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Abstract—The design and experimental evaluation of contin-
uous homogeneous differentiators are considered. The differ-
entiator gains follow the high-gain setup with variable gain-
scaling parameter L. This parameter results from a minimization
of the effect of measurement noise and disturbance on the
differentiation estimation error in terms of the homogeneous
L2-gain. We consider and compare various homogeneity degrees
including the linear (high-gain) case. It turns out that an optimum
exists not only w.r.t. L but also w.r.t. homogeneity degree d.
For experimental evaluation, a hydraulic cylinder controlled by
a servo-valve is excited over a frequency range and the noisy
cylinder stroke measurements are differentiated. Via classical
metrics (root-mean-square and maximum absolute error) and
a precise full-order simulation model, we evaluate the velocity
estimation accuracy. Applying a second differentiation to the
stroke measurements, an acceleration disturbance can be detected
from a comparison of its measurement and estimate.

I. INTRODUCTION

Differentiators come into play whenever derivatives of mea-

surements are necessary, e.g. for control, supervision and fault

detection. The differentiation of noisy signals is a demanding

task since it should not unnecessarily amplify the noise level

while still suppressing the effect of non-vanishing higher-order

derivatives on the differentiation estimation error. There are

two frameworks dominant to accomplish this task: the high-

gain observer acting as a differentiator [1], [2] (i.e. linear),

and the robust exact sliding-mode differentiator [3]–[5] (i.e.

nonlinear, discontinuous). Both these approaches are special

cases of the homogeneous differentiator [6], [7] with the

respective homogeneity degrees d = 0 (linear) and d = −1
(discontinuous). Worst-case error bounds have been derived for

these cases [1], [5], [8], [9], given the knowledge of the bounds

on the noise and n-th order derivative of the base signal to be

differentiated (n corresponds to the order of the differentiator).

These lead to optimal tuning guidelines [1], [8] w.r.t. the L∞-

norm of the output, i.e. the differentiation estimation error.

Another possibility with clear physical interpretation is the

L2-gain to characterize the effect of measurement noise and

disturbance (i.e. higher-order derivative) on the output, since

it directly relates to the signal’s energy. However, it turns out

that the classical L2-gain [10] is not suitable for homogeneous

systems due to its missing invariance w.r.t. homogeneous

dilation [11], [12]. Hence, it is only a local property for

general weighted homogeneous systems. Zhang [11] therefore

introduces a generalized, global and constant homogeneous
L2-gain (L2h-gain) for this system class. This allows to com-

pare the homogeneous differentiator for various homogeneity

degrees, including the linear (d = 0) and discontinuous

(d = −1) case. However, the L2-gain and L2h-gain are not

defined for disturbances acting on the last channel of the

discontinuous differentiator. Hence, we focus on continuous,

homogeneous differentiators (d > −1). Although a trade-off

between an upper bound on the estimation error, on the one

hand, and convergence time, on the other hand, has been

recently proposed [8], it is out of the scope in the present

evaluation. Note that, apart from d = 0, it is not possible to

obtain the actual L2h-gain yet. Still, it can be estimated [11].

Just recently, a procedure to obtain optimal differentiator

gains w.r.t. the estimated L2h-gain has been proposed [12],

based on a Lyapunov function for the homogeneous differ-

entiator [6], [7], and evaluated at an academic example. A

practical application and evaluation is still necessary. Hence,

within the present work, we adapt the approach to an ex-

perimental system and evaluate the resulting differentiator for

various homogeneity degrees −1 < d ≤ 0.

The experimental setup under consideration is a hydraulic

test bench [13]–[16], as a relevant industrial application, since

hydraulic cylinders are common whenever large forces and

high load stiffness are demanded [17]. Mostly, it provides

(noisy) stroke measurements only. Additionally, an accelerom-

eter can be installed on the moving payload – a configuration

we are also making use of for reference measurements. Often

however, the cylinder velocity is necessary e.g. for fault detec-

tion, trajectories servoing and monitoring, or active vibration

damping control [17]. With a detailed full-order simulation

model at hand [13], the velocity-estimation error is available

and allows an evaluation by means of standard metrics (root-

mean-square and maximum absolute error). An application to

the measurement data is in line with the simulation results.

The hydraulic cylinder controlled via servo-valve is excited

over a frequency range of two decades. Besides multiple ex-

periments with a sinusoidal excitation at distinct frequencies,

a multi-sine and linear sweep are applied covering the entire

frequency range. The experiments have shown an acceleration
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disturbance at certain excitation frequencies that cannot be

measured via relative cylinder position. However, a compar-

ison of the cylinder acceleration estimated from the position

measurements with the acceleration measurements reveals the

eigenfrequency of the disturbance.

In Sec. II, we start with the problem statement to clarify the

differentiator design setting. It follows a brief description of

the laboratory setup (Sec. III) and the excitation signals used in

experiments (Sec. IV). This covers the necessary background

to proceed with the main part of the paper: design and

evaluation of continuous homogeneous differentiators (Sec.V).

Conclusions are drawn in Sec.VI.

Preliminaries and Notation: We use the weighted homo-

geneity, see e.g. [18], [19], and homogeneous input-output

maps as introduced in [11]. The homogeneous norm of

x ∈ R
n is defined as ‖x‖rx =

(∑n
i=1 |xi|

2
ri

) 1
2

, where

rx = (r1, . . . , rn) is the positive weight vector. Further, the

sign-preserving power �x�p = sign(x)|x|p for p ∈ R is used.

II. PROBLEM STATEMENT

In the present work, we focus on a practical application of

the second-order homogeneous differentiator [6], [7], [12]

ẋ1 = −k1 �x1 − fn�
1

1−d + x2, x1(0) = x1,0 (1a)

ẋ2 = −k2 �x1 − fn�
1+d
1−d , x2(0) = x2,0 (1b)

with homogeneity degree d ∈ (−1, 1), positive and opti-

mized gains k1, k2 and states x1(t) ∈ R, x2(t) ∈ R. The

(Lebesgue-measurable) noisy signal fn can be decomposed as

fn(t) = f0(t)− ν(t) with bounded noise ‖ν‖∞ ≤ νmax > 0.

Given stabilizing gains (see [6], [12]) and a bounded second

derivative of base signal f0, i.e. ‖f (2)
0 ‖∞ ≤ δmax > 0, the

state x2 memes the first derivative f
(1)
0 and the estimation

error is ultimately uniformly bounded for d ∈ (−1, 0] [6].

Consider the error dynamics

ė1 = −k1 �e1 + ν� 1
1−d + e2, (2a)

ė2 = −k2 �e1 + ν� 1+d
1−d + δ, (2b)

where ei = xi − f
(i−1)
0 and δ = −f (2)

0 . They define a

homogeneous input-output mapping (see [11], [12]) of homo-

geneity degree d w.r.t. the input u = (ν, δ)� with weight

ru = (1−d, 1+d), state e = (e1, e2)
� with re = (1−d, 1)

and output y = e2 with ry = 1.

If we select d = 0, the linear high-gain observer acting as

a differentiator is recovered [1]. In contrast, for d = −1, we

get Levant’s robust exact differentiator [3]–[5].

Following the high-gain approach [1], [2], we utilize gains

k1 = α1L, and k2 = α2L
2,

where α1 > 0 and α2 > 0 are fixed and only L > 0 is a

variable design parameter. This allows to proceed as proposed

by [1], [12]. That means, one tries to find an optimal gain-

scaling L∗ that minimizes the effect of measurement noise ν
and disturbance δ, which is the second time-derivative, on the

differentiation estimation error y = e2.

On the one hand, we minimize an estimate on the L∞-

gain, i.e. the maximum absolute error, for the linear high-

gain differentiator (d = 0) using the approach of [1]. Then,

we move over to the more general homogeneous case and

utilize a design procedure that minimizes an estimate on

the homogeneous L2-gain (L2h-gain), – an approach recently

proposed in [12]. As pointed out in detail in [11], [12], the

classical Lp-gain [10] is a local property for homogeneous

systems with inputs and outputs, i.e. it is not constant w.r.t.

homogeneous dilation. From this background, Zhang [11]

introduces a generalized, homogeneous Lp-gain that is also

considered in this work.

Hence, the following developments focus on the design of

optimal differentiator gains for various homogeneity degrees

to estimate the velocity from noisy measurements. The design

is evaluated via typical metrics by means of a full-order

simulation model [13] and measurement data from the physical

setup described below. The measurements are further utilized

to estimate the frequency of an acceleration disturbance acting

on the hydraulic plant.

Note that we exclude the discontinuous case d = −1, since

the L2-gain (and L2h-gain) is not defined for inputs acting on

the last channel in this case.

For an easier presentation and adaptation to this setup in

Sec. V, we follow [6], [12] and utilize the scaled error dy-

namics with z1 = e1, z2 = e2
Lα1

and output y = e2 = Lα1z2:

ż1 = −Lα1

(
�z1 + ν� 1

1−d − z2

)
, z1(0) = z1,0 (3a)

ż2 = −Lα2

α1
�z1 + ν� 1+d

1−d +
δ

Lα1
, z2(0) = z2,0. (3b)

III. LABORATORY SETUP

Below described are the main parts of the hydraulic test

bench, while the interested reader is refereed to [13], [14]

for further details. These references also present and analyze

the detailed full-order nonlinear plant model (with five states)

which is used for numerical simulations in this work.

The cylinder provides an actuation range of about 0.2m
at frequencies up to fmax = 10Hz [14]. The actuation

unit is a Moog servo valve [20] with a cut-off frequency

of fc,M ≈ 200Hz and therefore sufficiently fast for this setup.

It also contains a dead-zone of ±10%. In the simulations as

well as experiments, this is overcome by a continuous pre-

compensation with tanh(βp·), where the stiffness parameter

βp = 265 is sufficiently large. This ensures that smooth exci-

tation signals result in sufficiently smooth cylinder trajectories.

Apart from the plant actuation, the measurement instru-

mentation is of special interest in this article. For position

measurements, i.e. the relative stroke of the cylinder, a Celesco

linear-potentiometer [21] is installed. It has a sufficiently large

measurement range of 0.25m with analog output signal. The

linearity and repeatability parameters are 0.1% and 0.01mm,

respectively. This device is the backbone of the present experi-

mental evaluation. In order to detect the cylinder acceleration,

a high-resolution accelerometer is utilized [22]. It provides

for low noise measurements along one axis using an analog



output. With a measurement range of ±2 g, the excitation is

restricted to low amplitude signals to prevent sensor saturation.

Note that the position measurement is relative to the cylinder

shaft, while the acceleration is measured w.r.t. the inertial

system. That is, acceleration disturbances η acting on the entire

test bench are not visible in the position measurements, but

detectable via accelerometer as illustrated in Fig. 1.

For communication purposes with the lab computer, a real-

time interface (Speedgoat baseline model S [23]) is used,

where the interface cards IO183 and IO397 are installed.

The analogue input/output channels are equipped with 16bit

A/D and D/A converters and work at a sampling rate set to

fs = 2 kHz in the conducted experiments.

d
dt

d
dt

η(t)

x̃(t) = f0(t) ˙̃x(t) ¨̃x(t) ẍ(t)

−ν(t) x(t) = fn(t)

Figure 1: Schematic representation of the experimental setup.

IV. EXPERIMENTAL SETUP AND EXCITATION

Since the hydraulic stroke mainly acts as triple integration

from valve input to cylinder position and the cylinder length

is limited, the experiments are conducted in closed-loop. This

ensures to keep the stroke within the actuation limits. To am-

plify measurement noise as little as possible, the proportional

feedback gain (kp = 1) is chosen sufficiently small.

The plant’s reference position is in the middle of the

actuator range during measurements. The excitation signals

directly act on the plant, i.e. as input disturbance. For the

present work, we consider multiple excitation signals within

the relevant frequency range of fe ∈ F = [0.1, 10]Hz. In

the first scenario, 41 distinct experiments are conducted with

a sinusoidal excitation for ten periods at a single frequency

plus transient time. This leads to a measurement time of

T = 10f−1
e . The frequencies are logarithmically distributed

over the frequency range F and the excitation amplitude is

asin = 0.1, such that the cylinder is prevented from saturation.

As second excitation scenario, we utilize an amplitude- and

band-limited multi-sine with ams ≤ 0.25 and fms ∈ F which

is designed via inverse Fourier transformation and scaling of

band-limited white noise. Analog to the single experiments,

the measurement time is chosen to hold ten periods of the

minimum frequency flow = 0.1Hz, i.e. T = 10f−1
low = 100 s.

Furthermore, a linear sweep with fsweep ∈ F is applied as

third excitation scenario, where T = 198 s.
Exemplary measurements for a sinusoidal excitation at

fsin = 2Hz are presented in Fig. 2. Both measurements

(position and acceleration) are affected by noise. Still, if the

setup is free of an acceleration disturbance, the position x can

be reasonably estimated from the acceleration measurement ẍ.

Note that double integration yields x̄(t) = x̂(t)+c1t
2+c2t+c3

with constants c1, c2, c3. Removing the quadratic part leads to

the graph of estimate x̂ in Fig 2a.

In case of an acceleration disturbance or sensor saturation,

similar results cannot be achieved. However, the disturbance

may be detected via comparison of the cylinder position’s

second derivative with the acceleration measurement.

Note that a full-order model of the hydraulic setup yields

reliable results apart from the measurement noise, see e.g.

[13]–[15]. Adding noise to the simulated position signal allows

to reasonably reconstruct the measurements.

(a) Position measurement and estimation by double integration.

(b) Acceleration measurement.

Figure 2: Measurements of the cylinder position and acceler-

ation during a sinusoidal excitation at fsin = 2Hz.

V. DESIGN AND EVALUATION OF HOMOGENEOUS

DIFFERENTIATORS

Let us design homogeneous differentiators such that the

effect of measurement noise ν and disturbance δ on the

differentiation estimation error y = e2 is minimized. Starting

from the linear case, i.e. the high-gain observer acting as

a differentiator [1], the knowledge of noise and disturbance

bounds is necessary. Then, Vasiljevic and Khalil [1] propose a

procedure to obtain an optimal high-gain parameter εopt, i.e.

gain-scaling L∗
hg = 1

εopt , that minimizes an upper bound on the

worst-case estimation error. Thus, the L∞-gain is minimized.

Going further to the nonlinear homogeneous case with d �= 0,

we utilize the bounds on noise and disturbance to scale these

inputs and follow an approach to obtain optimal gain-scalings

that minimize an estimate on the homogeneous L2-gain [12].

From steady-state measurement data we observe an upper

bound on the measurement noise ν of νmax ≈ 1.5× 10−3 m.

For the bound δmax on the disturbance δ, we follow a different

approach. From previous works on the hydraulic system [14],

an upper bound on the operation frequency ωmax = 2πfmax is



known as fmax = 10Hz. The maximum measured amplitude

for high-frequency sinusoidal signals is asin = 0.0015. This

results in δmax = asinω
2
max ≈ 6.

A. High-Gain Differentiator

Given the bounds νmax and δmax, we apply the design

procedure proposed by [1]. The differentiator gains are chosen

as described in Sec. II with α1 = 2 and α2 = 1 leading to mul-

tiple real eigenvalues at −1 for L = 1. Although conjugate-

complex eigenvalues can result in smaller steady-state error,

oscillatory transient response and longer transient time are

possible. Thus, multiple real eigenvalues are recommended [1].

The L∞-gain minimizing procedure yields (with k = 1, n = 2
and constants P2 and Q2 from [1])

εopt1 =

√
0.735νmax

2δmax
= 0.009585 and L∗

hg = 104.33,

leading to an upper bound of ‖y‖∞ = ‖e2‖∞ ≤ 0.23.

B. Homogeneous Differentiator

In order to design the gains for the more general setup of

homogeneity degree d ∈ (−1, 0], we follow the approach

proposed by [12]. This yields a (sub-) optimal gain scaling

L∗ which minimizes the effect of measurement noise ν and

disturbance δ on the error dynamics. To apply the general

results to the present case, the inputs are weighted by νmax

and δmax, such that the actual effect is represented. This yields

the error dynamics with weighted inputs

ż = f(z, ν νmax, δ δmax)

=

⎡
⎣ −Lα1

(
	z + ννmax
 1

1−d − z2

)
−Lα2

α1
	z + ννmax


1+d
1−d + δ

α1L
δmax

⎤
⎦ (4)

with y = Lα1z2 and the homogeneous differential dissipation

inequality (hDDI) [11]

∂V (z)

∂z
f(z, ν νmax, δ δmax) + ‖y‖2ry,2 − γ2‖u‖2ru,2 < 0,

where u = (ν, δ)� with entries of comparable order. As

discussed in [12], we utilize a Lyapunov function [6], [7]

Vl(z1, z2) =
1− d

2− d
|z1|

2−d
1−d − z1z2 +

1 + β

2− d
|z2|2−d (5)

with β > 0 for the error dynamics (3). Given an appropriate

scaling a, cf. [12, Thm. 1], the function V = aVl serves as

a storage function for the hDDI above and allows to estimate

an upper bound γ̂ on the homogeneous L2-gain γ. Note that

the minimum value of a = ãL is independent of the inputs

and, thus, Thm. 1 of [12] can be applied to the present case of

weighted inputs. The hDDI results in Ĵ (z, ν, δ) < 0, where

Ĵ (z, ν, δ)= ã

[
− α1

(
�z1�

1
1−d−z2

)(
�z1 + ννmax�

1
1−d−z2

)

+
(
−z1+(1+β) �z2�1−d

)(
−α2

α1
�z1+ννmax�

1+d
1−d +

δδmax

L2α1

)]

+ α2
1|z2|2 −

(
γ̂

L

)2 (
|ν| 2

1−d + |δ| 2
1+d

)
(6)

and its maximum w.r.t. δ can be obtained at

δ∗ =

⌈
δmax

ã(1 + d)

2α1γ2

(
−z1 + (1 + β) �z2�1−d

)⌋ 1+d
1−d

. (7)

This is calculated by solving ∂
∂δJ (z, ν, δ) = 0 for δ and

observing that the second derivative is negative for δ �= 0.

We define J̃ as Ĵ evaluated at δ = δ∗, i.e. J̃ (z, ν; γ) =

Ĵ (z, ν, δ)
∣∣∣
δ=δ∗

and are able to calculate the L2h-gain esti-

mate γ̂ via Prop. 1 of [12]. Figure 3 illustrates the effect

Figure 3: Homogeneous L2-gain estimates γ̂ over gain-

scaling L for homogeneity degrees d ≤ 0.

of L on γ̂ for various homogeneity degrees d. We observe

the existence of an optimal scaling L∗ that minimizes γ̂ for

each d. Apparently, the value of L∗ reduces for decreasing

homogeneity degrees d < 0. Still, the minimum γ̂∗ of L2h-

gain estimate γ̂ remains in the same order of magnitude. In

the linear case (d = 0), the actual L2-gain coincides with

the H∞-norm and is shown as well. Although its minimum

occurs at a different value of L, the magnitude is similar to its

estimate. Note that for d �= 0 the actual L2h-gain cannot be

calculated yet. The only consistent metric to compare various

homogeneity degrees is, therefore, its estimate γ̂.

According to Fig. 3 and [12, Thm. 2], a minimization

of the L2h-gain estimate w.r.t. gain-scaling L is possible.

For this purpose, we utilize a bisection algorithm and obtain

the respective optimum values of γ̂∗ and L∗ in Fig. 4. We

observe a minimum estimate of γ̂∗ = 0.37 at d ≈ −0.4
with L∗ = 14.95. Note that the previously designed high-

gain scaling L∗
hg leads to the significantly higher estimate γ̂hg

Figure 4: Minimizing gain-scaling L∗ and respective L2h-gain

estimates γ̂∗ for various homogeneity degrees d ≤ 0 and for

the high-gain case of Sec. V-A.



also shown in Fig. 4. Having obtained minimizing gain-

scalings L∗ for various homogeneity degrees, we evaluate the

differentiators at the hydraulic system to estimate the velocity

from noisy position measurements.

C. Evaluation
For comparison of the differentiators, we utilize the

full-order simulation model provided by [13] within Mat-

lab/Simulink® and a fixed-step solver (τ = 0.0005 s). Band-

limited white noise with appropriate power (i.e. fitting to the

measurements) is added to the cylinder output position. Thus,

noise-free velocity data from simulation can be compared to

the differentiated noisy position data. The evaluation metrics

are chosen as maximum absolute error and root-mean-square

(RMS) error defined as

ymax = max
i=1,...,N

|yi| and yRMS =

(
1

N

N∑
i=1

y2i

) 1
2

,

where N is the number of measurements and yi = y(iτ). Note

that these are of special interest, since the RMS error coincides

with a normalized two-norm, whereas the maximum absolute

error directly relates to the infinity-norm.
The excitation signals described in Sec. IV are applied

to the full-order model and lead to the noisy position data.

We compare differentiators with various homogeneity degrees,

where the linear case (d = 0) is further compared to the

optimal high-gain scaling L∗
hg. The results for sinusoidal

excitation at distinct frequencies fsin = 0.1, . . . , 10Hz are

summarized in Fig. 5. As expected for the linear case (black)

the error metrics are frequency-dependent, i.e. better perfor-

mance is achieved for smaller frequencies. Furthermore, the

L∞-optimal tuning yields better high-frequency results due

to its higher value of L∗. Given the present choice of gain-

scalings, the benefit of a nonzero homogeneity degree d < 0
is visible for higher frequencies only. The band-limited noise

yields more distributed maximum error metric. Still, similar

conclusions can be drawn.

Table I: Minimizing gain-scalings L∗ and resulting RMS

yRMS,i and maximum absolute error ymax,i metrics for the

multi-sine (i = 1) and linear sweep (i = 2) excitation signals.

d 0 (HG) 0 −0.2 −0.4 −0.6 −0.8
L∗ 104.33 58.91 27.72 14.95 9.27 7.13

yRMS,1 0.019 0.024 0.020 0.018 0.019 0.024

ymax,1 0.088 0.102 0.092 0.085 0.086 0.110

yRMS,2 0.020 0.026 0.021 0.019 0.020 0.024

ymax,2 0.084 0.087 0.084 0.086 0.090 0.116

The results for the remaining excitation signals are summa-

rized in Table I. As expected from Fig. 4, the best RMS error

metric is achieved with homogeneity degree d = −0.4. Still,

the L∞-optimal scaling (HG) yields comparable results and

indicates that the L2h-optimal approach is highly dependent on

the chosen storage function V leading to γ̂∗ at L∗ as pointed

out by [11], [12]. Apparently the homogeneity degree plays

only a minor role for the presented metrics of Tab. I, given

the optimal gain-scaling L∗ for each case.
Having compared the differentiators by means of the full-

order simulation model and knowing the model precision [13],

(a) RMS error values yRMS.

(b) Maximum absolute error ymax.

Figure 5: Differentiation estimation error metrics for sinusoidal

excitation with f ∈ F for various homogeneity degrees d,

including the linear case (d = 0) and high-gain differentiator

(HG). The gain-scalings L∗ correspond to Tab. I.

[14], these results can be extended easily to the measurement

data. To recapitulate an exemplary experiment of Sec. IV,

we pick a homogeneous differentiator with d = −0.4 and

L∗ = 14.95 to differentiate the position measurement. As a

comparison, the acceleration measurements are integrated once

and the linear drift is removed. The results are shown in Fig. 6

and fit the previous observations.

Figure 6: Velocity estimation from noisy data by applying the

homogeneous differentiator to the position measurement and

integrating the acceleration data of Fig. 2, respectively.

D. Acceleration Disturbance

On top of the previous results, we consider the detection

of an acceleration disturbance. As discussed in Sec. III, the

accelerometer detects acceleration w.r.t. the inertial system,



while the linear potentiometer measures the relative cylinder

position. Thus, if an acceleration disturbance acts on the plant,

it remains invisible only in the measured position.

When the plant is excited by the linear sweep described in

Sec. IV, parasitic oscillations of the test setup can be observed.

These are aimed to be detected in the following. For that

purpose, we apply the differentiator with d = −0.4, according

to Tab. I, twice to the position measurements and compare

the frequency spectra of the acceleration measurement ẍ with

the twice differentiated position signal as depicted in Fig. 7.

The plant input with constant frequency spectrum is shown

Figure 7: Frequency spectra of the cylinder acceleration mea-

surement and estimation by differentiation of the position

measurement for a linear sweep excitation.

as well. Since the poles of the nominal model [15] are two

orders of magnitude faster than the excitation frequency range,

we do not expect peaks in the presented frequency spectrum.

This coincides with the double differentiation of the relative

cylinder position signal x. Hence, the peak of the acceleration

measurements ẍ coincides with the frequency fp ≈ 4.75Hz of

the parasitic oscillations, i.e. the test bench’s eigenfrequency.

This allows detection of parasitic oscillations, while over lower

frequency range the spectra of the measurement and double

differentiation are inline with each other.

VI. CONCLUSIONS

Designing continuous homogeneous differentiators of var-

ious degrees d ∈ (−1, 0] for the present setup is based on

the minimization of the homogeneous L2-gain from measure-

ment noise and disturbance on the differentiation estimation

error. With the bounds on noise and disturbance from the

measurement data, a recent approach is adapted to the present

hydraulic system. It turns out that not only a minimum of the

estimated L2h-gain exists with respect to the gain-scaling L,

also a minimizing homogeneity degree of d ≈ −0.4 can be

observed. The differentiation of noisy position measurements

yields reasonable results for excitation signals in a relatively

broad frequency range of two decades, and is in accord with

the expectations. A further application of the differentiator

allows to detect the frequency of an acceleration disturbance

in the system structure.
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