
Online Hyperparameter Search Interleaved with
Proximal Parameter Updates

Luis M. Lopez-Ramos, Member, IEEE, and Baltasar Beferull-Lozano, Senior Member, IEEE

Abstract—There is a clear need for efficient hyperparameter
optimization (HO) algorithms for statistical learning, since com-
monly applied search methods (such as grid search with N-fold
cross-validation) are inefficient and/or approximate. Previously
existing gradient-based HO algorithms that rely on the smooth-
ness of the cost function cannot be applied in problems such as
Lasso regression. In this contribution, we develop a HO method
that relies on the structure of proximal gradient methods and
does not require a smooth cost function. Such a method is applied
to Leave-one-out (LOO)-validated Lasso and Group Lasso, and
an online variant is proposed. Numerical experiments corrobo-
rate the convergence of the proposed methods to stationary points
of the LOO validation error curve, and the improved efficiency
and stability of the online algorithm.

Index Terms—Hyperparameter optimization, regression, on-
line learning, proximal gradient descent.

I. INTRODUCTION

Given their proven utility to control the model complexity,
hyperparameters are crucial for a successful application of sta-
tistical learning schemes in many engineering problems. The
generalization capability and performance of such schemes on
unknown instances can be improved with a careful hyperpa-
rameter selection. Regularized models control the trade-off
between a data fidelity term and a complexity term known
as regularizer by means of one or several hyperparameters.
Sparsity-promoting, regularized models such as Lasso, Group
Lasso, and Elastic-Net can get their regression weights opti-
mized efficiently via proximal gradient descent (PGD) and its
variants. The sparsity of their estimates depends on a hyperpa-
rameter, and the associated hyperparameter optimization (HO)
is a non-convex, challenging problem [1].

Given a dataset in batch form, a commonly applied criterion
for HO is the leave-one-out (LOO) validation error, because
it reflects the ability of an estimator to predict outputs for
unobserved patterns [2]. The computational cost of evaluating
the LOO validation error grows superlinearly with the number
of data points, so that it is often approximated by N-fold cross
validation (CV) with a small N (e.g., 10). Although there are
many HO algorithms available (see [3, Ch. 1] for a recent
review of the state of the art), it is still an extended practice
to search for (sub)optimal hyperparameters using grid search
or random search [1], [4], because of their simplicity.

Improved random search algorithms, termed configuration-
evaluation methods, focus computation resources in promising

This work was supported by grants SFI Offshore Mechatronics 237896/E30,
PETROMAKS Smart-Rig 244205/E30, IKTPLUSS INDURB 270730/O70

The authors are with the WISENET Center, Dept. of ICT, University of
Agder, Jon Lilletunsvei 3, Grimstad, 4879 Norway. E-mails:{luismiguel.lopez,
baltasar.beferull}@uia.no.

hyperparameter configurations by quickly eliminating poor
ones, important examples being Hyperband [5] and Bayesian
optimization-based approaches in [6]. Many of these are black-
box methods that ignore the structure of the HO problem.

On the other hand, gradient-based (exact and approximate)
HO methods have been proposed recently for problems where
the cost function is smooth. Several recent approaches for-
mulate a bi-level program where an inner program is the
optimization of the model parameters (model weights in the
case of regression) and the outer program is the minimization
of a surrogate of the generalization capability (e.g. validation
MSE). In particular, [7] applies the implicit function Theorem
to a stationarity condition to obtain the hypergradient (gradient
of the outer cost function w.r.t. the hyperparameters); however,
this approach requires calculating the Hessian w.r.t. the model
parameters and, consequently, it cannot be applied to widely
used non-smooth regularizers (such as Lasso/Group Lasso).

The approaches in [8]–[10] obtain a hypergradient by
modeling the regression weight optimization as a dynamical
system, where the state space is the parameter space and each
iteration corresponds to a mapping from/to the same space.
While [8] requires such a mapping to be invertible, [9], [10]
avoid that requirement by resorting to an approximation. This
work combines ideas from [7], [9] to formulate a different
implicit equation, derive the exact hypergradient, and develop
a method that can work with non-smooth regularizers and,
additionally, admits an online variant.

In the more challenging setting of processing data in stream-
ing with a time-varying distribution, algorithms that adaptively
compute the regularization parameter are in order. One existing
adaptive approach [8] does so for different time segments or
data windows, and is specific for Lasso. On the contrary, the
approach in the present paper is general enough to be applied
to several generalizations of Lasso, such as Group Lasso.

Approaches to HO based on neural networks (NN) exist,
such as [11] which predicts optimal regression weights for
a hyperparameter vector, together with approximations that
alternate NN weight updates with hyperparameter updates.
Sparse recovery algorithms which model an iterative soft-
thresholding algorithm (ISTA) as a deep network (see [12]
and references therein) can be understood as ”learning” a
sequence of hyperparameters. However, it is not clear how
these approaches can be adapted to process data in streaming.

Another approximation alleviating computation in HO [13]
exploits the structure of specific estimators such as Lasso to
directly compute an approximation of the LOO error metric
at a low cost. Despite the reduced computation, using this ap-



proximation for HO still requires a black-box search scheme,
which does not scale well with the dimensionality.

In this paper, we propose and evaluate a method that
jointly optimizes the weights and hyperparameters a model
with a proximable, non-smooth regularizer; and converges to
a stationary point of the LOO error curve. We explicitly apply
our approach to Lasso and Group Lasso. The formulation is
inspired by the forward-mode gradient computation in [9],
but where we use efficient approximations based on online
(stochastic) gradient descent.

The contributions and structure of the present paper are
listed in the following: Sec. II provides the general formula-
tion for the HO in supervised learning and presents the use of
PGD for our problem. In Sec. III, we present the derivation
of the hypergradient (gradient w.r.t the hyperparameters). In
Sec. IV, our method is applied to estimators with non-smooth
cost functions, in particular Lasso and Group Lasso. The main
contributions are presented in Sec. V, consisting in an online
algorithm and an approximate scheme, both aimed at saving
computation. Sec. VI contains numerical tests with synthetic
data, and concludes the paper.

II. PROBLEM FORMULATION

Given a set of training input/label pairs {xi, yi}Ni=1, with
xi ∈ RP and yi ∈ R, consider the problem of minimizing a
linear combination of empirical risk (data fit) and structural
risk (regularization term):

w∗(λ,B) := arg min
w

1

|B|
∑
i∈B

`i(w) + λ>Ω(w), (1)

for λ ∈ RD+ . This can be for instance particularized to the
Lasso regression problem with w ∈ RP , `i(w) = (yi−x>i w)2,
and Ω(w) = ‖w‖1; section IV discusses other estimators.

It is well known that a low empirical risk does not guarantee
good generalization. The role of regularization is to select
the right model complexity to avoid overfitting, and the right
choice of the hyperparameter λ is crucial. To this end, any
estimator in the form (1) can be embedded in the bi-level
optimization problem (minimization of the validation error):

λ̆∗ := arg min
λ

1

|V|
∑
j∈V

`VAL
j (w∗(λ,Bj)). (2)

where V denotes the set of validation samples, and Bj denotes
the training batch associated with the j-th validation sample.
Among the possible choices for the validation error metric [3],
`VAL
j = (yj − x>j w)2 is appropriate for regression. Since (2)

may have several local minima, the notation λ̆∗ is reserved for
a global minimizer, whereas λ∗ will be used throughout the
text to denote a stationary point.

Regarding the collection of training batches and the valida-
tion samples: In holdout validation, Bj = B ∀j, and V∩B = ∅.
In N -fold cross-validation (CV), V is the train-and-validate
dataset; the folds {F1, . . . ,FN} are a partition of V; and
Bj =

⋃
j /∈Fn

Fn. LOO is a special case of CV where N = |V|,
and Fi = {i} ∀ i; and therefore, Bj = V \ {j}.

The rest of this section reviews how w∗(λ,Bj) is obtained.
The next section will discuss the minimization of (2) via the
computation of the gradient w.r.t. the hyperparameter λ, also
referred to as hyper-gradient [9], [14].

A. Proximal Gradient Descent

The proximal gradient descent (PGD) algorithm allows to
iteratively compute w∗(λ,Bj) given the training batch Bj and
the hyperparameter λ, and it is advocated here for its sim-
plicity. Extending our formulation to accommodate algorithms
such as the accelerated PGD (which gives rise to FISTA [15]
when applied to `1-regularized problems) is out of the scope
of the present paper and left as future work.

Given a function Ψ, the proximity (prox) operator is defined
as [16]

proxηΨ(v) , arg min
x∈dom Ψ

[
Ψ(x) +

1

2η
‖x− v‖22

]
. (3)

If Ω is such that its prox operator admits closed form, it is
said that Ω is a proximable function, and problem (1) can be
solved efficiently via proximal gradient descent (PGD):

w(k+1) = proxλα
(k)

Ω

(
w(k) − α(k)

|Bj |
∑
i∈Bj

(
∇w`i(w(k))

))
(4)

where α(k) is a step size sequence satisfying α(k) < 1/L,
where L is the Lipschitz smoothness parameter of the empir-
ical risk (aggregate loss component of the cost function). In
fact, for α(k) < 1/L, it holds that w(k)

j −−−−→
k→∞

w∗(λ,Bj). The
PGD step (4) is the composition of a gradient step with the
prox operator, and the iteration is frequently split in two steps,
yielding the equivalent forward-backward iterations:

w
(k)
f =Fα

(k)

B (w(k)) , w(k) − α(k)

|Bj |
∑
i∈B
∇w`i(w(k)) (5a)

w(k+1) =proxλα
(k)

Ω (w
(k)
f ) (5b)

Moreover, for α ∈ (0, 1/L] the optimality condition holds:

w∗(λ,B) = proxλαΩ (FαB (w∗(λ,B))). (6)

III. COMPUTING THE HYPER-GRADIENT

The condition in (6) establishes optimality w.r.t. the weight
vector, but not w.r.t. the hyperparameter λ. To optimize over λ,
we leverage the forward-mode gradient computation described
by [9] in this section. The condition for λ∗ being a stationary
point for the optimization in (2) is:∑

j∈V
∇λ`VAL

j (w∗(λ∗,Bj)) = 0. (7)

The hyper-gradient can be written using the chain rule as

∇λ`
VAL

j (w∗(λ,B)) =
(∂w∗(λ,B)

∂λ

)>
∇w`

VAL

j (w∗(λ,B)), (8)

where the argument of > is the derivative (Jacobian) matrix
(column vector if λ is scalar). In the sequel, we leverage the
technique in [9] to compute the latter.



Consider a generic iterative algorithm, whose t-th iterate
is st ∈ RP , and a hyperparameter vector λ ∈ RD+ . The t-th
iteration can be expressed as: st =Mt(st−1, λ), where

Mt : (RP × RD)→ RP

is a smooth mapping that represents the operation performed
at the latter. The following equation [9, eq. (13)] is fulfilled
by the iterates st:

dst
dλ

=
∂Mt(st−1, λ)

∂st−1

dst−1

dλ
+
∂Mt(st−1, λ)

∂λ
(9)

In the case of PGD, the mapping Mk is the composition
prox

λα(k)
Ω ◦ Fα(k)

B [cf. (5)]. For simplicity, we will consider
in the sequel a constant step size α(k) = α for PGD, so that
Mk =M = proxλαΩ ◦ FαB , and

dw(k+1)

dλ
= A(w

(k)
f )

∂FαB (w(k))

∂w(k)

dw(k)

dλ
+B(w

(k)
f ) (10)

where A(wf ) ,
∂(proxλαΩ )(wf )

∂wf
, B(wf ) ,

∂(proxλαΩ )(wf )

∂λ
.

(11)
The derivations so far have followed a path common to [10],

where an approximation to the hypergradient is computed by
reverse-mode gradient computation [9]. However, differently
to that work, in our approach we identify a fixed point equation
for the derivatives at the convergence point of PGD:

dw∗(λ,B)

dλ
= A(w∗f )

∂FαB (w∗(λ,B))

∂w∗(λ,B)

dw∗(λ,B)

dλ
+B(w∗f )

(12)
where w∗f , FαB (w∗(λ,B)); if the linear equation has a
solution, it can be expressed in closed form as dw∗(λ,B)

dλ =
ZB(w∗(λ,B)), where

ZB(w∗(λ,B)) ,

(
I −A(w∗f )

∂FαB (w∗(λ,B))

∂w∗(λ,B)

)−1

B(w∗f ).

(13)

A. Hyper-gradient descent (HGD)

If the iterates
λ(k+1) :=

[
λ(k) − β(k)

|V|
×∑

j∈V

(
ZB(w∗(λ(k),Bj))

)>
∇w`VAL

j (w∗(λ(k),Bj))
]

+

(14)

(where [·]+ denotes projection onto the positive orthant) are
executed, with an appropriate step size sequence β(k), the
sequence λ(k) will converge to a stationary point of (2).
The computational complexity of (14) is O(P 3) per iteration
because it is dominated by the matrix inversion in (13).

Remark. Existence of ZB(·) requires the prox operator to
be smooth, but important estimators (e.g. Lasso) involve non-
smooth prox operators. In the next section, a slight modifica-
tion of HGD is proposed to deal with those problems.

IV. NON-SMOOTH PROX OPERATORS

For estimators which regularizing function is nonsmooth
frequently the prox operator is also nonsmooth. At some
points, the derivatives of such prox operators will not exist,
and thus Zj(w

∗(λ,Bj)) may not be computable. One can
instead compute a valid subderivative (which will be denoted
by Z̃j(w

∗(λ,Bj))) by replacing the derivatives of the prox
operator with the corresponding subderivatives.

If Zj(w∗(λ,Bj)) is replaced in (14) with Z̃j(w
∗(λ,Bj)),

the resulting algorithm will be termed hereafter as hyper-
subgradient descent (HSGD). The HSGD is advocated in this
section to perform HO for estimation problems trainable via
PGD (where the loss is differentiable and the regularization
function is nonsmooth), and it is explicitly derived for Lasso
and Group Lasso. Some of the functions that have been
presented before generically will be particularized to facilitate
the readability of the derivations and algorithms.

Regularized least-squares (LS) linear estimators such as
Lasso use the loss function `i(w) = (yi − x>i w)2. Conse-
quently, the forward operator and its Jacobian are

FαBj
(w) = w−α(Φjw−rj), and

∂FαBj
(w)

∂w
= (I−αΦj),

where Φj := 1
|Bj |

∑
i∈Bj

xix
>
i , and rj := 1

|Bj |
∑
i∈Bj

yixi.
If the LOO validation scheme is chosen, then Φj can be
computed efficiently as

Φj := 1
N−1 (NΦ− xix>i ), rj := 1

N−1 (Nr − xiyi); (15)

with Φ , 1
N

∑
i∈V xix

>
i , r , 1

N

∑
i∈V xiyi. (16)

If the validation metric is `VAL
j = (yj − x>j w)2, its gradient is

∇w`VAL
j (w) = xj(x

>
j w − yj). The equations for particular

cases of Ω(·) will be presented after the HSGD algorithm.

A. Hyper-subgradient descent (HSGD)

Let Ãj(wf ) and B̃j(wf ) be valid subderivative (sub-
Jacobian) matrices of proxλαΩ (wf ) w.r.t. wf and λ, respec-
tively. Then, a valid subderivative matrix of w∗(λ,Bj) with
respect to λ is [cf. (13)]

Z̃j(w
∗(λ,Bj)) :=

(
I − Ãj(w∗f )(I − αΦj)

)−1

B̃j(w
∗
f );

(17)
where w∗f := FαB (w∗(λ,B)); and the HSGD iterates can be
written as

λ(k+1) :=
[
λ(k) − β(k)×∑

j∈V

(
Z̃j(w

∗(λ(k),Bj))
)>

xj(x
>
j w
∗(λ(k),Bj)− yj)

]
+

(18)

The per-iteration complexity is O(P 3) [cf. (14)].
Remark. If Φj , then the inverse at (17) exists, but this is

not guaranteed if Φj is rank defficient (which happens when
P < N+1, and may also happen when the input data xj have
a high degree of collinearity). In such cases, the LS solution
of the linear system can be used.



B. Application of HSGD to Lasso and Group Lasso
Diverse choices of Ω give rise to different regularized

estimators, associated prox operators, and HSGD iterates.
1) Lasso: The regularizer is Ω(w) = ‖w‖1; its prox

operator is known as soft-thresholding Sαλ(w) , proxαλ‖·‖1(w)
[17], and the latter can be computed entrywise as

[Sαλ(wf )]n := [wf ]n

[
1− αλ

|[wf ]n|

]
+

. (19)

The corresponding subderivatives Ã(wf ) ∈ RP×P , and
B̃(wf ) ∈ RP×1 are defined so that Ã(wf ) is diagonal and

[Ã(wf )]nn =1{|[wf ]n| ≥ αλ} (20a)

[B̃(wf )]n =α (1{[wf ]n ≤ −αλ} − 1{[wf ]n ≥ αλ}) .
(20b)

2) Group Lasso: The regularizer depends on an a priori
defined group structure. With Ng denoting the number of
groups, let {K1,K2, ...KNg} be a partition of {1, 2, ..., P}
(recall that w ∈ RP ). Let [w]K denote the sub-vector of w
containing the components indexed by K. The regularizer is
Ω(w) = ‖w‖2,1 ,

∑Ng

g=1 ‖wKg
‖2; its prox op. is known as

multidimensional soft-thresholding SGαλ(w) , proxαλ‖·‖2,1(w)
[18], and the latter can be computed group-wise as

[SGαλ(wf )]K = [wf ]K

[
1− αλ

‖[wf ]K‖2

]
+

. (21)

With K(n) denoting the subset of the partition where n
belongs, the corresponding subderivative matrices Ã(wf ) ∈
RP×P , and B̃(wf ) ∈ RP×1 are defined so that Ã(wf ) is
diagonal, and

[Ã(wf )]nn =1{‖[wf ]K(n)‖2 ≥ αλ} (22a)

[B̃(wf )]n =

{
−α [wf ]K(n)

‖[wf ]K(n)‖2
, ‖[wf ]K(n)‖2 ≥ αλ,

0, ‖[wf ]K(n)‖2 < αλ.
(22b)

Algorithm 1 Hyper-subgradient descent for Lasso or Group
Lasso
Input: {xi, yi}Ni=1, {β(k)}k, λ(1)

Output: λ∗

1: Compute Φ, r via (16)
2: α = 1/ρ(Φ)
3: for k = 1, 2, . . . do (until convergence)
4: for j = 1, . . . , N do
5: Compute Φj , rj via (15)
6: for m = 1, 2, . . . do (until convergence) . PGD
7: w

(m)
f = w(m−1) − α(Φjw

(m−1) − rj)
8: Compute w(m) via (19) or (21)
9: Compute Ãj(w∗f ), B̃j(w

∗
f ) via (20) or (22)

10: Compute Z̃j(w∗(λ(k),Bj)) via (17)
11: Update λ(k+1) via (18)

The HSGD algorithm applied to Lasso and Group Lasso is
summarized in the Algorithm 1.

Remark. The approach here is flexible enough to be ex-
tended to accomodate any Ω(·) as long as it is convex and
proximable. This enables extensions to other estimators.

V. APPROXIMATE ALGORITHMS

This section presents two approximations that improve the
efficiency of HSGD.

A. Online Hyper-subgradient Descent (OHSGD)

To avoid having to evaluate w∗(λ,Bj)∀j in each iteration of
HSGD, the online optimization technique is applied, consisting
in one gradient descent iteration per j, using the corresponding
contribution to the subgradient (stochastic subgradient):

j(k) :=k mod |V| (23a)

w(k) :=w∗(λ(k),Bj(k)) (23b)

λ(k+1) :=
[
λ(k) − β(k)×(
Z̃j(k)(w

(k))
)>
xj(k)(x

>
j(k)w

(k) − yj(k))
]

+
(23c)

To save computation, the instance of PGD that calculates
w∗(λ(k),Bj(k)) should be initialized at w(k−|V|) if k > |V|.

B. OHSGD with inexact weight vector

The algorithm (23) requires to evaluate w∗(λ(k),Bj(k)). The
iterates produced by PGD converge to the exact optimizer, but
in practice one has to stop the inner loop after a certain stop-
ping criterion is met. Let m(k) denote the number of iterations
in the k-th (inner) loop; clearly, ‖w(m(k))

j −w∗(λ,Bj(k))‖ de-
creases with m(k). Evaluating Z̃(·) for a coarse approximation
of w∗(λ,Bj(k)) produces an approximate (stochastic) hyper-
subgradient. A coarse approximation of the hyper-subgradient
is usually enough for OHSGD updates to bring λ(k) closer to
λ∗, allowing to run fewer iterations of PGD at each OHSGD
iteration, which further reduces the amount of computation.

VI. NUMERICAL RESULTS

An experiment has been run to visualize the convergence
of HSGD and OHSGD to stationary points of the LOO error
curve. Synthetic data have been generated with i.i.d. input
vectors xi ∈ R200 from a standard Gaussian distribution, and
yi := w>truexi + εi, with wtrue being a 10-sparse vector, and
εi generated i.i.d. so that yi has a signal-to-noise ratio (SNR)
of 0.3. The train-and-validate set contains 400 samples.

The proposed algorithms HSGD and OHSGD were run
with different constant stepsizes β(k) = β. The values of
the λ iterates are shown in Fig. 1 in terms of the number of
times the matrix inversion in (17) is executed. The normalized
mean square error (NMSE) evaluated via LOO for a grid of
uniformly sampled values of λ is shown at the right; the λ
axis of both figures are aligned to emphasize the convergence
to (neigborhoods of) stationary points.

Two main observations about Fig. 1: a) OHSGD requires
fewer evaluations of (17) to approach local minima, and b)
OHSGD is less sensitive than HSGD to the choice of β,
(HSGD failed in this experiment for the two larger values of



1000 2000 3000 4000 5000 6000

# matrix inversions

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
HSGD,  = 0.001

HSGD,  = 0.002

HSGD,  = 0.005

HSGD,  = 0.010

OHSGD,  = 0.001

OHSGD,  = 0.002

OHSGD,  = 0.005

OHSGD,  = 0.010

0.87 0.88 0.89 0.9 0.91

LOO NMSE

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Fig. 1: Left: Iterates of HSGD and OHSGD for different values of β vs. number of times (17) is executed. Right: LOO error curve, with
dashed horizontal lines marking convergence values of the HSGD iterates. Note that the λ-axis of both figures are aligned.

10
4

10
5

# ISTA iterations

0

0.2

0.4

0.6

0.8
tol = 1e-4

tol = 3.1e-4

tol = 1e-3

tol = 3.1e-3

tol = 0.01

tol = 0.03

tol = 0.1

Fig. 2: OHSGD iterates for β = 6e− 5, and different values of the
tolerance to stop PGD/ISTA.

β). The risk of converging to low-performance local minima
of the non-convex LOO curve can be mitigated in two ways:
a) using diverse intial values of λ, and b) adding a momentum
term to the OHSGD iteration along the lines of [19].

To observe the effect of coarse approximations of the
optimal solution of (6), Fig. 2 shows the λ iterates (averaged
over the last Ntrain iterations), vs. the number of PGD
iterations, for different tolerance values. Although coarser
approximations entailed fewer inner iterations, there was no
significant impact on the overall convergence time.

Concluding remarks: In this paper, the hyper-subgradient
of the LOO validation error has been derived for regres-
sion problems with non-smooth regularizers, exploiting the
structure of PGD. The HSGD algorithm has been proposed,
together with two approximations, namely a (stochastic) online
variant, and an inexact update; and the numerical results
corroborate the reduction in computation.

The flexibility of this approach to accomodate any convex,
proximable regularizer enables extensions to generalizations
of Lasso, which will be developed in future work.

REFERENCES

[1] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Proc. Advances Neural Inf. Process.
Syst., 2011, pp. 2546–2554.

[2] D. Homrighausen and D. J. McDonald, “Leave-one-out cross-validation
is risk consistent for lasso,” Machine learning, vol. 97, no. 1-2, pp.
65–78, 2014.

[3] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated
Machine Learning: Methods, Systems, Challenges, Cham, 2019, pp. 3–
33, Springer International Publishing.

[4] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, no. Feb, pp. 281–305,
2012.

[5] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 6765–6816, 2018.

[6] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast bayesian
optimization of machine learning hyperparameters on large datasets,” in
Artificial Intelligence and Stat., 2017, pp. 528–536.

[7] F. Pedregosa, “Hyperparameter optimization with approximate gradient,”
arXiv preprint arXiv:1602.02355, 2016.

[8] R. P. Monti, C. Anagnostopoulos, and G. Montana, “Adaptive regular-
ization for lasso models in the context of nonstationary data streams,”
Stat. Analysis and Data Mining: The ASA Data Science Journal, vol.
11, no. 5, pp. 237–247, 2018.

[9] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, “Forward and
reverse gradient-based hyperparameter optimization,” in Proc. Int. Conf.
Mach. Learn., 2017, vol. 70, pp. 1165–1173.

[10] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel
programming for hyperparameter optimization and meta-learning,” in
Proc. Int. Conf. Mach. Learn., 2018, pp. 1568–1577.

[11] J. Lorraine and D. Duvenaud, “Stochastic hyperparameter optimization
through hypernetworks,” arXiv preprint arXiv:1802.09419, 2018.

[12] D. Ito, S. Takabe, and T. Wadayama, “Trainable ista for sparse signal
recovery,” IEEE Transactions on Signal Processing, vol. 67, no. 12, pp.
3113–3125, 2019.

[13] S. Wang, W. Zhou, A. Maleki, H. Lu, and V. Mirrokni, “Approx-
imate leave-one-out for high-dimensional non-differentiable learning
problems,” arXiv preprint arXiv:1810.02716, 2018.

[14] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based hyper-
parameter optimization through reversible learning,” in International
Conference on Machine Learning, 2015, pp. 2113–2122.

[15] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci., vol. 2,
no. 1, pp. 183–202, 2009.

[16] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, 2014.

[17] I. Daubechies, M. Defrise, and C. De Mol, “An iterative threshold-
ing algorithm for linear inverse problems with a sparsity constraint,”
Communications on Pure and Applied Mathem., vol. 57, no. 11, pp.
1413–1457, 2004.

[18] A. T. Puig, A. Wiesel, G. Fleury, and A. O. Hero, “Multidimensional
shrinkage-thresholding operator and group lasso penalties,” IEEE Signal
Processing Letters, vol. 18, no. 6, pp. 363–366, 2011.

[19] N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural networks, vol. 12, no. 1, pp. 145–151, 1999.


