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Bollard Segmentation and Position Estimation from
Lidar Point Cloud for autonomous mooring

Mehak Jindal, Ajit Jha, and Linga Reddy Cenkeramaddi, Senior Member, IEEE

Abstract—This paper presents a computer-aided object de-
tection and localization method from lidar 3D point cloud
data. This topic of interest is in the framework of autonomous
mooring, where the ship is tied to the rigid structure on-
shore (bollard) for autonomous maritime navigation. Using shape
and features priors, unlike matching the whole object template
to the experimental 3D point cloud representation of scene,
two customized algorithms - (a) 3D feature matching (3DFM)
and (b) Mixed feature-correspondence matching (MFCM) are
presented. The proposed algorithms discriminate and extract the
3D points corresponding to the non-cooperative bollard’s surface
from background thus capable of classification, localization, and
representing it using a unique co-ordinate in the 3D world. The
proposed algorithms are tested and validated by implementing
upon an experimental data set of 105 scenes where the bollard
is at different positions and orientations with respect to lidar
mounted on robotic arm. Statistical and probabilistic based
approaches are taken into account to determine the performance
of proposed algorithms. Model parameters estimation imply that
errors resulting from 3DFM algorithm follow homoscedastic
bimodal Gaussian distribution with individual Gaussian compo-
nents having mean 0.03 m, and 0.09 m and both have equal
standard deviation of 0.01 m. Further, posteriori component
assignment probability is used to identify and cluster the scenes
that contribute to relatively larger errors. Finally, an improved
algorithm, MFCM is proposed whose errors follow unimodal
Gaussian distribution with mean and standard deviation of 0.03
m and 0.01 m respectively thus mitigating the shortcomings of
the former.

Index Terms—Lidar 3D Point Cloud, Object Detection, Pa-
rameter Estimation, Autonomous Mooring.

I. INTRODUCTION

AUTONOMUS systems such as (partial) self-driving cars,
robots capable of routing in the industrial environment,

drones and unmanned vehicles capable of continuous naviga-
tion require real time object detection and its position esti-
mation. However, in the aforementioned use cases additional
challenges may arise. First, the target may be uncooperative,
meaning that there may not be easily recognizable markers
or signs (such as reflector) on its surface. Second, it may be
physically damaged and suffer optical degradation due to long
exposure to the space environment. Hence, algorithms to detect
the non-cooperative target is challenging and its position needs
to be investigated.

This paper lies in the framework of autonomous maritime
navigation, in particular, focusing on autonomous mooring
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where the ships can govern itself to navigate in the marine
environment and moore itself onshore without human inter-
vention. It addresses the problem of detecting the moore and
localizing its position in 3D such that a robotic arm can place
the mooring rope around the moore for autonomous and safe
mooring (Fig. 1). This requires dealing with three different
tasks - (a) detecting the moore (b) determining its unique
position parameter such as (x,y,z) in 3D coordinate system
and (c) tracking. While the former two are used to detect the
moore and find its position in 3D when no prior knowledge of
the scene is available, the latter is used to update the position
parameters on the basis of previous measurements as soon
as the new measurement is available or in case the relative
position of the moore and the robotic arm is changed due to
unseen conditions such as tide and wave.

Normally, ships or vessels use GPS to locate the location
of bollard and mooring is done manually with human involve-
ment. The use of GPS for bollard localization have serious
implications. First, they have to rely on third part. Second,
the measurement or localization from GPS are not accurate
compared to local measurement using active sensors on-board
in Ship or vessel. Third, the update rate of the GPS is lower
as compared to lidar (proposed here). Fourth, the received
signal from GPS might under go several reflections before
reaching the receiver on board, causing multipath errors, delay.
Further, the GPS receiver on the ship (for e.g.) uses multiple
set of satellites in order to find the position. Changes in
satellite configuration, orientation or position will affect the
measurement. Based on the faulty position, if we guide the
robot to that location with uncertainties, there is every chance
that the manipulator or end-effector on the robot and do not
successfully moore or even collide with bollard or nearby
structure (in worst case) [1].

To overcome these drawbacks, it is desirable to have a
local sensors that is capable of determining the bollard’s
position effectively. For that we propose lidar based sensor that
lies on-board connected to the robot for mooring operations.
The on-board sensor system for localization and segmentation
had added advantages - (a) Independence: The driver of the
ship or vessel do not have to rely on the third party (b)
Redundancy: Since the proposed methodology is based on
only lidar, redundant sensors can be kept as backup in case one
fails (c) Local effect: Unlike the GPS based prior, where the
signal can be delayed or poor estimation (because of factors
mentioned above), the lidar based system is only affected by
local environment unlike the thousands of kilometer between
GPS satellite and GPS receiver (d) better accuracy in mea-
surement - since the lidar is close to bollard, the disturbances
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in measurement is local unlike the thousands of kilometer
between GPS satellite and GPS receiver.

These problems are dealt by designing innovative algorithms
capable of processing 3D point cloud data from active lidar.
To overcome this limitation, lidars are used to sense the
environment exploiting the fact they work relatively well
independently of the illumination conditions, and the ability to
easily discriminate the target from background. This research
focuses on the use of lidar for autonomous mooring. Hence
we propose algorithms capable of detecting, and localizing
the bollard by means of experiment consisting of a robotic
arm equipped with scanning lidar and its relative motion
with the bollard carried out in a purposely developed realistic
laboratory environment. Critical aspects include the robustness
explained in terms of mean error and standard deviation of the
error of the proposed algorithm to detect, and localize bollard
at different relative orientations with respect to lidar mounted
on the robotic arm. The novelties proposed here are listed
below.

1) Propose custom algorithm for non-cooperative object
(bollard) detection and localization - 3D feature match-
ing (3DFM) algorithm. It extracts the features of the
bollard’s surface (unlike the whole object) from the
computer aided model and matches those features to
discriminate the experimental 3D lidar volumetric raw
point clouds data corresponding to the bollard’s surface
from the background in the scene.

2) Propose Mixed feature-corresponding matching
(MFCM) algorithm. It is based on the principle to uses
3D lidar volumetric raw point clouds data corresponding
to the bollard’s surface extractedin 1 using the features
to identify to bollard’s surface in the scene. Since
it mixes two methods - feature matching as in (1)
augmented by the correspondence matching in rest of
the experimental acquired scene, hence the name Mixed
feature-corresponding matching (MFCM).

3) Both the algorithms are implemented upon upon 105
scenes where bollard is at different orientation relative
to lidar. Detailed performance evaluation of both algo-
rithms 3DFM and MFCM qualitatively and quantita-
tively based on probabilistic parameter estimation.

Hence, we present an end-to-end pipeline - (a) proposing algo-
rithms to detect and segment bollard from scene, (b)validating
them upon 105 experiment data and (c) determining the
performance of each of proposed algorithms.

The paper is organized as follows. Section II presents the
current state of the art for non-cooperative object detection,
localization and tracking, focusing on autonomous maritime
navigation. Section III describes the experimental setup to
mimic the realistic scenario where the lidar mounted on the
robotic arm is used to capture and perceive the scene including
bollard with various relative orientations between the lidar and
the bollard. Section IV explains the the customized algorithms
for non-cooperative bollard detection, and localization in the
sparse 3D point cloud representation of the scenes. Further,
section V presents the results followed by performance eval-
uation of proposed algorithms by the analyzing the critical

Fig. 1. Autonomous mooring. (left) conceptual presentation showing the
relative position of ship, robotic arm and bollard; (right) exploded view (with
permission from MacGregor Norway AS).

aspect such as errors, and reliability. Finally, discussion and
conclusion in section VI concludes the paper.

II. RELATED WORK

The lidar points are basically a range scan in 3D (x,y,z). It
contains the spatial coordinates of the object in 3D making it
easier to obtain the shape and pose of the object. In particular,
in the case of autonomous vehicle where the perception and
control both lie on the same platform, and accurately localizing
the object in 3D coordinate system is crucial for subsequent
path planning and control. To estimate the depth information
in addition to the dimension of the object, 3D bounding box
in point cloud in lidar such as PointNet [2] has been imple-
mented, however it requires extensive computing resource to
train. Exploiting the sparsity of 3D lidar point cloud, their den-
sity and resolution algorithms based on neural network such as
Frustum PointNet [3] Multi-View 3D networks (MV3D) [4],
RoarNet [5], AVOD [6] have been implemented. [7] used multi
view convolution neural network with self-attention to classify
roof from lidar point cloud. However, they are computationally
expensive and require loads of data for training. Further, the
model is highly data dependent that prevents its wide spread
application.

With the objective is to overcome the limitations posed by
individual methods - detect and localize the bollard in 3D
space avoiding the use extensive processing and without a
need to train the 3D convolution model with loads of test data,
numerous approaches are proposed for object detection and
classification. Authors in [8] proposed filtering of lidar point
clouds using spectral graph based approach to separate the
objects from ground. Ghamisi proposed classification of the
objects from raw 3D lidar data by extracting several features
such as - aggregated local point neighborhoods, laser echo
ratio, variance of point elevation, plane fitting residuals, and
echo intensity in addition to lidar digital surface model (DSM)
[9]. Further, Authors in [10] presented methods to generate
lidar points to meet certain level of details while keeping
balance between the computation cost to process 3D lidar data,
the storage space required to store sparse 3D lidar data while
optimizing the coverage volumes. Similarly [11] proposed
algorithm based on 3D shape context by defining the 3D point
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cloud object. This method included several intermediate steps
such as - road segmentation, ground segmentation, clustering
similar points based on Euclidean distance, and determining
Histogram. They contain several modules and the performance
of the algorithm depended upon the efficiency of each of
the intermediate steps. [23] proposed to detect the road crub
based on two step method - first determine the potential points
corresponding to crub based on energy function and then refine
them using least cost path model.

In addition to the above mentioned techniques to process the
sensory data and extract the object, model based algorithms
has considered serious attraction [12]–[14]. It is based on
the assumption that the lidar measurement data contain the
features and related information related to the objects to be
detected. For e.g. the lidar based 3D point cloud data contain
the range of the objects in 3D space and hence by processing
them, the 3D surface of the object can be extracted. Thus the
template matching problem can be broken down to identifying
the computer aided designed (CAD) generated model (of the
object, in this case bollard) with that in the experimental
lidar acquired data points. Approaches based on point tuple
matching require the relative orientation point tuple has been
proposed by authors in [15]. Voting based approach [16]
requires additional intensity data. Hinterstoisser et al. in [17]
presented template matching based on colour and depth from
Kinect sensors. They propose using color information in order
to prune invalid candidate transformations while depth data is
used to improve pose estimation using Iterative closest point
(ICP). Li et al. in [18] devised a method for detection and
placement of CAD models in scanned scenes. This method
has a drawback as it is used to match the entire object in the
scene and the computation cost increases with the number of
points in the scene and/or increasing the number of templates
in the database. Authors in [19] used template matching
together with kernel density estimation clustering to detect
the pedestrian. Here, the raw 3D point cloud needed to be
pre-processed such as - ground segmentation, grid filtering,
hierarchical segmentation and projection of 3D data points
to 2D plane using the principle component analysis (PCA).
This projection of information to lower dimension results
in loss of information. In addition, it is not always easy to
separate the ground and hierarchical segmentation in itself is
computationally expensive as it requires comparison of each
data point with neighbouring points.

There are numerous work done related to mooring opera-
tions, for example, [20]–[22]. However, they are focused on
manual operation operations and how the structural integrity
can be maintained, the effect of mooring angle on mooring
operations and so forth. In regards to the autonomous mooring
where the moore is detected by sensors, and mooring operation
is carried autonomously, very limited work has been done.
Authors in [24] proposed laser based berthing and mooring
of ship with out any towing assistance. Further, authors in
[25] presented sensor fusion based approach for autonomous
docking operation of surface vehicles (SV). However the
approach was based on fusing data from lidar, IMU and GPS
to determine the geometric features of floating platform and
then determine the relative position and orientation of moore

relative to SV.
Continuing the similar trend, we present novel methods to

detect and localize the bollard in the scene from raw 3D
point cloud. Overcoming the above mentioned drawbacks, our
algorithm (3DFM) first extracts the features in the model data
and then uses it to filter the data points in the experimental
scene. This, on one hand lowers the computational cost, as the
feature extraction in the model has to be done only once, while
lowering the number of data points for comparisons in the
experimental data. Further, an improved algorithm (MFCM) is
presented by extending 3DFM algorithm to extract the point
clouds and features of bollard from experimental scene and
use it as template to detect and localize the bollard in rest of
the scenes.

III. PROBLEM FORMULATION

The concept behind the autonomous mooring is shown in
Fig. 1. It consists of a robot (with manipulator) equipped
with sensors (in this case lidar) and perception algorithm
to perceive the scene. It does this in discrete steps of time
in which it moves some predefined vertical distance from
the bollard. The robot repeats this process until it localizes,
and finds the unique coordinate of the bollard in 3D space.
Once the position of bollard is found, the robotic arm holding
the moore navigates to the bollard and lays off the moore
around the bollard to dock the ship. The conceptual diagram
in Fig. 1 is replicated in the laboratory (shown in Fig. 2).
The experimental setup consists of Ouster lidar fitted on ABB
robot placed at a vertical distance of 1.4 m from the bollard.
The bollard is manufactured in-house1 in the way that it meets
the requirement of uncooperative target - (a) it is built with
foam material, (b) it is not tagged with any kind of markers
(c) it is not equipped with any kind of reflecting material, (d)
it is not painted with bright colours instead painted in yellow
to have low-moderate reflection. Then robotic arm is moved
at different orientations relative to the bollard and the point
cloud is acquired at each point (represented by blue dot in
Fig. 3). A total of scenes, Ns = 105 were acquired2. During
each measurement, the lidar is configured to have vertical and
horizontal resolution of 64 and 1024 respectively, thus giving
the measurement points of 64×1024 = 65536 for each scene.
Then, each of these acquired scenes is tested upon algorithms
to detect the bollard (represented by Nb points) and represent
it by a unique coordinate in 3D, ppp ∈ R3.

The notations is as follows. Vectors and point clouds are
defined by small, italics bold face, constant quantities by
capital normal font, variables by small italics normal font and
set of objects enclosed in curly braces. Let S = {sssi}Nsi=1, where
Ns ∈ Z be the set of all scenes captured during the experi-
ment. Each element of S (i.e sssi) is coordinate of 3D sparse

1The CAD model and the measuremet of dimenstion of template
bollard is available at - https://github.com/ajitjha14/Bollard-Segmentation-
and-Position-Estimation-fromLidar-Point-Cloud-for-autonomous-
mooring/upload/main/Bollard model dimension

2The dataset is available at git: https://github.com/ajitjha14/Bollard-
Segmentation-and-Position-Estimation-fromLidar-Point-Cloud-for-
autonomous-mooring/tree/main/Data. At the time of uploading, Git only
allows 100 files to upload, so 100 out of 105 files can be found here.
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Fig. 2. Experimental setup for detection and classification of bollard for
autonomous mooring. In this setup, the vertical distance of the lidar relative
to bollard is 1.4 m. The lidar frame is as follows: +x is right, +y is up and
+z is out of plane.

Fig. 3. Data acquisition at different relative position of robot with respect to
the bollard.

point containing information about the scene. Mathematically,
sssi = {pppj}

Np
j=1, where pppj ∈ R3 ∀i. The objective is to detect

the bollard bi = {pppk}Nbk=1 where pppk ∈ R3, Nb < Np ∀i
from the scene si and finally presenting it with a unique
coordinate oi = {pppi}, where pppi ∈ R3 ∀i. For the ease of
understanding the detailed relationships among the scene data
set, (S), individual scene (e.g. sssi) and the co-ordinates of each
lidar point (pppj) is described in Fig. 4.

IV. ALGORITHMS

To detect the bollard in the scene and determine its unique
coordinate in 3D from the sparse point cloud captured by lidar,
we employ two methods - (a) 3D feature matching (3DFM)
and (b) Mixed feature-correspondence matching (MFCM).

1) 3D feature matching (3DFM): In the case of 3DFM,
first the CAD model of the bollard (T ) is converted to point
cloud ( tctctc). As explained above, we have a custom built 3D
CAD model of bollard that was manufactured in-house. While
manufacturing the CAD model, the parameters were chosen
in a way that it fits with the real world bollard (especially
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Fig. 4. Relationship between scene set, (S), scene (sssi) and the co-ordinates
of points in the scene (pppi)). The dimensions of S is [1×Ns]; sssi is [1×Np];
pppi) is [3× 1]. For the experiment NS = 105, Np = 65536.

in Norway). Since the actual dimension of the bollard e.g.
its length, width and height is known, using these geometric
parameters, a model of plane is formulated using RANSAC
algorithm [26]. Then from this model, the points lying on
the plane is differentiated with other. In this way the points
corresponding to the top surface of bollard (ttt) is discriminated
from rest of the point cloud. Once the point corresponding to
the plane of top surface of bollard is estimated, it is matched
with the experimental data set (S, defined above in Fig. 2 and
Fig. 3) obtained from lidar for registration, and to identify the
bollard under consideration. Further, the plane of top surface
of bollard (tptptp), and its centroid (ooo) is extracted representing
the bollard by a unique coordinate. The entire procedure for
template matching based extraction from scene is described in
Algorithm 1.

2) Mixed feature-correspondence matching (MFCM): In
the case of MFCM, first the bollard and the lidar is calibrated
such that the latter lie vertically at distance of 1.4 3 m (for
e.g.) above the former. Under these conditions, the scene is
acquired (s1, shown in Fig. 2 and described by the center point
in Fig. 3). Using Algorithm 1, the point cloud corresponding
to the top surface of bollard in the experimental scene (sss1)
is obtained and is used as template (tttttt) to locate the bollard,
find the centroid of the top surface of bollard to represent it
by a unique co-ordinate in rest of the scenes {sssi}Ns−1i=2 . All
the steps associated with template extraction from calibrated
scene and its use in correspondence matching is explained in
Algorithm 2 and 3 respectively.

V. RESULTS

The detailed investigation on the efficiency of the method-
ologies present is further explained.

A. 3D feature matching (3DFM)

Figure 5 summarizes the results for the 3DFM method
(Algorithm 1) - starting from the acquired scene (Fig. 5 (a)),
3D CAD template of bollard (Fig. 5 (b)), the point cloud

3The choice of vertical distance sets the distance where the lidar starts
scanning
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Algorithm 1 Bollard detection and position estimation using
3DFM.
Input: Scenes, S = {sssi}Nsi=1; Template, T
Output: Surface of bollard, tp′tp′tp′ i; centroid of surface of bol-

lard, oooi; error, ei ∀i
1: tctctc ← convert T to point cloud
2: ttt ← point cloud representing the surface of bollard ob-

tained from geometric dimension and features of surface
of bollard from tctctc

3: c ← centroid of the surface of bollard obtained from ttt
4: for i=1 to Ns do
5: sssi ← remove all the points in sssi with +ve y coordinate

. +y represents the point above the lidar
6: sssi ← denoise sssi
7: tptptpi ← plane of the bollard in sssi using the features in ttt

and distance 1.4 m . the robot starts looking for
bollard as the distance is 1.4 m from lidar (for e.g.)

8: θi ← angle between the tptptpi and ttt using Iterative closest
point algorithm (ICP)

9: tptptpi ← rotated tptptpi by angle θi to align extracted plane
with the template, ttt

10: oooi ← centroid of the surface of bollard point clouds
obtained from tptptpi

11: ei ← error, distance between c and oooi calculated using
Euclidean norm

12: return tptptpi, oooi, ei
13: end for

Algorithm 2 Template for MFCM
Input: Calibrating scene, sss1; surface of the bollard, ttt (from

Algorithm 1, step 2)
Output: Surface of bollard, tttttt . returns the surface of

bollard extracted from calibrating scene (sss1)
1: sss1 ← remove all the denoised points in sss1 with +ve y

coordinate . +y represents the point above the lidar
2: tttttt ← plane of the bollard in sss1 using ttt . using

RANSAC and ICP algorithm
3: return tttttt

corresponding to the top surface of the bollard (Fig. 5 (c))
and finally the points clouds corresponding to the bollard’s top
surface is extracted using Algorithm 1 (Fig. 5 (d)). Algorithm
1 is applied upon all scenes S with different orientation as
shown in Fig. 3 using setup described in Fig. 2. The errors

Algorithm 3 Bollard detection and position estimation using
MFCM
Input: Scenes, S = {sssi}Nsi=2; Template, tttttt (obtained from

Algorithm 2)
Output: Surface of bollard, tptptp; centroid of surface of bollard,

oooi; error, ei ∀i
1: for i=1 to Ns do
2: repeat step 5 to 12 (described in Algorithm 1)
3: return tptptpi, oooi, ei
4: end for

(a) (b) (c)

(d) (e)

Fig. 5. Testing and validation of the proposed algorithms. (a) Experimental
scene acquired from the setup defined in Fig. 2 and the bollard highlighted
by shaded rectangle. (b) 3D template of bollard. (c) top surface of bollard
extracted (d) extraction of the bollard’s surface from the scene using 3DFM
using Algorithm 1 (white) and compared against the template (orange) (e)
using MFCM, Algorithm 2 and 3 (white) and compared against the template
(red).
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Fig. 6. Performance evaluation of 3DFM (Algorithm 2). The errors incurred
by processing the set of scenes in S follow univariate bi-modal Gaussian
distribution.

defined as the Eculidean Norm (see Algorithm 1, step 11)
is summarized in Fig. 6. It is basically the histogram of the
errors defined in terms of probability density. It is observed
that the probability density function of the error incurred from
the 3DFM algorithm is bi-modal as it has two dominant
modes. Thus, this case can be classified as univariate bi-
modal Gaussian mixture model (GMM). Hence the problem
now translates to (a) finding the optimal Gaussian components
(cluster), K that make this distribution (b) estimation of
parameters of individual Gaussian components θ̂t = [µ̂t σ̂t]
and (c) probability that a given value from the error data set
fall with in given Gaussian cluster.

Mathematically, a univarite multimodal GMM is defined in
terms of individual Gaussian component weights (φk), mean
(µk) and variances (σk)4. For e.g. a GMM with K Gaussian
components, the kth Gaussian component has mean µk and

4since the model here is univariate, we stick with the notation corresponding
to univariate, bimodal GMM.
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Fig. 7. Optimal choice of Gaussian components.

variance σk and has weight φk. Since we have the data related
to errors, it is desirable to calculate the posterior probability,
defined as the probability that the error ei (ei ∈ eee) belongs
to a particular Gaussian component k with probability p.
Mathematically, it is defined as

p(ei) =

K∑
k=1

φkN (x | µk, σk), where (1)

N (ei | µk, σk) =
1√

2πσ2
k

e
− (ei−µk)2

2σ2
k , and (2)

K∑
k=1

φk = 1 (3)

a) Gaussian component: Though, two dominant modes
in the probability density of the error (Fig. 6) is clearly visible,
quantitative analysis is performed to ascertain the optimal
number of Gaussian cluster (modes). For this, mathematical
induction based approach is taken. First, the error data is fitted
with three Gaussian components, k = 3 using k−means++
algorithm [27]. The cluster score, defined as the probability
that a given error sample from {ei}Nsi=2, lies in kth cluster is
plotted against the scene (i ∈ [2..Ns])5 Fig. 7 (up) shows the
results for k = 3. It is observed that for most of the cases,
the Gaussian component with k = 2 (C2) is almost zero for
most of the scenes and only the other Gaussian components,
k = 1 (C1) and k = 3 (C2) are dominant. For e.g. consider
the case when i = 20 (demonstrated by the solid filled circle)
the cluster score of components C1(k = 1), C2(k = 2) and
C3(k = 3) are 0, 0.1 and 0.9 respectively. Similarly, Fig. 7
(down) shows the results for k = 2. In this case, the Gaussian
clusters are well defined with minimum, overlap. For e.g. for
scene i = 20, the (demonstrated by the solid filled circle) the
cluster score of components C1(k = 1), and C2(k = 2) are

5It should be noted that each scene number, i corresponds to different
orientation of lidar with respect to bollard, described in Fig. 3. Indexing of
scene, i starts from 2 as the first index (i = 1) is used as template for rest
of the scenes.

0, and 1 respectively. Thus, it is binary clustering for most of
the cases (except at the transitions) with one cluster having
dominant score over other.

b) Parameter estimation of individual Gaussian com-
ponent: The algorithm to estimate the parameters and the
probability is explained in Algorithm 4. The results are

Algorithm 4 Parameter estimation of the GMM resulting from
errors in 3DFM (Algorithm 1)

Input: e = {ei}Nsi=2 . error data
K = 2 . number of Gaussian components (please
see section V(a) titled Gaussian component)

Output: µ̂µµt, σ̂σσt, φ̂φφt, . mean, standard deviation and mix-
ture weight of individual Gaussian component respectively
(see (1), (2) and (3)) such that µ̂µµt, σ̂σσt, φ̂φφt ∈ RK

1: r← K random integers between 1 and N . r ∈ ZK

2: µ̂µµt← e(r) . assign random values from error data to
the estimated mean of each Gaussian component

3: σ̂σσt← 1

N

∑N
i=1(ei − ē)2 . assign sample variance to

the estimated variance of each Gaussian component

4: φ̂φφt ← 1

K
. Set all Gaussian components distribution

prior estimates to the uniform distribution
5: for iter = 1 to 500 do

6: γ̂γγt ← φ̂φφtN (e | µ̂µµt, σ̂σσt)∑
∀i(φ̂φφ

tN (e | µ̂µµt, σ̂σσt)
. γ̂γγt ∈ RN×K . γ̂tik

is the probability that ith value of the error data, ei
is generated by Gaussian component Ck. Thus γ̂tik =

p(Ck | ei, µ̂µµt, σ̂σσt, φ̂φφt)

7: φ̂φφt ←
∑
∀k γ̂γγ

t

N
. update Gaussian component

weight

8: µ̂µµt ←
∑
∀k γ̂γγ

te∑
∀k γ̂

tγtγt
. update mean

9: σ̂2σ2σ2 ←
∑
∀k γ̂γγ

t(e− µ̂µµt)2∑
∀k γ̂γγ

t
. update variance

10: return µ̂µµt, σ̂σσt, φ̂φφt

11: end for

described in Fig. 8 and Fig. 9. It is observed that the nu-
merical method based approach to determine the parameters
works effectively for all the parameters. We summarize the
parameters by θ̂θθt = [µ̂µµt; σ̂σσt; φ̂φφt], such that θ̂θθt ∈ R3×2, as
the univariate bimodal GMM is defined by three parameters
and each of parameters has two values as determined above
in Algorithm 4. To be very specific , the parameters are
as follows - θ̂t1 = [µ̂t1 σ̂t1 φ̂t1] = [0.03 0.01 0.67]

and θ̂t2 = [µ̂t2 σ̂t2 φ̂t2] = [0.09 0.01 0.33]. Further,
the observed experimental error approximated by a Gaussian
components is shown in Fig. 10 for probabilistic description
and performance estimation. It can be clearly observed that the
parameters estimated from the Algorithm 4 fits well with the
experimental observed error from template matching. Hence
the error distribution resulting from the template matching
algorithm follows univariate bimodal GMM.
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Fig. 8. Error parameter estimation resulting from 3DFM described in
Algorithm 4. The errors follow univariate, bimodal GMM. The mean (up)
and standard deviation (down) of individual Gaussian components are -
µ̂µµt = [µ̂1, µ̂2] = [0.03, 0.09] m and σ̂σσt = [σ̂1, σ̂2] = [0.01, 0.01] m
respectively.

0 100 200 300 400 500
Iteration

0.4

0.6 k=1

k=2

0 20 40 60 80 100 120

0

0.5

1

k=1

k=2

Fig. 9. Error parameter estimation resulting from 3DFM described in
Algorithm 4. The errors follow univariate, bimodal GMM. (up) The weight of
component C1 and C2 is 0.67 and 0.33 respectively. (down) demonstrates the
probability that error sample ei comes form kth component with parameters
µ̂µµt, σ̂σσt and φ̂φφt explained above.

c) Clustering Gaussian components: Having determined
the model parameters and using Bayes’ theorem, the proba-
bility that the data points belongs to cluster k is determined
as

p(Ck | ei) =
φ̂tkN (ei | µ̂tk, σ̂tk)∑j=K
j=1 φ̂tjN (ei | µ̂tj , σ̂tj)

, (4)

where k ∈ [1..K]. All the related parameters are obtained and
described above (please see section V(a) and V(b)). Putting the
values of those parameters in 4, the probability that individual
error values (ei) lies to a particular Gaussian component
(cluster) is determined and shown in Fig. 11. The scenes i
and hence the orientation of lidar relative to the bollard that
cause larger error (purple) are well separated by their counter
part that cause relatively lower errors (green).

Fig. 10. Performacne evaluation of 3DFM algorithm. From the probability
density (histogram) it is observed that the distribution has two modes hence the
errors follow univariate bimodal Gaussian mixture model (GMM). Parameters
of Gaussian components are obtained from Algorithm 4 with the parameters
summarized in Fig. 8 and Fig. 9 is compared with the experimental error. It
is observed that the experimental error well fits univariate bimodal GMM.

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

k=1

k=2

Fig. 11. Clustering the error samples resulting from template matching
algorithm described in Algorithm 4. Putting the parameters obtained from
Fig. 8 and 9 in (4), we are able to separate the samples that corresponds to
Gaussian component having lower error values (k = 1, C1) from the relatively
higher error values (k = 2, C2).

B. Mixed feature-correspondence matching (MFCM)

Figure 5 (e) summarizes the results for the MFCM method
(Algorithm 1 and 2). Similar to 3DFM, histogram in terms of
probability density as a function of error is shown in Fig. 12
(blue). It is observed that the probability density function of
the error incurred from the MFCM algorithm is uni-modal as
it has one dominant mode. Thus, this case can be classified
as univariate uni-modal Gaussian model (unlike the 3DFM
case, where it was GMM). Further, it is desirable to estimate
the parameters of statistical model that best describes the
probability of occurrence of observed error such that statistical
inference can be made. Mathematically, this translates the
problem to finding an optimal parameter θ that maximizes
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Fig. 12. Errors resulting from the correspondence matching algorithm (3).
The error follows a Gaussian probability density function (pdf) with mean
(µc = 0.03 m) and standard deviation (σc = 0.01 m).

the statistical model. Mathematically,

µ̂c = arg max
µ

N (eee | µ, σ) (5)

σ̂c = arg max
σ

N (eee | µ, σ) (6)

It is found that the Gaussian model has parameters - estimated
mean, µ̂c = 0.03 m and estimated deviation, σ̂c = 0.01 m. It is
well described in Fig. 12 (red). Further, t-test, with significance
level (α = 0.05) is carried to perform the statistical hypothesis
testing to validate the estimated parameter. Here, we define
the null hypothesis (H0) and alternate hypothesis (H1) as -
H0 : error comes from Gaussian distribution having estimated
mean, µ̂ = 0.03 m and H1 : error comes from Gaussian distri-
bution having different estimated mean, µ̂ 6= 0.03 m. From the
test, the p-value (p), the probability of observing significant
deviations from estimated mean (µ̂ = 0.03) assuming that null
hypothesis is true approximately equal to 1. Since p > α, we
fail to reject the null hypothesis and thus the errors follow
Gaussian distribution with mean µ̂c = 0.03 m.

Detailed modelling of the error statistics of both algorithms
- 3DFM and MFCM, confirm that while the errors incurred
from former follow univariate bimodel Gaussian distribution
with two components (GMM) having means 0.03 and 0.09
m and standard deviation 0.01 m, the latter follow univarite
unimodal Gaussian distribution with mean 0.03 and standard
deviation 0.01 m. Thus, MFCM algorithm performs better
in terms of lowered mean error, while both the algorithm
are equally precise (standard deviation). To make a better
illustration of this conclusion, referring to Fig. 11, the scene
i corresponding to the component C2, (k = 2) resulting from
3DFM is compared with MFCM algorithm (shown in Fig.
13). It is observed that the MFCM algorithm has smaller
errors as compared to the 3DFM, hence giving the improved
performance. It is also evident that about 95% of the error lies
in the range [0.01 m, 0.05 m] (µ̂c± ˆ2σc = 0.03±0.02). Since
the diameter of moore rope is much larger (approximately 2x)
than the diameter of bollard (usually in terms of meters), the

20 40 60 80 100
0.02

0.04

0.06

0.08

0.1

0.12
3DFM, k=2

MFCM

Fig. 13. Performance comparison of 3DFM (Algorithm 1) with MFCM
algorithm (Algorithm 2 and 3). The errors introduced by the former is
compensated by the latter. This result can be attributed to the absence of
extra mode with mean µ̂t2 in latter.

maximum error estimated from the correspondence matching
is with in the allowable error.

VI. CONCLUSION AND DISCUSSION

Two algorithms - 3D feature matching (3DFM) and Mixed
feature-corresponding matching (MFCM) are presented to de-
tect and localize a non-cooperative target (bollard) by process-
ing raw 3D point cloud data from lidar aimed at autonomous
mooring. The performance of proposed algorithm is tested
and validated upon 105 scenes where the relative position
of lidar and bollard is different. Based on detailed statistical
and probabilistic theory, the model parameters of the errors
resulting from both algorithm are estimated. Further, using
Bayes’ theorem and the estimated parameters, the errors are
clustered in a way to find out the suitability of the one
algorithm over the other. Finally, it was concluded though
both the methods had equal mean deviation error of 0.01 m,
the MFCM algorithm having mean error 0.03 m out performs
3DFM algorithm.

Further, it would also be desirable to study the effect of
different lighting conditions (e.g. limited vision), and different
weather conditions replicating urban sea. Secondly, the pro-
posed algorithm can be extended to the bollards of different
shape, size, structure and morphology. Another aspect is to
evaluate the performance of algorithms at different distance at
various lidar resolution. The slight increase in vertical distance
of lidar relative to bollard would not affect the result much.
But if the distance is increased significantly, the bollard would
contain relatively a smaller fraction of total points and the
detection could be challenge. But this can be compensated
by choosing the lidar operating mode with greater resolution,
that in turn would increse the cost. Further, a balance between
lidar operating resolution (64x1024 or other configuration
depending upon lidar model and cost) and its distance from
bollard should be optimized and it remains the work for future.
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Dear Associate Editor and Reviewers, 

 

Thank you for reviewing our manuscript comprehensively. Your suggestions and feedbacks have helped us improve the quality 

of the work. Please find the response to your queries below. 

Associate Editor Comments: 

Comments to the Author: 

The scholarly contribution is limited, while it may provide an interesting solution(s) to a real application. However, the need, 

significance and effectiveness of the solution in practice is not convincingly demonstrated. You may want to clarify why you do 

not have the locations of the bollard as the prior, which is so easy to get from surveying. Plus, I believe you need it to guide the 

robot arm anyway. The absolute accuracy of 0.01m etc does not mean anything. It should be a function of your lidar ground 

spacing. This has to be generalized to a meaningful situation/statement. What is the expected accuracy anyway for this 

application ? The difference and need of 'two' methods are not clearly stated. Furthermore, I agree with the reviewers the 

article is hard to follow in many places. 

Response: Thank you for reviewing our manuscript in great detail. We are sorry that some context was not clear. But now we 

have addressed your concerns. 

“Regarding need of significance and effectiveness” 

Response: We are again sorry that it was not clear in the manuscript. Now we have included the following the manuscript that 

explains the need of local sensing system. 

Normally Ships or vessels  use GPS to locate the location of bollard and mooring is done manually with human involvement. The 

use of GPS for bollard localization have serious implications. First, they have to rely on third part. Second, the measurement or 

localization from GPS are not accurate compared to local measurement using active sensors on-board in Ship or vessel. Third, 

the update rate of the GPS is lower as compared to lidar (proposed here). Fourth, the received signal from GPS might under go 

several reflections before reaching the receiver on board, causing multipath errors, delay. Further, the GPS receiver on the ship 

(for e.g.) uses multiple set of satellites in order to find the position. Changes in satellite configuration, orientation or position 

will affect the measurement. Based on the faulty position, if we guide the robot to that location with uncertainties, there is 

every chance that the manipulator or end-effector on the robot and do not successfully moore or even collide with bollard or 

nearby structure (in worst case) 

To overcome these drawbacks, it is desirable to have a local sensors that is capable of determining the bollard’s position 

effectively. For that we propose lidar based sensor that lies on-board connected to the robot for mooring operations. The on-

board sensor system for localization  and segmentation had added advantages  

Accuracy: We demonstrated the accuracy (determined by the mean of the errors) of proposed algorithm is 3 cm as compared 

to 1.5 m for GPS based system [Ref. 1 in manuscript] 

Precision: We demonstrated the precision (determined by the standard deviation of the errors) of proposed algorithm is 1 cm 

Independence: The driver of the ship or vessel do not have to rely on the third party 

Redundancy: Since the proposed methodology is based on only lidar, redundant sensors can be kept as backup in case one fails.  

Local effect: Unlike the GPS based prior, where the signal can be delayed or poor estimation (because of factors mentioned 

above), the lidar based system is only affected by local environment unlike  the thousands of kilometer between GPS satellite 

and GPS receiver. 

All these points have bee added to the manuscript to justify the need of local sensor system. 

“Regarding accuracy as function of distance” 

Response: I agree with you that the accuracy could be a function of distance of lidar relative to bollard. This need to be studied 

thoroughly. This is the work of future and we have explained this in detail in the discussion part in the manuscript.  
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“Regarding accuracy of mooring” 

Response: Normally the moore are 30-60 cm in wide, but this varies with geographic location. So accuracy in order of cm is 

required (unlike in meters from GPS as mentioned in []) 

 

“Regarding the need of two methods” 

Response: Initially we made an hypothesis – instead of matching the whole CAD template of bollard to the scene and finding 

the bollard in the scene as mentioned in [17, 18], why not first extract the particular segment from CAD template bollard (in 

this case top surface, also known as features) and then use this as template to find the bollard’s surface in the scene. This has 

advantages in terms of computation complexity. The complexity increases with the number of points to be processed. Since we 

extract the key features from template bollard (reduced number of points) and use this to match with the bollard in scene. This 

reduced the computational cost dramatically. We named it 3DFM algorithm. With standard laptop as computing device, the 

results were obtained with in seconds. 

But during the experiment and implementation, we came up with additional idea – First use the CAD template to find the 

bollard’s surface in experimental scene, and use the latter as template to find the bollard’s surface in experiment. We named it 

MFCM algorithm. 

The working principle of both the algorithm is well described in section IV (1) and IV (2) respectively. After detailed evaluation 

of both the algorithms we concluded that MFCM has better KPIs in terms of accuracy and precision (again this is well 

elaborated in abstract and Results section) 

“Regarding hard to follow” 

Response: We are sorry that we did not present our work well such that the readers can understand it. However, following your 

suggestions, along with Reviewers suggestions, significant changes has been done. We are confident that now the manuscript 

will be easy follow. 
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Reviewer: 1 

 

Comments to the Author 

Bollard detection and segmentation is an important research topic in autonomous mooring. The authors utilize the advantages 

of lidar to accomplish this task. However, the proposed method has weak innovations and the superiority of proposed method 

is not demonstrated in the analysis section. The content of the manuscript also needs to be re-organized. 

 

Response: Thank you going through the manuscript comprehensively.  The novelty of our proposed method is now highlighted 

clearly in the manuscript. Please refer to last paragraph in section introduction. Following your suggestions and other 

Reviewers, the content has changed and re-organized. 

“Regarding novelty” 

Novelty 1: Two algorithms for bollard detection and segmentation 

1a : Propose  custom algorithm for non-cooperative object (bollard) detection and localization - 3D feature matching (3DFM) 

algorithm. It extracts the features of the bollard's surface (unlike the whole object ) from the computer aided model and 

matches those features to discriminate the experimental 3D lidar volumetric raw point clouds data corresponding to the 

bollard's surface from the background in the scene. 

1b : Propose Mixed feature-corresponding matching (MFCM) algorithm. It is based on the principle to uses 3D lidar volumetric 

raw point clouds data corresponding to the bollard's surface extracted in 1a using the features to identify to bollard's surface in 

the scene.  

“superiority of proposed method” 

Novelty 2: Comprehensive study of the proposed algorithm and determine the performance of each of the proposed algorithm. 

Based on statistics, we determined that MFCM performs better than 3DFM. Please refer to Figure 13, that clearly demonstrates 

that the larger error from 3DFM (in purple) is compensated by MFCM (in red). Also the KPIs of each of the algorithm is 

mentioned in abstract.  

Following your suggestions and other Reviewers, the content has changed and re-organized. We are confident that it will 

enhance the ease of readability and easy to follow. 

 

1. The title is too long, and the authors should shorten the title. 

Response: I have changed the title to  - “Bollard Segmentation and Position Estimation from Lidar Point Cloud for autonomous 

mooring” 

 

2. The last sentence of novelty in page 1 is too long. 

Response: It is paraphrased now. 

 

3. The organization of related work section is not clear. In my opinion, the authors should re-organize this section. 

Response: Thank you for the detailed review of our work. Following your suggestion, the un-related topics such as camera, 

sensor-fusion and other techniques has been removed. Only the works related to point cloud processing for object detection, 

segmentation and localization is included.  

 

4. The title of section III can be changed to be “problem formulation”, and delete the title of section III-A. 

Response: Have made the changes as you suggested.  

 

5. What is the “geometric dimension and features” in the second step of algorithm 1? How does the top surface of bollard t is 

extracted from the whole point cloud of bollard? What is the meaning of “+ve”? 
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Response: Thank you for pointing out that we missed to explain the details of extracting point clouds representing the top 

surface of bollard using dimensions of Template Bollard.  

As explained in the manuscript that, we have a custom built 3D CAD model of bollard that was manufactured in-house. While 

manufacturing the CAD model, the parameters were chosen in a way that it fits with the real world bollard (Fig. 1 below). Since 

the actual dimension of the bollard e.g. its length, width, height is known, using these geometric parameters, a model of plane 

is formulated using RANSAC algorithm. Then from this model, the points lying on the plane is differentiated with other. In this 

way the points corresponding to the top surface of bollard 𝒕) is discriminated from rest of the point cloud. Once the point 

corresponding to the plane of top surface of bollard is estimated, it is matched with the experimental data set (Տ, defined 

above in Fig. 2 and Fig. 3) obtained from lidar for registration, and to identify the bollard under consideration. These are now 

included in the manuscript. 

Further, the detail measurement of the bollard template (3D CAD) is uploaded in git (https://github.com/ajitjha14/Bollard-

Segmentation-and-Position-Estimation-fromLidar-Point-Cloud-for-autonomous 

mooring/upload/main/Bollard_model_dimension) and is also included in the manuscript now. We tried to upload in the 

manuscript but the measurement was not clear. So we decided to upload to Git and provide the link in manuscript. 

Regarding the ‘+ve’. The lidar is positioned in such a way that its -ve y co-ordinate falls towards the bollard and the +ve y co-

ordinate falls towards the ceiling. So all the points corresponding to the +ve y co-ordinate is filtered out. This is also included in 

caption of Fig. 2  

 

Fig. The real world example of bollard (right) located in Arendal, Norway (left). The CAD model of template bollard in 

manuscript (Fig. 2 in manuscript) is based on dimension of this real world bollard. 

 

6. The goal of the proposed is to detect and segment the bollard from point cloud. However, the content in the section V pays 

lots of attentions on the analysis the statistical properties of errors, which has less meaning for demonstrating the superiority of 

proposed method. 

Response: Yes, the goal is to propose algorithms that is capable to detect and segment bollard from the point cloud. It is 

desirable for the algorithm to work at various position and orientation of the lidar relative to the bollard. For this, we proposed 

two algorithms - (a) 3DFM (b) FMCM and the novelties is briefly mentioned above. Further the novelties are mentioned in the 

manuscript as well now.  

With due respect, I would like to mention that this is one of the strong points for the manuscript that it performs the reliability 

check of the proposed algorithm. For the real-world implementation, it is very desirable to know in advance about the reliability 

of the algorithm. For this, both the algorithms were used to process 105 experimental point cloud with various positions and 

orientation of the lidar relative to bollard.  Then based on the data backed by statistical processing, we concluded that FMCM 

was a better candidate then 3DFM. This is summarized in Fig. 12.  Based on this result, for real world application, Fig. 12 

presents a strong argument in favour of FMCM in real world application.  

In this way we have presented an end-to-end pipeline - (a) proposing algorithms, (b)implementing them upon experiment data 

and (c) determining the performance of each of proposed algorithm. I am sorry that we could not point the importance of the 

performance evaluation. But now they have been included in the manuscript to strengthen the scope of work.    
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Reviewer: 2 

 

Comments to the Author 

This manuscript proposes  a computer-aided object detection and localization method from lidar 3D point cloud data for 

autonomous maritime navigation. Comprehensive evaluations with an experimental data set of 105 scenes validate the 

superiority of the proposed method. However, there are still some problems in this manuscript. 

Response: Thank you for reviewing our manuscript in details and pointing out the shortcomings. This will add value to our 

manuscript. 

 

1)In this manuscript, Although v-a0a is mentioned in algorithm 4, its meaning is not explained, and v-a0b is not mentioned in 

the context., please add relevant explanations in the manuscript. 

Response: We are sorry that we did not explain in details and that it has caused the confusion. In fact, v-a0a is a hyperlink that 

links to section ‘V(a) Gaussian component’ where we explained how to calculate the parameter K (number of Gaussian 

components). As per suggestion, the link has been removed and text has been added – ‘ number of Gaussian components 

(please see section V(a) titled Gaussian component)’  

Similarly, v-a0b is replaced with – ‘All the related parameters are obtained and described above (please see section V(a) and 

V(b))’  

 

2)2.In the experimental part of the article, in algorithm 1, the scale and structure of data set S should be introduced in detail; in 

algorithm 2, the way of obtaining calibration scene s1 is one part of S？ 

Response: Thank you for pointing out that the relationship among different variables were not clear. To make it clearer, we 

have added Figure 4 in the manuscript. 

Yes, in algorithm 2, s_1 is one of element of S, where the lidar is vertically above the bollard. This is already mentioned in 

section IV(2)  

 

3)The goal of this paper is to solve the problem of non-cooperative target detection and location. It is better to display or 

analyze the non-cooperative characteristics of the data set used by s, and the experimental test data should include the data 

collected in the actual production. 

Response: To address the non cooperative characteristic of the bollard, we have added the following sentence in the 

manuscript - ’The bollard is manufactured in-house meeting the shape, size and dimension of the standard real world bollard 

(especially in Norway). The bollard is designed and manufactured in the way that it meets the requirement of uncooperative 

target - (a) it is built with foam material, (b) it is not tagged with any kind of markers (c) it is not equipped with any kind of 

reflecting material, (d) it is not painted with bright colours instead painted in yellow to have low-moderate reflection.’ 

The point cloud representation of experimental data would not fit well with the A4 size paper. However, most of the relevant 

part of the scene is demonstrated in Figure 5 (a). Respecting your suggestions, the experimental test data is uploaded in git and 

link (https://github.com/ajitjha14/Bollard-Segmentation-and-Position-Estimation-fromLidar-Point-Cloud-for-autonomous-

mooring/tree/main/Data) is provided in the manuscript. During upload, it was found that git only allows to upload 100 files. So 

100 out of 105 files were uploaded. 

Further, the detail measurement of the bollard template (3D CAD) is uploaded in git (https://github.com/ajitjha14/Bollard-

Segmentation-and-Position-Estimation-fromLidar-Point-Cloud-for-autonomous 

mooring/upload/main/Bollard_model_dimension) and is also included in the manuscript now. We tried to upload in the 

manuscript but the measurement was not clear. So we decided to upload to Git and provide the link in manuscript. 
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Reviewer: 3 

 

Comments to the Author 

- Accept - Minor revision. 

 

Comments: 

 

The authors present two algorithms - (a) 3D feature matching (3DFM) and Mixed feature-correspondence matching (MFCM) to 

detect and localize bollard from the 3D scene. The algorithms are implemented on 105 acquired experimental scenes. The 

authors also evaluates the performance of algorithms using error data obtained during the implementation and makes 

statistical analysis to analyze their performance and demonstrates that latter is better than the former.  In the case of 3DFM, 

there is novelty that the top surface of bollard (from CAD template) is extracted and used for extracting the surface of 3D 

experimental bollard, reducing the computational cost. Similary in case of MFCM, the 3D point cloud extracted from 3DFM is 

used as template to localize the bollard. The performance evaluation and comparisons including -  probability distribution 

estimation of errors, parameters estimation - estimating mean and standard deviation error, clustering the scenes that cause 

relatively larger errors  of each of the methods add value to the work. 

 

 

The presentation, and flow of material is smooth and well established. The state of the art covering the camera, sensor fusion 

and CNN is well elobroated but can be improved. This work can be considered to be published, however following issues must 

be addressed. 

Response: Thank you for your time in reviewing our manuscript. We are sure that your suggestions will improve its quality. 

 

line 35 - These problems are dealt with -- omit with 

Response: It is removed now. 

 

line 40 - To overcome this limitation, lidars are used to sense the environment exploiting the fact they work well independently 

-- This is not true lidar data are effected by illumination.  ..... relatively well would be a better fit here 

Response: Thank you for reviewing the manuscript in detail. I have added them. 

 

line 46 - tracking is not the scope here. The authors only does detection and localization. 

Response: It is removed now 

 

Algorithm 1 - Why Authors chooses 1.4 m  and starts scanning the scene ? It could be well eloborated. 

Response: The distance is chosen as proof of concept and as to match the real world problem . I agree that the algorithms could 

be tested upon various other distance and the optimal working distance could be found, but it remains the work for future.  

 

Algorithm 4 - Why the upper limit of iter is set to 500 ? Although from Fig. 7, the error converges well below 500 iterations, is 

there any justification or it is obtained by hit and trial method ? 

Response: Yes, you are right, it was chosen by trial. As you pointed out the error converges well below, but a higher number of 

iteration is chosen to be sure that the algorithm has enough time (through number of iterations) to converge, in case of some 

undesirable data comes across. 
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Reviewer: 4 

 

Comments to the Author 

 

The paper demonstrates a methodological workflow for automated maritime mooring using 3D LiDAR point cloud. 

Though the work appears interesting and the paper is not  well written. The sections are not organised properly and flow of text 

appears confusing to the reader 

Response: Thank you for reviewing our manuscript comprehensively. Your suggestions had helped us improve the quality of our 

work. Following your suggestions and other Reviewers, the content has changed and re-organized now. 

Specific comments: 

How does each scene has exactly 65536 points? Was there any preprocessing applied to extract exactly the number of points 

mentioned? 

Response: The operation mode of lidar is chosen to have vertical and horizontal resolution of 64 and 1024 respectively giving 

the data points – 64x1024=3556. Now this is explained in the manuscript. 

 

Does the effect of the vertical distance( in this case 1.4 m) influence the point cloud captured? 

Response: The distance is chosen as proof of concept and as to match the real world problem In  my opinion, the slight increase 

in vertical distance would not affect much, but if the distance of the lidar to bollard is fairly large, the bollard would would 

contain relatively a smaller fraction of total points and the detection could be challenge. But this can be compensated by 

choosing the lidar operating mode with greater resolution. Further, a balance between lidar operating resolution (64x1024 or 

other configuration depending upon lidar model) and its distance from bollard should be optimized. I agree that the algorithms 

could be tested upon various other distance and the optimal working distance could be found, but it remains the work for 

future. Thank you for pointing out the insight. I have now added them in section Discussion and future work. 

 

How many CAD templates were used for the study? Will changing the model used, affect the performance of the algorithm? 

Discussion of the results needs to be more comprehensive 

 

Response: Only on CAD template were use. It was made in according with the standard shape and dimension of bollard in 

Norway. Respecting, other Reviewer’s and your comment, CAD model and the measurement of the bollard template is 

uploaded in Git and the link is included in the manuscript. It can be found at - https://github.com/ajitjha14/Bollard-

Segmentation-and-Position-Estimation-fromLidar-Point-Cloud-for-autonomous-

mooring/upload/main/Bollard_model_dimension 

 

Literature review appears to be incomplete. The state of the art work on using LidAR sensors for mooring is not present. 

Response: We have added them now. Please refer to reference [19-24] in the manuscript. 

 

Time complexity of the algorithm may be specified. The application needs to work in real time. What is the time complexity for 

different processes? 

Response: Thank you raising your concern. Computation time is one of the main concerns in the real world application. This has 

been already stated in the novelty – the paragraph just before section – Problem formulation. I am again including for ease of 

reading. 

“we present novel methods to detect and localize the bollard in the scene from raw 3D point cloud. Overcoming the above 

mentioned drawbacks, our algorithm (3DFM) first extracts the features in the model data and then uses it to filter the data 

points in the experimental scene. This, on one hand lowers the computational cost, as the feature extraction in the model has 

to be done only once, while lowering the number of data points for comparisons in the experimental data. Further, an 
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improved algorithm (MFCM) is presented by extending 3DFM algorithm to extract the point clouds and features of bollard from 

experimental scene and use it as template to detect and localize the bollard in rest of the scenes.” 

The computational cost depends upon the number of points that has to be compared in experiment scene with that in 

template. Unlike the methods for example in [17] where the authors had to compare the experimental data points with the 

entire CAD model, with the proposed method, we only need to compare with limited number of points (points corresponding 

to the surface of bollard), reducing the computational cost dramatically. With the standard laptop, our method could do the 

computation in order of seconds. 

 

Thank you again for reviewing our manuscript and giving useful comments and suggestions. These suggestions have not only 

enriched our knowledge but also helped to strengthen our research. We are confident that we have addressed the concern that 

you have had. 

 

Sincerely, 

Ajit Jha 

Mehak Jindal, and  

Linga Reddy Cenkeramaddi 

 

Page 18 of 18Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


