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Abstract—Bollard is a vital component of mooring system. It is
the anchor point for mooring ropes to be fixed in order to secure
the vessel or ship. An algorithm that translates the segmented
mask of bollard output from masked R-CNN along with bounding
box and associated class probability to its corresponding edge co-
ordinate and finally to the single reference point for efficient de-
tection and classification of bollard towards autonomous mooring
is presented. At first stage, Mask R-CNN framework is trained
with custom built bollard. The model obtained from the training
is inferred with real data resulting in instance segment of bollard.
The segmented mask obtained contains relatively large amount
of the data points representing the whole area of bollard, which
typically is not desirable. In order to precisely localize the bollard
with one reference co-ordinate, the proposed algorithm is applied
to segmented mask. Firstly, it translates the segmented mask to
only four co-ordinate points, where each point correspond to the
edge of bollard. Further, from the edges, the reference point is
estimated. This causes significant reduction in point of interest
(POI) and has potential to reduce the error encountered during
pose estimation of the bollard in 3D thus making the autonomous
mooring more precise and accurate.

Index Terms—Instance segmentation, autonomous mooring,
Mask R-CNN, object detection and classification

I. INTRODUCTION

Autonomous navigation of ships or vessels and related
maritime operations contribute to the aim of sustainable
transportation and trade. It has potential to reduce carbon
footprint, perform various operations at adverse maritime cli-
matic and environmental conditions while reducing operational
cost, increasing reliability and making activities safer thus
harmonizing three core aspects - economic growt, environ-
mental protection and social inclusion. Thus with the aim
of future innovation and safety, use of driverless means of
transportation and automated operations has already gained
wide attention. Advanced driver assistance system (ADAS)
defines the technologies and concept that guide the devel-
opment of autonomous vehicle and systems. ADAS features
such as obstacle avoidance, collision detection and avoid-
ance, object detection and classification, object localization,
autonomous emergency bracking (AEB) [1] help transferring
most of driver’s task such as perception, planning and control
to vehicle itself, with minimal or exceptional intervention.
Having the ADAS features implemented, there are multiple
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intuitions about optimal control strategies and energy man-
agement as well as elimination of human factors and driver
inefficiencies which could have a positive impact on safety; the
dynamics, and the fuel consumption of the vehicle. Enabling
ADAS features, can help ships in the deep-sea exploration,
arctic circle exploration, fishery and oceanic food cultivation,
autonomous navigation and other services even in different
harsh conditions. Apart from the extended use that would not
have been possible, it also enjoys added benefit in terms of
environment, safety and economy that can be exploited by
maritime industries.

ADAS is already an established technology in automobile
industries encompassing functionalities mentioned above. In
[1], authors explain the different building block of ADAS
for autonomous vehicle. Magali [2] developed generic and
modular architecture for maritime autonomous vehicle Robot
System Onboard Architecture (RSOA). However, the maritime
has not seen significant developments, at least in practise, in
implementing ADAS features and towards autonomous ships.

Among the other activities necessary for autonomous navi-
gation, mooring the ship has attained special attention. Tradi-
tionally, mooring involves tying rope to the mooring stations
on deck to ensure that the ship is stationary. Mooring a ship
or vessel either for on/offshore operation such as ship to ship
transfer of load or docking the ship in harbour is affected by
many forces such as wind, water current, tides, waves, loading
conditions and interaction from other ships. So it is necessary
to take those factors while mooring a ship. If the mooring
ropes and trajectory are not used in accordance to the above
mentioned factors, it can cause serious hazards to the crew,
cargo, ship and the people nearby. One one hand autonomous
mooring will increase the safety of the crew and the operator
while significantly reducing the operation time thus making
the entire process safe, economy and sustainable. Thus it is
desirable to perform the mooring process autonomously.

When it comes to autonomous mooring, among the other
procedures, moor detection, classification and localization be-
comes the primary objective. Vision based technique combined
with machine learining (ML) algorithm has proven to be one of
the most suited and elegant way of object recognition and clas-
sification. There exists different ML algorithms and framework
that can efficiently detect and classify the particular object in
given image frame. The modern object detection algorithms



are based on two stage approaches. First stage generates
the object locations and second stage classifies each object
with in the image with a bounding box and associated class
probability. Example of such algorithms and/or frame work
are Region-based CNN (R-CNN) [3], Fast R-CNN [4], Faster
R-CNN [5], Feature Pyramid Network (FPN) [6]. Despite its
accuracy, there are several one stage detector suc as You Only
Look Once (YOLO) framework [7], [8], Single Shot MultiBox
Detector (SSD) [9] that give comparative results with less
computation cost [10]. Despite the fact that algorithms in both
categories successfully detect and classify the object with in a
bounding box and associated class probability, Mask R-CNN
goes one step further in providing the segmented mask with in
bounding box [11]. The implication of this segmented mask is
that now each pixel in the image is associated with particular
class called instance segmentation. This forms the basis of
the proposed algorithm that helps us pin point the reference
co-ordinate of bollard using a single co-ordinate.

This paper is organized as follows. The proposed methodol-
ogy including architecture, experimental set-up and algorithm
and results is described in section II and finally section III
closes the paper with conclusion, discussion and future work.

II. METHODOLOGY

A. Architecture

The concept of autonomous mooring is shown in Fig. 1.
It consists of a robot on-board with multiple robotic arm
(manipulators) equipped with sensors such as camera, lidar,
radar or combination of multiple sensors. Those sensors per-
ceive the surrounding and deliver data in different format e.g.
image, point cloud and voltages respectively. Machine learning
algorithm is employed to extract the relevant information from
the heterogeneous data for control and planning of the robotic
arm to place the mooring rope around the bollard. Based on
this, the architecture of autonomous mooring can be classified
into four abstract layer [12].

• Sensor: The choice of sensors are dependent upon the
operating conditions. Camera based systems give 2D
view of the surroundings in good lighting conditions with
relatively better performance in terms of noise, resolution,
and range. They can be used in object detection and
classification with relatively less computation cost. Lidar
gives us the 3D profile of the surrounding independent
upon the lighting conditions with reduced performance in
terms of noise. They are best suited for range estimation
with increased resolution, object and edge detection,
however they come at the increased computation cost.
Apart from these two type of sensors, Radar also finds
its application for range and velocity estimation. The
optimal choice of sensor and sensor fusion is made
depending upon the operating conditions. At preliminary
stage only camera and lidar is used for the experiment.

• Perception: The raw heterogeneous data received from
sensor is processed to extract related information

Fig. 1. Autonomous mooring. (left) conceptual presentation showing the
relative position of ship, robotic arm and bollard; (right) exploded view (with
permission from MacGregor Norway AS).
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Fig. 2. Architecture of autonomous mooring and proposed algorithm at
perception layer.

about the surrounding. This could be processing data
e.g. 2D image, 3D point cloud or voltages coming
from different individual sensors or processing the
data fused with multiple sensors. As explained earlier
there exists extensive list of software, algorithms and
framework at this layer to process the data from sensors.
However, here we use the Mask R-CNN because of
the added information (segmented mask) it gives as
compared to other frameworks. Further, an algorithm
is proposed and presented for post processing of the
segmented mask to find single point of reference for the
bollard under test and is explained in proceeding sections.

• Planning: This layer has the decision making capabilities
and takes the decision based on the perceived
information.

• Control: This layer ensures that the planned action is
executed safely.

For brevity, all these abstraction is summarized in Fig. 2.

B. Experimental setup

Based on this description, the overall requirement translates
to the detection and classification of bollard placed on the



Fig. 3. Experimental setup for detection and classification of bollard for
autonomous mooring.

mooring stations in real world scenario. For this purpose,
experiment setup is devised from the basic constituents that
would make up vessel for autonomous mooring (shown in Fig.
3). In terms of sensor to acquire raw data from the surrounding
camera and lidar is used. To acquire high resolution 2D image,
a camera (Lucid Triton 5.0 MP model) is used. It has Sony
IMX264 CMOS image sensor with 5 MP resolution and frame
rate of 24 fps 1. The light emitting from the surrounding is
focused on to the camera’s sensor using Fujincon HF6X-5M.
It has a focal length of 6 mm, operation of focus range being
∞−10 mm, and F-number of f1.9 - f16 2. Next, Ouster Lidar
OS1 is used to acquire 3D point cloud of the surrounding
3. Both the sensors are mounted on ABB robot to mimic
the industrial robot placed on the ship/vessel. Further, the
3D model of bollard is designed (shown in Fig. 4) and then
manufactured in-house at University of Agder (shown in Fig.
3).

C. Algorithm and Results

The over-all problem formulation for autonomous mooring
deduces to the detection, classification and determining a
single point co-ordinate to reference the bollard. The following
procedures are taken to train and then infer the model.

1https://thinklucid.com/product/triton-5-mp-imx264/
2https://thinklucid.com/product/fujinon-c-mount-2-3-6mm-f-1-9/
3https://ouster.com/products/os1-lidar-sensor/

Fig. 4. 3D model of bollard used in the experiment.

Fig. 5. Trajectory of camera placed on ABB robot to acquire images for
training the ML model. (up) simulation environment (down) image capturing
trajectory.

a) Sample prepration: Considering that the bollard needs
to be detected at different angle and distance from the
ship/vessel to be moored, the robotic arm is moved as the
trajectory defined by Fig. 5. A total of 105 images are
captured. A fraction is reserved for inference and rest is used
to train the model.

b) Training - Mask R-CNN: Instance segmentation based
framework - Mask R-CNN [11] is employed. To reduce the
training time and lower the general errors, transfer learning
is employed here. The model weights from pre-trained model
obtained from COCO dataset [13] is chosen as the starting
point and then use the learned feature to train the Mask R-
CNN model. The appropriate deviations are made as compared
to original model is made to meet the requirement. The number
of classes is set to 2 (bollard and background), minimum
confidence of detection to 0.9 (to reduce the false positive).



Fig. 6. Inference result. The model detects and classifies the bollard.

c) Inference: The above trained model is used to infer
the bollard (reserved for inference) to verify if the model is
able to detect and classify the bollard based on estimation of
the boundig box, class probability and the segmented mask.
It was observed that the model works well and able to detect
and classify the bollard with class probability of 0.99 shown
in Fig. 6.

d) Post processing and proposed algorithm: From the
Mask R-CNN, we have the mask of the bollard. Mask is a 2D
array of elements of type boolean. It contains the co-ordinates
of the pixel (x and y) corresponding to bollard as true and false
otherwise. Given this information, post processing algorithm
is developed and implemented to (a) precisely find the edge of
bollard and (b) the single co-ordinate point that can be used
to reference the bollard. The post processing algorithm to find
the edges of the bollard from the segmented mask is explained
in Algorithm 1 with the results in Fig. 7.

Algorithm 1 Localize edges of Bollard from Mask
Input: Mask obtained from Mask-RCNN, M
Output: Co-ordinates of edges of Bollard, E

1: Find first row from M where the value is true, rf
2: Select co-ordinates of last element in rf , A
3: Select co-ordinates of first element in rf , C
4: Find last row from M where the value is true, rl
5: Select co-ordinates of first element in ra, A
6: return P

Once the edges are determined, the point of intersection
of the lines joining the opposite edges (AB and CD) gives
the single reference point referring to the bollard (shown in
Fig. 8). Similar procedure is applied on another random image
reserved for inference. The model and the proposed algorithm
both work well to determine the single reference point of the
bollard (shown in Fig. 9).

In addition to the vision based approach, an algorithm to
process the 3D point cloud captured from Lidar based on
selecting related points based on distance, intensity, edge and

Fig. 7. Edges of bollard (A,B,C,D) detected using the proposed algorithm
explained in Fig. 1.

Fig. 8. The four co-ordinate points (A,B,C,D) obtained from Fig. 1 and Fig.
7 deduced to single reference point (O) referring to bollard.

field of view was also developed [14]. The results is shown in
Fig. 10.

III. CONCLUSION AND DISCUSSION

We presented the choice of sensor and architecture to
successfully detect and classify the bollard for autonomous
mooring towards autonomous maritime navigation and related
off-shore operations. We presented an algorithm that takes the
segmented mask from Mask R-CNN as input and extracts the
edge of bollard represented by four co-ordinate points. Further,
from those four points, a single reference point is obtained to
localize the bollard, thus translating the complexity to a single
point, which in turn will help to reduce the localization error.
The proposed algorithm is tested and verified by experimental
data obtained in laboratory conditions. Even-though the image
of bollard taken at different position and orientation of camera
affected the results, however, the reference point was well



Fig. 9. Demonstrating repeatability of proposed algorithm. The proposed
algorithm gives similar results on random image of bollard.

Fig. 10. Point cloud processing to select the points corresponding to bollard.

with in the accepted region (with in top surface of bollard).
Future work includes testing the proposed algorithm against
the bollard from real environment (one obtained from sea-
shore).

While different sensors and sensor technologies are utilized
for specific purposes, nevertheless, they fail individually to
meet the requirements of growing decision capabilities with
high accuracy. Therefore, it is important to perform an ade-
quate sensor fusion so that the machine learning algorithms
can exploit jointly the different complementary sources of
data before the decision-making takes place. As a part of
future work, the development of sensor fusion platform is
in-progress [15]. It incudes data fusion from camera, co-
ordinate of bollard obtained with the proposed algorithm with
that of lidar point cloud to get a complete 3D profile of the
surrounding and the location of bollard (thus optimizing the
point cloud processing and getting better results as compared
to Fig. 10) and implement planning and control algorithm. This
in turn will help to localize the bollard with high precision

and accuracy, thus moving towards our goal - by engineering
solutions, the sea can be made more accessible, safe, reliable
and in turn contributing to sustainable development.
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