20% improvement. The LMSE generally decreases,
while the relative TL gain roughly decreases as the epoch increases to 150. The
results are not entirely unexpected; the DL models may tend to improve perfor-
mance as the training epoch increases—reducing the gap caused by the difference
in initialization and training mechanism. When the epoch increased beyond 150,
the randomly initialized model (no-TL) achieves only slight improvement, whereas
the LMSE continues to drop for the TL models—increasing the relative gain of the
TL. TL for initialization of all the spatial learning networks of the AE—init mode
= TL-4—and fine-tuning only the decoder while freezing the encoder—train mode
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= TL-3—achieves the best improvement—from 26% to 32.5%. The TL gain of the
GNNs is limited compared to CNNs; the CNNs are the primary network that learns
the input spatial data and has 15 times more parameters than GNNs in the use-case
GraphSTAD AE model. Transferring and freezing the CNNs of the encoder—TL-2
and TL-3—exhibit stable performance on repeated experiments.

(a)

(b)

Figure 4.31: Reconstruction LMSE evaluation of the TL on spatial networks across
multiple epochs: a) Test MSE loss and the bars show the dispersion of five repeated
experiments, and b) the average relative difference of the MSE loss with respect
to the no-TL. The TL is applied using init mode = TL-4 and train mode = TL-1,
TL-2, and TL-3. The no-TL model starts to saturate at epoch > 150.

Table 4.8 provides the average and best model ST reconstruction LMSE. Infer-
ence TL on the decoder networks without fine-tuning train mode = TL-2d fails to
reconstruct the target data adequately. In an AE architecture, the encoder maps
the input into low dimensional latent space—information compression—while the
decoder attempts to reconstruct—information expansion—the target data from the
latent. The decoder networks thus require fine-tuning on the target dataset to adjust
its parameters to the target reconstruction effectively. [190] investigates TL on DL
for a univariate chaotic TS classification model; they argue that BN without fine-
tuning limits the transferability of CNNs—the scaling and shifting parameters for
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Table 4.8: Average ST reconstruction performance of TL at epoch = 200.

MSE Loss ∆MSE w.r.t Init=RANDOM
Init Mode Train Mode

Train Val Test Train Val Test
Average Performance

RANDOM No-TL 2.650× 10−04 2.750× 10−04 3.361× 10−04 – – –
TL-4 No-TL 2.200× 10−04 2.250× 10−04 2.666× 10−04 -17.0% -18.2% -20.7%
TL-4 TL-3 1.775× 10−04 1.775× 10−04 2.489× 10−04 -33.0% -35.5% -25.9%
TL-4 TL-2 1.725× 10−04 1.800× 10−04 2.463× 10−04 -34.9% -34.5% -26.7%
TL-4 TL-1 2.075× 10−04 2.125× 10−04 2.604× 10−04 -21.7% -22.7% -22.5%
TL-4 TL-2d 8.902× 10−03 7.380× 10−03 1.530× 10−02 3259.2% 2583.6% 4452.2%

Best Model (on Test Loss)
RANDOM No-TL 2.400× 10−04 2.600× 10−04 3.085× 10−04 – – –
TL-4 No-TL 2.100× 10−04 2.100× 10−04 2.569× 10−04 -12.5% -19.2% -16.7%
TL-4 TL-3 1.700× 10−04 1.700× 10−04 2.451× 10−04 -29.2% -34.6% -20.5%
TL-4 TL-2 1.700× 10−04 1.800× 10−04 2.420× 10−04 -29.2% -30.8% -21.6%
TL-4 TL-1 2.000× 10−04 2.100× 10−04 2.502× 10−04 -16.7% -19.2% -18.9%
TL-4 TL-2d 8.88× 10−03 7.37× 10−03 1.5255× 10−02 3600.0% 2734.6% 4844.9%

TL-1: TL (ENCODER: [GNN]), TL-2: TL (ENCODER: [CNN]), TL-2d: TL (DECODER: [CNN]),
TL-3: TL (ENCODER: [CNN, GNN]), TL-4: TL (ENCODER: [CNN, GNN], DECODER: [CNN]),
TL-5: TL (ENCODER: [CNN, GNN, RNN]), TL-6: TL (ENCODER: [CNN, GNN, RNN], DE-
CODER: [RNN]), TL-7: TL (ENCODER: [CNN, GNN, RNN], DECODER: [CNN, RNN])

BN and bias parameters are estimated from the training dataset and strongly corre-
late to the data. We have further studied TL on the decoder when the BN layer and
the bias parameters of the CNNs are fine-tuned on the target dataset. The LMSE

is substantially reduced—accuracy improved—by 50% as compared to the frozen
decoder (see Table 4.9). The reconstruction error is still 20 times higher than the
without TL model—indicating the CNNs of the decoder also require fine-tuning to
achieve reasonable accuracy. The results demonstrate the promising leverage of TL
for an AE model initialization—on both feature extraction encoder and reconstruc-
tion decoder networks—whereas fine-tuning with the target data set is necessary for
the decoder networks.

Table 4.9: Average ST reconstruction performance of TL—decoder with init
mode=TL-4 at epoch = 200.

Train Mode
MSE Loss ∆MSE w.r.t TL− 2d

Train Val Test Train Val Test
TL-2d 8.902× 10−03 7.380× 10−03 1.530× 10−02 – – –
TL-2d / [BN] 4.403× 10−03 3.767× 10−03 7.200× 10−03 -50.5% -48.9% -53.0%
TL-2d / [BN, BIAS] 4.405× 10−03 3.760× 10−03 7.354× 10−03 -50.5% -49.1% -51.9%

TL-2d: TL (DECODER: [CNN]), TL-4: TL (ENCODER: [CNN, GNN], DECODER: [CNN])

Transfer Learning on Temporal Learning Networks: We have investigated
TL on the temporal RNNs—LSTM layers—on both the encoder and decoder net-
works, together with the transferability of the spatial learning networks—CNNs and
GNNs. We utilize the best performing TL from the above TL on spatial networks
investigation—fine-tuning with train mode = TL-4 when conducting the TL exper-
iment on temporal networks.

Table 4.10 presents the LMSE when TL is applied to the ST networks at epoch =
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Table 4.10: ST reconstruction performance of TL on temporal networks—without
RNN states preservation—at epoch = 200.

MSE Loss ∆MSE w.r.t Init=RANDOM
Init Mode Train Mode

Train Val Test Train Val Test
Average Performance

RANDOM No-TL 2.650× 10−04 2.750× 10−04 3.361× 10−04 – – –
TL-4 TL-3 1.775× 10−04 1.775× 10−04 2.489× 10−04 -33.0% -35.5% -25.9%
TL-7 TL-5 1.775× 10−04 1.800× 10−04 2.496× 10−04 -33.0% -34.5% -25.7%
TL-7 TL-6 1.725× 10−04 4.325× 10−04 5.054× 10−04 -34.9% 57.3% 50.4%

Best Model (on Test Loss)
RANDOM No-TL 2.400× 10−04 2.600× 10−04 3.085× 10−04 – – –
TL-4 TL-3 1.700× 10−04 1.700× 10−04 2.451× 10−04 -29.2% -34.6% -20.5%
TL-7 TL-5 1.700× 10−04 1.800× 10−04 2.457× 10−04 -29.2% -30.8% -20.4%
TL-7 TL-6 1.500× 10−04 4.600× 10−04 4.697× 10−04 -37.5% 76.9% 52.2%

TL-3: TL (ENCODER: [CNN, GNN]), TL-4: TL (ENCODER: [CNN, GNN], DECODER: [CNN]),
TL-5: TL (ENCODER: [CNN, GNN, RNN]), TL-6: TL (ENCODER: [CNN, GNN, RNN], DE-
CODER: [RNN]), TL-7: TL (ENCODER: [CNN, GNN, RNN], DECODER: [CNN, RNN])

200. We have evaluated models with RNN states preserved only within five maps
in a time window—states are reset for each time window. Transferring RNNs has
not accomplished performance gain. When the TL involves freezing the RNNs of
the decoder for inference on the target data—train mode: TL-6—the performance
suffered substantially—increasing the test LMSE by more than 50% despite the
reduction of the training LMSE by 34%. A close investigation has revealed that the
issue lies with RNN state resetting during inference. Fig. 4.32 illustrates that the
model is struggling to reconstruct the first time step in the time windows (TWs). The
reason is that the model relies on only the first input map for the first time step with
reset states, while the states are adjusted and improved for the following maps (see
Fig. 4.32a). This behavior is not entirely unexpected; the RNNs are trained on the
source dataset, and employing them directly on the target data set—without taking
advantage of the localized temporal information—for the first map in a TW—would
be challenging. We have further evaluated the models by preserving the RNN states
across time windows that leverage the model reconstruction accuracy; it utilizes
previous states even for the first maps in the TWs (see Fig. 4.32b).

Fig. 4.33 illustrates the LMSE on multiple epochs for the RNN networks with
and without RNN states preservation across TWs. The plots illustrate a significant
improvement by preserving the states on the frozen decoder RNNs—train mode =
TL-6; higher gaps are also observed for lower epochs among repeated experiments
(five times) but the stabilization gets better at higher epochs. State preservation
across TW has a limited impact when the target dataset fine-tunes the decoder
RNNs—the train mode: TL-5. We have summarized the best performance in Table
4.11.

Applying Learning Rate Scheduling: The models reach saturation after
epoch > 150 as illustrated in the previous plots in Fig. 4.31a and Fig. 4.33b
for the models trained without TL and with TL, respectively. Learning rate (LR)
scheduling mechanisms—e.g., lowering the LR when the loss gets flat or fast con-
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(a)

(b)

Figure 4.32: Digi-occupancy map reconstruction of the model trained with TL-6:
a) without, and b) with LSTM states preservation across time-windows. The AE
operates on ST γ maps, but the curves in these plots correspond to the aggregate
renormalized γ per LS to illustrate the model’s reconstruction performance in han-
dling the fluctuation across lumisections.

vergence methods—could improve the performance to mitigate training saturation.
We have investigated the impact of scheduling on the TL by training the model
with super-convergence one-cyclic LR scheduling [356] at epoch = 200. The LR
scheduling sets the LR according to a one-cycle policy that anneals the LR from an
initial LR to some maximum LR (max_lr = 0.001) and then from that maximum
LR (min_lr = 4 × 10−7) to some minimum LR. We utilized a cosine annealing
mechanism along with the other settings of the scheduler—provided in Table 4.12—
for our experiment. We kept the default values of the remaining hyperparameters
of the scheduler10.

Table 4.13 shows that the LR scheduling has improved the LMSE compared to
the fixed LR (provided in Table 4.11) by 19% and 13% for init mode = RANDOM,
and the train mode = TL-6 models, respectively. With respect to the model without
TL, the relative improvement from TL is approximately 9% with the LR scheduling,
which is lower than the 22.6% achieved with the fixed LR. The results are in accord

10https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
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(a)

(b)

Figure 4.33: Reconstruction LMSE evaluation of the TL on the RNN (test-set). The
TL is applied to initialize the encoder’s and decoder’s CNN, GNN, and RNN net-
works and trained with TL on the RNNs. Test MSE loss on a) non-preserved LSTM
states that reset for each time window, and b) preserved LSTM states across con-
secutive time windows. The bars show the dispersion of five repeated experiments.

with Fig. 4.31b—following the projection of closing in the performance difference
as the number of epochs increases past epoch > 150 with resolved saturation on the
init mode = RANDOM. The cyclic LR scheduling method requires more configura-
tion tuning effort to improve the performance depending on the model and dataset
compared to fixed LR or other simpler LR scheduling approaches.

Anomaly Detection Performance

Machine learning studies performed thus far in the DQM system of CMS experiment
primarily employed the simulated anomalies data to evaluate the effectiveness of
the developed AD models [39]; a small fraction of the DQM data is affected by real
anomalies and is limited to be used for model validation. We have validated the
AD models on synthetic anomalies simulating real channel anomalies of the HCAL.
We generated synthetic anomalies simulating dead, hot, and degraded channels, and
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Table 4.11: ST reconstruction performance of TL with RNN state preservation.

Init Mode Training Mode
MSE Loss Trainable Parameters

Reduction (%)Value ∆(%) w.r.t Init=RANDOM

At epoch = 75

RANDOM No-TL 3.826× 10−04 –
TL-4 No-TL 3.180× 10−04 -16.9% 0.00%
TL-4 TL-2 2.686× 10−04 -29.8% -2.23%
TL-4 TL-1 3.082× 10−04 -19.5% -0.17%
TL-4 TL-3 2.705× 10−04 -29.3% -2.39%
TL-7 TL-5 2.667× 10−04 -30.3% -8.38%
TL-7 TL-6 2.577× 10−04 -32.6% -97.77%

At epoch = 200

RANDOM No-TL 3.085× 10−04 – –
TL-4 No-TL 2.569× 10−04 -16.7% 0.00%
TL-4 TL-2 2.420× 10−04 -21.6% -2.23%
TL-4 TL-1 2.502× 10−04 -18.9% -0.17%
TL-4 TL-3 2.451× 10−04 -20.5% -2.39%
TL-7 TL-5 2.457× 10−04 -20.4% -8.38%
TL-7 TL-6 2.389× 10−04 -22.6% -97.77%

TL-1: TL (ENCODER: [GNN]), TL-2: TL (ENCODER: [CNN]), TL-3: TL (ENCODER: [CNN,
GNN]), TL-4: TL (ENCODER: [CNN, GNN], DECODER: [CNN]), TL-5: TL (ENCODER: [CNN,
GNN, RNN]), TL-6: TL (ENCODER: [CNN, GNN, RNN], DECODER: [RNN]), TL-7: TL (EN-
CODER: [CNN, GNN, RNN], DECODER: [CNN, RNN])

Table 4.12: Hyperparameter setting of one-cyclic LR scheduler.

Hyperparameter Value Description
max_lr 0.001 Upper learning rate boundaries in the cycle.
steps_per_epoch train_data_size/batch_size The number of steps per epoch to train for.
total_steps steps_per_epoch× epochs The total number of steps in the cycle.
div_factor 25 Determines the initial learning rate via

initial_lr = max_lr/div_factor.
final_div_factor 102 Determines the minimum learning rate via

min_lr = initial_lr/final_div_factor.

injected them into healthy digi-occupancy maps of the test dataset. We formulate
the simulated channel anomalies using:

γa = RDγh, RD ̸= 1 (4.37)

where γa and γh are the digi-occupancy of the generated anomaly channel and its
corresponding expected healthy reading, respectively. The RD is the degradation
factor, and the simulated anomalies are defined as:

Dead Channel : γa = RDγh = 0, RD = 0

Degraded Channel : 0 < γa = RDγh < γh, 0 < RD < 1

Noisy −Hot Channel : γh < γa = RDγh ≤ ξ, RD > 1

Fully −Hot Channel : γh < γa = ξ

(4.38)

The algorithm that generates the synthetic anomaly samples involves three steps:
1) selection of a random set of LSs from the test set, 2) random selection of spatial
locations φ for each LS, where φ ∈ [iη × iϕ × depth] on the HB axes (see Fig.
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Table 4.13: ST reconstruction performance of TL with learning rate scheduling
mechanism at epoch = 200.

Init Mode Training Mode
MSE Loss

Value ∆(%) w.r.t Init=RANDOM

RANDOM No-TL 2.500× 10−04 –
TL-4 No-TL 2.400× 10−04 -4.0%
TL-4 TL-3 2.460× 10−04 -1.6%
TL-7 TL-5 2.283× 10−04 -8.7%
TL-7 TL-6 2.286× 10−04 -8.6%

TL-3: TL (ENCODER: [CNN, GNN]), TL-4: TL (ENCODER: [CNN, GNN], DECODER:
[CNN]), TL-5: TL (ENCODER: [CNN, GNN, RNN]), TL-6: TL (ENCODER: [CNN, GNN,
RNN], DECODER: [RNN]), TL-7: TL (ENCODER: [CNN, GNN, RNN], DECODER: [CNN,

RNN])

4.29c), and 3) injection of the simulated anomalies into digi-occupancy maps of
the LSs. The simulated anomalies include dead, degraded, noisy-hot, and fully-hot
channels. We kept the same spatial locations of the generated different anomaly
types for consistency. We evaluated the performance on several classification metrics
using three anomaly thresholds set to capture 90%, 95%, and 99% of the injected
anomalies.

The AD evaluation covers 14K digi-occupancy maps—2K maps for each
anomaly type—for the dead (RD = 0%), degrading channel anomalies (RD =

[80%, 60%, 40%, 20%]), noisy-hot (RD = 200%), and fully-hot (γa = ξ) channels.
We focus on persisting channel anomalies that affect consecutive maps in a time
window of LSs. We thus processed 70K digi-occupancy maps—including five history
maps in the time window for each of the 14K maps; we generated 1.17% abnormal
channels in the 70K maps.

We compare the AD performance of models without TL and the best with TL
given in Table 4.13—without-TL: init mode = RANDOM, and with-TL: train mode
= TL-6. Table 4.14 presents the AD accuracy of the models on the dead, degraded,
fully-hot, and noisy-hot channel abnormalities. Both models perform well in the
area under the receiver operating characteristic curve (AUC) and false positive rate
(FPR). The FPR exhibits slight variance between the two models; the TL model
significantly improves dead and fully-hot channel detection but performs slightly
lower for noisy-hot channels. Fig. 4.34 illustrates the FPR score across all the
anomaly types where the TL model outperforms the without the TL model in RD <

1. The relatively lower precision at 70% for the RD = 80% demonstrates that there
are still a few anomalies challenging to catch despite the FPR being very low due to
the accurate classification of numerous healthy channels (see Fig. 4.35). A channel
operating at 80% is mostly an inlier—overlaps with the healthy operating ranges—
and detecting such anomaly becomes even more difficult when the expected γ of the
channel is very low. The FPR has significantly improved by 80% when the amount
of the captured anomaly is reduced to 95%. Fig. 4.36 and Fig.4.37 demonstrate the
ability of our algorithm to locate the anomalies on a sample that has been injected
with different anomaly types in some channels (4 < iη < 11 and 11 < iϕ < 19);
the TL model accomplishes better localization on the fully-hot channels with less
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Table 4.14: AD performance of TL on time-persistent abnormal channels.

Anomaly Type FPR (90%) FPR (95%) FPR (99%) AUC
Without-TL Model: (Init=RANDOM,Training=No-TL)

Degraded Channel (RD = 80%, γa = RDγh) 6.281× 10−04 1.519× 10−03 8.741× 10−03 0.993
Degraded Channel (RD = 60%, γa = RDγh) 5.991× 10−05 1.438× 10−04 8.242× 10−04 1.000
Degraded Channel (RD = 40%, γa = RDγh) 4.881× 10−05 5.628× 10−05 1.466× 10−04 1.000
Degraded Channel (RD = 20%, γa = RDγh) 5.870× 10−05 6.273× 10−05 7.342× 10−05 1.000
Dead Channel (RD = 0%, γa = 0.0) 6.636× 10−05 7.080× 10−05 8.331× 10−05 1.000
Fully-Hot Channel (γa = ξ, γa ̸= γh) 1.220× 10−04 1.317× 10−04 1.606× 10−04 1.000
Noisy-Hot Channel (RD = 200%, γa = RDγh) 3.300× 10−04 5.732× 10−04 1.765× 10−03 1.000

With-TL Model: (Init=TL-6, Training=TL-6)
Degraded Channel (RD = 80%, γa = RDγh) 5.019× 10−04 1.320× 10−03 6.527× 10−03 0.996
Degraded Channel (RD = 60%, γa = RDγh) 2.118× 10−05 9.642× 10−05 8.141× 10−04 1.000
Degraded Channel (RD = 40%, γa = RDγh) 1.614× 10−06 4.034× 10−06 7.161× 10−05 1.000
Degraded Channel (RD = 20%, γa = RDγh) 1.614× 10−06 3.833× 10−06 8.472× 10−06 1.000
Dead Channel (RD = 0%, γa = 0.0) 1.815× 10−06 4.236× 10−06 8.472× 10−06 1.000
Fully-Hot Channel (γa = ξ, γa ̸= γh) 0.000 6.051× 10−07 3.631× 10−05 1.000
Noisy-Hot Channel (RD = 200%, γa = RDγh) 1.380× 10−03 2.143× 10−03 4.099× 10−03 1.000

dispersion in its anomaly score values.
The distribution of the reconstruction error—shown in Fig. 4.38—provides fur-

ther illustration of the overlap region between the healthy and faulty channels at the
different degradation rates. We have observed a slight increase in the reconstruction
error of the healthy channels as the anomaly strength increases for the abnormal
channels—the RD is farther away from 100%; it is more pronounced when introduc-
ing hot channel anomalies with RD = 200%. Close investigation reveals that the
healthy channels have higher anomaly scores—filter out from the anomaly injection
γa = RDγh > ξ—due to their proximity to the abnormal channels (see Fig. 4.39 and
Fig. 4.40). Since channels belonging to the same RBX are positioned in proximity
in the HB segmentation and share characteristics, the GraphSTAD AE exploits the
correlation for spatial data reconstruction. The exacerbating effect in the presence
of the hot channels indicates the model is giving prominence to the channel with
higher values to perform the map reconstruction.

The performance on the dead channels is another major difference between the
without-TL and with-TL models. The overlap tails decrease on reconstruction er-
ror distributions of the normal and abnormal channels—the degraded channels as
the RD decreases—in both models (see Fig. 4.38). The AD performance slightly
deteriorates for the dead channels (RD = 0%) compared to the degraded channel
at RD = 20% defying expectation (see Table 4.14). Fig. 4.38 illustrates the recon-
struction error of most anomalies increases—enabling enhanced separation between
the normal and anomaly channels except for a few dead channels that increase the
FPR. The reconstruction error of the without-TL model drops to zero for the dead
channels, although the channels have higher reconstruction errors at RD = 20%;
this is caused by the presence of real dead channels in the training dataset at the
location of [iη ∈ [−16,−15,−13], iϕ = 8, depth = 1] (see Fig. 4.41). Fig. 4.41
depicts that the without-TL model reconstructs the real dead channels as normal
with low reconstruction error, whereas the with-TL provides a high error which sig-
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Figure 4.34: AD FPR on dead, degraded and noisy-hot channel. The anomaly flags
are generated using thresholds that capture 90%, 95%, and 99% of the anomaly
channels.

Figure 4.35: AD Precision on dead, degraded and noisy-hot channels. The anomaly
flags are generated using thresholds that capture 90%, 95%, and 99% of the anomaly
channels.
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Figure 4.36: Spatial reconstruction error (ei,MAE) maps on a sample digi-occupancy
map at depth = 1 with degraded anomalies. Plots (top to bottom): digi-occupancy
map with simulated channel anomalies, the reconstruction error maps of the without-
TL model, and with-TL model. The anomaly region is localized well with propor-
tional strength to the severity of the anomaly in both models.
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Figure 4.37: Spatial reconstruction error (ei,MAE) maps on a sample digi-occupancy
map at depth = 1 with dead, noisy-hot, and fully-hot anomalies. Plots (top to
bottom): digi-occupancy map with simulated channel anomalies, the reconstruction
error maps of the without-TL model, and with-TL model.
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(a)

(b)

Figure 4.38: Reconstruction error (ei,MAE) distribution of healthy and anomalous
channels at different channel degradation rates—excluding the real anomalies. The
models are a) without-TL, and b) with-TL. The overlap region decreases substantially
as the channel deterioration increases for RD < 100%.
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Figure 4.39: 2D Location embedding of high reconstruction error channels—from
the with-TL model—in the presence of noisy-hot channel anomalies. We applied t-
SNE [16] on the spatio-temporal locations (LS, iη, iϕ, and depth) to generate the 2D
representation. Healthy channels with high reconstruction error scores are located
near the anomalous channels.

Figure 4.40: Proximity effect explanation on false positive on noisy-hot channel
anomaly (RD = 200%) detection. The healthy channels with higher anomaly scores
are the ones filtered out from the anomaly injection γa = RDγh > ξ and generate a
high score due to their proximity to the abnormal channels.
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nifies it is detecting the channels as anomalies. The without-TL model reconstructs
the simulated dead anomalies as healthy and fails to detect the anomalies when
the simulated anomalies are injected into locations near the real abnormal channels.
The with-TL has thus achieved substantially better detection on the dead chan-
nels (see Fig. 4.38b). The results demonstrate transfer learning robustness when a
semi-supervised model’s training dataset is contaminated with real anomalies.

(a) (b)

Figure 4.41: Average reconstruction error map of the training dataset at depth = 1

for a) the without-TL model, and b) the with-TL model. The real dead HB channels
(at [iη = [−16,−15,−13], iϕ = 8, depth = 1]) are highlighted in the red boxes.
without-TL model reconstructs the real dead channels as normal with low error,
whereas with-TL produces a high error detecting the channels as anomalies.

4.3.4 Summary

We have studied transfer learning on a spatio-temporal semi-supervised anomaly
detection model. We have successfully transferred the spatio-temporal AD model—
employing convolutional, graph, and recurrent neural networks in an autoencoder
architecture—from the source HCAL Endcap to the target HCAL Barrel subde-
tector for data quality monitoring. The study has provided insights into several
transfer learning scenarios at the initialization and training phases. We have suc-
cessfully applied TL to the encoder feature extraction networks and inner networks
of the decoder. The TL has achieved a promising ST reconstruction and AD per-
formance while providing a substantial reduction in trainable parameters. We have
also demonstrated that the TL can have better robustness against contamination in
the training dataset. The study indicates that TL can facilitate machine learning
development with limited clean training data and when expensive model training on
large data sets is costly or time-consuming. The choice of model training settings,
such as the number of iterations, learning rate schedule, and recurrent neural net-
work state preservation during inference, can impact the TL performance besides
the similarity between the source and target data sets.
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Chapter 5

Anomaly Prediction

This chapter presents our study on deep learning modeling for multivariate anomaly
prediction for infrastructure monitoring.

5.1 Long Horizon Anomaly Prediction in Multivari-
ate Time Series with Causal Autoencoders

Complex industrial systems employ predictive maintenance to foresee anomalies
before major system faults or ultimate breakdown. The existing efforts on in-
dustry 4.0—the fourth industrial revolution—predictive monitoring focus on semi-
supervised anomaly detection with limited robustness for large systems that are
often accompanied by uncleaned and unlabeled data. We address the challenge
of predicting anomalies through data-driven end-to-end deep learning models us-
ing early warning symptoms on multivariate time series sensor data. We introduce
a long multi-timestep anomaly prediction system (AnoP) based on unsupervised
attention-based causal residual networks to raise alerts for anomaly prevention. The
experimental evaluation on large data sets from detector health monitoring of the
Hadron Calorimeter validates the promising efficacy of the proposed approach. The
AnoP predicts around 60% of the anomalies up to seven days ahead, and most missed
anomalies are abnormalities with unpredictable noisy-like behavior. The proposed
approach has discovered previously unknown anomalies in the calorimeter’s sensors.

Predicting faults in the HCAL detector electronics is essential for maintaining
the quality of physics data acquisition. Machine learning algorithms have been ex-
plored through AD for system monitoring automation of the LHC accelerator and
detector systems [39, 41, 52, 56, 69]. Forecasted anomalous behavior in a large set
of detector sensors can indicate future performance issues—escaping the DCS and
DSS monitoring. For example, the gradual decrease in the monitored received signal
strength indicator (RSSI) current—proportional to the received light at the front
end from the back end optical communication links—preceded control communica-
tion loss during operation in 2018 and 2019 [68, 357]. The RSSI was not actively
monitored, and trend drifts—depicted in Fig. 5.1—could have been predicted. Our
proposed approach in this study attempts to detect such anomalies from early signs
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before they affect data quality or result in data loss.

Figure 5.1: Gradual drifting anomalies on RSSI before ngCCM lost communication
in 2019. A strong decay over three days is illustrated for the HEP06 RBX.

Modern industrial systems utilize sensors to monitor physical quantities, such as
voltages, currents, flows, temperature, pressure, etc. These measurements monitor
the system state by detecting deviations from normal operating conditions. Pre-
dictive maintenance (PdM) approaches—as one of the pillars of industry 4.0—are
expected to improve asset availability by actuating early maintenance before major
system faults [156]. Anomaly prediction (AP)—a subtask of PdM—extends AD
and focuses on predicting anomalies from early symptoms. It has cost-saving po-
tential for large complex systems through prevention of unforeseen system faults,
unplanned downtimes, and maintenance [143,155–157,162]. Most of the data-driven
PdM models in the literature employ supervised approaches that require prior la-
beled anomalies and are limited to short-range predictions [143,156–159,162].

We strive to predict anomalies through data-driven machine learning models
from early warning patterns on unlabeled multivariate time series data sets. Cap-
turing anomalies that persist for substantial periods—often manifested in decaying
or growing trends, strange dips, or peaks—is the primary focus of our study. We
propose AnoP—an end-to-end anomaly prediction system—using an integration of
unsupervised long sequence time series forecasting and anomaly detection mecha-
nisms. The proposed system consists of a pipeline of MTS autoencoder models—a
long horizon sequence-to-sequence (S2S) time series forecasting (TSF) model and
a TS AD model. The underlying concept employs a TSF model—trained on the
interaction of multivariate sensor signals—to predict future temporal segments and
then utilizes the AD model to evaluate the predicted signals for potential anomalies.
Since additive outliers—transient and interpreted on short time scales—are gener-
ally unpredictable, our study aims at forecasting anomalous temporary changes that
persevere for a certain period—multiple time steps [126].

We validate the AnoP system to predict anomalies from the multivariate di-
agnostics sensor data and leverage the health monitoring prognostics of the HE
subdetector. We evaluate AnoP in predicting temporal discords using various long
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sequence horizons on thirty-four readout boxes. We incorporate an evaluation of
the forecasting accuracy of the TSF model. The results demonstrate that the pro-
posed system reveals new anomalies—never captured before in the HCAL. The key
contributions of our study are highlighted below:

1. We present a data-driven unsupervised anomaly prediction mechanism from a
heterogeneous multivariate time series sensor dataset.

2. We introduce a time block-based S2S TSF model that captures temporal causal
interactions for long sequence multivariate time series prediction.

3. We discuss a first study on early prognostics through data-driven methods for
HCAL-RBX monitoring from diagnostic sensor data.

5.1.1 Dataset Description

We utilized front-end electronics sensor data from the HCAL—recorded for detector
health monitoring and diagnostic purposes. The data is from the ngCCM of the
HE subdetector and was collected in 2018 using the ngCCM server. The ngCCM
server—a software that handles access to the ngCCM—enables communication be-
tween detector monitoring services and the front-end electronics. The data set con-
tains approximately one-minute 86M samples—from September to December 2018
from 34 active RBXes—i.e., HEP01—18 and HEM01—18, excluding HEM15 and
HEM16. The data consists of 28 sensors from current, voltage, and optical power
measurements of various components of the ngCCM. We downsampled the data
into hourly intervals by averaging to capture the relevant temporal information in a
broader time interval.

5.1.2 Methodology

Our proposed AnoP system is composed of two MTS models combined in a pipeline:
1) a multi-timestep TSF model, and 2) an AD model (see Fig. 5.2). We will mainly
discuss below the mathematical formulation and architectures for the TSF model of
the AnoP; we have already explained the AD model in the previous Section 4.1.2.
we will also elaborate on the data preprocessing, preparation of training data sets,
and model training.

Multivariate Multi-timestep Forecasting Model: We present a robust
attention-based S2S dynamic conditional decoding mechanism for long sequence
forecasting. A forecasting model must cope with two challenges for anomaly predic-
tion tasks: 1) it should predict the deviating signals belonging to anomalies from
their early fluctuation patterns, and 2) it should also quickly adjust its prediction
when the regular system behavior is resumed after intervention or maintenance.
We integrate a conditional decoder for the TSF model—the latest time window of
the sensors is used as conditional input—to achieve these capabilities. The condi-
tional decoding enables the model to respond faster when the sensor signals begin
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Figure 5.2: System design of the proposed AnoP system. The TSF model predicts
a long sequence of signals, and the AD model produces the anomaly status of the
predicted signals based on reconstruction scores. The explainer explains the detected
anomalies using post-hoc feature attribution estimation (discussed in Section 4.1.2).

to evolve. We employ dynamic decoding—a recursive conditional decoder—to allow
dynamic long-horizon forecasting. Dynamic conditional decoding is a mechanism
in which earlier time slices from the model output are supplied into the decoder as
conditional input to generate the subsequent output sequence. This approach has
been successfully applied with S2S models in natural language processing domains,
such as language translation [256, 322]. Conditional decoding without the recur-
sive dynamic decoding has also been extended into time series data sets in recent
studies [167].

Let the input time series data be XT ∈ RNx×T , where Nx is the number of
input sensors with a history sequence in tx ∈ [t − T, t] and a length of T . The
TSF model S predicts the sequence YH ∈ RNy×H with a horizon time window of
ty ∈ [t + 1, t + H] and Ny target sensors. The TSF model employs S2S encoder-
decoder and the encoder Se maps the input XT into context ze and state vectors he

as:
ze,he = Se(XT ) (5.1)

The decoder Sd utilizes dynamic conditional decoding that uses the context vec-
tors ze and conditional input sequences from the target sensors Yd from the last
time steps td ∈ [t− Td, t] with a size of Td to predict the multi-timestep signals YH

and generate decoding state hd as:

YH ,hd = Sd(Yd, ze,hd) (5.2)

The decoder uses dynamic decoding that behaves in an autoregressive manner
employing a time block-based S2S approach when inferencing long sequence horizon
Hl > H (see Algorithm 2). The decoder initializes its hidden states hd from the
encoder states—hd = he—and then recursively predicts multi-timestep signal seg-
ments of the size H (line 7–11 in Algorithm 2). The latest predicted horizon YH

is combined with the Yd to form a new conditional input to the decoder for the
subsequent forecasts (line 9).

The decoder employs a multi-attention mechanism to improve the attentiveness
of the conditional inputs and leverage the forecasting accuracy (see Fig. 5.3). The
model incorporates three parallel attention layers—one for the encoded context vec-
tors ze, and two blocks for the conditional multivariate sensor signals Yd on the

136



Algorithm 2 Multistep forecasting inference
1: procedure TimeBlockS2SMultiStepForecasting(S,X,Yd, Hl)

▷ F : is the forecasting S2S encoder-decoder model
▷ X : is the multivariate input times series signals with size of Nx × T

▷ Yd : is the initial decoder input from the history time window of the target signals
▷ Hl : is the time length of the target horizon

2: H ← GetModelHorizonSize(S)
3: I ← Hl/H ▷ the number of forecasting iterations with the basic block of H
4: ze,he ← Se(X) ▷ get the learned context vectors and hidden states from the encoder
5: hd ← he ▷ initializes the decoder hidden states
6: Y ← [ ]

7: for i in [1, .., I] : do
8: YH ,hd ← Sd(Yd, ze,hd)

9: Y ← Join(Y,YH) ▷ concatenate on the time dimension
10: Yd ← GetCondInput(YH ,Yd) ▷ updates conditional input
11: end for
12: return Y

13: procedure GetCondInput(YH ,Yd) ▷ returns decoder conditional input segment
14: H ← LENGTH(YH)

15: Td ← LENGTH(Yd)

16: if H ≤ Td then
17: Yd ← Join(Yd{t ∈ [H,Td]},YH) ▷ update the latest H steps of Yd from YH

18: else
19: Yd ← YH{t ∈ [H − Td, H]} ▷ get the latest Td steps from the YH

20: end if
21: return Yd

22: end procedure
23: end procedure

feature quantity and time dimensions, respectively, as:

ψze = softmax(ze)

ψYf
d
= softmax(Yt

d)

ψYf
d
= softmax(Yf

d )

(5.3)

where the ψze is the attention scores on the learned encoder context vectors ze,
and ψYt

d
and ψYf

d
are attention scores of the decoder conditional input Yd on its

temporal and feature dimensions, respectively. Attention scores are concatenated to
form predictor features for the multi-timestep forecasting as:

ψ = [ψze||ψYt
d
||ψYf

d
] (5.4)

The TSF S2S model consists of residual dilated convolutional and GRU net-
works with attention (see Fig. 5.3). Multiple convolutional layers are stacked in
the network to achieve temporal causation learning with increasing dilation size.
The increasing dilation along subsequent layers expands the receptive field of the
convolution operation in the time data [270, 358]. We ameliorate the model with
time dimension reduction to mitigate the performance degradation for long input
sequences through multilayer pooling. Residual skip connections are added in the
convolutional network to enhance training with deeper layers. The decoder uti-
lizes attention networks that take decoding inputs from the encoded latent features
and conditional signals. The remaining sections of the decoder consist of blocks
similar to the encoder but in reverse order with deconvolution. It employs a final
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Figure 5.3: TSF model: the architecture of the multi-timestep forecasting S2S
encoder-decoder model. The residual block consists of multi-layered dilated CNN
while the RNN blocks contain two GRU layers—encoder: 16 → 16, and decoder:
16→ 256. The convolutional blocks consist of dilated 1DCNN with 256 kernels, and
the CBd

c and CBd
f use 16 and Ny = 28 kernels, respectively, for fast localized fea-

ture extraction, BN for network regularization and faster convergence, LeakyReLU
for non-linear activation, and MaxPooling1D for time translation insensitive fea-
tures retrieval. The decoder attention networks employ softmax. We incorporate
a dropout with a drop rate of 20% for training regularization. Temporal causal
learning through the CNN layers with varying sizes of dilation and the GRU layers.
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deconvolution layer with a unit kernel size for output stabilization. The number
of convolutional blocks on the encoder and decoder may differ; the purpose of the
encoder is to extract relevant context from the history time window, whereas the
decoder is to predict the signals in the horizon time window. The conditional input
signals to the decoder pass through a convolutional embedding block—to extract
relevant temporal features—before the attention network. The attention network
in our model is not followed with a fully-connected (FC) layer to reduce model
complexity—unlike previous studies [167, 172]; it is directly connected to the GRU
networks, and the input weights of the first GRU layer can provide functionality
similar to FC.

Multivariate Time Series Anomaly Detection Model: We employ the AD
model proposed in Section 4.1.2. The AD model employs VAE Fθ,ω that attempts
to reconstruct X̄T from a multivariate input data XT ∈ RN×T with N sensors on a
time sequence tx ∈ [t−T, t]. The encoder of the model provides normally distributed
low-dimensional latent signals z ∈ RNz×1 as:

X̄T = Fθ,ω(X) = Dω(Eθ(X
T )) (5.5)

The model estimates anomaly scores from the signal reconstruction errors. The
reconstruction error e for each univariate sensor is calculated based on MAE as:

ei(t) =
1

T

t∑
t′=t−T

|xi(t
′)− x̄i(t

′)| (5.6)

where xi and x̄i are the input and reconstructed univariate data for the sth sensor.
We standardize the reconstruction error as follows:

si = (ei − µi)/σi (5.7)

where µi = E[ei] and σi =
√
E[(ei − µi)2] are the mean and standard deviation, re-

spectively, calculated on the training dataset. The reconstruction error is standard-
ized to compensate for the reconstruction performance variations across the sensors.
The multidimensional reconstruction error is finally converted into an anomaly score
using Mahalanobis distance (dMD) [350]—the multidimensional distance between a
vector and a distribution as:

dMD =
√
(sj − sµ)T · C−1 · (sj − sµ) (5.8)

where the vector sj is the multivariate anomaly score of the jth observation, the
vector sµ = µ1, µ2, . . . , µN contains the mean values of the univariate anomaly scores
estimated on the training dataset, and C−1 is the inverse covariance matrix of S.
We generate the MD anomaly flags through AMD = dMD > KMDµMD, where KMD

and µMD are the detection sensitivity and µMD = E[dMD] on the training dataset,
respectively.

The AD model employs 1DCNN and GRU networks—adopted from our previous
work on MTS AD in [41] (see Fig. 4.1 in Section 4.1). The CNN consists of
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three blocks of 1DCNN (64 kernels, kernel_size=1 × 3) with MaxPooling1D and
MaxUnpooling1D with a stride size of 2 for the encoder and decoder, respectively.
The RNN consists of two GRU layers—encoder hidden_size: 16 → 4, and decoder:
4 → 16—and FC layers implement the variational network.

Model Training: We trained the TSF and AD models of the AnoP system sepa-
rately since the models require different training data sets. The AD needs training
data with healthy instances or low anomaly contamination, while the TSF requires
substantial predictable anomalies in its training dataset. Obtaining clean data of
healthy instances in the training data is one of the main challenges of semi-supervised
learning of AD models [99]. We cleaned the potential outliers from each univariate
sensor data in the training set using a state-of-the-art time series outlier detection
algorithm—saliency residual [41,95]. The TSF S2S model was trained on the dataset
with anomalous patterns to leverage its capability to forecast anomaly signals from
early signs. The modeling approach is fully unsupervised and does not require any
labeling. The model may struggle to learn the anomaly signals due to the class im-
balance since anomalies are rare instances. We attempted to mitigate the challenge
with the support of the AD model. We selected the data sources—the RBXes—that
have a significant number of outliers—potential anomalies—spanning substantial
periods on the sensor data.

We trained the models with Adam optimizer using a super-convergence one-
cyclic learning rate scheduling mechanism [356]. We have applied a cyclic annealing
method [359] when KL divergence loss regularizes the training cost function to mit-
igate KL loss vanishing—latent squashing—for the VAE of the AD model.

5.1.3 Experimental Results and Discussion

We trained the TSF and AD models of the AnoP on 28 sensors per RBX. We utilized
the same sensors for the input and target—i.e., Nx = Ny = 28. We trained the TSF
S2S and the AD models on two-month data (10–11/2018) from six RBXes (HEM01,
HEM04, HEM17, HEP14, HEP15, and HEP18) and one-month data (10/2018) from
four stable RBXes (HEM01, HEM07, HEM17, and HEP11), respectively; we devel-
oped the models with PyTorch and trained them up to 5000 iterations. We evaluated
the performance on the 25/09–03/12/2018 date range on thirty-four RBX systems.

The TSF model employs N e
cd = 2 and Nd

cd = 4 causal residual convolution
blocks for the encoder and decoder networks, respectively. The model operates on a
T = 120 hours—equivalent to 5 days—sliding history time-window with prediction
horizon sizes of H = [24, 168] hours—1 to 7 days; the base forecasting horizon
H = 24 hours. The conditional decoder of the model uses the last Td = 24 hours
from the history time window for the target sensors.

The AD model predicts anomalies on the 24-hour sliding window. We heuris-
tically set αMD = 10 to estimate the reconstruction-based AD decision thresholds.
We have compared the AP performance of the AnoP with the benchmark CGVAE
AD model. The benchmark model is the same as the AD model of the AnoP, except
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it detects the anomaly from the raw sensor signals in contrast to the AnoP that the
AD model detects anomalies from the forecasted signals. We compare AnoP predic-
tion performance with the anomaly flags generated by the AD model on measured
raw signals—non-forecasted—because of the lack of labeled anomaly data.

Multi-timestep Forecasting Model Evaluation: We have validated the effi-
cacy on multiple extended horizon sizes—24 to 168 samples (see Table 5.1). The
results demonstrate that the model forecasted long horizons with slight performance
degradation through the time block S2S mechanism.

Table 5.1: Forecasting performance on MTS data, averaged over all the RBX sys-
tems.

Horizon (H) 24h 48h 72h 96h 120h 144h 168h
MAE 0.418 0.430 0.444 0.464 0.473 0.503 0.529
MSE 1.392 1.416 1.465 1.515 1.558 1.635 1.705

MAE is mean absolute error, and MSE is mean squared error.

Fig. 5.4 illustrates the forecasting capability of the proposed attention mecha-
nism with conditional decoding compared to a conditional decoder without atten-
tion. The MAE and MSE scores improve substantially by 10–15% and 22–28%,
respectively. Fig. 5.5 portrays an ablation study on the TSF model to demon-
strate the contribution of the building blocks of the temporal model—the attention,
conditional decoding, and convolution layers.

Figure 5.4: Multivariate time series forecasting performance comparison between
different model configurations: Model 1 : the proposed attention-based conditional
decoder, and Model 2 : conditional decoder without attention.

Anomaly Prediction Performance: We define an anomaly as an outlier that
deviates from the expected nominal characteristics due to the lack of annotated data;
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* is the number of excluded blocks from the proposed TSF model

Figure 5.5: Ablation performance evaluation of the TSF model at H = 24 hours.
The MAE score difference in percentage is given relative to the proposed model.
*attn—w/o attention, **cond—w/o conditional decoding, and ***conv—w/o convo-
lution layers.

not all anomaly flags thus indicate failure in the detector. We validated the efficacy
of the AD model compared to flags generated from error-counter variables of the
HCAL discussed in the previous Section 4.1.3 [41]. However, we found those counter
quantities are less convenient for AP evaluation as they are ineffective in capturing
most of the gradual system deterioration anomalies [41]. We thus generated refer-
ence anomaly labels from the AD model flags on the raw data—not forecasted—to
evaluate our AP system. The AD model has generated an average of approximately
160 anomalous data flags per RBX on raw data from the monitored sensors over
ten weeks (see Fig. 5.6). A few RBXes have generated more flags due to higher
variability on the readings from the 1V2_CURRENT sensor on the slave control
card of ngCCM (further discussion at the end of this section).

Figure 5.6: Number of anomaly data points—detected by the CGVAE AD model—
used as reference flags for evaluating the AP system. The high number of anomalies
in the HEM05, HEP03, HEP05, HEP13, and HEP14 is due to the noisy behavior of
the 1V2_CURRENT sensor of the ngCCM slave control card.

Fig. 5.7 and 5.8 portray the classification performance on prediction accuracy of
the proposed AnoP system. The AnoP has predicted long horizon anomalies with
high precision—demonstrating the robustness of the proposed system in avoiding
false flags (see Fig. 5.7). The recall is just below 0.60 despite the promising perfor-
mance in precision; this is caused by missed anomalies arising from unpredictable
transient behavior—additive noise is a prime cause of transient anomalies.
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Our models have revealed a noisy behavior of the 1V2_CURRENT sensor of the
ngCCM slave control card of some RBXes. Fig. 5.9 illustrates an example of the
sensor’s behavior and AnoP predictions. The AD model has generated substantial
anomaly flags for those particular RBXes (see Fig. 5.6), but the AnoP has struggled
to achieve good anomaly forecast—low recall—due to a lack of learnable causal
patterns (see Fig. 5.8). This is the first observation of the phenomenon in the HCAL,
even though the behavior is not entirely unexpected. The slave control cards can be
noisier due to the mounted FPGA’s attempt to lock onto a non-existent incoming
data stream since the cards do not maintain the backend communication link. This
behavior does not impact operation, but monitoring its status would provide relevant
information when the decision to switch the master ngCCM control card is made.

* P - precision, R- recall, F1- f1-score

Figure 5.7: AP performance of the AnoP compared to the CGVAE AD across
different time horizons.

Figure 5.8: AP performance distribution of AnoP on multiple horizons across the
RBX systems. The lower performance in some RBXes is because of the additive
transient anomalies and noisy slave control card sensors. A missing sensor in HEM08
has impacted the prediction accuracy; we imputed the data with a constant nominal
value.

Persistent anomalies are often indicators of severe problems, and Fig. 5.10 por-
trays successfully forecasted persistent outliers in the current and voltage sensors of
the RBXes during 28/10–03/11/2018. There had been LHC maintenance tasks—
the machine development and technical stop tasks—during that time; the tasks are
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Figure 5.9: Anomaly prediction on 1V2_CURRENT sensor of the ngCCM slave
control card of RBX HEP05. The sensor is noisier in some RBXes; five times stronger
noise-like fluctuation—around 0.01A—is observed compared to its corresponding
master card—0.002A—and slave card of the other RBXes. The y-axis value is the
normalized reading after subtracting the nominal value.

planned in the LHC operation schedule to study and optimize the long-term per-
formance of the LHC. Further investigations—following our finding—indicate that
the LHC tasks had unexpectedly affected the low-voltage supply of the RBX. The
impact was within tolerance and did not negatively impact the performance of the
HCAL; but, the knowledge from the AnoP allows the HCAL team to better prepare
for LHC interventions in the future.

5.1.4 Summary

Predictive maintenance aims to achieve versatile leverages in significantly cutting
maintenance costs and downtimes as the pillar application of the fourth industrial
revolution. We have demonstrated the efficacy of the anomaly prediction approach—
AnoP—through unsupervised end-to-end long-time series forecasting and anomaly
detection mechanisms on multivariate time series data. The evaluation of the Hadron
Calorimeter diagnostic sensor data sets has unveiled that anomalies that persevere
for a certain period can be forecasted from early indications. The AnoP system
will enable prognostics and predictive maintenance in the HCAL during the LHC
high-energy Run-3 collision experiment. Our proposed methods of the AnoP are
generic enough to be applied with less effort for predictive maintenance applications
in other domains with time series data.
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Figure 5.10: Forecasting persistent and transient anomalies on the 1V2_CURRENT
sensor of the master control card of the HEP03: (top) the forecasted signal with
H = 24h compared to the ground truth, (middle) reconstruction using the AD AE
from the forecasted signal, and (bottom) the predicted anomaly score. The red
boxes show accurately predicted persistent anomalies, and the yellow boxes enclose
the transient and spike outliers that are challenging to forecast.
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Chapter 6

Anomaly Diagnostics

This chapter presents our studies on causal discovery and analysis of anomalies in
multivariate time series data.

6.1 Lightweight Mechanism for Multi-System Inter-
connection and Divergence Discovery

Multivariate sensors are widely employed for monitoring large systems, and identify-
ing outlier behavior among sensors and subsystems is essential for discovering faults
and facilitating diagnostics. At the same time, exploring large systems with numer-
ous multivariate data sets is challenging. We present in this study a lightweight
mechanism for analyzing the interconnections among multiple sensors and systems.
The interconnection exploration aims to identify abnormal variables and systems
from multi-systems monitored with multivariate sensors. The approach presents a
multivariate analysis technique that first estimates the interconnection heatmaps
among the sensors for each system and then applies several information retrieval
algorithms—interpretation—to provide relevant interconnection and discrepancy
details. The mechanism generates clusters and association links—allowing us to
identify abnormal systems and the root cause of the diverging behavior, the faulty
sensors. Our experiment on the readout systems of the Hadron Calorimeter demon-
strates the effectiveness of the proposed method in clustering sensors and systems
consistent with the actual expected configuration of the detector, while systems with
unusual sensor readings form divergent clusters.

Multivariate analysis (MVA) is a statistical method utilized for analyzing data
involving multiple variables; it considers multiple factors or variables to provide
more accurate insights into the level of influence on variability—summarize the re-
lationships into fewer statistics while preserving the main facets of the relationships.
Various domains utilize MVA techniques for data reduction, grouping, clustering,
dependency analysis, and hypothesis testing due to the multivariate nature of real-
world problems [360]. To effectively utilize MVA techniques, it is essential to compre-
hend the various aspects of the techniques regarding the problems they are suitable
for, their objectives, the necessary data structure, and the underlying mathematical
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model. Several methods can be used for multivariate analysis—including princi-
pal component analysis (PCA), factor analysis (FA), canonical correlation analysis
(CCA), structural equation modeling (SEM), and multidimensional scaling (MDS).
The best method to use depends on the type of data and the problem to be solved.
PCA and FA are dimensionality reduction methods for multivariate data. FA uses
PCA for dimension reduction and common factor analysis to group highly corre-
lated variables. SEM generates linear prediction model equations for each depen-
dent variable from a set of independent variables. CCA determines a set of canonical
variates—orthogonal linear combinations of the variables within each set—that best
explain the variability within and between multivariate sets [361]. MDS creates a
representation map displaying the relative positions of several objects in lower di-
mensions from similarity distance matrices [362]. There are nonlinear manifold di-
mensionality reduction techniques that aim to preserve the local structure of data,
such as t-stochastic neighbor embedding (t-SNE) [16]; and uniform manifold ap-
proximation and projection (UMAP) [18]. The existing MVA methods struggle to
handle multi-sources with multivariate data or provide interpretability of their re-
sults. In this study, we focus on interpretable cluster analysis for interconnection
and discrepancy discovery of multi-systems monitored with multivariate sensors.
Clustering analysis deals with unsupervised grouping of similar objects based on
measured characteristics. It often accompanies the abovementioned dimension re-
duction methods to group objects into different classes automatically—adaptive to
changes and identifies valuable features that differentiate different groups. Addi-
tionally, clustering enables outlier detection applications where divergent behavior
is considered unusual.

The HCAL consists of four subdetectors that capture the collision physics par-
ticles from different positions of the calorimeter [3]. Each subdetector is composed
of readout boxes (RBXes)—incorporating frontend data acquisition electronics com-
ponents. The RBXes per a subdetector share similar operations, technology, and
configurations. The RBX electronic systems are currently monitored through sev-
eral multivariate diagnostics sensor variables [8]. Most of the sensors are employed
in retrospective monitoring and debugging, which primarily rely on simple statis-
tical analysis and visual inspection of a large and diverse set of signals. Previous
machine learning efforts on anomaly detection (AD) monitor the RBX subsystems
using pre-trained deep learning models on a specific set of sensor variables [41, 70].
However, these models have limited flexibility and computational overhead, as they
require offline training.

This study investigates online discrepancy discovery in HCAL subdetectors’
multi-RBX system configuration without prior training by analyzing deviations in
sensor interconnection behavior. The aim is to provide a lightweight, generic, scal-
able, dynamic, and online fault detection and diagnostic system through multivariate
analysis. Our experiment on the readout systems of the HCAL validates the effec-
tiveness of the proposed method in clustering sensors and systems consistent with
the existing expected configuration of the detector. Systems with unusual sensor
readings form divergent clusters, and our approach has identified the potential root

148



cause of the divergence with visual illustrations and quantitative scores. Our ap-
proach shares similarities with CCA [361] and MDS [361] as multivariate statistical
analysis for the discovery and quantification of associations among sets of multi-
variate. Most of the existing techniques—including CCA and MDS—provide tools
to display low data dimensions and largely leave the interpretation of the data to
the human observer [16]; CCA runs on a pair of sets with multivariate, and MDS
is a descriptive technique without statistical inference. The methods also require
tabular data that incomplete observations may impact their performance—for in-
stance, real-world sensor data reading exhibits several measurement issues, such
as missing data. Our approach tolerates measurement quality issues if the sensor
interconnections within a given system are unaffected.

6.1.1 Dataset Description

We utilized sensor data from the RM of the HE, and each RM has twelve diagnostic
sensors—four from the SiPM control card and eight from the four readout QIE cards
(see Table 6.1). The dataset was obtained from the HCAL software monitoring
system (ngCCM server) from 01/08/2022 to 30/11/2022. The monitoring sensor
data comprises four-month data of 20.7M samples—around 12K per sensor per RM.
The dataset contains irregularly sampled and considerably sparse data—a few a-
minute interval samples are logged every eight and two hours for the SiPM control
card and QIE card sensors, respectively. We downsampled the HE-RM-1 dataset—
RM-1 data from all the 36 RBXes—to hourly intervals—and used a smoothed version
after transient spike removal and interpolating short gaps. Our main objective
for the interconnection analysis is to identify any time-persistent discrepancies in
multivariate sensor data among the RBXes.

Table 6.1: Data variables description.

No. Notation Variable Name Remark
1 SPV PELTIER_VOLTAGE_F Voltage of the SiPM Peltier temperature controller
2 SPC PELTIER_CURRENT_F Current of the SiPM Peltier temperature controller
3 SRT RTDTEMPERATURE_F SiPM CC temperature averaged over 50 samples
4 SCH HUMIDITY_F SiPM CC humidity
5 Q1H 1-B-SHT_RH_F QIECARD 1 humidity
6 Q2H 2-B-SHT_RH_F QIECARD 2 humidity
7 Q3H 3-B-SHT_RH_F QIECARD 3 humidity
8 Q4H 4-B-SHT_RH_F QIECARD 4 humidity
9 Q1T 1-B-SHT_TEMP_F QIECARD 1 temperature
10 Q2T 2-B-SHT_TEMP_F QIECARD 2 temperature
11 Q3T 3-B-SHT_TEMP_F QIECARD 3 temperature
12 Q4T 4-B-SHT_TEMP_F QIECARD 4 temperature

6.1.2 Methodology

The interconnection discrepancy exploration approach involves four main stages (see
Fig. 6.1): 1) sensor similarity map generation for each system, 2) system similarity

149



distance map estimation using sensor interconnection maps, 3) system and sensor
clustering analysis, and 4) divergence root-cause discovery.

Figure 6.1: Our lightweight multi-systems multivariate interconnection divergence
discovery approach.

• Sensor similarity map generation (I): We estimate pairwise interconnection I
among the multivariate sensors X of a given system using Γ function as:

Ik[i, j] = Γ(Xk[:, i], Xk[:, j]), i ̸= j, (i, j) ∈ S, k ∈M (6.1)

where Ik ∈ RNs×Ns is the pairwise interconnection matrix, and Xk ∈ RT×Ns

is sensor data—with Ns sensors and T data samples—of the kth system in
the system set M . The Γ is a similarity measurement between the ith and
jth sensors in the sensor set S. The I is the interconnection map, a two-
dimensional matrix holding the pairwise score between the sensors. We employ
a bivariate Pearson’s correlation [363] for the Γ for its fast computation and
decent accuracy; the high data sampling interval—time delay effect is lessened
in our use-case data. Our data sets fairly adhere to normal distributions,
and we have cleaned noisy transient outliers to partially address the potential
constraints of ρ (see Section 6.1.1). The Pearson’s correlation measures the
linear correlation between two variables; it is the ratio between the covariance
and the product of their standard deviations:

ρ(x1,x2) =

n∑
i=1

(x1 − x̄1)(x2 − x̄2)√
n∑

i=1

(x1 − x̄1)2
√

n∑
i=1

(x2 − x̄2)2
(6.2)

where ρ is the correlation coefficient between sensor reading vector x1 and x2.
The ρ is a normalized covariance measurement—ρ ∈ [−1, 1]; positive values for
a simultaneous increase and negative values for otherwise, small |ρ| indicates
a weak correlation, and zero implies no linear correlation. Other methods
like dynamic time wrapping and Granger’s may provide enhanced accuracy on
time series data with higher computation overhead.
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• System similarity map estimation (D): We utilize normalized pairwise Eu-
clidean distance Φ among the sensor similarity maps of the systems as:

D[k, h] = Φ(Ik, Ih), k ̸= h, (k, h) ∈M (6.3)

where D[k, h] is the similarity distance score between the I of kth and hth

systems, and the Dk ∈ R1×Nm is the similarity distance vector of the kth

system—holding the pairwise score between the system k to all other systems—
m ∈M, m ̸= k. The Φ is calculated as:

Φ(Ik, Ih) =
1

Ns

√√√√ Ns∑
i∈S

Ns∑
j∈S

(Ik[i, j]− Ih[i, j])2 (6.4)

where 1
Ns

is the score normalizing factor.

• System and sensor clustering analysis (C and ξ): We infer the system and
sensor clustering through hierarchical agglomerative clustering Θ with time
complexity ofO(n2), where n is the number of observations [17]. The clustering
link distance Cm ∈ RNm×Nm of the systems is calculated on the D using
Euclidean distance Φ and clustering optimization through nearest-neighbors
chain algorithm [17]:

Cm = Θ(Φ, D) (6.5)

The system clusters are generated by applying a threshold αm on the Cm:

Lm[k, h] = Cm[k, h] < αm, k ̸= h, (k, h) ∈M (6.6)

where Lm ∈ ZNm×Nm holds the binary cluster links—with active edges for all
the systems belonging to the gth cluster ξmg —{k, h} ∈ ξmg : Lm[k, h] = 1. This
generates Nξ system clusters.

We calculate sensor clustering using a multi-step approach: 1) we first estimate
the sensor interconnection map Img ∈ RNs×Ns per each system cluster ξmg ,
and 2) we generate sensor cluster links Ls

g ∈ RNs×Ns from the Img for each
ξmg . Since each system cluster in ξm represents distinct sensor interconnection
characteristics, Img is calculated as average sensor interconnection maps from
all the systems in the cluster:

Img [i, j] =
1

Ng

∑
k∈ξmg

Ik[i, j], (i, j) ∈ S (6.7)

where Img [i, j] is the average sensor interconnection score between the ith and
jth for the ξmg system cluster. The Ik and Ng correspond to the sensor in-
terconnection map of the member system k ∈ ξmg and the number of systems
in ξmg , respectively. We measure the pairwise sensor cluster distance score
Cm

g ∈ RNs×Ns per the given system cluster ξmg using Φ as:

Cs
g = Θ(Φ, Img ) (6.8)
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The sensor clustering links per system cluster are thus generated similarly by
applying a threshold αs on the Cm

g :

Ls
g[i, j] = Cs

g [i, j] < αs, (i, j) ∈ S (6.9)

We estimate the overall sensor interconnection map Is ∈ RNs×Ns , the inter-
connection clustering distance Cs ∈ RNs×Ns , and cluster links Ls ∈ ZNs×Ns by
averaging all the system clusters:

Is[i, j] =
1

Nξ

∑
g∈ξm

Img [i, j]

Cs = Θ(Φ, Is)

Ls[i, j] = Cs[i, j] < αs, i ̸= j, (i, j) ∈ S

(6.10)

where Nξ is the number of system clusters. We characterize the discrepancy
root causes—the divergent sensors responsible for system cluster splitting—
and overall sensor interconnection within and across systems by inferring the
sensor linkages among the system clusters from the Img and Isg through heatmap
plots and dendrogram clustering linkage diagrams.

• Divergence root-cause discovery (ψ and R): We discover the root-causes—
sensor variables—that contributes significantly to cluster split among the sys-
tems using the aggregated difference of average interconnection maps Img of
the system clusters as:

ψm
g [h, i] = Φ(Img [i, :], Imh [i, :]), (g, h) ∈ ξm, i ∈ S (6.11)

where ψm
g [h, i] is the sensor interconnection divergence scores of the cluster g

from cluster h at the ith sensor variable.

ψ̄m
g [i] =

∑
h∈ξm

ψm
g [h, i], i ∈ S (6.12)

where ψ̄m
g ∈ R1×Ns holds the sensor divergence score for the system cluster ξmg .

We apply a threshold αϕ for select significant root cause contributions Rm
g as:

Rm
g [i] = ψ̄m

g > αϕ (6.13)

6.1.3 Experiment Results and Discussion

We have applied our proposed approach for online interconnection discrepancy dis-
covery to RMs from the HE’s thirty-six RBX system—each monitored by twelve
sensor variables. We will discuss the results of interconnection discrepancy explo-
ration in this section.

The heatmap plot in Fig. 6.2 and clustering diagram in Fig. 6.3 illustrate the
behavioral discrepancy among the RBX systems, respectively. The similarity of the
sensor pairwise correlation maps of the RBXes determines the distance; the RBXes
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are clustered based on their similarity in sensor interconnection behavior. The clus-
tering indicates outlier behavior—a small number of cluster members—on the RBX
systems in CL-1 (HEP07 and HEP08), and CL-5 (HEP02). We have applied dimen-
sion reduction methods, such as principal component analysis (PCA), stochastic
neighbor embedding (t-SNE) [16], and uniform manifold approximation and projec-
tion for dimension reduction (UMAP) [18], to the system dissimilarity matrix D to
visualize the clusters in two-dimensional (see Fig. 6.4). The figures demonstrate
that reduction algorithms can capture the variations but may fall short of providing
a clear split in some clusters. Identifying the divergence root causes from the di-
mension reduction algorithms is not straightforward and remains challenging. The
following paragraph will discuss our proposed mechanisms for discovering diagnostic
root causes of the estimated hierarchical clustering of the RBX systems.

Figure 6.2: RBX-RM multi-systems dissimilarity distance heatmap among the
RBXes (D). The color bar shows the score, the normalized Euclidean distance
among Iks maps of systems.

The representational sensor interconnections for the system clusters—calculated
from Eqs. (6.8) to (6.9)—captures sensor interconnections variations that led to
the system cluster splits. We portray the results from Fig. 6.5 to 6.7. Fig. 6.5
presents the sensor interconnections clustered dendrograms per RBX cluster—Ls

g

estimated by (6.9). The dendrograms highlight differences in the interconnection of
SCH and SRT sensors among RBX clusters. Fig. 6.5f depicts the average sensor
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The shown scores are without scaling normalizing factor in Φ, the number systems in Eq. (6.4).

Figure 6.3: RBX system clustering (Cm), using hierarchical clustering [17] on D.
The clustering demonstrates the similarity and divergence among the systems. The
threshold at αm = 0.25 generates five clusters (Nξ=5): CL-1, CL-2, CL-3, CL-4,
and CL-5, where the CL-i denotes the ith cluster.

interconnection aggregating the distinct characteristics across the RBX clusters us-
ing (6.10). Fig. 6.6 provides the visual diagnostics heatmap through Img s to detect
any discrepancies in the sensor connections across the RBX system clusters. The
difference in coloring within each column box indicates which sensors per the RBX
clusters behave differently, while uniform coloring indicates similarity in behavior.
For example, the SCH and Q[1-4]H sensors exhibit discrepancies. Fig. 6.7 depicts
the equivalent clustering dendrogram of Fig. 6.6 to capture the differences quickly
besides the heatmap visualization. The figure portrays the MTS sensor interconnec-
tions across all the RBX system clusters; sensors measuring similar quantities across
similar subsystems are clustered together—e.g., SiPM card: SPV, SPC, SRT, and
SCH, and QIE cards: Q[1-4]T and Q[1-4]H. The behavioral similarity among the
four QIE card sensors within an RBX cluster is more substantial than across RBX
clusters. Divergence exceptions are SCH of the RBX CL-5. It is possible to gener-
ate different sensor interconnection cluster coloring by increasing and decreasing the
αs to capture solid and subtle differences among the RBX clusters—for instance,
lowering the threshold to αs = 0.05 isolates the Q[1-4]H of the CL-5 (see Fig. 6.7b).

The generated general knowledge of the system and sensor interconnection from
the above clustering illustrations can be summarized as: 1) the voltage and current
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Figure 6.4: Dimension reduction on the similarity distance score D using a) PCA,
b) t-SNE [16], and c) UMAP [18]. There are still overlaps among the clusters that
suggest a higher number of features for dimension reduction is required.

sensors of the SiPM card—SPV and SPC—are strongly interconnected, 2) the tem-
perature sensors (Q[1-4]T) of the QIE cards are strongly interrelated and connected
to the SiPM card SPV, and SPC sensors, 3) the humidity sensors (Q[1-4]H) of the
QIE cards are strongly interrelated and connected to the SCH but with weaker
strength, and 4) the SRT sensor has distinct and isolated behavior. The association
between the QIE card sensors for humidity (Q[1-4]H) and temperature (Q[1-4]T)
weakens—distance increases—in the RBX CL-4. The difference in the sampling
method used for the sensors may be responsible for the SRT; the SRT reading is
an average of 50 samples, whereas the other sensors report immediate values at
1-minute intervals.

We capture the diagnostics discrepancies quantitatively besides the visual repre-
sentation to identify the causes for the clustering divergences—from (6.11) to (6.13).
Fig. 6.8 depicts the score of the discrepancies heatmaps among the RBX clusters
for each sensor variable. The plots show where the difference lies for each system
cluster compared to the others. Fig. 6.8f and 6.8g provide the aggregate summary
score ψ̄m

g and the generated root-cause detection flags Rm
g , respectively. The il-

lustrations indicate that the SCH sensor is the main contributor in most clusters,
and most clustering CL-1 sensors exhibit discrepancies. The results validate that
the proposed approach successfully captured the summary root causes visually illus-
trated in the interconnection heatmaps and clustering dendrograms. The summary
of root causes is essential for facilitating diagnostics—particularly when the number
of clusters or sensors is large and examining extensive heatmaps or dendrograms
might be difficult.

Our proposed data-driven interconnection analysis is in conformity with the ex-
pected behavior of the RBX-RM systems. The QIE cards are placed nearby, and
their environmental characteristics, such as temperature and humidity readings, cor-
relate strongly. The SPV and SPC sensors are from the Peltier system that controls
the temperature of the RM internal systems. External humidity controllers such as
nitrogen gas regulate the humidity levels of the RMs. The interconnections between
the humidity of the SiPM SCH and QIE Q[1-4]H sensors are not strong due to diver-
gence in some of the RBX systems—CL-4 and CL-5; the HCAL external humidity
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Multivariate sensor interconnection clustering dendrogram per RBX-
RM system cluster using sensor clustering threshold αs = 0.05. Plots from a)
to e) correspond to the RBX clusters 1 to 5, and f) is an average from all RBX
clusters that indicates significant discrepancies in the SRT and SCH sensors, and
the interconnection strength.
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Figure 6.6: The heatmap of the RBX-RM system clusters interconnection on the
multivariate sensors. The group boxes show the interconnection strength of the
sensors on the x-axis for system clusters on the y-axis. The divergent colors within
each box indicate outlier characteristics—e.g., SCH, Q[1-4]H, and Q[1-T] sensors.
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(a) (b)

Figure 6.7: Dengdrogram of sensors interconnections across RBX system clusters: a)
at αm = 0.1, and αm = 0.05. Visual representation of how the sensors are clustered
together at multi-system cluster levels.
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(a) (b)

(c) (d)

(e)

(f) (g)

Figure 6.8: Divergence root-cause detection using the difference in sensor intercon-
nections among the RBX-RM systems clusters. Plots from a) to e) illustrate the
sensor divergence score ψm

g of each RBX cluster 1 to 5, respectively, and color bars
show the strength of discrepancy. The plots in f) and g) are the aggregate divergence
scores ψ̄m

g and the root-cause detection after threshold αϕ = 0.15, respectively—
indicating the noticeable divergence in the SCH sensors in all clusters, Q[1-4]H for
CL-1 and CL-5, and SRT for CL-4.
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controllers regulate a group of RBXes that may cause divergence in humidity mea-
surement among the RBXes. Fig. 6.9 and 6.10 displays the time series data of the
sensors grouped by RBX system clusters—validating the accuracy of the generated
knowledge of the interconnection analysis that similar RBXes are grouped, diverging
patterns in the SCH sensors across clusters in October and November, and humps
in the Q[1-4]H sensors of CL-1 at the beginning of September.

6.1.4 Summary

We have developed a simple online mechanism to discover the interconnection of
systems and sensors—enabling fast detection of divergent behaviors among multi-
variate environments. Our experiment has demonstrated the promising performance
of the proposed approach in detecting outlying behaviors on the multivariate sensor
data of the readout systems of the Hadron Calorimeter. The results have estab-
lished the approaches’ capability to effectively cluster expected system behavior
while identifying diverging characteristics. The method enables fast and computa-
tionally efficient discrepancy discovery through multi-level clustering analysis along
with several heatmaps and clustering illustrations.
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Figure 6.9: Sensor data of the RBX clusters 1, . . . , 5 (top to bottom). The line colors
belong to the member RBXes per cluster. Diverging patterns in the SCH across the
clusters in October and November; bigger humps on the Q[1-4]H at the beginning of
September and smaller jumps on the Q[1-4]T, SPV, and SPC in cluster-1 at the end
of September. The root-cause sensors—contributed most to the system clustering
divergence—are highlighted with a red box.
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Figure 6.10: Normalized sensor data—divided by median value—of the RBX clus-
ters 1, . . . , 5 (top to bottom) for enhanced illustration. The line colors belong to
the member RBXes per cluster. Diverging patterns in the SCH across the clus-
ters in October and November; bigger humps on the Q[1-4]H at the beginning of
September and smaller jumps on the Q[1-4]T, SPV, and SPC in cluster-1 at the end
of September. The root-cause sensors—contributed most to the system clustering
divergence—are highlighted with a red box.
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6.2 Scalable Temporal Anomaly Causal Discovery
in Large Systems

Modern large systems often generate large amounts of binary alarm flags from their
monitoring systems. Extracting anomaly causality facilitates diagnostics once a sys-
tem fault is detected. Learning causal graphs imposes a significant computational
burden that restrains the applicability of most existing methods in realtime and
large-scale deployments. The distinct characteristics of binary anomaly data—the
meaning of state transition and data sparsity—challenge existing causality learn-
ing mechanisms. We develop an unsupervised causal graph network approach of
causal discovery (AnomalyCD) on binary anomaly data through a computationally
efficient mechanism. The AnomalyCD framework consists of multiple strategies to
overcome the challenges of generating anomaly causality graphs through unsuper-
vised online anomaly detection, sparse data and link compression, and edge adjust-
ment approaches. We validate the performance of this framework on three datasets:
monitoring sensor data of the readout-box system of the HE, a public data set of
information technology monitoring, and simulated causal binary anomaly data. The
result demonstrates the significant reduction of the computation overhead and mod-
erate enhancement of the accuracy of causal discovery on time series binary anomaly
data.

Anomaly detection algorithms are commonly employed in industrial monitoring
systems to capture anomalies that require attention—improving efficiency, safety,
and reliability while lowering maintenance expenses [213, 217]. Machine learn-
ing for anomaly detection (AD) has been presented for front-end diagnostics sen-
sors [41,70], and DQM of the CMS experiment [40,67]. Discovering causality from a
broader range of sensors—e.g., the detector backend system components—for cap-
tured anomalies is essential to facilitate fault diagnostics through root cause analysis.
Causal knowledge of direct and indirect effects, interaction pathways, and time-lags
can help understand fault root causes and model physical systems to predict the
effect of anomaly occurrence or interventions [228].

The propagating nature of malfunctions makes fault diagnosis challenging in
most multivariate processes [213]. Causality knowledge of faults is traditionally
acquired through inductive and deductive risk analysis using variants of failure
mode and effects analysis and fault tree analysis, respectively [203]. These ap-
proaches provide rules for modeling expert knowledge for prior known malfunctions;
they may also incorporate querying mechanisms [364]. The approaches require ex-
tensive domain knowledge from many experts and are a time-consuming process
besides the ambiguity and incompleteness in large systems [203]. Data-driven ap-
proaches directly learn causality from the data collected by the sensor monitoring
systems [199, 200, 209, 211, 213, 218, 219, 365]. The data-driven method can further
be categorized as a supervised and unsupervised approach: 1) the supervised RCA
methods usually treat the RCA as a fault localization classification problem; an
RCA model is trained on labeled cause-effect data—the effect attributes are used as
features to predict classes of known root causes [199,200,364], and 2) unsupervised
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learning RCA is considered a parsimonious and flexible—incorporates previously un-
known faults—approach [219] since data annotation is expensive, and not all faults
can be experimentally injected [200]. Recent approaches have proposed integration
causal discovery (CD) within the AD models [218, 219]. AD and CD often remain
highly intractable due to widely diverse operational modes, disparate data types,
and complex fault propagation mechanisms [199, 200, 217]. Recent advances in AD
for large complex systems in Industry 4.0 focus on specific subsystems because of
the curse of dimensionality, data annotation challenges, and the need for accuracy
improvement—resulting in multiple AD models for monitoring different subsystems.
Identifying the causes of an anomaly thus involves investigating a more extensive set
of monitoring variables across subsystems that the trained AD models do not cover.
An end-to-end framework for anomaly CD that addresses the challenges pertaining
to large systems is of interest in various domains.

We propose a causal discovery framework (AnomalyCD) consisting of several
methods to address various challenges related to generating causality knowledge
discovery on sparse multivariate anomaly TS data. We employ anomaly alert aggre-
gation from multiple systems ameliorated with a temporal online AD method, sparse
data handling, anomaly causal graph structure learning, and Bayesian network mod-
eling for causality inference. We focus on discovering anomaly causality from binary
flags because flag data lessens the impact of heterogeneity of the outputs of diverse
AD models, and provides data normalization. Although there are some recent efforts
for inferring empirical causal graphs from binary data [206] or outlier signals [207],
there is still a gap in addressing the unique challenges of TS binary anomaly data
for large systems; TS binary anomaly data has distinct characteristics—different
from ordinary categorical data—having transition awareness from flag 0 to flag 1—
anomaly occurrence—and being exposed to severe data sparsity because of long
continuous uniform regions without status changes. The existing causality learning
mechanisms do not effectively handle these characteristics. We present a conditional
independence test that incorporates anomaly data characteristics together with a
constraint-based PCMCI algorithm—a popular constraint-based estimator for CD
in time series [20,86,236,237])—to generate the anomaly causal DAG structure and
BN [241] to query causality inference. MicroCause [202] employ PCMCI [20, 86]
similar to our work, but their effort in addressing binary anomaly data and compu-
tational cost—one of the major bottlenecks in TS causal graph discovery—is very
limited [202]. The computational cost proliferates when the number of variables and
sample size increases and limits the applicability of existing approaches for large-
scale systems. We propose a simple but promising compression method for binary
anomaly-flag data that substantially reduces the computational cost of the causal
graph learning process.

We have applied the proposed framework for monitoring of multivariate sensor
data of the HE RBX modules [59]. The results show that our approach accurately
detects outlier behaviors and generates causal networks consistent with the actual
physical circuit connections and environmental associations. The proposed frame-
work substantially reduces the computational cost of causal graph learning—making
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it more efficient.

6.2.1 Dataset Description

The HCAL use case dataset includes sensor readings from the four RMs of all thirty-
six RBXes in the HCAL Endcap detector. Each RM has twelve diagnostic sensors,
four from the SiPM control card system and eight from four QIE card systems
(see Table 6.2). The dataset was obtained from the HCAL software monitoring
system (ngCCM server) from August to November 2022. The monitoring sensor
data comprises four-month data of around 20.7M samples (around 12K per sensor
for a given RM). The dataset contains irregularly sampled and considerably sparse
data—a few around-minute interval samples are logged every eight and two hours
for the SiPM control card and QIE card sensors, respectively. We utilized data
from all four RMs of the RBX-HEP07 at one-minute intervals for the online AD
and CD evaluation; the RBX-HEP07 is one of the RBX with diverging behavior
from our interconnection analysis study in Section 6.1. We removed the extended
reading gaps due to various non-physics activities on the LHC and interpolated—up
to eight-hour gaps—the remaining time regions into one-minute intervals in data
preprocessing. The final dataset contains 100K samples per RM per sensor—4.8M
data samples in total.

Table 6.2: Data variables description.

No. Notation Variable Name Remark
1 SPV PELTIER_VOLTAGE_F Voltage of the SiPM Peltier temperature controller
2 SPC PELTIER_CURRENT_F Current of the SiPM Peltier temperature controller
3 SRT RTDTEMPERATURE_F SiPM CC temperature averaged over 50 samples
4 SCH HUMIDITY_F SiPM CC humidity
5 Q1H 1-B-SHT_RH_F QIECARD 1 humidity
6 Q2H 2-B-SHT_RH_F QIECARD 2 humidity
7 Q3H 3-B-SHT_RH_F QIECARD 3 humidity
8 Q4H 4-B-SHT_RH_F QIECARD 4 humidity
9 Q1T 1-B-SHT_TEMP_F QIECARD 1 temperature
10 Q2T 2-B-SHT_TEMP_F QIECARD 2 temperature
11 Q3T 3-B-SHT_TEMP_F QIECARD 3 temperature
12 Q4T 4-B-SHT_TEMP_F QIECARD 4 temperature

6.2.2 Methodology

We present a framework for anomaly causality diagnostics that addresses the CD
of binary anomaly data challenges. The proposed framework comprises two main
modules—causal graph discovery and causality inference (see Fig. 6.11). The causal
graph discovery prepares temporal causal networks and trains a Bayesian inference
model on input binary anomaly-flag data streamed from previously trained (or on-
line) AD systems. The causality inference modules handle user queries with ob-
servation conditions and provide causality and conditional probabilities using the
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Bayesian model. The causality inference queries on the causal graph network in-
clude:

• Conditional probability inference: Probabilistic inference allows users to query
the BN model for any anomaly occurrence marginal distribution. The in-
ference module provides features to estimate the causal effect between two
variables on a given observed anomaly evidence. We employ variable elimi-
nation algorithm—one of the most widely used exact inference techniques for
solving Bayes’ equations—to estimate conditional distributions over a subset
of variables from the probabilistic graphical BN models.

Ci = ℘(B, xi, S) (6.14)

where Ci is the conditional probability of the ith sensor for its anomaly flag
state si = 1 given the observed evidence of states of S = {sj ∈ {0, 1}, for ∀j ̸=
i}. The ℘ is the inference engine with the BN B.

• Check for causality : Infers the status of common cause between two sensors
with active anomaly flag given evidence of anomaly condition status of the
other sensors. It checks if there is an active trail, or d-connection between the
start and end nodes, given that the evidence is observed.

• Infer root-causes networks: Generates the ancestral DAG graph of the sensor
nodes, which have a causal effect on the active anomaly flag on the given
sensors.

• Infer influenced networks: Executes the do-intervention operation on the BN
model where an active anomaly flag is set on given causal sensors to generate
the influenced or affected DAG network. The do operation removes all incom-
ing edges to variables in nodes and marginalizes their CPDs only to contain
the variable itself.

We have previously trained deep-learning AD models on FE electronics of the HE
detector—including the ngCCM and RM and data quality monitoring (DQM) [41,
77,78]. The HE-ngCCM AD model monitors the clock and control module of the 36
RBX—each with 28 sensors [41]. The HE-RM AD model, which adopted Ref. [41],
monitors the readout module of the RBXes (each RBX has 4 RMs, and each RM
has 113 sensors). The DQM-AD monitors 3D spatial data of around 7K physics
acquisition channels—48 per RM. The HCAL also comprises several other backend
(BE) electronic components in addition to the FE circuits; it is often essential to
investigate several systems in the pipeline—both the FE and BE electronics of the
HCAL—to diagnose faults and identify root causes. We incorporate online temporal
AD to enable detecting anomalies on variables that are not actively monitored by
trained models—e.g., selected sensors from the FE and BE. Since we have already
discussed each of the above FE AD models in the previous Chapter 4 [41, 70, 77,
78], we will focus below on the new addition—the proposed online AD and CD
approaches.
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Figure 6.11: Anomaly causal discovery and analysis framework for the Hadron
Calorimeter. The approach generates a causal interaction graph network and an
inference Bayesian model on binary anomaly-flag data generated from several sub-
systems with online and prior trained AD models.

Online Time Series Anomaly Detection: We present an online AD algorithm
to detect unusual temporal patterns and generate anomaly flags for the sensor vari-
ables that trained AD models do not actively monitor; we incorporate the algorithm
into the proposed CD framework. Different types of variations can occur in time se-
ries data—including long-term trends, seasonal changes, periodic fluctuations, and
nonrandom sources of variations [301]; these variations can impact the modeling
approach and algorithm choices. The proposed online AD system detects anoma-
lies, such as temporal outliers, slow trend drifts, and spectral outliers, using an
ensemble of temporal outlier detection algorithms. Building a generic one-fits-all
approach is challenging as the requirements depend on signal characteristics and
target application. We propose online AD on univariate TS data to capture some of
the typical points and collective anomalies—including transient changes in time and
frequency, and gradual signal trend drifts. The approach consists of three TS time-
and frequency-domain outlier detection algorithms (see Algorithm 3): 1) detecting
temporal outliers, 2) detecting changes in temporal trends, and 3) detecting outliers
in the spectral domain.

1. Temporal outlier detection (see TemporalOutlierDetection
in Algorithm 3): The temporal outlier detection em-
ploys MovingSDOutlierDetection)—sliding z-score—and
TrendDriftDetection on decomposed time series data. We apply
seasonal and trend decomposition using LOESS (STL) algorithm [366] to
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estimate the trend and residual signals, represented by xι and xϵ, respectively:

x(t) = xι(t) + xζ(t) + xϵ(t)

xι(t) = (hp ∗ x)(t), where hp(t) =
1

p
[1, 1, ...1]

(6.15)

The additive trend xι is obtained by applying a convolution (∗) filter hp with
the shape of 1× p (moving average with window length or period p) to the
data. The average of this de-trended series (after trend removal) for each pe-
riod is the returned seasonal component xζ , and the final remaining component
of the series becomes the residual error xϵ.

The value of p can be estimated using period estimation methods such as
auto-correlation function (ACF), fast Fourier transform (FFT), periodogram
(based on FFT), summary statistics subsequence (SuSS), and hybrid of ACE
and FFT for oscillatory signals [367, 368]. While the approaches show strong
accuracy when dealing with cyclic signals with multiplicative trends, we have
observed a decline in their performance for additive trends—particularly those
with higher slopes. We employ FFT on ∆x(t) : x(t) − x(t − 1) (in the
SignalPeriodEstimation) to enhance the period estimation accuracy in
the presence of additive or multiplicative trends. The employed decomposi-
tion method assumes an additive trend and single seasonality or cyclic pattern.
One may employ multiplicative trend or multi-seasonal component decompo-
sition depending on the expected normal signal characteristics [369].

We utilize a sliding z-score outlier detection algorithm on the detrended resid-
ual signal xϵ (see MovingSDOutlierDetection in Algorithm 3). The xϵ
signal is normalized by subtracting the mean µw and dividing it by the stan-
dard deviation σw using a sliding time window (wθ) to generate the outlier
score λθ. The sliding window localizes the outlier detection on the signal
characteristics at the adjacent time data points. The µw and σw can be af-
fected by strong outliers in a given data—reducing outlier detection efficacy
and gets worse for smaller sliding windows; we utilize thus data quantiles
Q = [10%, 90%] along with a median centering instead of mean to reduce the
sensitivity to outlier contamination. We apply a threshold on the outlier score
to generate the outlier flags Λθ.

We develop a cumulative-based algorithm to detect trend drifts in the trend
signal xι (see TrendDriftDetection in Algorithm 3). We estimate the
trend score λι using cumulative sum on the first-order difference of the trend
xι signal, and steps are given in lines 22–32. The trend score resets when more
significant jumps are detected—often during system operation configuration
changes. We apply threshold αι to get the drift outlier flags Λι.

2. Spectral outlier detection (see SpectralOutlierDetection in Algorithm
3): We employ spectral residual (SR) saliency detection to identify frequency
spectrum or data rate change outliers. The SR method has been employed as
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a preprocessing technique for cleaning outliers and transforming data in semi-
supervised AD research, as demonstrated in Refs. [41] and [148], respectively.
The SR algorithm consists of three major steps for a given univariate sequence
data [148]: 1) Fourier transform F to get the log amplitude spectrum; 2)
calculation of spectral residual; and 3) inverse Fourier transform F−1 that
transforms the sequence back to the time domain and generate saliency outlier
scores:

A(f) = Amplitude(F(x))

P (f) = Phase(F(x))

L(f) = log(A(f))

Lh(f) = hq(f) ∗ L(f)
R(f) = L(f)− Lh(f)

η(x) =
∥∥ℑ−1(exp(R(f) + iP (f)))

∥∥
(6.16)

where x is the input sequence with shape n×1; A(f) is the amplitude spectrum;
P (f) is the corresponding phase spectrum; L(f) is the log representation of
A(f); and Lh(f) is the average spectrum of L(f) which can be approximated
by convoluting with hq(f), where hq(f) = 1

q
[1, 1, ...1] is averaging filter with an

1× q vector. R(f) is the spectral residual—the difference of the log spectrum
L(f) and the averaged spectrum Lh(f). The sequence is transferred back to
the time domain via F−1 to get the saliency signal η. We apply a threshold αη

to detect anomaly points using η.

Anomaly Causal Discovery: Anomaly graph CD aims to generate an equivalent
DAG representing the causal interaction among the monitored variables. Finding
the DAG is intractable in most cases. The upper bound for the size of possible
DAGs for order n nodes can be estimated by satisfying Robinson’s formula [370] as:

NDAG(n) =
n∑

i=1

(−1)i+1

(
n

i

)
2i(n−i)NDAG(n− i) (6.17)

The equation shows the size of classes grows super-exponentially; for example, the
NDAG becomes 25 and 1011 for n = 3 and n = 8, respectively. The existing CD
algorithms instead search the partial DAGs (PDAGs) that contain d-separation with
both undirected and directed edges to identify and represent equivalence classes
of a given DAG. The approach relies on equivalence concepts that two DAGs are
equivalent if and only if they have the same skeleton—the same nodes and undirected
edges: X —Y , and directed edges: X → Y or X ← Y ) and the same set of V-
structure (X → Y ← Z. The PDAG of an equivalence class G is the partial directed
graph that has the same skeleton as a graph in G and has a directed edge X → Y

if and only this arc appears in all graphs in the class; for instance, the number of
equivalence classes drops from 25 DAGs into 11 PDAGs for n = 3.
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Algorithm 3 Online temporal anomaly detection
1: procedure OnlineTemporalAnomalyDetection(x, αθ, αι, αη , wθ, pι, kι, qη)

▷ Ensemble online temporal anomaly detection ▷ x is a univariate time series signal data
2: Λθ, Λι ← TemporalOutlierDetection(x, αθ, αι, wθ, pι, kι)

3: Λη ← SpectralOutlierDetection(x, αη , qη)

4: Λ← Λθ ∪ Λι ∪ Λη

return Λ

5: end procedure
6: procedure TemporalOutlierDetection(x, αθ, αι, wθ, pι, kι)

▷ Temporal outlier detection
▷ pι is the window size of the convolutional filter for trend estimation

7: if isNull(pι) then ▷ for auto period estimation
8: pι ← SignalPeriodEstimation(x) ▷ signal period estimation using FFT
9: end if

10: xι, xζ , xϵ ← T imeSeriesDecomposition(x, pι) ▷ decomposition using STL into a trend, cyclic and
residual components

11: Λθ ←MovingSDOutlierDetection(xϵ, αθ, wθ)

12: Λι ← TrendDriftDetection(xι, αι, pι, kι)

return Λθ, Λι

13: end procedure
14: procedure MovingSDOutlierDetection(xϵ, αθ, wθ)

▷ Residual moving standard deviation temporal outlier detection
▷ αθ is the detection threshold ▷ wθ is sliding time-window size

15: λθ ← []

16: for xω ∈ GetSlicedT imeWindowData(xϵ, wθ, step = 1) : do ▷ get of data slice from sliding
time-windows

17: µw, σw ← GetStats(xw) ▷ sliding window median and standard deviation using quantile
Q = [10%, 90%]

18: λθ ← Append(λθ, |x− µw|/σw given σw ̸= 0) ▷ outlier score
19: end for
20: Λθ ← λθ > αθ ▷ outlier flag

return Λθ

21: end procedure
22: procedure TrendDriftDetection(xι, αι, kι)

▷ Cumulative sum-based trend drift outlier detection
▷ αι is the detection threshold
▷ kι is a scaling constant

23: dι ← ∆(xι) : xι(t)− xι(t− 1) ▷ step change of trend data points
24: µdι ←MEDIAN(|dι|) ▷ average step change on the trend
25: d̄ι ← |dι| > kιµdι ▷ check for large step changes in the trend
26: λι ← Zeros(LENGTH(xι))

27: for tr, d̄ιr ∈ GetContinuousRegion(d̄ι) : do
28: if d̄ιr then
29: λι(tr[j])←

∑tr [j]
i=tr(1)

dι(tr), for j = [1, ..., Ntr ] ▷ calculates trend drift score using cumulative sum
30: end if
31: end for
32: Λι ← λι > αι ▷ outlier flag

return Λι

33: end procedure
34: procedure SpectralOutlierDetection(x, αη , qη)

▷ Spectral residual (SR) temporal outlier saliency detection
▷ αη is the detection threshold
▷ qη is siding spectral kernel size

35: η ← SpectralResidualSaliency(x, qη) ▷ spectral residual saliency score
36: λη ← η−η

η
▷ normalized outlier score

37: Λη ← λη > αη ▷ outlier flag
return Λη

38: end procedure
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The process of computing a DAG for the temporal CD of anomalies in large
systems with multiple variables and large data is challenging. We have incorpo-
rated several methods to address CD challenges from binary anomaly data; the ap-
proaches include data size compression using sparse handling algorithms, sparsity-
driven prior time-delay link assumption compression, one-side edge independence
testing for anomaly triggering from flag 0 to 1 transitions, and post-processing link
adjustment to avoid cyclic edges on different time-lags. The techniques help to
alleviate the computational burden and improve the accuracy of the anomaly CD.

Our proposed anomaly CD approach includes three main modules: data pre-
processing, causal graph structure generation, and building the Bayesian inference
model. The approach infers temporal causal interaction among monitoring variables
or sensors using time-lagged and contemporaneous CD algorithms (see Fig. 6.12).
We employ PCMCI for its accuracy in temporal CD and propose additional aug-
mentation algorithms to enhance its effectiveness with particular challenges of time
series binary anomaly data. The PCMCI may result in cyclic links even if the ex-
pected causal graph is acyclic due to errors in estimation when dealing with a long
sequence of overlapping binary anomaly regions among sensors [208]. We reduce the
computational cost and enhance the accuracy of causal graph building at the data
pre-and post-processing stages through sparse data and graph edges compression,
CI testing sensitive to binary flag transitions, and link pruning.

• Sparse data handling : The computational cost of causal graph discovery meth-
ods varies with the numbers of variables N , data sample sizes n, and maximum
time-lag τmax [236]. The complexity of the conditional independence (CI) test,
X⊥Y |Z: X independent of Y conditioned on Z, is one major factor affecting
the computational workload in a constraint-based algorithm [236]; for instance,
partial correlation CI test scales with a complexity of O(n(Nτmax)

2). Opti-
mizing computational efficiency by reducing n to n′ for a given N and τmax

is advantageous. The processing speed gain also allows longer τmax for ex-
tended causality search on n′ without additional cost. We propose to lessen
the computational cost by reducing sample data size—exploiting the anomaly
data sparsity. Data sparsity is inevitable in the TS binary anomaly data
since anomalies occur rarely and may persist for some time. Our module in-
corporates sparse data handling that compresses the long-time regions with
uniform anomaly status so that anomaly CD can better be captured from the
anomaly status transitions (see Algorithm 4). We preserve the first lm indices
of the region to capture the time-lag causality that ensures inference within
time-adjacent anomaly occurrences while substantially reducing the size of the
sparse data. We compress the time regions into time length lm slightly greater
than the causality searching τmax to avoid false adjacency between anomalies
at different time stamps after the uniform anomaly regions compression. The
lm also regulates the contribution between collective trend drift anomalies and
transient anomalies; longer lm increases the influence of the collective anoma-
lies on the causality estimation. Our method aims to reduce the sample size
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to partially resolve the computational burden in the GCM learning process for
large-scale deployment.

We build a causal graph network generation method for TS binary anomaly
data; we leverage the PCMCI algorithm [20,228] to learn the graph skeleton G(V , E)
from a TS data, where V is the set of sensor node vertices υ, ν ∈ V , and E is the
edge matrix E ⊆ V × V : ε(υ, ν) ∈ E . We limit the discussion to our algorithms
and leave readers to refer to Refs. [20, 86, 228] for a comprehensive discussion on
the working principle of the PCMCI algorithm. Our modification revolves around
customization for handling binary anomaly data, reducing computation by prior link
assumption, and removing cyclic links from causality confusion in long overlapped
anomaly regions.

• Constraint-based graph CD methods rely on CI tests to estimate links among
variables. The independence score function I(X, Y ) answers CI queries of the
formX ⊥ Y | Z on given dataset D that the variables assumed to be generated
independently from some (unknown) Bayesian system as:

I(X, Y ) : P (X, Y | Z) = P (X | Z)P (Y | Z) (6.18)

The independence test may result in Type I errors (false positive that rejects
true independence) and Type II errors (false negative that accepts false inde-
pendence), as P (derived from D) is an approximate description of the actual
underlying system behavior. The trade-off controlling the error is obtained by
a significance level threshold α given independence measuring function fI(D).
The pv, probability of observing independence of the test, is given as:

pv(α) = fI(D) > α (6.19)

We aim to capture the causality linkages behind binary anomaly data, particu-
larly the transition from being healthy with flag 0 to experiencing an anomaly
occurrence with flag 1. The popular CI tests for categorical data, such as
statistical G-squared [371] and information-theory conditional mutual infor-
mation (CMI) tests [228], may not easily distinguish the significance of the
anomaly transition behavior; these methods could result in incorrect causality
inferred from the association influenced by the zeros instead of the ones. We
propose anomaly aware CI testing (ANAC) using a partial-correlation CI test
that only considers links with positive associations corresponding to anomaly
occurrence. The PCMCI estimates GCM of a given TS variable (anomaly flag
Λi in our case) with a time-lagged function of the multivariate:

Λi = F(wj(t− s),Λj(t− s)), for s = 0, . . . , τmax and j ∈ PAi (6.20)

where the Λ is the multivariate time series anomaly data; the w is the causal
time-lagged strength weights; the τmax is the maximum time-lag for causal
inference; the PAi is the set of the parent nodes or variables of i; the F is a
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binary GCM function. The CI test influences the w: the positive w indicates
a correlation in increasing—anomaly occurrence—on the prediction Λi. We
leverage the PCMCI [20] with ANAC to detect anomaly occurrence causality
by selecting causal time-lags with w > 0. The partial correlation is estimated
through linear ordinary least squares (OLS) regression and positive Pearson’s
correlation (ρ) CI test on the residuals. To test X ⊥ Y | Z, first Z is regressed
out from X and Y using the OLS regression model:

X = βXZ + ϵX

Y = βYZ + ϵY
(6.21)

The independence of the residuals is evaluated using Student’s t-test on the
ρ (ϵX , ϵY ) to generate the pv.

The complexity of CD remains for high dimensional data with large N despite
the partial reduction of the computation by the sparse data compression. We
propose a prior link assumption method to reduce the link searching space.
The proposed link assumption approaches aim to relieve the computation by
reducing the number of conditional tests and enhancing accuracy in captur-
ing causality among the variables. We integrate a prior link assumption that
excludes self-lag causality and non-overlapping links on the binary anomaly
data that PAi ∈ Xj(t − s), where j ̸= i. The assumption of self-lag exclu-
sion reduces the link search space computational cost from O(n′(Nτmax)

2) to
O(n′N(N −1)τ 2max). We present the sparse link handling algorithm to exclude
links from temporally non-overlapping signals (see Algorithm 5). The algo-
rithm extends the anomaly flag regions by τmax to measure the time-lagged
co-occurrence among a pair of variables; a link is not considered during the
learning phase if its overlap score is below a certain threshold—e.g., zero in-
dicates no overlap.

• Multiple sensor variables can report anomaly flags simultaneously for contin-
uous time ranges that might cause the PCMCI [20, 228] to generate PDAG,
which includes spurious edges—multiple time-lags, undirected, bidirected, or
cyclic links—when dealing with a temporal anomaly data. Bidirected edges
also occur when there is no time delay causality; the correlation-based CI
tests are symmetric and cannot distinguish the edge direction at t = 0. We
present a pruning algorithm as post-processing to overcome this challenge (see
Algorithm 6). The algorithm groups linked nodes and keeps the lag with the
highest weight or earliest time-lag from the reported causal lags; higher link
weights indicate strength and older time lag corresponds to earlier causality—
temporally close to the transitioning edges. We employ a different CI test (the
chi-square test) to direct the bidirected edges at t = 0 when the correlation CI
test falls short in detecting the directions. The positive transition association
of the anomaly flags on the directed edges holds even in the chi-square test
since the edges are first detected using positive correlation scores. The prun-
ing excludes the spurious links caused by the continuously overlapped regions
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and enables the correlation test to generate a curated DAG that meets the
requirement for building the inference BN model for causality query in the
later stages—BN requires a GCM without cyclic links.

Building Bayesian Network Model: We employ a BN to qualify and enable
causality inference for user query conditions beyond having a static graph skele-
ton. We utilize a Bayesian parameter estimator [229] using a Bayesian Dirichlet
equivalent uniform prior scoring to learn the Bayesian CPD parameters of the dis-
covered network skeleton structure of the PCMCI temporal GCM. The edges of
the generated temporal causal graph G ((υ, ν), ε(w, s)) have weight w and time-lag
s attributes. To build a temporal causal BN, we reformulate G(V , E) : (υ, ν) →
(υs, ν), ε(w, s) → ε(ws) that source node υ with an edge ε(w, s) is represented by
new nodes υs and an edge ε(ws) for every active time-lag s. We prepare the data
for the υs by unrolling the time series data of the υ(t) into structural data—a new
column with υs is added by shifting the data ahead by the amount of time-lag s (see
Algorithm 7). There are also other tools to build TS BN, such as dynamic BNs,
but most are restricted to 2-time step temporal BN (2-TBN) that requires only unit
time-lag links or existence of self-lag connections [372,373].

Figure 6.12: Temporal anomaly causal discovery approach diagram. The approach
infers causal interaction among monitoring sensor variables from a time series binary
anomaly data.

6.2.3 Experiment Results on the HCAL Anomaly Data

We discuss the performance of the proposed time-series anomaly CD and analysis
framework using a use cause system RBX-HEP07—one of the RBXes that exhibit di-
vergent behavior in section 6.1.2. We employ the anomaly flags—generated from our
proposed ensemble online anomaly detection algorithms—for the CD experiment.

The dataset comprises 12 sensors of each HE-RM system. Several extended
reading gaps exist due to various non-physics activities on the LHC. We generated
a reading mask—shown in Fig. 6.13—to filter out the irrelevant operational time
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Algorithm 4 Data compression on sparse binary anomaly flag
1: procedure SparseBinaryDataHandler(Λ, lm)

▷ Λ ∈ RN×T is a matrix of anomaly flags with N sensors and T time length
▷ lm is the maximum time length for uniform states data compression

2: Λc ← [] ▷ the compressed anomaly flags data Λc ∈ RN×Tc

3: S ← AggregateAnomalyState(Λ) ▷ returns sequence of binary concatenation of from all variables
4: for I, ls ∈ GetUniformStateT imeRegions(S) : do

▷ I holds indices of the uniform status region with a time length of ls
5: ΛI ← Λ[I] ▷ ΛI is the selected uniform status flag region
6: if ls > lm then
7: Id ← GetRangeToRemove(ΛI , lm) ▷ the tail indices of the region, excluding the first lm data

points
8: ΛI ← CompressBinayData(ΛI , Id) ▷ compressing time length of ΛI by removing Id data indices
9: end if

10: Λc ← Append(Λc,ΛI)

11: end for
return Λc

12: end procedure

Algorithm 5 Sparse link handling with refined prior link assumption
1: procedure SparseLinkHandler(Λ, E, τmax, ατ )

▷ Λ is multivariate time series binary anomaly data
▷ E is a prior assumption of directed time-lagged edge links
▷ τmax is the causality search maximum time-lag
▷ ατ is time-lagged anomaly flag overlap strength threshold

2: dΛ← ∆Λ : Λ(t)− Λ(t− 1)

3: SdΛ ← T imeExtendAnomalyRegion(size = τmax) ▷ uses SlidingWindowSum with window = τmax and
step = 1

4: Λτ ← SdΛ > 0 ▷ convert to binary
5: for Λτ (i),Λτ (j) ∈ GetUniquePairV ariables(Λτ ) : do
6: λτ ← SimultaneousAnomalyF lagCount(Λτ (i),Λτ (j))

7: if λτ > 0 then ▷ check if overlap exists
8: ni ← AnomalyF lagCount(Λτ (i))

9: nj ← AnomalyF lagCount(Λτ (j))

10: λij
τ ← λτ

ni ▷ normalized overlap score from i to j

11: λji
τ ← λτ

nj ▷ normalized overlap score from j to i

12: if λij
τ < ατ then

13: E ← RemoveEdges(E, i, j) ▷ remove all edges from node i to j

14: else if λji
τ < ατ then

15: E ← RemoveEdges(E, j, i) ▷ remove all edges from node j to i

16: end if
17: else
18: E ← RemoveEdges(E, i, j) ▷ remove all edges from node i to j

19: E ← RemoveEdges(E, j, i) ▷ remove all edges from node j to i

20: end if
21: end for

return E
22: end procedure
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Algorithm 6 Pruning and adjusting time-lagged causality edges
1: procedure AdjustTemporalCausalityLinks(E,mOptions = [0, 1])

▷ E ∈ RN×3 is a matrix of weighted directed time-lagged edge links ε(υ, ν, w, t)

2: Gε ← EdgeGroupMaxWeightedT imeLag(E) ▷ groups edges with same nodes and select highest
weighted time-lag

3: R← [ ] ▷ placeholder for edges to be removed
4: D← [ ] ▷ placeholder for undirected edges
5: for εs, εr ∈ GetBidirectLinkedNodes(Gε) : do ▷ the current edge εs and the reverse edge εr
6: εp ← CompareBidirectLinks(εs, εr,m = mOptions[0])

7: if εp is not Edge then
8: εp ← CompareBidirectLinks(εs, εr,m = mOptions[1])

9: if εp is not Edge then
10: D← Append(D, [εs, εr]) ▷ add the edges εs and εr into the undirected bucket
11: R← Append(R, [εs, εr]) ▷ add the edge εs and εr into remove bucket
12: else
13: R← Append(R, εp) ▷ add the edge εp into remove bucket
14: end if
15: else
16: R← Append(R, εp) ▷ add the edge εp into remove bucket
17: end if
18: end for
19: ĒR ← PruneEdges(Gε,R) ▷ remove edges in the remove bucket
20: ĒD ← DirectEdges(Gε,D) ▷ get DAG for the undirected edges without affecting the directed edges in Gε

21: Ē ←Merge(ĒR, ĒD) ▷ merge pruned and directed edges
return Ē

22: end procedure
23: procedure CompareBidirectLinks(Gε, εs, εr,m)
24: ts, ws ← GetEdgeAttributes(εs) ▷ get edge link time-lag and weight of link s

25: tr, wr ← GetEdgeAttributes(εr) ▷ get edge link time-lag and weight of the reverse link r

26: εp ← None ▷ placeholder for the edge to be pruned
27: if m is 0 then ▷ use link weight values
28: if ws > wr then
29: εp ← εr
30: else if ws < wr then
31: εp ← εs
32: end if
33: else if m is 1 then ▷ link time-lag values (negative)
34: if ts < tr then
35: εp ← εr
36: else if ts > tr then
37: εp ← εs
38: end if
39: end if

return εp
40: end procedure

Algorithm 7 Temporal Bayesian network model generation
1: procedure BayesianNetworkModelGeneration(X,G)

▷ X ∈ RN×T is a multivariate time series data
▷ G is a graph network with G(υ, ν, ε(w, t))

▷ E ∈ RN×T is a matrix of anomaly flags with N sensors and T time length
2: for ε(υt, ν) ∈ GetLinkedNodes(G) : do
3: t← GetEdgeT imeLag(υt) ▷ get source node time-lag
4: if t < 0 then ▷ checks the time delayed causality
5: x̄υ ← GetT imeDelayedData(xυ , t) ▷ shifts backward the a time series xυ ∈ R1×T by t time steps
6: X ← Append(x̄υ)

7: end if
8: end for
9: B ← FitBayesianNetwork(X,G) ▷ build Bayesian network model

return B
10: end procedure
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regions of the LHC and ensure any detected anomalies are within the normal op-
eration of the calorimeter. We interpolate—up to eight-hour gaps—the remaining
regions into one-minute intervals. We utilize data from all RM sensors of the RBX-
HEP07 system (RM-1, RM-2, RM-3, and RM-4) to discuss the performance of the
proposed methods (see Fig. 6.14). The data comprise short-living transient and
time-persistent anomalies, such as trend drifts. We employ data from multiple RMs
to capture the global causality of the HE-RM. We will first discuss the performance
of the online AD approach and then proceed to the anomaly CD.

Figure 6.13: The active mask of the LHC operation status from August to December
of 2022. The active mask = 1 refers to the LHC during its normal physical run
operation status—during running collision experiment or idle—whereas the mask =

0 corresponds to the LHC under other non-physics operation states—e.g., technical
stop and maintenance development.

Figure 6.14: Sensor time series reading data from all four RMs of the RBX-HEP07.
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Online Anomaly Detection: The proposed ensemble online temporal AD ap-
proach involves three methods: 1) global temporal outlier detection, 2) temporal
rate drift detection using spectral residual saliency, and 3) trend drift detection (see
Section 6.2.2). Table 6.3 provides the hyperparameter settings of the algorithm.
We set the anomaly thresholds slightly higher to reduce noise contamination and
preserve the causal faithfulness assumption [204,209,222].

The LHC has undergone operations that result in distinct signal patterns on the
sensors; we have further utilized change point breaks (on 2022-09-27, 2022-10-19,
and 2022-11-12) in which the AD system reinitializes. Change point detection algo-
rithms, such as PELT [374] and kernel-based [375], can detect changes in operation
automatically from TS signal data; we found their accuracy is sensitive to hyperpa-
rameters and unsatisfactory for non-periodic and non-stationary signals—increase
false detection.

Table 6.3: Hyperparameter settings for the outlier detection algorithms.

Algorithm Settings (at 1 minute sampling interval)
MovingSDOutlierDetection αθ = 10, wθ = 5760

TrendDriftDetection ατ = 20, pτ = 5760, kτ = 5

SpectralOutlierDetection αη = 35, qη = 1440

Fig. 6.15 depicts the SCH sensors of the four RMs of HEP07 along with the
detected transient and trend outliers marked on the outlier score signals of the
outlier detection algorithm. The sensors show a drifting trend where they gradually
deviate away—dropping or increasing—from their expected optimal values. Fig.
6.16 illustrates all the sensors from RM-1 with marked anomalies. Fig. 6.17 portrays
the anomaly flag count from all RMs of the HEP07; the humidity sensors have higher
counts due to the detected trend drift anomaly. The time of occurrence of anomalies
on the SRT seems temporally correlated with the Q[1-4]T, SPV, and SPC.

We have demonstrated the capability of our proposed online AD approach in
detecting several types of outliers on TS data with light computation overhead.
The potential limitation of the approach is that it expects adequate healthy data
samples; it is challenging to detect outliers without prior knowledge if the outlier is
dominant in data—violating the rare anomaly occurrence assumption—and in such
cases, using trained AD models is recommended instead. Finding the optimal hyper-
parameters is also still an open challenge. Data normalization and standardization
partially alleviate this challenge, but the hyperparameters may remain dependent on
the data or the target outlier characteristics—requires domain knowledge for tuning.
Some initial parameter-tuning effort is required when employing the approach in a
new environment. Setting adjustment—experimenting with statistical models—is a
rather fast process compared to hyperparameter tuning on deep learning models.

Anomaly Causal Discovery: We capture the causal graph from the TS binary
anomaly data generated by the online AD algorithm in the previous section (see
Fig. 6.18). We set the maximum time-lag τmax = 5 to search for temporal causality
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Figure 6.15: Online temporal anomaly detection on RBX-HEP07 SCH sensor. (Left
to right) sensor signal, signal trend estimation, Λι, Λθ, and Λη.

dependency at t−τmax, . . . , t−1, t (equivalent to five minutes) and CI test significance
threshold pv = 0.05 for the PCMCI algorithm.

We compute structural hamming distance (SHD) and area under the precision-
recall curve (APRC) to measure the discovered causal DAG quantitatively. SHD
is a standard distance metric that compares acyclic graphs based on the counts of
the edges that do not match [227,376]. It computes the difference between the two
binary adjacency matrices so that missing or false edges are counted as mistakes.
SHD counts two errors for a directed link with the reversed edge—for falsely directing
the edge and for missing the correct edge.

SHD(G,H)← N (i, j) ∈ V | G(edge(i, j)) ̸= H(edge(i, j)) (6.22)

where V is the set of vertices or nodes of the G and H graphs, and N is the number
of mismatched nodes between the G and H. APRC is a classification metric that
evaluates predictions with a confidence score of the area under the curve of the
precision (P) and recall (R) coordinates; the P and R are defined as:

P =
TP

TP + FP

R =
TP

TP + FN

(6.23)

where TP, FP, and FN stand for true positive, false positive, and false negative,
respectively.

The sparse data handler—compressing long uniform regions of sparse binary data
without anomaly status change across sensors—reduces the data from around 400K
to 900 samples. This process reduces the data size by 99.76%—significantly alleviat-
ing the computational cost of the causal graph learning algorithm—PCMCI [20,236].
The compression takes roughly 8 seconds and it squeezes the uniform regions to ten
samples—twice of the τmax of the CD (see Fig. 6.18c).

Fig. 6.19 illustrates the temporal GCM structure on the time-lag of t =

0, . . . , τmax—captured by the PCMCI with positive partial correlation CI test and
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Figure 6.16: Online temporal AD on all RBX-HEP07-RM-1 sensors.

Figure 6.17: Number of detected anomaly flags from all RMs of RBX-HEP07. The
humidity sensors have a higher count due to drifting trends.

imposed link assumption on time-lags. The GCM shows expected interconnection
among the sensors—the clustering of environmental temperature and humidity sen-
sors, and the link between temperature regulator Peltier voltage and current and the
corresponding temperature sensors. Several bi-directed edges with multiple time-
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(a)

(b)

(c)

Figure 6.18: Anomaly binary flag data from our proposed online AD approach on
RBX-HEP07 sensors: a) the raw anomaly data with around 400K samples, b) the
sparse regions are annotated, and c) sparse compressed data using our sparse handler
algorithm—around 900 samples.
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Figure 6.19: Temporal GCM of HEP07-RM using time-lag t = 0, . . . , 5.

lags are also present in the network. Fig. 6.20 shows the final temporal DAG after
applying Algorithm 6 the pruning. An interesting time-lagged causality link can be
observed, where a temperature anomaly in SRT leads to anomalies in SPV and SPC;
this is because the Peltier regulator responds—by increasing SPV and SPC—to the
upsurge on the SRT.

Figure 6.20: Temporal GCM-DAG network of HEP07-RM after edges pruning.

We have also evaluated the performance of causal structure learning while varying
the sparse data compression length lm. We have compared the graph accuracy and
learning computational time at lm = 10 with those at lm ∈ {15, 20, 25, 30} before
and after pruning is applied (see Table 6.4). We conducted our experiment on a
Windows 10 system with an Intel i5-8265U CPU @ 1.60 GHz (8 CPUs) and 16 GB
RAM. The partial DAGs—from PCMCI with spurious links at multiple time lags—
lead to higher mismatches among the PDAGs—resulting in lower APRC and higher
SHD. The matching has improved when we compare the DAGs with pruned links.
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The closeness of the captured graphs also demonstrates the effectiveness of causality
learning on binary anomaly data using the sparse handler algorithm. We will provide
further performance discussion on simulated binary data using known causal links
in Section 6.2.5.

Table 6.4: Causal graph learning comparison on different sparsity length lm. SCt is
the computation time of the PCMCI skeleton structure learning.

lm Compressed Data Size SCt (sec)↓ Link Pruning Adjustment APRC↑ SHD↓

10 911 18.969
False - -
True - -

15 1274 21.625
False 0.741 29
True 0.748 12

20 1629 30.219
False 0.731 31
True 0.723 14

25 1974 30.703
False 0.692 35
True 0.748 12

30 2319 34.625
False 0.711 38
True 0.777 11

The black bold font is the best score. Downarrow means lower is better, and vice versa for
uparrow.

We trained our BN model—as a temporal anomaly causal inference engine shown
in Fig. 6.12—using TS unrolling data and the captured anomaly causality DAG
skeleton. Table 6.5 presents the probabilistic anomaly causality inference results
using the trained BN. We quantify causality by calculating the anomaly conditional
probability (CP) of the causes or affected sensors. The CP of anomaly occurrence
for the Q1T sensor increases from 0.05 with no other evidence to above 0.90 with
the evidence of a detected anomaly flag on the related sensors, Q[2-4]T, at a time-
lag t = 0. The CP of an anomaly on the Q1H sensor increases from 0.26 to above
0.85 when there is evidence of a detected anomaly flag on the Q[2-4]H sensors at a
time-lag of t = 0. The Q1H has a higher CP with no other evidence scenario due to
trend drifts. We notice the few sample differences during drift detection across the
Q[1-4]H sensors lower the causality dependency strength. The CP of SPC increases
to 0.45 when SPV has an anomaly at t = 0. The SRT is causal to the SPC at a
time-lag t = −1 directly and at t = −5 through SPV, but with uneven strength of
0.32 and 0.15, respectively. The CP rises to 0.95 on the SPC when anomalies are
detected on both the SPV and SRT, indicating the CP is influenced by edge weight
strength from multiple causal nodes.

The BN inference has generally produced CPs that are aligned with the link
strength of the causal DAG—given in Fig. 6.20. But, caution should be taken when
approaching the BN causality interpretation: 1) bidirectional edges between Q[1-
4]T and Q[1-4]H indicate the presence of confounding variables—causal sufficiency
assumption is not held; the temperature and humidity anomalies are externally
induced (affecting the closely placed QIE cards together), and the BN inference
depicts the anomaly relationship rather than the causality between the sensors,
and 2) the CP—whether it is causal or influenced by observed evidence—must be
explained with link edge direction; for example, the CP increase in the SPC is due
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to the observed anomaly on the causal SPV node, whereas the increase in the SPV
is due to the observed anomaly on the influenced SPC node. Causal effect methods,
such as Pearl’s framework and optimal adjustment, can further be employed for
causality study with intervention distribution P (Y = 1 | do(X = 1)) [377,378].

Table 6.5: Anomaly conditional probability based on Bayesian causality inference.

Target Variable (A) at t = 0 Observed Variables (B) P(A = 1 | B = 1)

Q1T
- 0.051

Q2T (t = 0) 0.904
Q[2-4]T (t = 0) 0.927

Q1H
- 0.262

Q2H (t = 0) 0.846
Q[2-4]H (t = 0) 0.913

SPC

- 0.071
SPV (t = 0) 0.456

SRT (t = −1) 0.321
SRT (t = −5) 0.153

SPV (t = 0), SRT (t = −1) 0.947

SPV
- 0.057

SPC (t = 0) 0.366

6.2.4 Experiment Results on Real Public Data

We present the performance of our AnomalyCD approach on a publicly available
dataset1. The dataset is provided by EasyVista2 and it consists of eight TS variables
collected from an information technology (IT) monitoring system with a one-minute
sampling rate (see Figure 6.21): 1) PMDB variable represents the extraction of
some information about the messages received by the Storm ingestion system; 2)
MDB refers to an activity of a process that orients messages to another process with
respect to different types of messages; 3) CMB represents the activity of extraction
of metrics from messages; 4) MB represents the activity of insertion of data in a
database; 5) LMB reflects the updates of the last values of metrics in Cassandra; 6)
RTMB represents the activity of searching to merge of data with information coming
from the check message bolt; 7) GSIB represents the activity of insertion of historical
status in database; 8) ESB represents the activity of writing data in Elasticsearch.
EasyRCA [208] has used the dataset—index from 45683 to 50000—with anomaly
regions for root cause discovery study using a prior known causal graph network of
the sensors (see Fig. 6.21); each of the TS is considered anomalous with collective
anomalies that have the same time of appearance and duration of 100.

We generated the binary anomaly flags dataset using our online AD approach
before estimating the GCM of the EasyVista IT system. Fig. 6.22 and Fig. 6.23

1Available at https://github.com/ckassaad/EasyRCA
2https://www.easyvista.com/fr/produits/ev-observe
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Figure 6.21: Causal graph of EasyVista’s IT monitoring system during normal op-
eration.

present the AD on TS signals and the generated binary flags, respectively. We have
utilized a low threshold αη = 2 to detect more outlier noise beyond the main col-
lective anomaly at indices 46683 to 46783; incorporating the noise outliers improves
the CD since the collective anomaly affects all TS variables at the same time, and
limits the causality learning from the binary data. The generated binary data con-
tains roughly 4300 samples for each variable, and Fig. 6.24 provide the anomaly
flag count; the PMDB and ESB variables generate the highest anomaly flags, and
the EasyVista experts consider these two variables to be the root causes of the
anomalies [208].

We utilize the causal graph of the normal operation—given in Fig. 6.21—as
a reference graph to evaluate the accuracy of the estimated GCMs. We employ
additional metrics for the evaluation to compare the performance of several existing
CD approaches:

P =
TP

TP + FP

R =
TP

TP + FN

F1 =
2× P ×R
P +R

FPR =
RV + FP

TN + FP

SHDU = UE + UM +RV

(6.24)

where the F1 is F1-score and FPR is a false positive rate. The SHDU is undirected
SHD that penalizes once—instead of twice as SHD in (6.22)—for edges with wrong
directions [379]. The TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively. The RV, UE, and UM denote reversed
edge, undirected extra edge, and undirected missing edge, respectively. TP is the
number of edges estimated with a correct direction; TN is the number of edges that
are neither in the estimated graph nor in the true graph; FP is the number of edges
that are in the estimated graph but not in the true graph; FN is the number of
edges that are not in the estimated graph but in the true graph; RV is the number
of edges estimated with a reversed direction.

Table 6.6 presents some of the widely used CD algorithms in the literature and
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Figure 6.22: Online AD on EasyVista dataset. We employ the flags from the SR
algorithm using qη = 480 and αη = 2, as the dataset does not exhibit trend drift
anomalies.
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Figure 6.23: The generated binary anomaly flags of the EasyVista dataset.

Figure 6.24: Number of detected anomalies of the EasyVista dataset.

employed in our study for comparison. We have preserved the undirected edges
as bidirected for a fair comparison among the methods since some of the methods
generate PDAG. We convert the temporal GCM results into summary GCM for the
PCMCI-based temporal CD since the evaluation reference graph does not contain
temporal information; we aggregate the time lag attributes of the edges into t = 0.
We utilize partial correlation for the CI testing and pv = 0.05 for all the constraint-
based methods. We employ Bayesian information criterion (BiC) and Bayesian
structure scoring with Dirichlet priors (BDeu) scores [380] for the score-based algo-
rithms.

Table 6.6: Causal discovery methods.

Method Category List of Methods
Constraint-based PC [226], GS [223], IAMP [224], MMPC [225], PCMCI [20]
Score-based HC [229], GES [230]
Hybrid-based MMHC [227]
Function-based Direct-LiNGAM [381], ICA-LiNGAM [382]
Gradient-based GraN-DAG [383], GOLEM [384], GAE [385], RL-BIC [386],

CORL [387]

Table 6.7 and Table 6.8 provide the CD performance on the raw binary anomaly
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data and compressed data by sparse handling algorithm, respectively. Most methods
have reached higher recalls with lower precision scores due to the bi-directed edges.
Only the graph autoencoder (GAE) [385] has succeeded from the deep learning mod-
els; the RL-BIC [386] and CORL [387] employs reinforcement learning and have
missed all relevant edges that require a wider search for optimal hyper-parameters
to improve the performance. The sparse handler reduces the input data size by 55%
using lm = 10, which leads to lower computation. It also decreases the number
of estimated edges, which improves the accuracy of the causal graph; it increases
the F1 score by improving the precision and reducing the false edges—decreasing
the SHD and SHDU. The score-based HC [229] and its hybrid MMHC [227] algo-
rithms have not provided accuracy leverage on the compressed binary data. Our
sparse handling method achieves an average improvement of, excluding the HC and
MMHC algorithms, 18%, 22%, and 15% in the F1, FPR, and SHDU, respectively.
Our AnomalyCD leads the performance in most metrics and is ranked first by the
Nemenyi ranking diagram [19] over the rank scores across the seven metrics (see Fig.
6.25). The CD accuracy is not very high overall across the different approaches; the
evaluation reference system graph is derived from the normal operation, and the
anomaly GCM—built from the anomaly data—may behave differently.

Table 6.7: Causal graph learning on EasyVista dataset without sparse data handling.

Metric P↑ R↑ F1↑ FPR↓ APRC↑ SHD↓ SHDU↓
PC [226] 0.118 0.222 0.154 0.790 0.225 34 18
GS [223] 0.174 0.889 0.291 0.790 0.539 56 16
IAMB [224] 0.174 0.889 0.291 0.790 0.539 56 16
MMPC [225] 0.174 0.889 0.291 0.790 0.539 56 16
HC-BicScore [229] 0.167 0.222 0.191 0.526 0.249 45 13
HC-BdeuScore [229] 0.222 0.444 0.296 0.737 0.372 21 17
GES-BicScore [230] 0.160 0.444 0.235 0.895 0.341 35 18
GES-BdeuScore [230] 0.191 0.444 0.267 0.526 0.357 48 15
MMHC [227] 0.182 0.222 0.200 0.474 0.257 44 12
Direct-LiNGAM [381] 0.167 0.444 0.242 1.050 0.345 37 21
ICA-LiNGAM [382] 0.160 0.444 0.235 1.105 0.341 33 22
GOLEM [384] 0.167 0.222 0.191 0.526 0.249 35 16
GraN-DAG [383] 0.222 0.222 0.222 0.368 0.277 38 13
GAE [385] 0.177 0.333 0.231 0.421 0.302 47 14
PCMCI [20] 0.182 0.889 0.302 0.895 0.543 50 17
AnomalyCD (ours) 0.212 0.778 0.333 0.684 0.511 48 13

We present an ablation study in Table 6.9 for the AnomalyCD approach to
demonstrate the efficacy of the additional complexity using ANAC, the sparse han-
dling and temporal edge pruning methods leveraging the PCMCI [20]. Our sparse
handling approach has enhanced the CD by 20% in the F1 score. The P, FPR, and
SHDU are substantially improved by 37%, -47%, and -41%, respectively, demon-
strating improvement in the link detection accuracy; the performance decrease on
the SHD by 7% relative to AnomalyCD** is due to the slight accuracy drop in
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Table 6.8: Causal graph learning on EasyVista dataset with our sparse data handling
method. The ∆+

avg and ∆−avg are the average relative gains (compared to the perfor-
mance on the raw data, given in Table 6.7) of our sparse data handling method over
all the CD algorithms, including and excluding the low-performing HC and MMHC
algorithms, respectively.

Metric P↑ R↑ F1↑ FPR↓ APRC↑ SHD↓ SHDU↓
PC [226] 0.267 0.444 0.333 0.474 0.395 29 12
GS [223] 0.191 0.444 0.267 0.632 0.357 47 15
IAMB [224] 0.191 0.444 0.267 0.632 0.357 47 15
MMPC [225] 0.200 0.667 0.308 0.474 0.457 54 12
HC-BicScore [229] 0.091 0.111 0.100 0.526 0.164 35 15
HC-BdeuScore [229] 0.111 0.222 0.148 0.842 0.221 32 19
GES-BicScore [230] 0.227 0.556 0.323 0.632 0.423 36 14
GES-BdeuScore [230] 0.191 0.444 0.267 0.526 0.357 48 15
MMHC [227] 0.100 0.111 0.105 0.474 0.168 47 14
Direct-LiNGAM [381] 0.167 0.333 0.222 0.790 0.297 38 17
ICA-LiNGAM [382] 0.235 0.444 0.308 0.684 0.379 22 16
GOLEM [384] 0.167 0.222 0.191 0.526 0.249 35 16
GraN-DAG [384] 0.333 0.333 0.333 0.316 0.380 36 12
GAE [385] 0.200 0.333 0.250 0.421 0.314 41 13
PCMCI [20] 0.207 0.667 0.316 0.632 0.460 52 13
AnomalyCD (ours) 0.250 0.667 0.364 0.474 0.482 44 10

∆+
avg (%) 12.72 -10.26 5.80 17.03 -4.69 3.97 9.81

∆−avg (%) 26.47 -1.08 18.31 22.05 2.64 7.74 15.45
The green and red bold fonts represent an increase and decrease in performance,

respectively.

the direction estimation of the bi-directed edges at t = 0 (see Fig. 6.26). The
correlation-based CI test may remain symmetric and unable to distinguish edge
direction at t = 0 when there is no time-lagged factor, see Eq. (6.21). The
AnomalyCD-Directed refers AnomalyCD with updated edges using chi-square test
for the bi-directed edges—line 17 in Algorithm 6 (fig. 6.26b). The AnomalyCD-
Directed attains the best performance in most metrics, improving the CD by 83%,
26%, -53%, -36%, and -41%, in the P, F1, FPR, SHD, and SHDU, respectively. The
decrease in the R is because some of the bi-directed edges are removed or direction
reversed by the pruning chi-square test.

6.2.5 Experiment Results on Synthetic Data

We evaluate the temporal CD of our proposed algorithms—augmenting the PCMCI
algorithm—on synthetic TS anomaly data generated from known ground-truth
GCM. We simulate different causal binary data for the empirical assessment with
three nodes (x1, x2, and x3)—representing different realistic challenges of TS binary
anomaly data.

We will present the results below using latent PCMCI [228]—PCMCI with FCI
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(a)

(b)

Figure 6.25: Performance ranking for pairwise comparisons using Nemenyi [19]: a)
without sparse data handling, and b) with sparse data handling. The CD in the
plot is the critical difference distance, and the horizontal bars denote mean rank
differences smaller than the value of the CD.

Table 6.9: Ablation study on our AnomalyCD approach using the EasyVista dataset.
AnomalyCD is our temporal CD with ANAC, sparse handling, and edge pruning,
AnomalyCD* is without sparse handling, AnomalyCD** is without sparse handling
and edge pruning, and AnomalyCD*** is without ANAC—equivalent to the PCMCI
algorithm in Ref. [20]. The AnomalyCD-Directed is AnomalyCD with directed
edges.

Metric P↑ R↑ F1↑ FPR↓ APRC↑ SHD↓ SHDU↓
AnomalyCD-Directed 0.333 0.444 0.381 0.421 0.428 32 10
AnomalyCD 0.250 0.667 0.364 0.474 0.482 44 10
AnomalyCD* 0.212 0.778 0.333 0.684 0.511 48 13
AnomalyCD** 0.184 0.778 0.298 0.947 0.497 41 18
AnomalyCD*** [20] 0.182 0.889 0.302 0.895 0.543 50 17

for unseen confounding handling—due to its better accuracy for small data sets than
its predecessors [20,236]; but, it may become quite slower than the predecessors for
larger data sets. We will also discuss an unrolling TS approach—inspired by the
time-aware PC algorithm (TPC) [238]—to briefly demonstrate its advantages and
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(a)
(b)

Figure 6.26: The estimated time series GCM using AnomalyCD for the EasyVista
system from binary anomaly data: a) AnomalyCD, and b) AnomalyCD-Directed.

limitations compared to the PCMCI. We employ our ANAC test—using Pearson’s
correlation—for the experiments. We set the maximum causality search time-lag
τmax = 3 for all the experiments.

Challenge-1: Binary Anomaly Data Sparsity Compression: A binary
anomaly data is synthetically generated for x1 with long time windows of uniform
anomaly status (sparse regions), and then temporal causally dependent variables x2

and x3 are derived using x1(t−1)→ x2(t) and x2(t−3)→ x3(t) (see Fig. 6.27). We
set the maximum time-lag τmax = 3 for causality search that excludes the deduced
edge x1(t− 4)→ x3(t).

Our proposed sparsity data handler approach enables capturing causality infor-
mation from the anomaly flag transition edges by avoiding extended uniform regions
(see algorithm 4). The algorithm has compressed the expended regions to substan-
tially lessen the computation cost and improve the accuracy of the GCM discovery
(see Fig. 6.28); it reduces the Type-I—false positive edges—errors (see Fig. 6.30).
It decreases the data samples and the average PCMCI computation time by around
60% and 42%, respectively (see Fig. 6.28 and 6.29b). The compressed data results in
correct causal graph structure APRC = 1.00 and SHD = 0) at different CI threshold
pv (see Fig. 6.29), whereas the sparse data causes spurious links x1(t − 1) → x1(t)

and x2(t− 1)→ x2(t) (see Fig. 6.30) that lower APRC and increase SHD scores to
0.83 and 1, respectively.

Challenge-2: Incomplete Stationary Binary Data: System interruption of-
ten follows after anomaly alerts for maintenance or prevention of further damage.
We generated temporally incomplete anomaly data when the anomaly signals from
all the variables reset to zero—simulating system interruption occurrence in the
data; we utilized the binary data from the previous section—x1(t− 1)→ x2(t) and
x2(t−3)→ x3(t)—and applied an interruption condition (x1 = 0)∩(x2 = 0)∩(x3 =
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Figure 6.27: Raw binary anomaly-flag data with sparse uniform state regions. The
data is generated using x1(t− 1)→ x2(t) and x2(t− 3)→ x3(t).

(a) (b)

Figure 6.28: Data compression using our sparse data handler algorithm: a) raw TS
binary anomaly flag with marked sparse regions, and b) compressed TS anomaly
data after sparsity handling.

(a) (b)

Figure 6.29: Graph discovery performance score on raw and compressed binary
anomaly data. APRC = 0.83 and SHD = 1, and APRC = 1.00 and SHD = 0 for all
the pv values for the raw and compressed data, respectively.

1).
The data incompleteness greatly diminishes the edge weight between x2(t−1)→
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(a)

(b)

Figure 6.30: Heatmaps of the estimated temporal graph edge weights at pv = 0.05

using a) raw and b) compressed binary anomaly data.

x3(t) from 1.00 to 0.28, introduces spurious links at higher pv, and removes proper
edges at lower pv (see Fig. 6.32 and Fig. 6.33).

(a) (b)

Figure 6.31: Generated binary anomaly-flag data using x1(t−1)→ x2(t) and x2(t−
3) → x3 and an interruption condition (x1 = 0) ∩ (x2 = 0) ∩ (x3 = 1): a) before,
and b) after the interruption. The interruption makes the temporal data of x3

incomplete.

Challenge-3: Incomplete Non-stationary Binary Data: Most temporal CD
studies assume stationary causality. But, one of the most challenging tasks in deal-
ing with real-world TS binary anomaly-flag data is non-stationary causality—the
presence of different interactions at different times. A few studies propose miti-
gation strategies for non-stationarity—e.g., partitioning the data into disjoint time
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Figure 6.32: Graph discovery performance score on incomplete binary anomaly data.

(a)

(b)

Figure 6.33: The estimated temporal GCM heatmaps on incomplete binary anomaly
data: a) pv = 0.0001 (APRC = 0.77 and SHD = 1), and b) pv = 0.05 (APRC = 0.75

and SHD = 2).

windows and expecting each with its own causal network [237]; the time windowing
omits relations across windows, and results may vary with the choice of window
size [209]. We assess the impact of having non-stationary causality in anomaly data
and drive guiding insights that might be relevant for tuning and building anomaly
causality graphs.

We inject non-stationarity at t > 30 by setting x1(t > 30) = 0 that removing the
edge x1(t− 1)→ x2(t) on the incomplete anomaly data—generated in the previous
section (see Fig. 6.34). The discovered graphs have spurious self-time-lagged edges
(APRC = 0.75 and SHD = 2 for all pv), and the edge weights are reduced below 1.00
for the correct links (see Fig. 6.36). We leverage the PCMIC algorithm with a prior
anomaly causality link assumption that excludes causality from self-time-lag edges
to improve its capability: The prior link assumption has enhanced the PCMCI in
detecting the causal graph accurately—except at high pv = 0.05—by mitigating the
false edges and increasing weights of the true edges incomplete and non-stationary
binary anomaly data (see Fig. 6.37 and Fig. 6.38).
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(a) (b)

Figure 6.34: Generated temporal binary anomaly-flag data using x1(t− 1)→ x2(t)

and x2(t− 3)→ x3(t) with an interruption condition (x1 = 0)∩ (x2 = 0)∩ (x3 = 1)

and non-stationarity injected at t > 30 on x1: a) anomaly data with the interruption
condition and b) after the non-stationarity is applied on x1.

Figure 6.35: Graph discovery performance score on incomplete and non-stationary
binary anomaly data.

Addressing Challenge-3 through Time Series Unrolling Mechanism: [238]
proposes a promising TPC that employs unrolling the TS data—by adding new
nodes with time delay tags—to generate DAG using the PC algorithm. The authors
apply a set of conditions, such as avoiding backward causality in time and weight
thresholding to direct edges and pruning the DAG, respectively, when rolling the
DAG. We evaluate the unrolling approach with PCMCI [228] to validate its advan-
tages on the temporal CD of binary anomaly data. We employ PCMCI instead of PC
because of better accuracy with MCI; the PCMCI also enables us to compare with
previous results consistently. The unrolling approach suffers from false contempora-
neous and self-lagged links (see Fig. 6.40 and 6.41). The performance substantially
improves with a prior anomaly link assumption; it still does not work best for the
extreme pv (see Fig. 6.42 and Fig. Fig. 6.43) We have found two major poten-
tial disadvantages of the unrolling approach for GCM learning: 1) the computation
increases with the variable and time lag dimensions—limited impact on relieving
computational overhead, and 2) it needs more effort in tuning the reasonable pv
than using the PCMCI directly.
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(a)

(b)

Figure 6.36: The estimated temporal GCM heatmaps on incomplete and non-
stationary binary anomaly data: a) pv = 0.0001 (APRC = 0.75 and SHD=2),
and b) pv = 0.05 (APRC = 0.75 and SHD=2).

Figure 6.37: Graph discovery performance score using prior link assumption on
incomplete and non-stationary binary anomaly data.

6.2.6 Summary

We have introduced an unsupervised framework for causal discovery on binary
anomaly data. Our framework includes several algorithms and approaches to ad-
dress challenges related to inferring causality in sparse anomaly binary data. The
approaches have established promising accuracy in unsupervised online anomaly de-
tection and significantly reduced the computational overhead of graph CD on binary
data. Our methods achieve fast and accurate CD by employing sparse binary data
compression, prior time-lag link assumptions, and edge running and adjustment.
The experiment results of the Hadron Calorimeter of the CMS experiment, public
IT system monitoring, and simulated causal data sets have demonstrated the ef-
ficacy of the proposed approaches. Our approaches will help facilitate diagnostic
tasks across diverse systems of the CMS HCAL, where flexible methods are needed
for multi-level complex system configurations and limited annotated data. We rec-
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(a)

(b)

Figure 6.38: Discovered temporal GCM heatmaps using prior link assumption on
incomplete and non-stationary binary anomaly data: a) pv = 0.0001 (APRC = 1.00

and SHD = 0), and b) pv = 0.05 (APRC = 0.75 and SHD = 2).

(a)

Figure 6.39: Unrolled binary anomaly flag time series data up to maximum time-
lag τ = 3. The temporal binary anomaly-flag data using x1(t − 1) → x2 and
x2(t− 3)→ x3(t) with an interruption condition (x1 = 0)∩ (x2 = 0)∩ (x3 = 1) and
non-stationarity injected at t > 30 on x1.

ommend further breakdown of the discovered causal networks for the root-cause
identification of anomalies using existing methods, such as CausalRCA and Micro-
Cause. The target anomaly time regime must be defined before the causal graph
learning since different anomalies may have different root causes.
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Figure 6.40: Graph discovery performance score on unrolled incomplete and non-
stationary binary anomaly data.

(a)

(b)

Figure 6.41: The estimated temporal GCM heatmaps on unrolled incomplete and
non-stationary binary anomaly data: a) pv = 0.0001 (APRC = 0 and SHD = 4),
and b) pv = 0.05 (APRC = 0.67 and SHD = 4).

Figure 6.42: Graph discovery performance score using prior link assumption on
unrolled incomplete and non-stationary binary anomaly data.
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(a)

(b)

(c)

Figure 6.43: The estimated temporal GCM heatmaps using prior temporal link
assumption on unrolled incomplete and non-stationary binary anomaly data: a)
pv = 0.0001 (APRC = 0 and SHD = 4), b) pv = 0.01 (APRC = 1.00 and SHD = 0),
and c) pv = 0.05 (APRC = 0.70 and SHD = 3).
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Chapter 7

System Integration and Deployment

This chapter will discuss the production integration of our machine learning
models—discussed from Chapter 4 to Chapter 6—in the monitoring systems of CMS.

Our tools have been deployed in CMS—actively assist the HCAL operation and
DQM experts in detecting and diagnosing system faults across thousands of sensors.
We developed a DESMOD dashboard1 to provide interactive access to the developed
AD models and analysis tools on the data retrieved from the MonDB databases of the
904—operation investigation laboratory at CMS—and the P5—the CMS detector
at the LHC (see Fig. 7.1). The DQM AD models are integrated2 in the CMSSW
production engine3 for real-time monitoring of the data acquisition channels of HE
and HB subdetectors. The online models are deployed in C++ environments for
faster inference and compiled using open neural network exchange (ONNX)4. We
provide access to the deployed tools through our DESMOD dashboard for offline
fault detection and diagnostics. The offline diagnostics of the DQM AD models
utilize PyROOT—a Python extension module for interacting with DQM ROOT
format data [388].

7.1 Sensor Fault Detection and Diagnostics Tools

The diagnostic sensor monitoring page depicted in Fig. 7.2 incorporates several tools
for offline sensor data analysis, such as the AD and AP—discussed in Section 4.1 and
5.1—and anomaly causality discovery tools—discussed in Section 6 (see from Fig.
7.6 to Fig. 7.9). It also integrates sensor data preprocessing, multi-level variable
filtering, data cleaning and normalization, and interactive signal visualization and
clustering tools (see from Fig. 7.3 to Fig. 7.5).

Fig. 7.3 shows the multivariate time series data preprocessing panel that includes
data selection and manipulation tools, multi-system and sensor variable selection,
and signal visualization. We provide temporal system operation variation detection
through sensor data clustering in Fig. 7.4. Fig. 7.5 illustrates system deviation

1Our DESMOD dashboard portal at https://cmshcalweb01.cern.ch/desmod
2ML4DQM pull request to the CMSSW at https://github.com/cms-sw/cmssw/pull/42212
3The CMSSW core production at https://github.com/cms-sw/cmssw
4ONNX at https://onnx.ai
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Figure 7.1: The DESMOD dashboard—locally deployed at CMS to provide fault
detection and diagnostics on the multivariate sensor reading and high-dimensional
spatial data quality monitoring histograms.

clustering on multi-RBX systems using dimensional reduction embedding on multi-
variate sensors. Fig. 7.6 provides online time series AD using an ensemble of outlier
detection algorithms without prior model training requirements to detect typical
univariate TS anomalies (see Section 6.2.2). Fig. 7.7 depicts AD results from our
CGVAE deep learning model for the ngCCM of the HE calorimeter—summary AD
report per system and sensor (see Section 4.1) [41]. Fig. 7.8 shows a trend drifting
anomaly on the RSSI sensor—one of the challenging anomalies to capture. The dash-
board also provides divergence detection and causality discovery tools—discussed in
Chapter 6—for the multi-system and multivariate RBX systems (see Fig. 7.9).

Figure 7.2: The DESMOD dashboard sensor monitoring portal.

7.2 Data Quality Monitoring and Diagnostics Tools

The DQM AD page—shown in Fig. 7.10—provides access to AD inference using
our spatio-temporal DQM-AD models for the HE and HB acquisition channels—
discussed in Section 4.2 and 4.3. We render digi-occupancy map visualization and
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real bad channel detection results from our AD models at different system granu-
larity, such as run-, lumisection-, and channel-granularity on recent Run-3 collision
data (see from Fig. 7.11 to Fig. 7.14).

Fig. 7.11 portrays results of the spatio-temporal AD for HE three-dimensional
DQM channel monitoring using our GraphSTAD deep learning model (see Section
4.2) [77]; the plots show user-setting selection, and summary AD reports at subde-
tector RBXes and channel granularity across the selected lumisections. Fig. 7.12
extends the illustration to lumisection granularity—single 3D map—showing the de-
tected real faulty channels with details of the input, reconstructed, anomaly score
spatial maps. We present similar results for the HB subdetector from Run-3 in Fig.
7.13 and Fig. 7.14 (see Section 4.2) [78].
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(a)

(b)

(c)

Figure 7.3: The DESMOD dashboard multivariate TS data preprocessing panel: a)
sensor data preprocessing and manipulation, b) system and sensor variable selection
and filtering, and c) signal visualization.
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(a)

(b)

Figure 7.4: The DESMOD dashboard multivariate TS data clustering: a) annotated
scatter plot, and b) annotated signal plot.
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(a)

(b)

Figure 7.5: The DESMOD dashboard RBX system clustering based on dimensional
reduction embedding on multivariate sensors: a) 2-dimensional embedding of mul-
tiple systems, and b) system deviation detection through signal clustering.
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(a)

(b)

Figure 7.6: The DESMOD dashboard online AD without a trained model: a) AD
configuration setting panel and AD summary report, and b) AD result plots.
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(a)

(b)

Figure 7.7: The DESMOD dashboard HEngCCM AD prediction using trained deep
learning CGVAE model (see Section 4.1): a) sensor-level AD report summary, and
b) system-level AD report.
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(a)

Figure 7.8: The DESMOD dashboard HEngCCM AD using trained CGVAE model
(see Section 4.1): AD report on a selected RSSI sensor with gradual drifting anomaly.

(a)

(b)

Figure 7.9: The DESMOD dashboard sensor interconnection and causality analysis
on reported anomaly flag data (see Section 6.2): a) similarity heatmap and clustering
dendrogram, and b) interconnection graph network.
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Figure 7.10: The DESMOD dashboard anomaly detection for the HCAL data quality
monitoring.
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(a)

(b)

Figure 7.11: The DESMOD dashboard GraphSTAD for HE-DQM channel monitor-
ing on LS ∈ [800, 1000] of the RunId=361240 data (see Section 4.2): a) inference
user-settings and AD summary report across lumisections, and b) AD summary re-
port per channel hosting RBXes on the 3D spatial DQM map.
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(a)

(b)

Figure 7.12: The DESMOD dashboard GraphSTAD report on a selected HE-DQM
map at LS=800 from RunId=361240 : a) the input and predicted maps, and b)
anomaly score and flag report.
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(a)

(b)

Figure 7.13: The DESMOD dashboard GraphSTAD for HB-DQM channel monitor-
ing on LS ∈ [800, 850] of the RunId=361240 data (see Section 4.2): a) inference
user-settings and AD summary report across lumisections, and b) AD summary re-
port per channel hosting RBXes on the 3D spatial DQM map.
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(a) (b)

Figure 7.14: The DESMOD dashboard GraphSTAD report on a selected HB-DQM
map at LS=800 from RunId=361240 : a) the input and predicted maps, and b)
anomaly score and flag report.
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Chapter 8

Conclusions

This chapter will summarize the scientific contribution and research impact of our
study, and state some potential future research questions.

8.1 Scientific Contributions

The author of this dissertation has made significant contributions to this study—
including data curation and preparation, methodology development, implementation
and experimentation, and preparation and review of the manuscripts. The HCAL
experts have participated in data collection, technical discussions, result validation,
and manuscript reviews. We will highlight below our scientific contribution to the
research questions outlined in Section 1.4. The Ukraine war sanctions delay the
manuscripts marked with (*).

Our study accomplishes monitoring of complex systems of the HCAL detector
through a divide-and-conquer approach. We break down the monitoring of the
detector systems into smaller subsystems. We exploit behavioral similarities among
the subsystems and handle differences—primarily through normalization techniques
and deep learning models—to develop generic models per subsystem groups.

We have developed the CGVAE model, a data-driven unsupervised AD using
deep learning, for multivariate time series sensor data when addressing RQ1 (see
Chapter 4 and Paper-1 in Ref. [41]). The CGVAE model combines encoded la-
tent feature- and reconstruction-based metrics for enhanced AD to mitigate signal
reconstruction overfitting on anomalous patterns. It integrates feature attribution
algorithms for TS data to explain the contribution of the input sensors to the de-
tected anomalies.

We have proposed predicting anomalies through DL models from early warning
symptoms on multivariate sensor data when addressing RQ2 (see Chapter 5 and
Paper-2 in Ref. [70]). We have introduced AnoP, a long horizon multi-timestep
anomaly prediction system using causal residual networks forecasting and AD DL
models, to raise alerts for anomaly prevention. The forecasting model presents an
attention-based multi-horizon prediction S2S model.

We have developed GraphSTAD, which integrates spatial and temporal learn-
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ing networks, for AD monitoring on high-dimensional spatio-temporal data when
addressing RQ4 (see Chapter 4, Paper-3 in Ref. [76] and Paper-4 in Ref. [77]).
GraphSTAD employs regular and irregular spatial characteristics learning mecha-
nisms using CNNs and GNNs to capture context and substantially enhance AD
performance.

We have investigated transfer learning on complex spatio-temporal AD DL net-
works when addressing RQ5. We have studied both the potential benefits and limi-
tations of different configurations of transfer learning on a multi-network DL model
(CNNs, GNNs, and LSTMs) within the context of spatio-temporal AD between the
HCAL HE and HB subdetector systems (see Chapter 4 and Paper-5* in Ref. [78]).

We have devised a lightweight multivariate analysis approach for online inter-
connection divergence discovery in multi-systems environment, and a computation-
ally efficient AnomalyCD approach for discovering causal graphs on multivariate
binary anomaly data when addressing RQ3 (see Chapter 6, Paper-6 in Ref. [73]
and Paper-7* in Ref. [74]). The interconnection divergence discovery approach
offers a simple online mechanism—without heavy data preprocessing, data annota-
tion, and pre-training requirements—for fast discovery of outlier behaviors through
hierarchical interconnection clustering analysis on multi-systems with multivariate
sensors. The AnomalyCD framework consists of multiple strategies to overcome
the challenges of generating anomaly causality graphs through unsupervised online
anomaly detection, sparse data and link handling, and edge adjustment approaches.

8.2 Research Impact

Our data-driven monitoring tools have achieved production accuracy and are de-
ployed at CERN. The tools have expanded the monitoring capability of the Hadron
Calorimeter of the CMS experiment—capturing previously unknown and challeng-
ing front-end electronics anomalies. We have integrated the data quality monitoring
AD models into the CMSSW core production system for online and offline monitor-
ing of the collision experiments. We have also developed a DESMOD dashboard,
which is deployed at CERN, to host the infrastructure AD models. We will highlight
below the research impact of our study.

• Infrastructure monitoring : The CGVAE anomaly detection and AnoP
anomaly prediction models, discussed in Section 4.1 and 5.1, respectively, mon-
itor approximately 1K diagnostics sensors of the ngCCM system of the thirty-
six readout boxes of the HE subdetector. The tools have broadened anomaly
monitoring automation and detected previously unseen and challenging-to-
capture anomalies, such as collective slowly drifting anomalies. Our tools
have discovered two previously strange anomalies in the calorimeter’s sensors:
1) our models have detected signal degradation on the low-voltage supply of
the detector unexpectedly caused by the machine development and technical
stop tasks at the LHC; this new knowledge allows the HCAL operation team
to better prepare for LHC interventions in the future, and 2) we have detected
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noise anomaly on the few slave control cards of the ngCCM system due to the
FPGA modules of the cards attempt to lock onto a non-existent incoming data
stream; it is not unexpected for the slave card to behave in this manner, but
monitoring its status would provide relevant information when making master-
slave configuration switching. We have deployed the tools in the DESMOD
dashboard to provide sensor monitoring and diagnostic services to the HCAL
experts.

• Data quality monitoring : We have successfully integrated our GraphSTAD
models for high dimensional DQM AD, presented in Section 4.2 and 4.3, in
the CMSSW core production. The tools have become part of the online DQM
to actively monitor about 7K and 9K particle acquisition channels of the HE
and HB subdetectors, respectively. The models have detected and accurately
localized real faulty channels—dead, hot, and degrading—with 23-second lu-
misection granularity.

• Anomaly Causality Discovery : Our approaches proposed in Chapter 6 have
enabled quick and computationally efficient interaction and discrepancy dis-
covery among RBX systems monitors by multivariate sensors. The Anoma-
lyCD provides causality knowledge and online inference on binary anomaly
data streamed from different systems of the HCAL; Our online tools have
monitored approximately 2K and 16K sensors of the 4 RMs of the 36 RBXes
of the HE from the HCAL MonDB database with 12 sensors per RM and the
ngCCM server with 113 sensors per RM, respectively. We have incorporated
the tools in the DESMOD dashboard.

8.3 Future Research Directions

Our research raises the following potential research questions.

• Extending the machine learning automation effort at the HCAL: Our study has
primarily discussed the endcap and barrel detectors of the HCAL. Extending
the ML efforts into the other subdetectors that are not covered in our study—
the outer and forward detectors of the HCAL—would be an attractive research
direction to pursue, having the encouraging results of our study.

• Robust data normalization toward generic deep learning models for TSAD:
The lack of a robust generic normalization method has deteriorated perfor-
mance in several DL TSAD models [12,81,130]. Machine learning models may
experience data concept drift during inference after training [348]. Deep learn-
ing models may struggle to maintain accuracy even when trained on normalized
data sets. Recent studies in Refs. [41,70,185,348] highlight the importance of
normalization in deep learning for time series modeling. A seasonal-trend de-
composition significantly leverages transformers for TS forecasting [185]. Re-
versible instance normalization standardizes the input data per time window
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slice to effectively improve the performance of time-series forecasting models in
the presence of out-of-range data shifts [348]. We employ an adaptive normal-
ization to adjust the operating center signal variations and enable a single AD
model for all RBX systems in Refs. [41, 70]. The method subtracts the nomi-
nal value for each time segment following edge shift detection. We present the
renormalization of digi-occupancy to mitigate the impact of collision experi-
ment configuration variations and enhance the generalization of AD modeling
for the DQM in Refs. [77, 78]. Different temporal modeling tasks may require
specific normalization techniques to achieve the desired outcome. Exploring
and leveraging an adaptive out-of-range data normalization is necessary to
build versatile DL models that are less sensitive to model hyperparameters.

• Large-scale embedding models for knowledge transferring on time series data:
The recent surge in pre-trained large language models (LLMs) has grasped the
attention of researchers from various industries [323–325]. One of the key bene-
fits is generating robust text embeddings—extracted high-relevance features—
that allow model fine-tuning on a specific task using much smaller data sets.
Large-scale generic TS data encoding would significantly underpin deep learn-
ing efforts across several industries. Such efforts are currently lacking in the
time series domain, and most existing models are sensitive to hyperparameters
and fragmented [12,81,130]. A recent study called TimeGPT [389] has started
exploring generic TS forecasting modeling by training the model on diverse
data sets. This is an important development, as experience from LLMs can be
applied to TS modeling due to their close relationship in sequence modeling.
The TimeGPT study was conducted after completing our Ph.D. and holds
promise for the future of TS forecasting. Having a pre-trained TS embedder
can greatly accelerate the modeling process in several TS applications.

• Active learning and reinforcement learning for progressing TSAD: Anomaly
detection is the process of identifying unusual patterns in data. Unsupervised
anomaly detection models detect such outlier patterns without needing labeled
data sets. Weakly supervised anomaly detection (WSAD) methods allow for
employing incomplete and inexact supervision when obtaining complete and
accurate labels for AD tasks is difficult [123]. Two key factors must be noted
to build a pragmatic AD model: 1) not all outliers are anomalies, and out-
liers can be rare regular instances [41], and 2) some anomaly cases might be
more interesting than others. AD models should use existing or new knowl-
edge of anomaly patterns to address the above factors. Both unsupervised
and weakly supervised approaches rely on one-time trained models and have
limited adaptability to new requirements or information after model training.
Keeping track of outlier patterns and retraining the AD models can be poten-
tial solutions to deal with such variability, but these methods may fall short in
large systems with multivariate data. Future research in reinforcement learn-
ing and human-in-the-loop active learning would be beneficial for building an
end-to-end automating adaptive approach.
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• Self-explainable TSAD models using graph-based modeling and attention
mechanism: The literature in explainable TSAD is limited, and the existing
methods predominantly rely on post-hoc [41, 331] and detection hit matching
approaches [15,307]. Future research on graph neural networks [129] and atten-
tion mechanisms [185] may potentially enable explanations in quasi-anti-hoc
mode. These methods could capture multivariate interaction and temporal
saliency while exploiting the power of deep learning.

• Enhancing multivariate anomaly forecasting: We propose AnoP, a multi-
horizon anomaly prediction framework, for multivariate time series prognostics
in [70]. The efficacy of AnoP relies on the accuracy of its employed TSF and
AD models. Adequate anomaly samples are required to train robust anomaly
TS forecasting. Anomalies are rare instances constituting much smaller data
samples than the normal healthy class samples. The class imbalance can be
addressed during the TSF training using weighted cost functions or data aug-
mentation through synthetic data generation to mitigate the learning challenge
on limited anomaly samples. The TSF training data can be easily annotated
using a previously trained AD model, and higher weights can be assigned to
the sections with anomalous patterns during the TSF training loss estimation.
The other alternative is to generate and incorporate synthetic data into the
training data sets. The recent progress on GAN has demonstrated good ca-
pability on multivariate TS signals [131,318]. Further extension of AnoP with
the above approaches could be a promising research direction.
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