
Pressure-flow dynamics with semi-stable limit cycles in hydraulic
cylinder circuits

Michael Ruderman1, Stefan Kaltenbacher2, Martin Horn3

Abstract— In hydraulic circuits of the standard fluid-power
actuators and mechanisms, like the linear-stroke cylinders,
some hydrodynamic effects are often neglected. It happens
mainly due to their complexity and secondariness in comparison
with the principal transient and steady-state behavior of the
hydromechanical process variables, such as the differential
pressure and relative displacement and its rate, in other words
the piston stroke and velocity. However, a constrained motion of
the cylinder piston can give rise to the back coupled excitation of
the pressure-flow dynamics, especially upon mechanical impact
at the cylinder limits. Following to that, semi-stable limit
cycles can arise while the hydraulic cylinder remains under
pressure without apparent displacement. This paper analyzes
such back-coupled pressure-flow dynamics, derived from the
partial differential momentum equation with involvement of
Darcy-Weisbach hydraulic damping and continuity equation,
out from which the closed-form system dynamics is formulated.
In both, simulations and laboratory experiments, it is shown
that if a constrained motion applies, the solution diverges from
steady-state and can develop to the behavior similar to a semi-
stable limit cycle.

I. INTRODUCTION

Hydrodynamic principles and properties, see e.g. [1], [2]
for basics, and the derived (from it) behavior of the system
state variables are essential for analysis, modeling, and
control of hydromechanical actuators and machines. While
more sophisticated considerations of the single principal
components, like for example proportional- and servo-valves,
can be found also in the system and control literature, see
e.g. [3], the whole hydro-mechanical response of the corre-
sponding controlled mechatronic plant is often captured by
the simplified dynamic models. Several transient and charac-
teristic (often nonlinear) properties are neglected or reduced
as for the order and couplings between the state variables.
A typical modeling procedure, see e.g. [4], considers the
nonlinear orifice equations but the first-order hydrodynamics
result solely from the continuity equations. Such modeling
approaches are considered sufficiently, also for more ad-
vanced controls of the hydro-mechanical systems such as, for
example, linear parameter varying (LPV) [5] or sliding-mode
based [6]. An experimental evaluation of different (position)
control methods for the hydraulic systems can be found
e.g. in [7]. It can also be noticed that the complex coupled
hydro-mechanical dynamics and the hardware assemblies
bear general difficulties for an access and knowledge about
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internal states, so that various estimation and observation
techniques remain further on in focus of the recent research,
see e.g. [8]. Even a simplified consideration of the whole
hydro-mechanical system, like a classical valved-controlled
hydraulic cylinder, discloses several sophisticated transfer
characteristics when changing the linearization points and
operation ranges, see e.g. [9].

When a constrained motion, like in case of reaching
the cylinder limits or other boundary conditions apply, the
coupled hydro-mechanical dynamics give rise to several,
often undesired, effects in the transient and/or stationary
response of the fluid powered system. One of those, which
is the objective of this communication, is a possible ap-
pearance of semi-stable limit cycles at the constant supply
pressure, after the relative displacement of the cylinder piston
becomes constrained. This, at first glance not self-evident,
phenomenon can have practical relevance for the hydraulic
actuators where the coupled pressure-flow dynamics is not
explicitly attenuated, correspondingly counterbalanced, by
the dedicated auxiliary hardware integrated into hydraulic
circuits. Taking into account the flow dynamics in pipes and
considering, this way, the inlet and outlet flow as process
state variables, the order of hydrodynamics is increased.
Based on a most simple lumped parameters modeling, with-
out analyzing a wave propagation in the hydraulic medium,
the pressure-flow hydrodynamics is shown to exhibit long-
terms oscillations and, eventually, semi-stable limit cycles.

The rest of the paper is organized as follows. The basic
notations and preliminaries required for reading are provided
in section II. The overall modeling of the system under
consideration is described in section III. In section IV, we
show the pressure-flow dynamic response within numerical
simulation, while an experimental case study is exemplary
given in section V. The paper is concluded by section VI.

II. NOTATION AND PRELIMINARIES

Unless otherwise stated, all state variable and signals are
with SI units. The time argument (t) will be sometimes
omitted, for the sake of simplicity, while the time units are
also abbreviated by ’sec’. The derivative operator is written
d, meaning dy/dx is the derivative of y with respect to x.

Several hydro-mechanical process parameters are assumed
to be constant. Those are the hydraulic oil density ρ, upper
bound of the bulk modulus Emax, and the Darcy-Weisbach
[2] friction factor λ. The internal leakage coefficient of
cylinder, which characterizes an additional pressure drop
due to partial (minor) penetration of the hydraulic medium
between both chambers, is neglected i.e. assumed to be zero.
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The volumetric flow of the inlet and outlet hydraulic circuit is
subject to continuity equations (see below in section III-A),
meaning the total hydraulic volume of cylinder and piping re-
mains constant. The constrained relative displacement of the
cylinder piston has one translational degree of freedom, and
the motion dynamics is with lumped parameters of the solid
moving mass and total frictional damping. The hydraulic
medium in the pipes and cylinder chambers complies with
Darcy-Weisbach theory [10]. The subindex i = {A,B} will
be used for both, the inlet and outlet piping and, respectively,
chambers of the connected hydraulic cylinder.

All parameter values used for the numerical simulations
are given in section IV, while the experimental case study is
provided qualitatively, that without exact identification or fit
of the residual parameter values.

III. MODELING

A. Pressure-flow dynamics

The volumetric flow rate Q and pressure P are described
separately for both sides of the powered hydraulic cylinder.
The external interface is considered to be on the supply inlet
(denoted by the subindex s) and outlet to tank (denoted by
the subindex t). Assuming the inlet pressure Ps and outlet
pressure Pt, the flow dynamics is obtained from the partial
differential momentum equation [2] as

li(gAi)
−1 d

dt
Qi(t) = (gρ)−1ΔPi(t)−H

(
Qi(t)

)
. (1)

The pressure difference on the interface is given by ΔPA =
Ps − PA and ΔPB = PB − Pt correspondingly. The
involved physical parameters, assumed to be known, are the
gravitational acceleration constant g, the length li and cross
section area Ai of the pipes, and the hydraulic fluid density
ρ. The flow-dependent hydraulic damping H(·) is captured
by the Darcy-Weisbach equation, see below in section III-
B. It should be noted that the lumped parameters modeling
approach, without involvement of partial differential equa-
tions, assumes the same pressure gradient at all locations
in the piping as on the chambers’ port of the hydraulic
cylinder. Correspondingly, the dynamic state variables of the
volumetric flow rate distinguish only for the corresponding
ports A and B, while zero leakage is assumed for all
elements of the hydraulic circuits.

For deriving the pressure dynamics, one considers the
flow of a slightly compressible fluid within a conduit having
rigid (to say inelastic) walls. The control volume may then
shorten or elongate as the pressure changes. The pressure
dynamics is determined by the volumetric flow rate, on the
one hand, and by the varying volume rate governed by the
piston displacement, on the other hand. The resulted pressure
gradient, obtained from the continuity equation with respect
to the moving mechanical piston of the hydraulic cylinder
without leakage, is then given by

d

dt
Pi(t) = −E

(
Pi(t)

)(
Xi(t)Bi

)
−1

(
Qi(t) +Bi

d

dt
x(t)

)
.

(2)

Here the effective cross section, on both sides of the cylin-
der’s piston, is denoted by Bi. It is worth noting that for
an asymmetric, due to the one-side rod, hydraulic cylinder
(like one we are considering in the recent study) the cross
sections BA �= BB are largely different. The corresponding
dynamic state of the control volume, associated with both
chambers, is given by XA = x − L and XB = x, while
the relative displacement variable of the moving piston is
0 ≤ x ≤ L. Further it should be stressed that the control
volume (L− x)BA and xBB , of the left and right chamber
respectively, would become zero at the boundary conditions
and, therefore, would cause singularities in the solution of the
pressure dynamics (2). Therefore, a biased length variable
x + α, with α = const > 0, is used instead of x when
computing the Xi state. Note that this is in accord with
the continuity equation (2), since a non-zero volume is still
present in each piping line even when the corresponding
cylinder’s chamber becomes empty. The compressibility-
inverse bulk modulus of the hydraulic circuits, given by

E(P ) = c1Emax log
(
c2

P

Pmax

+ c3

)
, (3)

is considered as a function of the pressure state and pa-
rameters c1, c2, c3, Emax, Pmax. This is according to the
known modeling approaches to be found in the applied
hydrodynamics literature, cf. e.g. [1].

B. Darcy-Weisbach equation

The well established Darcy-Weisbach formula, cf. [10],

H(Q) = λi|Q|Q, (4)

with constant friction factor lambda is applied to express
head losses at fittings, valve inlet and outlet points of the
hydraulic set-up. This type of friction is usually known to be
part of ”minor losses”, a term broadly used in literature [11].
These pipe contractions typically lead to local turbulence,
and subsequently to appropriate pressure or head losses.
As the considered pipe lengths are in the range of 1 m
only, hydraulic friction due to pipe roughness does play a
subordinate role in comparison to these minor losses and are
thus neglected.

C. Motion behavior

The motion dynamics of the cylinder piston, with the
lumped mass m and resistive kinetic friction force F , is
captured by

m
d2

dt2
x(t) = −PA(t)BA + PB(t)BB − F

( d

dt
x(t)

)
. (5)

We notice that no additional external load force is included
here and the piston is free to move, with one translational
degree of freedom, until it hits either of both cylinder caps.
The motion dynamics (5) describes the unconstrained relative
displacement, while its boundary conditions at x = 0 ∨ L
are captured as given below in section III-D. The overall
mechanical friction, mainly due to the contacts between the
piston rod and lip seal, and between the piston o-rings, seals



and cylinder, is described by a linear combination of the
viscous and Coulomb friction force. This can be written as

F
( d

dt
x(t)

)
= c4

d

dt
x(t) + c5 tanh

(
c6

d

dt
x(t)

)
, (6)

where the viscous and Coulomb friction coefficients are c4
and c5 correspondingly. The principal shape of the static
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Fig. 1. Principal shape of the viscous and Coulomb friction force (6).

velocity-force map of the viscous and Coulomb friction (6)
is exemplary shown in Fig. 1, here without units and specific
parameter values. Note that in order to avoid discontinuity at
the velocity zero crossing, a hyperbolic tangent function is
assumed (instead of the sign) in (6). Here an approximative
scaling factor c6 is used for approaching discontinuity at
zero-crossing. Such approximative description is justified and
widely used in multiple hydro-mechanical studies, see e.g.
[1] and references therein.

D. ”Bouncing ball” impact

When the piston hits the cylinder wall, at both stroke
limits, an unconstrained motion terminates and the state
integration x =

∫
ẋdt has to be bounded. More important

appears the handling of the relative velocity ẋ =
∫
ẍdt. The

integrator state is then reset to

ẋ+ = −βẋ(ti), (7)

where ẋ+ is the successor velocity state immediately upon
the impact at ti. The restitution coefficient, see e.g. [12],
β = 1/2 is assigned to avoid the fully elastic impact and, this
way, to allow for sufficient structural damping by the cylinder
barrel and cap. Note that the assumed relatively low β-
value allows avoiding spurious oscillations upon an impact,
which is relevant for a low-inertial and highly damped
hydromechanical system. The resulted relative motion during
the (partially elastic) impacts is also known as ”bouncing
ball” effect, as exemplary shown in Fig. 2 for x(t) after the
impact and until the motion stops. Here the displacement is
unitless and without particular parameter values.

IV. NUMERICAL SIMULATION

Numerical simulation of the model (1)-(7) is realized in
the Simulink environment with a variable-step solver. The
latter is explicitly required due to fast-slow dynamics of
the whole system (1)-(6) and for accurately handling the
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Fig. 2. Example of relative piston displacement x(t) upon the impact.

reset conditions, like during a ”bouncing ball” impact. The
supply pressure Ps is assigned to be of the same principal
shape, yet without oscillations, as the PPRV measured within
the experimental case study, cf. Fig. 6. The assigned model
parameters are listed in Table I. Note that the parameters are
selected to be largely in accord with the experimental setup,
while several of them, which are not available, have been
assumed from hydraulic literature.

TABLE I

NUMERICAL SIMULATION PARAMETERS.

Variable Units Description

x m piston position

Pi Pa pressure in chamber

Qi m3/s volumetric flow rate

Ps Pa supply pressure (after PRV)

Pt = 0 Pa pressure in tank

m = 20 kg lumped mass (piston and load)

L = 0.2 m length of hydraulic cylinder

BA = 0.022π m2 cross section area chamber A

BB = (0.022 − 0.01252)π m2 cross section area chamber B

Ai = 0.00352π m2 cross section area of pipes

c6 = 105 - scaling for static friction

c4 =700 kg/s friction coefficient

c5 =800 kg/s friction coefficient

λA = 8.0409× 107 s/m5 Darcy-Weisbach factor

λB = 1.6555× 109 s/m5 Darcy-Weisbach factor

g = 9.81 m/s2 gravitational acceleration

ρ = 0.88× 103 kg/m3 hydraulic oil density

�A = 1 m pipe length port A

�B = 2 m pipe length port B

The simulated response of the pressure in the left and right
chambers of the hydraulic cylinder are shown opposite to
each other in Fig. 3. After transient response, the chambers
pressure behave constant, as expected, during the steady-
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Fig. 3. Simulated pressure response in the left and right chambers.

state motion of the cylinder piston, that until the time instant
around 0.92 sec. Afterwards, the piston hits the cylinder cap,
and the pressure PA of the powered chamber undergoes
a large excitation, leading immediately to an oscillating
pattern. Note that in the following, we focus on the hy-
draulic dynamic quantities (pressure and flow) only, since
the relative displacement state is not measured in our system
setting. It is worth noting that the resulting frequency of the
PA oscillations is approximately twice as high as the one
recorded in the measurements. However, when reducing, for
instance, the bulk modulus parameter, the frequency could be
adjusted to the one observed in the measurements. A possible
reason for that could be entrapped air in the hydraulic
setup. One can recognize that the pressure oscillations can
be well reconstructed, cf. Fig. 3, for the bounded motion
at the constant supply pressure. The pressure oscillations
subsequently cause oscillations in the volumetric flow rate
QA, see Fig. 4, according to the coupled hydrodynamics
(1), (3). An irregular pattern of the residual oscillations, at
times larger than 2 sec, indicates a persistent excitation of
the hydrodynamics which can cause appearance of the semi-
stable limit cycles. Furthermore, from (1)-(4), it becomes ap-
parent that the way of modeling and parameterizing the bulk
modulus and hydraulic friction bear the most uncertainties
in describing the hydrodynamic behavior. Since both appear
as the state-varying quantities equivalent to the stiffness and
damping factors of an oscillator, it comes as not surprising
that the oscillating response is nonlinear and non-trivial. For
continuous energizing, by a constant supply pressure, an
emerge of the semi-stable limit cycles seems theoretically
possible.

V. EXPERIMENTAL CASE STUDY

The following experimental case is recorded on the hy-
draulic setup (see Fig. 6) which includes a standard linear-
stroke cylinder. The latter is separated into the left and right
chamber (denoted by A and B) by the moving one-side
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Fig. 4. Simulated flow rate response in the left and right chambers.

piston with the seal. A sufficiently high pressure difference
between the chambers causes the piston to move. An unidi-
rectional motion, from the left to the right, with successive
hitting the cylinder limit is considered, so that PA pressure
only is of prime interest. Pressure PB is also considered for
showing the difference between the unconstrained motion
phase and the limiting case where PB is around zero as
the B-chamber becomes unpressurized. The bi-directional
control valve (BDCV) was not actuated and remained fully
open during the experiments. Effectively, the BDCV only
increases the hydraulic friction by a narrowing of the pipes
connected to both of the cylinder’s chambers.

The Pressure Reduction Valve (PRV) is located between
the pressure supplying line and BDCV. It is worth noting that
PRV is open-loop controlled and can be actuated to regulate
the pressure reduction prior to BDCV. The return connection
pipe of BDCV, for outlet of the low pressure, leads to
the tank which is filled with hydraulic fluid. The pressure
sensors are directly installed on the piping connected to the
chambers A and B, and at the output of PRV, i.e. the latter is
measuring the reduced pressure in the piping between PRV
and BDCV. No relative displacement measurements of the
moving cylinder are available. Some further details on the
experimental setup can also be found in [8].

Case description: Supplying a nearly constant pressure
(see Fig. 6 until t ≈ 1.1 sec) causes the piston to move from
the left to the right until it hits the cylinder cap. At that
instant, strong oscillations in the pressure occur, see Fig. 7,
which resemble a limit cycle. It should be noted that the
transfer characteristics of PRV and its dynamic behavior self
where not a part of this investigation. Here one can notice,
from Fig. 6, that the supply pressure behind the PRV, i.e.
the measured PPRV , exhibits also strong oscillations after
the piston motion becomes constrained, while the supply
pressure input to PRV remained nearly constant. Therefore, it
is suspected that the back-propagated pressure-flow dynamics
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Fig. 5. Schematic representation of the hydraulic circuit (a), and laboratory
view of the experimental setup (b).

0 1 2 3
time [sec]

0

1

2

3

4

pr
es

su
re

 [P
a]

106

p
PRV

Fig. 6. Measured PRV outlet pressure PPRV during the experiments.

with high transient oscillations upon the impact additionally
excited the disturbing oscillations own to the PRV self.
Still, the excited and continuously oscillating pressure-flow
dynamics of hydraulic medium in the cylinders’ connection
can appear as a source (in addition to PRV) of the semi-stable
limit cycles, cf. Fig. 7.
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Fig. 7. Measured chambers’ pressure PA and PB during unconstrained
motion at 0 < t < 1.1 sec and after hitting cylinder cap t > 1.1 sec.

Discussion: Several discussion points remain open re-
garding the above experimental case study. It would have
been interesting to see whether the pressure oscillations do
also cause continuous, even minor, displacements of the
piston. Here the numerical simulation study, cf. sections
III and IV, disclosed that displacement oscillations are
quickly dying out, i.e. within several periods, even when
the restitution coefficient is not close to zero and a partially
elastic impact (which is less realistic for the cylinder caps) is
assumed. Another open question directly relates to the PRV
transfer behavior and the back-propagated oscillations or
even amplified through it. Comparing the chambers’ pressure
response from the numerical and experimental studies, it is
obvious that the simulated oscillations are converging faster
and, to say, with a more ’exponential’ shape. Still, it remains
unclear how far the hydrodynamic damping and pressure-
flow relationship can be accurately captured by the lumped
parameters model, cf. section III. An ’ideal’ PRV with less
oscillating outlet pressure and additional flow sensing could
bring more light into investigation of these issues.

VI. CONCLUSIONS

This paper addressed appearance of the slow-converging
oscillations, and an associated semi-stable limit cycle, in
the pressure-flow dynamics of the hydraulic circuit powering
the linear-stroke cylinder which is subject to a constrained
motion. The order of the hydrodynamic model has been
increased by two, compared to a more frequently assumed
first-order behavior of the continuity equations. As a result,
the two-way coupled pressure-flow dynamics appear to be
excited, and then long-term oscillating for boundary condi-
tions of the mechanical displacement, i.e. once the moving
piston of hydraulic cylinder hits the cylinder cap and remains
in idle state. By means of a numerical simulation and an
experimental case study, it has been demonstrated that the
hydraulic medium can undergo complex dynamic behavior
at constant supply pressure of the source and zero velocity
of the mechanical load.
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