
Journal of Cleaner Production 421 (2023) 138467

Available online 18 August 2023
0959-6526/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Data driven approach for the management of wind and solar energy 
integrated electrical distribution network with high penetration of 
electric vehicles 

Manuel S. Mathew a,*, Mohan Lal Kolhe a, Surya Teja Kandukuri b, Christian W. Omlin a 

a University of Agder, Jon Lilletuns Vei 9, 4879 Grimstad, Norway 
b Norwegian Research Centre, Energy & Technology Department, Tullins Gate 2, 0166 Oslo, Norway   

A R T I C L E  I N F O   

Handling Editor: Cecilia Maria Villas Bôas de 
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A B S T R A C T   

With the increased penetration of fluctuating renewables and growing population of contemporary loads such as 
electric vehicles, the uncertainties in the generation and demand in the electric power grids are increasing. This 
makes the efficient operation and management of these systems challenging. Objective of this study is to propose 
a real-time management system for EV charging, which maximises the renewable energy utilization. An electric 
power distribution network with an average and peak demands of 1.51 MW, and 3.6 MW respectively, was 
chosen for the study. The real time power flow through the network components were analyzed using the 
OpenDSS model. With a wind power density of 574.51 W/m2 and a solar insolation of 4.14 kWh/m2/day, an 
optimized renewable energy system consisting of a 2.3 MW wind turbine and 2.61 MWp photovoltaic power plant 
are proposed for the network. Models based on k-Nearest Neighbors algorithms were developed for predicting 
the performances of these renewable energy systems at the network area. Based on the load profile, power flow 
analysis, and the predicted generation from solar and wind systems, a demand side management algorithm has 
been developed for the charge/discharge scheduling of the electric vehicles connected within the network. The 
basic objective of the algorithm is to maximize the renewable energy utilization by triggering the charging cycle 
during the periods of excess renewable energy generation. With an annual contribution of renewables is esti
mated as 12.61 GWh out of which 9.33 GWh is from wind and 3.29 GWh from solar. Wind from wind and solar 
energy systems, the proposed scheduling algorithm could contribute 71.56 percent of the charging load demand 
by the EVs.   

1. Introduction 

For achieving the sustainable development goals of “ensuring access 
to affordable, reliable, sustainable and modern energy for all by 2030” 
(Sachs et al., 2022), the global energy scenario has to be shifted more 
towards carbon free resources and cleaner technologies. As a result, the 
presence of renewable energy in energy mixes is being significantly 
increased globally. For example, the global use of renewable energy in 
electricity generation has reached up to 28% in 2021 (International 
Energy Agency, 2022b). For tracking the “Net Zero Scenario by 2050”, 
penetration of renewables in the power grid has to increase by 13% 
annually till 2030, resulting in a cumulative penetration of 60% of the 
total generation (International Energy Agency, 2022c). Hence, 

renewable energy resources and technologies are expected to play a 
significant role in the global clean energy scenarios. 

One of the major challenges in the large-scale integration of re
newables sources with electric grids is the intermittence in generation. 
Resources such as wind and solar are stochastic in nature and could 
significantly vary with time. In tune with these variations, the power 
available from these renewable resources would also vary significantly. 
These uncertainties in the generation could be challenging in the man
agement of the grids, which are already working under the stress from 
the variabilities in the demand side as highlighted in Impram et al. 
(2020). One of the solutions proposed to manage these power fluctua
tions is to use utility scale battery backup (Muqbel et al., 2022; Rou
holamini et al., 2022). These systems can support high level penetration 
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of the variable renewable energy sources into the power grid by storing 
the excess renewable generation and discharging it during the lean pe
riods. However, large scale and exclusive deployment of storage solu
tions will add complexities and costs into the system. 

Along with the growth in renewable energy use, to further decar
bonize the transport sector, electric vehicles (EV) are getting popular in 
many parts of the world. For example, around 10% of the cars sold 
globally in 2021 were electric, which is four times the market share in 
2019 (International Energy Agency, 2022a). Countries such as Norway 
has successfully implemented strategies for enhancing the EV popula
tion on the roads (Ministry of Transport, 2021). This increasing popu
lation of electrically charged vehicles demands matching capacity 
addition in power generation. One possible way to meet this additional 
generation capacity sustainably is to integrate more renewable energy 
systems into the power grids. 

Increased presence of electric vehicles in the grids which have high 
penetration of fluctuating renewables can pose both challenges as well 
as opportunities. For example, if the charging of these EVs is not prop
erly planned and “controlled”, the additional load brought into the grid 
by EVs - at the wrong time - could worsen the power quality issues 
(Taljegard et al., 2019). On the other hand, if the charging is well 
regulated and matched with the peak renewable energy production, the 
EVs can be a boon as it reduces the grid pressure and avoids possible RE 
curtailments. EVs can also function as distributed storage solutions, 
which get charged and store the excess renewable energy at the peak 
production periods and discharge it back to the grid during the lean 
periods. Careful planning, designing, and scheduling are required for 
successfully implementing such renewable energy prioritized grid sys
tems with substantial EV penetration. With the implementation of such 
‘smart’ solutions, EVs and grid systems can be made mutually 
supportive. 

A comprehensive review on various methods for optimal EC charging 
scheduling, based on more than hundred studies, is presented in Ali 
Saadon et al. (2019). Potential benefits and risks of various strategies in 
scheduling the charging of electric vehicles are identified in this review. 
The study indicates that most of the research in EV charge scheduling 
focuses on the centralized control approach, where an aggregator con
trols and decides the charging schedule of the EVs (Alsabbagh et al., 
2020, 2021; Kapoor et al., 2022). The computational and communica
tional infrastructure, and the resulting costs are high in such centralized 
charging approaches (Zhao and Ding, 2017). With the fast increase in EV 
population, scalability and management of data could also be chal
lenging for the centralized approach (Rahbari-Asr and Chow, 2014). 
Further, centralized charging can limit the satisfaction fairness among 
the EV users in terms of SOC (Aswantara et al., 2013) and could pose 
privacy challenges due to the sharing of several private information 
which are required for the centralized control (Zhao and Ding, 2017). A 
solution for resolving the above issues is a decentralized and cooperative 
charging approach (Paudel et al., 2022). The present study proposes 
such a decentralized charge scheduling in which the charge-discharge 
scheduling is controlled at the user community level. 

In most of the previous studies, EV charge scheduling algorithms are 
optimized with the objectives of either smoothening the grid load 
(Moeini-Aghtaie et al., 2014; Van Kriekinge et al., 2021), or minimizing 
the cost (Triviño-Cabrera et al., 2019; Visakh and Selvan, 2021; Zhao 
and Ding, 2017). A few studies with the main objective of maximizing 
the renewable energy fraction in EV charging have been reported 
recently. Out of these, most studies propose storage solutions like bat
teries to maximize the renewable energy fraction as seen in Alghoul 
et al. (2018), Himabindu et al. (2021), Allouhi and Rehman (2023), and 
Bilal et al. (2023). Reasonably high renewable energy fractions are re
ported under these studies. In some other analysis, supplementary 
generation systems like diesel generators are used to handle the fluc
tuations in renewable energy generation (Boddapati et al., 2022; Singh 
and Kumar, 2023). Possibilities of using biogas generators is also 
explored for increasing the renewable energy share (Ampah et al., 

2022). In view of the obvious technical and economic challenges in 
using large scale battery backup in EV charging, a few recent in
vestigations propose charging systems without any storage or genera
tion backup options (Rehman et al., 2023; Ullah et al., 2023; Zhang 
et al., 2023). However, the renewable fraction reported under these 
studies are significantly lower compared to the approaches with storage 
and other supplementary generation options. 

Novelty and contribution of the study is discussed below: 

1. The major objective of this study is to maximize the renewable en
ergy fraction in charging the EVs connected to renewable integrated 
power distribution networks. In contrast with the previous studies 
reviewed above, this is achieved without the support of any battery 
storage or backup generation systems as seen in Table 3. For maxi
mizing the renewable energy fraction, the proposed smart EV 
charging algorithm schedules the charging of EVs prioritized during 
the periods of higher renewable energy generation, depending upon 
the state of charge (SOC) of the EVs.  

2. Real time power flow in the distribution network is modelled and 
considered in the EV charge scheduling, which, as far as the authors 
knowledge, is not included in the previous studies. 

3. While in the previous studies, physical models are used for esti
mating the generation from the renewable energy systems, in this 
study renewable energy production is estimated using machine 
learning based algorithms. This helps in using realistic estimates of 
renewable contributions in the analysis (Veena et al., 2020).  

4. In the proposed decentralized and community-based EV charge 
scheduling, a wholistic approach is adopted, which consider all the 
influencing parameters such as the load flow in the network, 
renewable energy availability & sizing and the state of charge (SOC) 
the EVs.  

5. The algorithm we propose can adapt to different practical situations 
by modifying parameters such as the number and locations of the 
EVs, the battery capacity, connection status, state of charge, dis
charging agreements and so on. 

After this introductory section, features of a candidate power dis
tribution network with which the proposed system can be demonstrated 
are presented. Wind and solar energy resources, which can possibly be 
integrated with this network are then quantified and corresponding 
generation systems are sized. Intelligent models, which can predict the 
power generation from these renewable energy systems are then pre
sented. Finally, a demand side management algorithm for the smart 
charge/discharge scheduling of the EVs connected to the network is 
presented. 

2. The power distribution network and load analysis 

2.1. The distribution network 

A test distribution network near to Iowa State University has been 
chosen (Bu et al., 2019) for demonstrating the proposed smart energy 
management system. Three reasons motivated our choice of this 
network: (i) the system architecture and the load data of this network, 
which are required for the study were made available. (ii) The network 
was found to be an ideal candidate for modernization through renew
able integration, and (iii) there are possibilities of high EV penetration in 
the region. The test network is a radial distribution network and consists 
of 3 feeders and 240 nodes which are supplied by a 69-kV substation. 
Schematic of the test system is shown in Fig. 1. There are 1120 cus
tomers connected to this network and the connections are equipped with 
smart meters. The energy demands of customers are aggregated at the 
respective secondary transformer level. Based on the time series distri
bution data, the real and reactive load profiles at each node were 
computed. 
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2.2. Analysis of the load 

The hourly variations in the load experienced in the network in 
different months are shown in Fig. 2. The shaded region represents the 
region of ±25% variations from the average load. As expected, signifi
cant variations in the hourly load were observed during all the months. 
The highest recorded load over the year was 3595.5 kW and the lowest 
load was only about 19% of the peak. Based on this, the average load 

profile of the network during different hours of the day were computed 
and presented in Fig. 3. As expected, the load is relatively high between 
08:00 to 20:00 with peaks between 10:00 and 12:00. On average, the 
peak load on the system is 1871.4 kW whereas the lowest was 969.47 
kW. This general pattern differs slightly during the months, depending 
on the seasonal and other weather variations. 

Further, the power flow through different components of the distri
bution network was simulated using the Open Distribution System 

Fig. 1. The 240-Bus distribution test network used for the study (Bu et al., 2019).  

Fig. 2. Hourly load variations during the months.  
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Simulator (OpenDSS) (Ramachandran, 2011). The provision in 
OpenDSS to design and execute power flow simulations through third 
party programs using its COM interface was utilized for this study. 
Accordingly, the simulations were activated and called through custom 
made codes. The output results of this model implementation are the 
line current, bus voltage (both in magnitude per unit and in rectangular 
coordinates), line power (both active and reactive) and losses in various 
elements. The model was implemented at each step of the EV charge 
simulations and the results were used in the smart scheduling of the EVs 
with renewable energy prioritization. 

3. Renewable energy resource estimation and sizing 

3.1. Renewable energy resources 

One of the major focuses of the current research is to transform the 
studied network to a ‘greener and sustainable’ system through signifi
cant integration of renewable energy generators with the network. 
Quantifying the renewable energy resources available at the region 
available at the region is essential for efficient integrations. Based on the 
meteorological data, wind and solar energy were identified to be suit
able for the region. These resources at the site are quantified as discussed 
below. 

3.1.1. Wind energy 
Hourly wind data for the location was collected over seven years 

(Iowa State University, 2021), which are then extrapolated to that cor
responding to the hub height of a prospective wind turbine using the 
logarithmic law (Mathew, 2006). Annual average wind speed at the site 
was 7.7 m/s, with a standard deviation of 4.58 m/s. Though the wind 
speed shows significant variations, in general, the site has reasonably 
good wind potential. The distribution of wind at the site is characterized 
by the Weibull distribution with its Probability density (f(V)) and cu
mulative distribution (F(V)) given by: 

f (V) =
k
c

(
V
c

)(k− 1)

e
−

(

V/c

)k

(1)  

and 

F(V) =
∫α

0

f (V)dV = 1 − e
−

(

V/c

)k

(2)  

where k is the Weibull shape factor and c is the Weibull scale factor. 
From the average and standard deviations of wind velocities, k and c for 
the site were calculated using (Mathew, 2006): 

k =

(
σV

Vm

)− 1.090

(3)  

and 

c =
2Vm
̅̅̅
π

√ (4) 

Weibull shape factor k and scale facto c, computed for the region 
were 1.47 and 8.32 m/s respectively. The relatively lower shape factor 
indicates high variations in wind speed at the site. Similarly, the 
reasonably strong wind potential available at the site has been reflected 
in the scale factor. Probability density and cumulative distributions of 
wind velocity at the site are shown in Figs. 4 and 5, respectively. 

One of the important indicators for wind energy potential is the wind 
energy density. The annual averaged wind energy density at the site is 
574.51 W/m2. This high wind energy density clearly indicates the 
viability of wind energy generation at the site. 

3.1.2. Solar energy 
For quantifying the solar resource available at the site, hourly Global 

Horizontal Irradiance (GHI) data and the corresponding ambient tem
perature were collected (Iowa State University, 2021). Based on these 
data, the solar resources available at the site have been statistically 
analyzed. 

The annual average daily solar insolation at the site was 4.14 kWh/ 
m2/day. The solar resources at the site were modelled using probability 
distributions. In contrast with the case of wind, there are no standard 
distributions which can be universally used to represent the solar 
resource. Hence the data were fitted with some potential distributions 
and the goodness of fit were tested with Kolmogorov Smirnov, Anderson 
Darling, and the chi-squared tests. Beta distribution was found to 
represent the solar resource available in the region. The probability 
density and cumulative distribution functions of Beta distribution is 
given by: 

f (x) =
Bx(α, β)
B(α, β) (5)  

and 

F(x) =
xα− 1(1 − x)β− 1

B(α, β)
(6) 

Fig. 3. Hourly load variation in a day.  

Fig. 4. Probability densities of wind speeds at the site.  
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where В is the Beta Function, and Bx is the Incomplete Beta Function. 
Here α1 is the continuous shape parameter (α1 > 0), α2 is the continuous 
scale parameter (α2 > 0) and a, b are continuous boundary parameters (a 
< b) a ≤ x ≤ b. Solving from the data, the continuous shape, scale pa
rameters are 0.73 and 1.40, respectively. The boundary parameters 
considered are 1 and 1014, respectively. Based on this, the probability 
density and cumulative distribution of solar irradiance were computed, 
which are shown in Figs. 6 and 7, respectively. 

3.2. Optimal renewable energy system 

The above analysis on the wind and solar energy resources available 
at the site indicates the potential of exploiting these resources for 
possible energy generation in the region. Based on the same data as 
discussed above, and considering the load profile presented in Section 
2.2, the size of renewable energy systems to be integrated with the 
network was optimized using the Hybrid Optimization of Multiple En
ergy Resources (HOMER) Model. Economic, environmental, and the 
technological aspects of the proposed power system with renewables are 
considered in the optimization. Under the optimization, various possible 

configurations of the system are simulated. The system configuration 
which satisfies all the technical constraints and has the lowest life-cycle 
cost is chosen through grid search algorithm. The architecture of the 
proposed system is shown in Fig. 8. Features of the wind and solar 
system considered are highlighted in Table 1. 

Under the optimization, various economic and environmental pa
rameters of the proposed system under different operational constraints 
are analyzed and the optimal configuration of the hybrid system was 
identified. The optimized renewable energy system consists of a wind 
turbine of 2.3 MW capacity and 2.6 MWp solar PV (Photo-Voltaic) 
system. 

4. Machine learning based performance models for the 
renewable energy systems 

4.1. Data preprocessing and model development 

Site specific performance models, based on machine learning (ML), 
has been developed under the study for predicting the performance of 

Fig. 5. Cumulative distribution of wind speeds at the site.  

Fig. 6. Probability density function of solar energy resource.  

Fig. 7. Cumulative distribution of solar energy resource.  

Fig. 8. Architecture of the renewable energy integrated distribution network.  
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the proposed wind and solar energy systems in different time intervals. 
These models could estimate the share of renewable energy in the en
ergy mix at a given time and thus can be used for developing the smart 
Charge/Discharge Scheduling algorithm for the EVs. 

To develop the performance model, operational data from a 2.3 MW 
wind turbine and a PV power plant, working under similar environments 
of the candidate site, were collected (It should be noted that this data 
was used only to develop the ML models for wind and solar systems. 
Once these models are developed, performance of these systems at the 
proposed network region is simulated using the weather parameters 
collected from the site as discussed under Section 3.1). The data 
collected were initially cleaned for eliminating errors and missing data 
points. Further, the outliers of the data were identified and removed 
using Z-score and DBSCAN based anomaly detection methods (Ester 
et al., 1996). The former was used for removing the extreme outliers in 
contrast with the latter. The combination successfully detected and 
removed the outliers. 

After cleaning the data, the features of the dataset significant for the 
ML based performance models for wind turbine and PV module were 
identified. The data for wind turbine modelling included the features 
viz. the wind velocity and wind direction as well as the output power 
generated by the turbine. The data for PV module modelling included 
the features like the solar irradiation at 45◦, GHI, wind velocity, pre
cipitation, ambient temperature, and the output power generated by the 
module. For evaluating the significance of these features on the per
formance models, the data were analyzed with Pearson and Spearman 
correlations. The prediction models for the wind and solar energy sys
tems were developed with these identified features. Though several ML 
algorithms were initially considered, the k-Nearest Neighbors regression 
(kNN) (Fix and Hodges, 1989) performed best in predicting the perfor
mance of both the wind turbine and the PV system and hence was chosen 
for further analysis. 

The model that best describes the wind turbine or the PV systems 
depends on the value of k. Thus, an optimum value of k is to be selected. 
For this, a grid search algorithm with 10-fold cross validation was used. 
The grid search algorithm iterates over the value of k from 1 to 100 
searching for the value of k that results in the lowest error values. Using 
the selected value of k, we train the performance models of wind turbine 
and PV module using 10-fold cross validation on the training dataset. 

Finally, the model thus trained has also been tested on an entirely 
different set of data that has not been presented to the model in the 
training phase. Accuracies of these models are assessed with error 
metrics like Root Mean Square Error (RMSE), Normalized N Root Mean 
Square Error (NRMSE) and the coefficient of determination (R2), where: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(

y∧i − yi

)2
√
√
√
√ (7)  

NRMSE =
RMSE

(
y(max) − y(min)

) (8)  

MAE =
1
N

∑N

i=1

⃒
⃒
⃒
⃒y
∧

i − yi

⃒
⃒
⃒
⃒ (9)  

R2 = 1 −

∑
(

yi − y∧i

)2

∑
(

yi − y− i

)2 (10)  

where N is the total number of datapoints, yi is the observed power, ŷi is 
the predicted power and y

−

i is the mean value of actual power, whereas 
y(max) and y(min) is the maximum and minimum value of observed power. 

4.2. Wind turbine model 

Under the Pearson and Spearman correlation tests, correlation be
tween the wind speed and power produced by the turbines were found 
0.94 and 0.99 respectively. All other considered parameters, including 
the wind direction showed negligible correlation with the power. Hence, 
the wind speed has been chosen as the single feature for the k-NN model. 
Under the tenfold cross validation method by implementing the grid 
search algorithm, the optimum value of k for the wind turbine model 
was estimated as 30. Thus, the model was trained with k = 30 and was 
tested with the test dataset. 

Results of the model performances for representative days are shown 
in Fig. 9. The model could perform well in estimating the power 
developed by the turbine at different wind velocities. The slight varia
tions between the predictions and observations can be seen at the peaks 
of these figures. It could be noted that these peaks correspond to sudden 
changes in the wind, which could affect the accuracy of the wind mea
surements as well. Model performance, considering the whole test 
dataset are illustrated in Fig. 10. Close agreements between the pre
dictions and real observations can be seen. The model showed an RMSE 
of 71.84 kW and NRMSE of 0.03. The corresponding MAE and R2 were 
39.91 kW and 0.99 respectively. These clearly indicate the capability of 
the proposed kNN based performance model in characterizing the per
formance of the turbine. 

4.3. PV system model 

Under the Pearson and Spearman correlation tests, power output of 
the PV system is found to be significantly correlated with the global 
horizontal irradiance and ambient temperature. Thus, these are chosen 
as the input features for the solar PV model. Based on error tests, a k 
value of 27 was chosen for the model which was developed and tested 
with the test data set. Measured outputs of the solar PV system during a 
representative day and the corresponding outputs predicted by the 
model are compared in Fig. 11. Except for the peaks, good agreement 
can be observed between the measurements and model predictions. This 
is further reconfirmed in Fig. 12, where the performance of the model is 
demonstrated with the complete test dataset. RMSE, NRMSE and MAE of 

Table 1 
Features of the renewable energy systems considered in the optimization.  

Wind turbines 2.3 MW rated capacity, lifetime 25 years 
Operational wind velocities of the 

turbine 
Cut-in 3.5 m/s, rated 15 m/s, cut-out 25 
m/s. 

Performance model for the turbine Manufacturers power curve 
PV system Monocrystalline panels, 
PV system efficiency 19.4% 
Invertor and rectifier efficiencies 95%  

Fig. 9. Comparison of the kNN power prediction with the actual observations 
from the test dataset. 
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the k-NN based model under these tests are 54.03 W, 0.06 and 35.23 W, 
respectively. It may be noted that the model was developed and tested 
with the performance data of the PV system, normalized to a unit panel 
size of 1 kW. The corresponding R2 of the model is 0.94. 

5. EV charge scheduling 

For charging of the EVs within the proposed network with maxim 
fraction of renewable energy resources, and to supplement the grid 
during lean renewable energy generation, a smart EV charging algo
rithm is proposed under this study. The aggregated load demand is 
computed in this approach considering the typical variation of the EV 
loads. Flow chart of the proposed EV Charge/Discharge scheduling al
gorithm is shown in Fig. 13. The scheduling of the EVs is done on a 
distribution network level in which the customers who draw power from 

a primary distribution transformer come together to form a consortium 
to make agreements with individual EV owners that states whether their 
EVs can be used both in grid-to-vehicle mode and vehicle-to-grid mode, 
depending on the needs of the grid and the charge status of the EVs, or 
only in Grid-To-Vehicle mode. The working of the scheduling algorithm 
is described below: The algorithm starts at a time, t. Initially, the data 
from various sources are collected. From the performance model of the 
PV Module, we get the generation (S(t)) from the PV module at time, t. 
From the performance model of the wind turbine, we get the generation 
(W(t)) from the wind turbine at time, t. And finally, the load (P(t)) at 
time, t from the Load Data. Now, a list (EV(t)) is generated based on 
which EVs are connected at time, t. This list includes four parameters for 
each EVs which indicates (i) if the EVs are connected or not, (ii) if the 
connected EVs have an agreement to be operated in Vehicle-To-Grid 
mode with the consortium or not, (iii) the state of charge (SOC) of the 
EVs, and (iv) node number at which the EV is connected. 

It is assumed that there are 80 EVs under the distribution network, 
which are randomly distributed throughout the 240 nodes. While in 
practical implementation, this can be changed flexibly, as the exact 
number of EVs in the distributed network can be included in the algo
rithm. The EVs connected during a time step, t is assumed to stay con
nected for the duration of Δt. It is assumed that in scheduling charging/ 
discharging of EVs for a typical day, conditions given in Table 2 is 
applicable. While practically implementing this code, the number of EVs 
connected at a given time can easily be detected using appropriate 
sensing devices. 

It is also assumed that EVs disconnected in each time step, Δt has its 
SOC drop by 5–20% of its initial SOC at random, except between 09:00 
and 18:00. This is to account for the randomness in the usage of EVs 
which is dependent on several factors like kilometres driven, terrain 

Fig. 10. Comparison of predicted and observed power for wind turbine.  

Fig. 11. Comparisons of the power predicted and observed output of the solar 
PV system. 

Fig. 12. Comparison of predicted and observed power for the solar PV system.  

Fig. 13. Flow chart of the EV charge/discharge scheduling algorithm.  

Table 2 
Connection/disconnection pattern of EVs during a workday.  

No. Time Condition 

1 00:00 to 
05:00 

78 EVs are connected at any given time step while 2 EVs 
disconnect randomly to account for emergency uses of the EV. 

2 06:00 to 
08:00 

60 EVs are connected at any given time step with 20 EVs 
disconnected at random. 

3 09:00 to 
17:00 

5 EVs are connected at any given time step and 75 EVs remain 
disconnected throughout the duration accounting for EVs in 
use. 

4 18:00 to 
21:00 

40 EVs are connected at any given time step with 40 EVs 
disconnected at random. 

5 22:00 to 
00:00 

78 EVs are connected at any given time step while 2 EVs 
disconnect randomly to account for emergency uses of the EV.  
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driven on, weather, etc. The state of charge (SOC) is defined by: 

SOC(t + Δt) = SOC(t) − x⋅SOC(t) (11)  

where x is the percentage drop in SOC between 5% and 20% selected at 
random for each EV. Between 09:00 and 18:00, it is assumed that the 
SOC of the disconnected EVs drop to 60%–80% at random. All the EVs in 
the distribution network are assumed to have the same battery capacity 
of 36 kWh and have a charge/discharge rate of 3.6 kW. For practical 
implementation of the code under different situations, when the exact 
battery capacities of the EVs are known, all these assumed parameters 
can be changed within the code. It is assumed that the EV has a charging 
efficiency, ηcharge of 80% (Apostolaki-Iosifidou et al., 2017) and the SOC 
of EVs have been updated using the equation derived from Sharma 
(2021) as: 

SOC(t + Δt) = SOC(t) −
ηcharge

(
Pcharge⋅Δt

)

EBattery
⋅100 (12)  

where Pcharge is the rate at which the EV battery is charged, EBattery is the 
total energy capacity of the EV battery. The EV is considered to have a 
discharging efficiency, ηdischarge of 80% (Apostolaki-Iosifidou et al., 
2017) and the SOC of EVs have been updated using the equation derived 
from Sharma (2021) as: 

SOC(t + Δt) = SOC(t) −
Pdischarge(t)⋅Δt
ηdischarge⋅EBattery

⋅100 (13)  

where Pdisharge is the rate at which the EV battery is discharged and 
EBattery is the total energy capacity of the EV battery. 

The existing load profile and the power flow within the network, 
along with the power prediction for the wind and solar PV systems were 
considered in this scheduling. The load on different system components 
including the EVs, at each time of interest, has been analyzed by acti
vating the OpenDSS model. Possible losses in different subsystems are 
accounted in this analysis. 

The power demand of a small group of residential units are catered 
by each node. As discussed, these residents are assumed to own 80 EVs. 
To mimic the presence of EVs in these units, 0–3 EVs are randomly 
distributed over different nodes. These numbers and distribution pattern 
can be changed in the algorithm to match any situation of EV charging. 

6. Results and discussion 

Results of the major objectives of this work, which is renewable 
energy prioritization while charging to maximize the renewable energy 
fraction, are presented and discussed in the following sections. 

6.1. Renewable energy prioritization 

The proposed ML models, discussed under Section 4 are used to es
timate the generations from wind and solar energy systems. Various 
inputs required for these models are taken from the data collected from 
the region of the proposed network as discussed in Section 3. Hourly 
contribution in power from the renewable energy generation for a 
representative day is shown in Fig. 14. As expected, there are high 
variations in the renewable energy contribution in different hours. The 
generation pattern can also change with the weather and seasonal 
variations. 

Generations from the solar and wind energy systems, on a monthly 
basis are shown in Fig. 15. As we can see, the major contribution in 
renewable based electricity generation comes from the wind turbine. 
The total generation from the renewables varies significantly from 
month to month. The generation is highest in the months of May and 
June, whereas the summer months are leaner in renewable energy 
contributions. This is mainly because of weaker wind resources during 
the summer months. It may be noted that even during the summer 

months, the solar resource is stronger, which is reflected in the PV sys
tem contributions indicated in the figure. 

For further investigating the renewable energy prioritization of the 
proposed system, scenarios of generation before and after the renewable 
energy systems integration are compared in Fig. 16. Scenario 1 repre
sents the system before integrating the wind turbine and solar PVs. In 
this scenario, the complete demand on the network, in all the months, is 
met through grid purchases. In contrast, in scenario 2, which represents 
the system after the renewable energy integration, the grid purchase has 
significantly reduced. Additionally, in the months of March, April, May, 
June and October, excess renewable generation could be sold to the grid, 
which makes the option economically attractive. This again is a clear 
indication of the grid support and renewable energy prioritization of the 
proposed system. 

On an annual basis, renewables would contribute 12.61 GWh to the 

Fig. 14. Hourly generation of renewable energy on a typical day.  

Fig. 15. Monthly generation from the wind and solar energy systems.  

Fig. 16. Comparison between the scenarios before and after renewable energy 
integration. 
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proposed system. Out of this, the share of wind would be 9.33 GWh 
whereas the solar production would be 3.29 GWh. 

From these, it is evident that the proposed system would have sig
nificant presence of electricity generated from sustainable resources. 

6.2. EV charging schedule 

Out of the 80 EVs connected to the network, owners of 60 EVs are 
assumed to have agreement with the management system for dis
charging power back to the grid while the renewable generation is not 
sufficient to meet the load at a given time. Though the EVs with dis
charging agreement is arbitrarily fixed for the simulations, this is flex
ible and can be changed for any charging scenarios as needed. Among 
the EVs with charge-discharge agreement, the discharge is permitted 
only at an SOC of 90% or above. 

The typical averaged power taken from the grid by the EVs for 
charging and given back to the grid while discharging, in different hours 
during a representative day, is shown in Fig. 17. The total energy 
consumed in the day for charging is 2335.4 kWh. The EVs could 
discharge 540 kWh back to the grid during the periods of lean renewable 
energy contribution. This indicates the functioning of the charge- 
discharge cycle as expected for the proposed system. However, for 
keeping a steady SOC of 90%, the EVs are mostly on the charging mode. 
As a result, the power contributions back to the grid are minimal. 

To understand the effect of SOC restrictions on the charge-discharge 
cycle, the SOC level of the EVs, on the same day, has been varied at 75% 
and 60%. The resulting charge discharge rate is shown in Figs. 18 and 
19, respectively. At 75%, daily charging would be at a level of 2392 
kWh. Corresponding daily discharge would be at 727.2 kWh. However, 
when the SOC restriction is changed to 60%, corresponding this would 
change to 2181.4 kWh and 964.8 kWh, respectively. This indicates the 
sensitivity of the charge-discharge cycle on the levels the SOC re
strictions. Nevertheless, these restrictions can be flexible and can be 
varied at different levels as required. 

Overall picture of the power flow over the network with renewable 
prioritized generation options and under the ‘smart’ EV charging 
schedule for three different days in a year is displayed in Fig. 20. In the 
figure, power corresponding to the positive side represents the average 
hourly load on the network (including that for EV charging) which is 
contributed by the power purchased from the grid, generated by the 
wind turbine and the solar PV system, and the power discharged back by 
all the EVs. The negative values indicate the sales of excessive renewable 
power back to the grid. From the figures, it is evident that the system is 
predominantly dependent on renewable resources like wind and solar to 
meet its power demand and thereby could make the conventional 
network a cleaner and greener system. In addition, sales of excess re
newables back to the grid can make the system economically attractive. 

6.3. Comparison with similar studies 

One of the main objectives of this study is to maximize the share of 
renewable energy in meeting the EV charging. Hence, it is interesting to 
compare the performance of the proposed charge scheduling algorithm 
with similar studies. Though there are several reported research on EV 
charge scheduling, only a few studies are focused on maximizing 
renewable energy fraction. Details of some of these recent studies are 
listed in Table 3. The size of the renewable energy systems and other 
components are economically optimized in all these investigations. 
These studies are of two categories (1) studies in which storage batteries 
or other backup generating options are included for maximizing the 
renewable energy fraction (2) studies without considering such storage 
or generation options. As seen from the table, relatively higher renew
able energy fraction is reported when battery and supplementary gen
eration options are considered. However, in the present study, such 
backup solutions are not considered due to obvious techno-economic 
reasons. It can be seen that, even without the power backup solutions, 
the proposed charge scheduling approach could enhance the share of 
renewable energy in EV charging to an impressive 71.56%, which is 
higher than the fraction reported in similar studies. 

7. Conclusions 

In this study, we propose a smart EV charge scheduling algorithm, 
which can maximize the renewable energy fraction in EV charging, 
without any battery storage or supplementary power options like diesel 
generators. A distribution network with average and peak demands of 
1.51 MW and 3.6 MW respectively was chosen for the analysis and 
power flow through various components of the distribution network has 
been analyzed using OpenDSS. With an estimated 574.51 W/m2 of wind 
power density and 4.14 kWh/m2/day of solar insolation at the network 

Fig. 17. Hourly charge-discharge rate of EVs with 90% SOC restriction.  

Fig. 18. Hourly charge-discharge rate of EVs with 75% SOC restriction.  

Fig. 19. Hourly charge-discharge rate of EVs with 60% SOC restriction.  
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region, an optimum renewable energy system consisting of a 2.3 MW 
wind turbine and an aggregated 2.6 MW solar power plant is proposed 
for the network. kNN based machine learning models are developed for 
estimating the power output of these renewable energy systems which 
estimates a total contribution of 12.61 GWh from wind and solar to the 
network annually. With the major objective of maximizing the renew
able energy fraction in meeting the EV loads, a scheduling algorithm was 
developed for charging the EVs connected to the network. With the 
proposed scheduling system, charging of EVs are prioritized during the 
periods of higher renewable energy generation, depending upon the 
state of charge (SOC) of the EVs. This resulted in a high renewable en
ergy fraction of 71.56% even without the support of batteries or any 
other supplementary generation options. The proposed algorithm for EV 
charge scheduling is designed to be generic and flexible in which 
number & locations of the EVs, the battery capacity, connection status, 
state of charge, discharging agreements etc. can be modified to adapt it 
for any real-world situations. The proposed method is further being 
extended for the resource management of fast charging stations in the 
distribution networks as seen in Konara et al. (2023a, 2023b). The 
analysis can also be extended considering dynamic price of energy as a 
constraint in the schedule optimization. 
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