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Abstract—Though it is common in network control systems
that the sensor and control signals are transmitted via a common
communication network, no result is available in investigating the
stabilization problem for uncertain nonlinear systems with both
input and state quantization. The issue is solved in this paper,
by presenting an adaptive backstepping based control algorithm
for the systems with sector bounded input/state quantizers. In
addition to overcome the difficulty to proceed recursive design
of virtual controls with quantized states, the relation between the
input signal and error state need be well established to handle
the effects due to input quantization. It is shown that all closed-
loop signals are ensured uniformly bounded and all states will
converge to a compact set. Experimental results are provided to
validate the effectiveness of the proposed control scheme.

Keywords: Adaptive control, Backstepping, state/input quan-
tization, nonlinear systems.

I. INTRODUCTION

Quantized control has attracted considerable attention in
recent years, due to its theoretical and practical importance
in network control systems [1], [2]. A great number of repre-
sentative results have been reported on analysis and control of
quantized feedback systems, as can be observed in [3]–[11],
[18], [19]. However, most of the results are concerned with
either input quantization or state quantization.

For example, the stabilization problem of systems with
exact dynamics and input quantization has been studied in [3],
[12]–[14]. As we know, system uncertainties and nonlinearities
inevitably exist in physical systems. Adaptive approaches [4],
[6], [8], [9], [15]–[17], [20] are usually employed to investigate
the control problem for uncertain systems with input quanti-
zation. In [4] and [15], adaptive quantized control schemes for
uncertain systems are proposed, where the hysteresis quantizer
is originally designed. The system stability condition in [4]
and [15] is closely dependent on the designed control signal,
however it is not easy to check whether the condition is
satisfied or not beforehand. This limitation is removed in [6],
where an adaptive backstepping control scheme is proposed
for uncertain strict-feedback nonlinear systems. However, the
nonlinear functions are assumed to satisfy global Lipschitz
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conditions. Such restrictive conditions are relaxed in [16] and
[17]. In [16], an implicit adaptive controller is developed for
the system, where unknown parameters only appear in the last
differential equation of the dynamic model. Nevertheless, it is
not easy to obtain explicit controller since an equation related
to a hyperbolic tangent function needs to be solved. In [17], a
hyperbolic function is introduced into the adaptive controller
to compensate the effect of input quantization. Similarly,
a novel smooth function is adopted in [8] to generate the
controller which can eliminate the effects of input quantization
and actuator faults. In [9], a control algorithm for stochastic
strict-feedback nonlinear systems with input quantization is
developed based on fuzzy adaptive technique. In [20], the
finite-time tracking control problem for quantized nonlinear
systems is studied from the output feedback perspective.

Lately, the control problem of a system with state quan-
tization is also deeply studied in [5], [10], [22], [23]. Note
that the system dynamics in these works are precisely known.
For uncertain linear systems, an adaptive supervisory control
scheme has been presented in [24]. In [25], the control
problem for linear systems with quantized measurements
and bounded disturbances is considered, where an adaptive
controller is designed. Adaptive backstepping technique has
proven to be an effective tool to treat high-order systems
with parametric uncertainties [26]–[28]. Fruitful results have
also been reported on adaptive backstepping control of un-
certain nonlinear systems with input quantization [6], [8],
[16], [17]. However, adaptive backstepping control results to
address uncertain systems with state quantization are very
limited. The major challenge lies in that the differentiability
of virtual control inputs is required. When quantized states
are adopted directly to design virtual control in previous step,
the signal is non-differentiable which makes the subsequent
backstepping design steps be difficult to follow. Recently, an
effective adaptive backstepping control scheme is proposed
for uncertain nonlinear system with state quantization in [11],
where the quantization errors of transmitted state are bounded
by certain constants.

This paper is concerned with the adaptive backstepping
control problem for uncertain nonlinear systems with both
state and input quantization. So far, only a few works have
been reported to handle the issue with simultaneous existence
of quantizers in both uplink and downlink communication
channels of networked control systems. References [29]–
[32] are some examples, however only linear systems are
considered. Such a problem is important as it is common in
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general networked systems that the sensor and the controller
are connected via a shared communication network. In such
networked control system, the state measurements and control
signals are often processed both by quantizers. The main
contributions of this paper are summarized as follows.
• The stabilization problem for a class of uncertain high-

order nonlinear systems with both input and state quantization
is investigated and a backstepping based adaptive control
solution is provided. Compared with the existing results inves-
tigating only input quantization, the main challenge is that only
quantized states can be utilized to construct the virtual control
signal in each recursive step. Hence the virtual controls are
discontinuous, of which the derivatives cannot be computed
as often done in standard backstepping design procedure [26].
To overcome the difficulty, differentiable virtual controls are
firstly designed by assuming the states are not quantized. Their
partial derivatives multiplied by the quantized states are then
utilized to complete the design of virtual controls for the case
of state quantization.
• Note that some techniques are also presented in [11]

to handle the effects of state quantization. However, only
bounded error quantizers are considered in [11]. By contrast, a
more general type of input/state sector bounded quantizers are
considered in this paper. Since the quantization errors depend
on the inputs of quantizers, they cannot be ensured bounded
automatically. This constitutes as the main challenge to handle
the effects of input and state quantizers in stability analysis.
By well establishing the relation between the input signal and
error state, the closed-loop system stability can be achieved
by choosing proper design parameters.

For easier reading, we provide a description of the symbols
used in this paper.

TABLE I
LIST OF THE SYMBOLS USED IN THIS PAPER

Symbols Description
xi, i = 1, . . . , n states of the system
ψ(·) and φ(·) known nonlinear functions
θ unknown system parameter
u(t) control input
Lψ and Lφ globally Lipschitz constants
Lθ upper bound of system parameter θ
Qi(·), i = 1, 2 generalized quantizer
xq = Qi(x) quantized signal of variable x
δi and ∆i, i = 1, 2 quantization parameters
ci, i = 1, . . . , n and Γ design parameters

L(·), ∆1
(·) and ∆2

(·)

some constants related to design
parameters, quantization parameters
and system parameters Lψ , Lφ, Lθ

II. PROBLEM STATEMENT

In this paper, a quantized feedback system is considered, as
shown in Fig. 1. The system under consideration is represented
by

x(n)(t) = ψ
(
x(t), ẋ(t), . . . , x(n−1)(t)

)
+φT

(
x(t), ẋ(t), . . . , x(n−1)(t)

)
θ + u(t),(1)

where x(i)(t) ∈ <1, i = 0, 1, . . . , n − 1 are the states of the
system. u(t) ∈ <1 is the control input. ψ ∈ <1 and φ ∈ <r
are known nonlinear functions. θ ∈ <r denotes the vector
of constant parameters, which are assumed to be unknown.
This class of uncertain nonlinear systems have been widely
investigated in [27], [33], [34].

System State 
Quantizer

ControllerInput 
Quantizer 

Network

Fig. 1. Input and state quantized control systems

The states x̄(t) = [x(t), ẋ(t), . . . , x(n−1)(t)]T and the
designed control signal v(t) are quantized at the encoder side.
The two quantizers are modeled as follows.

x̄q(t) =Q1(x̄(t)) = [Q1(x), Q1(ẋ), ..., Q1(x(n−1))]T (2)
u(t) =Q2(v(t)) (3)

For system (1), the conditions of the existence and uniqueness
of solution are assumed to be satisfied. To generate control
laws, we impose the following assumptions.

Assumption 1. The functions φ and ψ are globally Lipschitz
continuous. That is,

|ψ(y1)− ψ(y2)| ≤ Lψ ‖ y1 − y2 ‖ (4)
‖ φ(y1)− φ(y2) ‖ ≤ Lφ ‖ y1 − y2 ‖ (5)

where Lψ and Lφ are positive constants, y1, y2 ∈ <n are real
vectors.

Assumption 2. The unknown parameter vector θ falls within
a known compact convex set Cθ such that ‖ θ ‖≤ Lθ for any
θ ∈ Cθ and a positive constant Lθ.

The control objective is to design a quantized controller
u = Q2(v) with an appropriate adaptive control law for v(t)
in system (1) by using only quantized states x̄q = Q1(x̄) such
that all the closed-loop signals are uniformly bounded.

In this paper, sector bounded quantizers are considered,
which have the following property.

|Qi(y)− y| ≤ δi ‖ y ‖ +∆i, i = 1, 2 (6)

where y, Qi(y) represent the input and output of the quantizer
Qi, respectively. 0 < δi < 1 and ∆i > 0 are quantization
parameters. It can be shown that logarithmic quantizer and
hysteresis quantizer in [6], [35] satisfy the property (6).
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III. DESIGN OF ADAPTIVE BACKSTEPPING CONTROLLER

Define a group of new variables as x1 = x, xi =
x(i−1), i = 2, 3, . . . , n. System (1) can be rewritten as

ẋi = xi+1, i = 1, ..., n− 1

ẋn = u(t) + ψ(x1, ..., xn) + θTφ(x1, ..., xn)

= u(t) + ψ(x̄) + θTφ(x̄) (7)

where x̄ = [x1, x2, ..., xn]T . u(t) is the quantized input with
u(t) = Q2(v(t)), where v(t) denotes the control input to be
designed by utilizing only quantized states x̄q = Q1(x̄).

• If the states x̄ and input v are not quantized, v0 and
θ̂0 are adopted to denote the final control input and
parameter estimator introduced for the unknown vector
θ. The adaptive controller can be designed by applying
standard backstepping design technique in [26].

Introduce the change of coordinates as

z1 = x1 (8)
zi = xi − αi−1, i = 2, . . . , n. (9)

αi−1 is the virtual control function chosen as follows for each
step i, which is a function of x1, .., xi−1.

α1 = −c1z1 (10)

αi = −cizi − zi−1 +

i−1∑
k=1

∂αi−1

∂xk
xk+1, i = 2, . . . , n (11)

where ci, 1 ≤ i ≤ n, are positive constant design parameters.

Remark 1. It can be shown by induction proof that ∂αi

∂xk
,

k = 1, . . . , i are constants depending on c1, . . . , ci. For
i = 1, ∂α1

∂x1
= −c1. For i = 2, ∂α2

∂x1
= −1 − c1c2 and

∂α2

∂x2
= −c1 − c2. Suppose that ∂αi−1

∂xk
, k = 1, . . . , i − 1

and ∂αi−2

∂xk
, k = 1, . . . , i − 2 are constants depending on

c1, . . . , ci−1 and c1, . . . , ci−2, respectively. Then for αi =

−ci(xi−αi−1)−(xi−1−αi−2)+
i−1∑
k=1

∂αi−1

∂xk
xk+1, i = 3, . . . , n,

we have
∂αi
∂x1

= ci
∂αi−1

∂x1
− ∂αi−2

∂x1

∂αi
∂xk

= ci
∂αi−1

∂xk
− ∂αi−2

∂xk
+
∂αi−1

∂xk−1
, k = 2, . . . , i− 1

∂αi
∂xi

= −ci +
∂αi−1

∂xi−1
.

Clearly, ∂αi

∂xk
, k = 1, . . . , i are constants depending on

c1, . . . , ci.

The final control v0 is chosen as

v0 = αn − ψ(x̄)− θ̂T0 φ(x̄) (12)
˙̂
θ0 = Γφ(x̄)zn (13)

where Γ is a positive definite matrix.
Define an estimation error as θ̃0 = θ − θ̂0. Considering the

Lyapunov function

V0 =

n∑
i=1

1

2
z2
i +

1

2
θ̃T0 Γ−1θ̃0 (14)

whose derivative can be computed as

V̇0 = −
n−1∑
i=1

ciz
2
i + zn

(
αn + θ̃T0 φ(x̄) + zn−1 − α̇n−1

)
−θ̃T0 Γ−1 ˙̂

θ0

= −
n∑
i=1

ciz
2
i (15)

Thus based on [26], it implies that all the signals are uniformly
bounded.

• When state xi(t) is quantized with the quantizer Q1(xi),
the quantized state is defined as

xqi = Q1(xi), i = 1, 2, ..., n (16)

Thus x̄q(t) in (2) satisfies that x̄q(t) = [xq1(t), . . . , xqn(t)]T .
To facilitate the adaptive controller design, the quantized input
u(t) is factored into the following form.

u(t) = Q2(v(t)) = v(t) + du(t) (17)

where du = u(t)− v(t) ∈ <1. v(t) denotes the control input
to be designed by using the quantized states x̄q . Due to the
property of considered quantizer in (6), the nonlinear part
du(t) satisfies the following property.

|du(t)| ≤ δ2|v(t)|+ ∆2 (18)

Define the error variables as

zq1 = xq1 (19)
zqi = xqi − α

q
i−1, i = 2, ..., n (20)

where

αq1 = −c1zq1 (21)

αqi = −cizqi − z
q
i−1 +

i−1∑
k=1

∂αi−1

∂xk
xqk+1, i = 2, ..., n (22)

where ci are positive constants. The adaptive controller is
designed as

u(t) = Q2(v) (23)

v(t) = αqn − ψ (x̄q)− θ̂Tφ (x̄q)

= −cnzqn − z
q
n−1 +

n−1∑
k=1

∂αn−1

∂xk
xqk+1

−ψ (x̄q)− θ̂Tφ (x̄q) (24)
˙̂
θ = Proj{Γφ(x̄q)zqn} (25)

where θ̂ is the parameter estimator introduced for unknown
vector θ, Γ is a positive definite matrix, Proj{·} is the
projector operator given in [26]. Note that similar to [11],
the partial derivatives ∂αn−i

∂xk
, i = 1, . . . , n − 1, which are

calculated from functions αi designed as (11) for the case if
states and input are not quantized, are adopted to design αqi ,
i = 2, . . . , n in (22).

Remark 2. Note that only the quantized measurable states
xqi = Q1(xi), i = 1, ..., n can be utilized to generate the
virtual control αqi in (22), final control signal v in (24) and



4

the parameter updating law in (25). If we follow standard
backstepping design procedure in [26], αqi in (22) will be
designed in the form of −cizqi − zqi−1 + α̇qi−1. However,
since αqi−1 involves quantized states xqi−1, αqi−1 becomes
discontinuous and its derivative cannot be computed. This
obstacle is removed by not differentiating αqi in the process
of adaptive control design. Instead, αqi in (22) is constructed

by utilizing the derivative terms
i−1∑
k=1

∂αi−1

∂xk
xqk+1. As seen from

Remark 1, the partial derivatives ∂αi−1

∂xk
can be calculated

because the virtual control αi, designed for the case if the
states are not quantized, is differentiable in xk.

Remark 3. Note that the projector operator Proj{·} is used
in the parameter estimator (25) to ensure that ‖ θ̂ ‖ ≤ Lθ.
Let θ̃ = θ − θ̂. It is also ensured that ‖ θ̃ ‖≤ Lθ. It is
worth mentioning that the boundedness of θ, θ̂ and θ̃ and
the following property

−θ̃TΓ−1Proj{τ} ≤ −θ̃TΓ−1τ,∀θ̂ ∈ Cθ, θ ∈ Cθ. (26)

are helpful to guarantee the closed-loop system stability.

IV. STABILITY ANALYSIS

To analyze the closed-loop system stability, we first estab-
lish some preliminary results in the form of the following
lemmas. The proofs are given in Appendix A and Appendix
B, respectively.

Lemma 1. The state x̄ = [x1, ..., xn]T , x̄q = [xq1, . . . , x
q
n]T ,

and the control v(t) in (24) satisfy the following inequalities:

‖ x̄ ‖ ≤ Lx ‖ z ‖ (27)
‖ x̄q ‖ ≤ (1 + δ1)Lx ‖ z ‖ +∆1 (28)
|v| ≤ Lv ‖ zq ‖ (29)

where z = [z1, . . . , zn]T , zq = [zq1 , . . . , z
q
n]T . Lx and Lv are

positive constants defined as follows, which relate to the design
parameters c1, ..., cn.

Lx ,

(
n∑
i=1

L2
xi

) 1
2

(30)

Lv , Lαn + LψLx + LθLφLx, (31)

where

Lα1 , c1, Lx1,1 (32)
Lxi , 1 + Lαi−1 , i = 2, . . . , n (33)

Lαi , ci + 1 +

i−1∑
k=1

∣∣∣∣∂αi−1

∂xk

∣∣∣∣Lxi
, i = 2, . . . , n. (34)

Lemma 2. The effects of state quantization are bounded by
functions of z as follows:

|ψ (x̄q)− ψ(x̄)| ≤ ∆1∆1
ψ + δ1∆2

ψ ‖ z ‖ (35)

‖ φ (x̄q)− φ(x̄) ‖ ≤ ∆1∆1
φ + δ1∆2

φ ‖ z ‖ (36)

|zqi − zi| ≤ ∆1∆1
zi + δ1∆2

zi ‖ z̄i ‖, i = 1, . . . , n
(37)

|αqi − αi| ≤ ∆1∆1
αi

+ δ1∆2
αi
‖ z̄i ‖, i = 1, . . . , n

(38)

‖ zq − z ‖ ≤ ∆1∆1
z + δ1∆2

z ‖ z ‖ (39)

where z̄i = [z1, . . . , zi]
T , and

∆1
ψ , Lψ,∆

2
ψ , LψLx (40)

∆1
φ , Lφ,∆

2
φ , LφLx (41)

∆1
z1 = ∆2

z1 , 1 (42)

∆1
α1

= ∆2
α1

, c1 (43)

∆1
zi , 1 + ∆1

αi−1
, i = 2, . . . , n (44)

∆2
zi , Lxi + ∆2

αi−1
, i = 2, . . . , n (45)

∆1
αi

, ci∆
1
zi + ∆1

zi−1
+

i−1∑
k=1

∣∣∣∣∂αi−1

∂xk

∣∣∣∣ , i = 2, . . . , n (46)

∆2
αi

, ci∆
2
zi + ∆2

zi−1
+

i−1∑
k=1

∣∣∣∣∂αi−1

∂xk

∣∣∣∣Lxk
, i = 2, . . . , n

(47)

∆j
z ,

(
n∑
i=1

(
∆j
zi

)2)1/2

, j = 1, 2 (48)

Based on Lemmas 1 and 2, the main results of this paper
can be formally stated in the following theorem.

Theorem 1. Consider the closed-loop system consisting of
system (1) with state quantization (2) and input quantization
(3) satisfying the property (6), the designed adaptive controller
(23)-(24) and parameter estimator update law (25). If the
design and quantization parameters satisfy

c− δ2β1 − δ1β2 −
5∑
i=1

ri ≥ ε > 0, (49)

where

c , min{c1, c2, ...cn−1, cn} (50)
β1 , Lv(1 + δ1∆2

z) (51)
β2 , ∆2

αn
+ ∆2

ψ +B2, (52)

ε, ri(i = 1, . . . , 5) are positive constants. The following results
can be guaranteed.

1) All the closed-loop signals are uniformly bounded.
2) The stabilization error ‖ z(t) ‖ is ultimately bounded as

follows

‖ z(t) ‖≤
√
M

ε
(53)

where

M ,
(∆2)2

4r1
+

(δ2Lv∆1∆1
z)

2

4r2
+

(∆1∆1
αn

)2

4r3

+
(∆1∆1

ψ)2

4r4
+

(∆1)2(B1)2

4r5
+ (∆1)2B0 (54)

with

B0 , Lθ∆
1
φ∆1

zn (55)

B1 , Lθ∆
1
φ + LθLφδ1∆2

zn + LθLφ(1 + δ1)Lx∆1
zn (56)

B2 , Lθ∆
2
φ + LθLφ(1 + δ1)Lx∆2

zn . (57)
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Proof. The Lyapunov function for the entire closed-loop sys-
tem is defined as

V =

n∑
i=1

1

2
z2
i +

1

2
θ̃TΓ−1θ̃, (58)

where zi is given in (8)-(9) and θ̃ = θ − θ̂. From (23)-(25),
the derivative of V is calculated as

V̇ = −
n−1∑
i=1

ciz
2
i + zn−1zn − θ̃TΓ−1 ˙̂

θ

+zn

(
v(t) + du − αn + αn + ψ + φT θ − α̇n−1

)
= −

n−1∑
i=1

ciz
2
i − θ̃TΓ−1 ˙̂

θ + zn

(
αqn − ψ(x̄q)− θ̂Tφ(x̄q)

−αn + αn + ψ + θTφ− α̇n−1 + zn−1 + du

)
= −

n−1∑
i=1

ciz
2
i + zn

(
αn − α̇n−1 + zn−1

)
+zndu + zn

(
αqn − αn

)
+ zn

(
ψ(x̄)− ψ(x̄q)

)
+zn

(
θTφ(x̄)− θ̂φ(x̄q)

)
− θ̃TΓ−1 ˙̂

θ

≤ −
n∑
i=1

ciz
2
i + |zn||αqn − αn|+ |zn||ψ(x̄)− ψ(x̄q)|

+|zndu|+
(
θTφ(x̄)zn − θ̂Tφ(x̄q)zn − θ̃Tφ(x̄q)zqn

)
(59)

Using the properties (5), (6), (28) in Lemma 1, and (36) and
(37) in Lemma 2, the last three terms in (59) satisfies the
following inequality

θTφ(x̄)zn − θ̂Tφ(x̄q)zn − θ̃Tφ(x̄q)zqn

= θTφ(x̄)zn − θTφ(x̄q)zn + θ̃φ(x̄q)zn − θ̃φ(x̄q)zqn

≤ ‖ θ ‖ |zn| ‖ φ(x̄)− φ(x̄q) ‖ + ‖ θ̃ ‖‖ φ(x̄q) ‖ |zn − zqn|
≤ Lθ‖z‖(∆1∆1

φ + δ1∆2
φ‖z‖)

+LθLφ‖x̄q‖(∆1∆1
zn + δ1∆2

zn‖z‖)
≤ (∆1)2B0 + ∆1B1 ‖ z ‖ +δ1B2 ‖ z ‖2 (60)

where Bj , j = 0, 1, 2, are defined in (55)-(57).
Using (18) and the properties (29), (39), the term |zndu| in

(59) satisfies

|zndu| ≤ ∆2|zn|+ δ2|zn||v|
≤ ∆2|zn|+ δ2|zn|Lv ‖ zq ‖
≤ ∆2|zn|+ δ2|zn|Lv(‖ z ‖ +∆1∆1

z + δ1∆2
z ‖ z ‖)

≤ δ2Lv(1 + δ1∆2
z) ‖ z ‖2 +(∆2 + δ2Lv∆1∆1

z)‖z‖
(61)

Using the properties (35), (38), (60), (61) and the Young’s
inequality with positive parameter r (i.e. |ab| ≤ ra2 + b2

4r ),
(59) is further computed as

V̇ ≤ −
n∑
i=1

ciz
2
i + δ2Lv(1 + δ1∆2

z) ‖ z ‖2

+(∆2 + δ2Lv∆1∆1
z) ‖ z ‖ +∆1∆1

αn
|zn|

+δ1∆2
αn
‖ z ‖2 +∆1∆1

ψ|zn|+ δ1∆2
ψ ‖ z ‖2

+(∆1)2B0 + ∆1B1 ‖ z ‖ +δ1B2 ‖ z ‖2

≤ −

(
c− δ2β1 − δ1β2 −

5∑
i=1

ri

)
‖ z(t) ‖2 +M

≤ −ε ‖ z(t) ‖2 +M (62)

where the inequality c−δ2β1−δ1β2−
∑5
i=1 ri ≥ ε > 0 in (49)

has been used. ε, ri(i = 1, . . . , 5) are positive constants and
c, β1, β2, M are defined in (50), (51), (52), (54), respectively.
It is shown from (62) that V̇ < 0, ∀ ‖ z(t) ‖>

√
M
ε . Thus

the ultimate bound of z(t) satisfies (53).
From (39) and the boundedness of z, zq is bounded. Thus

xq1 and αq1 in (21) is bounded. From (20), xq2 is bounded.
Thus αq2 is bounded. By the same token, the boundedness of
xqi and αqi for i = 3, . . . , n can be shown. The boundedness
of θ̂ is ensured by the projection operator (25) as discussed in
Remark 3. Based on Assumption 1, it implies that v(t) in (24)
is bounded. Therefore, the boundedness of all the closed-loop
signals can be ensured.

Remark 4. Though it is naturally motivated by the fact
that measurement and control signals are transmitted via
a common network in networked systems, only a few
results have been developed for linear systems with both
quantizations [30]–[32]. So far, no result is available for
uncertain nonlinear systems. The compensation is a non-
trivial work compared to the exsiting results investigating
input quantization solely including [6], [8], [9], [16],
[17], [20], [21]. The main challenge and key technique to
design adaptive backstepping controller [26] for uncertain
higher-order systems with quantized states are discussed in
Remark 2.

Note that similar technique of using derivatives∑i−1
k=1

∂αi−1

∂xj
xqk+1 in the design with quantized states is

also presented in [11]. However, input quantization is not
considered in [11], and the state quantizer satisfies the
bounded error property, i.e. |Q1(xi) − xi| ≤ ∆1. It refers a
special case that δi = 0 for (6) in this paper. As emphasized
in [17], compared to the bounded error quantizers, the sector
bounded quantizers have unequal quantization levels and are
the coarsest quantizers which minimize the average rate of
communication instances and are easy to implement.

Since the quantization errors depend on the inputs of
quantizers, they cannot be ensured bounded automatically.
This constitutes as the main challenge to handle the effects
of both state and input quantization in stability analysis.
This results in the input quantization error depending on the
control signal v as in (18), hence the effect of quantized input
cannot be simply treated as bounded disturbance term. The
key step to handle the effect of input quantization Q2(v) is
to establish the relation between the control signal v and the
system state z by showing the property (29) in Lemma 1 and
(39) in Lemma 2.

Since only quantized states [xq1, ..., x
q
n]T can be adopted

in control design, the key step to compensate for the effect
of state quantization in stability analysis is to compensate
for the effects of the terms zn(αqn − αn), zn(ψ(x̄) − ψ(x̄q))
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and (θTφ(x̄)zn − θ̂Tφ(x̄q)zn − θ̃Tφ(x̄q)zqn) in (59). By
establishing the properties (27), (28) in Lemma 1 and
(35)-(38) in Lemma 2, these terms can be bounded by the
functions related to the state z. Thus all these effects of the
last six terms in (59) can be compensated as shown in (62)
if the condition (49) is satisfied.

Remark 5. Note that the inequality (49) provides some in-
sights on how to choose the quantization parameters δ1 and δ2.
It implies that the number of quantization levels for δi is finite
since all the closed-loop signals are bounded. Besides, β1 and
β2 are computable from the definitions (51) and (52), which
depends on the design parameters ci, the system parameters
in Lemma 1 and Lemma 2, and Lψ , Lφ which are assumed
to be known in Assumption 1.

Remark 6. Another important difference between current
paper and [11] lies in the adoption of projection technique in
the design of adaptive law (25). Thus the boundedness of ‖θ̃‖
can be ensured. Considering the case with both input and state
quantizers satisfying bounded error property as mentioned in
Remark 4, by following similar analysis in Section IV, the
closed-loop system stability can be shown. In particular, all
the terms involving ‖z‖2 as derived in (60) and (61) will be
absent since δi = 0 in this case. Then the result in the form
of V̇ ≤ −ε‖z‖2 + M can be obtained without the need of
a sufficient condition related to the control and quantization
parameters. This also constitutes as one major improvement
achieved in this paper with comparison to [11] in the case of
bounded error quantizers.

Remark 7. It can be observed from (54)-(56) that the upper
bound of the stabilization error in the sense of (53) can
be decreased if the quantization parameters δi and ∆i are
decreased while all design parameters ci are kept unchanged.
One limitation of this paper is that only sufficient condition of
closed-loop system stability is provided, whereas no explicit
supremum of the stabilization error accurately characterizing
its value range is derived. Hence, further investigation is
required to make the theoretical results be less conservative
in practical application.

V. EXPERIMENTAL RESULTS

To validate the effectiveness of the presented adaptive
control scheme, experimental studies have been conducted
based on a hardware-in-the-loop platform established with a
two-wheeled robot (Quanser Qbot 2e) and positioning system
as illustrated in Fig. 2.

The positioning

system

The mobile 

robot

The measurements 

of robot position 

and velocity

The quantized

control torque

The computer

The position and 

velocity

Fig. 2. The hardware-in-the-loop experimental platform.

The kinematic model of the mobile robot is given below
[36].

η̇ =

 cosψ 0
sinψ 0

0 1

[ v
ω

]
(63)

where v and ω are the linear and angular velocities applied to
the robot, respectively. η = [x, y, ψ]T represents the vector of
position and orientation. To validate the theoretical results, we
set the angular velocity at ω(t) = 0 and the initial value of
ψ(t) at ψ(0) = 0. Thus ψ(t) = 0, y(t) = 0, ∀t ≥ 0. Besides, a
virtual dynamic system is constructed in the computer for v as
v̇ + θv2 = ql(u(t)), where θ is the damping coefficient, u(t)
is the control torque, ql(·) represents the input quantization
function. Combining the dynamics of the states x and v, the
simplified model characterizing one-dimensional movement of
the robot along x axis is given as follows.

ẋ =v (64)

v̇ =− θv2 + ql(u(t)) (65)

In the experiment, the control objective is to regulate x(t)
at a desired fixed point xs = 1. θ = 0.1 is supposed to be
unknown. Besides, only the quantized states ql(x) and ql(v)
can be adopted to design the control torque u(t). All the initial
conditions are chosen at 0, i.e. x(0) = v(0) = θ̂(0) = 0. The
designed control parameters are chosen as c1 = 1.5, c2 = 0.9,
Γ = 0.1 and Lθ = 0.2. The logarithmic quantizers introduced
in [6] with quanzation parameters δ = 0.06, ymin,state =
0.04 and ymin,input = 0.08 are adopted to quantize the states
(x(t), v(t)) and control torque (u(t)). It can be checked
that condition (28) is satisfied with the designed control and
quantization parameters. In Fig. 3, 4 and 5, the performance of
position x(t), velocity v(t) and control torque u(t) are given
with comparison to the case without quantization. Clearly, all
the observed states and control torque are bounded in both
cases. Moreover, desired regulation performance is achieved
in the case with both input and state quantization, while the
transmitting cost can be reduced.

(a) x(t) in Case I (b) x(t) and ql(x(t)) in Case II
Fig. 3. The comparison of x(t) for Case I (without quantization) and Case
II (with quantization).

(a) v(t) in Case I (b) v(t) and ql(v(t)) in Case II
Fig. 4. The comparison of v(t) for Case I (without quantization) and Case
II (with quantization).
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(a) u(t) in Case I (b) u(t) and ql(u(t)) in Case II
Fig. 5. The comparison of u(t) for Case I (without quantization) and Case
II (with quantization).

VI. CONCLUSION

In this paper, adaptive backstepping controllers have been
designed for uncertain nonlinear systems with both state and
input quantization. Compared to the existing result on adaptive
backstepping control with quantized states, a more general
sector bounded quantizers are considered. Besides, projection
technique is adopted to modify the design of adaptive law.
Thus the closed-loop system stability can be shown without
the need of sufficient condition dependent on the designed
control and quantization parameters. Note that the nonlinear
functions involved in the system’s dynamics need satisfy
the Lipschitz condition, which is required in many related
references. Moreover, the proposed control method is only
applicable when all the system’s states are measurable. Hence,
it will be an interesting topic to remove the Lipschitz condition
and investigate adaptive quantized control with unmeasurable
states.

APPENDIX A
PROOF OF LEMMA 1

Proof. From the definitions zi in (8)-(9) and αi in (10)-(11),
it can be derived that

|x1| = |z1| (66)

|α1| ≤ c1|z1|
∆
= Lα1

|z1| (67)
|x2| ≤ |z2 + α1| ≤ |z2|+ Lα1 |z1|

≤ (1 + Lα1) ‖ [z1, z2]T ‖∆
= Lx2 ‖ [z1, z2]T ‖ (68)

|α2| ≤ c2|z2|+ |z1|+
∣∣∣∣∂α1

∂x1
x2

∣∣∣∣
≤
(
c2 + 1 +

∣∣∣∣∂α1

∂x1

∣∣∣∣Lx2

)
‖ [z1, z2]T ‖

∆
= Lα2 ‖ [z1, z2]T ‖ (69)

Following the similar procedure for i = 1, 2, .., n−1, we have

|xi| ≤ |zi + αi−1| ≤ |zi|+ Lαi−1 ‖ [z1, ..., zi−1]T ‖
≤ (1 + Lαi−1

) ‖ [z1, z2, ..., zi]
T ‖

, Lxi ‖ [z1, z2, ..., zi]
T ‖ (70)

|αi| ≤ ci|zi|+ |zi−1|+

∣∣∣∣∣
i−1∑
k=1

∂αi−1

∂xk
xk+1

∣∣∣∣∣
≤

(
ci + 1 +

i−1∑
k=1

∣∣∣∣∂αi−1

∂xk

∣∣∣∣Lxi

)
‖ [z1, z2, ..., zi]

T ‖

, Lαi
‖ [z1, z2, ..., zi]

T ‖ (71)

‖ x̄ ‖ =

(
n∑
i=1

x2
i

)1/2

≤

(
n∑
i=1

L2
xi ‖ [z1, z2, ..., zi]

T ‖2
)1/2

≤

(
n∑
i=1

L2
xi

) 1
2

‖ z(t) ‖, Lx ‖ z(t) ‖ (72)

In view of (6), x̄q satisfies

‖ x̄q ‖ ≤ ‖ x̄ ‖ +δ1 ‖ x̄ ‖ +∆1

≤ (1 + δ1)Lx ‖ z ‖ +∆1 (73)

From (19)-(22), by following the analysis in (66)-(72), we
obtain that

|xqi | ≤ Lxi‖[z
q
1 , z

q
2 , . . . , z

q
i ]T ‖ (74)

|αqi | ≤ Lαi
‖[zq1 , z

q
2 , . . . , z

q
i ]T ‖ (75)

‖x̄q‖ ≤ Lx‖zq‖ (76)

From (24) and (74)-(76), we have

|v| ≤ |αqn|+ |ψ(x̄q)|+ ‖ θ̂ ‖‖ φ(x̄q) ‖
≤ Lαn

‖ zq ‖ +Lψ ‖ x̄q ‖ +LθLφ ‖ x̄q ‖
≤ (Lαn

+ LψLx + LθLφLx) ‖ zq ‖, Lv ‖ zq ‖ (77)

APPENDIX B
PROOF OF LEMMA 2

Proof. Using Lipschitz conditions of ψ and φ in Assumption
2, the following expressions can be derived.

|ψ (xq1, .., x
q
n)− ψ(x1, .., xn)|

≤ Lψ ‖ x̄q − x̄ ‖≤ Lψ∆1 + Lψδ1 ‖ x̄ ‖
≤ Lψ∆1 + Lψδ1Lx ‖ z ‖, ∆1∆1

ψ + δ1∆2
ψ ‖ z ‖ (78)

‖ φ (xq1, .., x
q
n)− φ(x1, .., xn) ‖

≤ Lφ ‖ x̄q − x̄ ‖
≤ Lφ∆1 + Lφδ1Lx ‖ z ‖, ∆1∆1

φ + δ1∆2
φ ‖ z ‖ (79)

From (9)-(10), and (22)-(23), it is shown that

|zq1 − z1| = |xq1 − x1| ≤ ∆1 + δ1|x1|
, ∆1∆1

z1 + δ1∆2
z1 ‖ z1 ‖ (80)

|αq1 − α1| = | − c1(zq1 − z1)| ≤ c1∆1∆1
z1 + c1δ1∆2

z1 ‖ z1 ‖
, ∆1∆1

α1
+ δ1∆2

α1
‖ z1 ‖ (81)

|zq2 − z2| = |(xq2 − x2)− (αq1 − α1)|
≤ ∆1 + δ1Lx2

‖z̄2‖+ ∆1∆1
α1

+ δ1∆2
α1
‖ z1 ‖

≤ ∆1∆1
z2 + δ1∆2

z2 ‖ z̄2 ‖ (82)

|αq2 − α2| =
∣∣∣∣−c2(zq2 − z2)− (zq1 − z1) +

∂α1

∂x1
(xq2 − x2)

∣∣∣∣
≤ ∆1

(
c2∆1

z2 + ∆1
z1 +

∣∣∣∣∂α1

∂x1

∣∣∣∣)
+ δ1

(
c2∆2

z2 + ∆2
z1 +

∣∣∣∣∂α1

∂x1

∣∣∣∣Lx2

)
‖ z̄2 ‖

, ∆1∆1
α2

+ δ1∆2
α2
‖ z̄2 ‖ (83)
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where z̄i = [z1, . . . , zi]
T . Along the analysis lines of zi in (9),

αi in (11), zqi in (20), αqi in (22), we have

|zqi (xq1, .., x
q
i )− zi(x1, .., xi)|

=
∣∣(xqi − xi)− (αqi−1 − αi−1)

∣∣
≤ ∆1 + δ1Lxi

‖ z̄i ‖ +∆1∆1
αi−1

+ δ1∆2
αi−1

‖ z̄i−1 ‖
≤ ∆1∆1

zi + δ1∆2
zi ‖ z̄i ‖ (84)

|αqi (x
q
1, .., x

q
i )− αi(x1, .., xi)|

≤
∣∣−ci(zi − zqi )− (zqi−1 − zi−1)

∣∣
+

∣∣∣∣∣
i−1∑
k=1

∂αi−1

∂xk

(
xqk+1 − xk+1

)∣∣∣∣∣
≤ ∆1

(
ci∆

1
zi + ∆1

zi−1
+

i−1∑
k=1

∣∣∣∣∂αi−1

∂xk

∣∣∣∣
)

+ δ1

(
ci∆

2
zi + ∆2

zi−1
+

i−1∑
k=1

∣∣∣∣∂αi−1

∂xk

∣∣∣∣Lxk

)
‖ z̄i ‖

≤ ∆1∆1
αi

+ δ1∆2
αi
‖ z̄i ‖ (85)

‖ zq − z ‖

=

(
n∑
i=1

|zqi − zi|
2

)1/2

≤

(
n∑
i=1

(
∆1∆1

zi

)2)1/2

+

(
n∑
i=1

(
δ1∆2

zi

)2)1/2

‖ z ‖

, ∆1∆1
z + δ1∆2

z ‖ z ‖ (86)

REFERENCES

[1] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback control
under data rate constraints: An overview”, Proceedings of the IEEE,
95(1): 108–137, 2007.

[2] B. R. Andrievsky, A. S. Matveev, and A. L. Fradkov, “Control and
estimation under information constraints: Toward a unified theory of
control, computation and communications”, Automation and Remote
Control, 71(4): 572–633, 2010.

[3] R. W. Brockett and D. Liberzon, “Quantized feedback stabilization of
linear systems”, IEEE Transactions on Automatic Control, 45(7): 1279–
1289, 2000.

[4] T. Hayakawaa, H. Ishii, and K. Tsumurac, “Adaptive quantized control
for linear uncertain discrete-time systems”, Automatica, 45(3): 692–700,
2009.

[5] T. Liu, Z.-P. Jiang, and D. J. Hill, “A sector bound approach to feedback
control of nonlinear systems with state quantization”, Automatica, 48(1):
145–152, 2012.

[6] J. Zhou, C. Wen, and G. Yang, “Adaptive backstepping stabilization
of nonlinear uncertain systems with quantized input signal”, IEEE
Transactions on Automatic Control, 59(2): 460–464, 2014.

[7] Y. Wang, T. Bian, J. Xiao and C. Wen, “Global synchronization
of complex dynamical networks through digital communication with
limited data rate”, IEEE Transactions on Neural Networks and Learning
Systems,26(10): 2487-2499, 2015.

[8] Y. Li and G. Yang, “Adaptive asymptotic tracking control of uncertain
nonlinear systems with input quantization and actuator faults”, Automat-
ica, 72: 177-185, 2016.

[9] Z. Liu, F. Wang, Y. Zhang and C. L. Philip Chen, “Fuzzy adaptive
quantized control for a class of stochastic nonlinear uncertain systems”,
IEEE Transactions on Cybernetics, 46(2): 524-534, 2016.

[10] T. Liu and Z. Jiang, “Event-triggered control of nonlinear systems with
state quantization," in IEEE Transactions on Automatic Control”, 64(2):
797-803, 2019.

[11] J. Zhou, C. Wen, W. Wang and F. Yang, “Adaptive backstepping
control of nonlinear uncertain systems with quantized states”, IEEE
Transactions on Automatic Control, 64(11): 4756–4763, 2019.

[12] F. Fagnani and S. Zampieri, “Stability analysis and synthesis for scalar
linear systems with a quantized feedback”, IEEE Transactions on
Automatic Control, 48(9): 1569–1584, 2003.

[13] H. Ishii and B. Francis, “Quadratic stabilization of sampled-data systems
with quantization”, Automatica, 39(10): 1793–1800, 2003.

[14] M. Zhang, P. Shi, L. Ma, J. Cai and H. Su, “Quantized feedback control
of fuzzy markov jump systems”, IEEE Transactions on Cybernetics,
49(9): 3375-3384, 2019.

[15] T. Hayakawaa, H. Ishii, and K. Tsumurac, “Adaptive quantized control
for nonlinear uncertain systems”, Systems and Control Letters, 58(9):
625–632, 2009.

[16] L. Xing, C. Wen, H. Su, J. Cai, and L. Wang, “A new adaptive control
scheme for uncertain nonlinear systems with quantized input signal”,
Journal of the Franklin Institute, 352(12): 5599–5610, 2015.

[17] J. Zhou, C. Wen, and W. Wang, “Adaptive control of uncertain nonlinear
systems with quantized input signal”, Automatica, 95: 152–162, 2018.

[18] W. Ren and J. Xiong, “Quantized feedback stabilization of nonlinear
systems with external disturbance”, IEEE Transactions on Automatic
Control, 63(9): 3167-âĂŞ3172, 2018.
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