
Modeling and field-experiments identification of
vertical dynamics of vehicle with active anti-roll bar

R. Tavares, M. Ruderman
University of Agder (UiA)

Grimstad, Norway

rafael.tavares@uia.no, michael.ruderman@uia.no

D. Menjoie, J. Vazquez Molina, M. Dhaens
DRiV, Tenneco Automotive BVBA

Sint-Truiden, Belgium

mdhaens@driv.com

Abstract—This paper deals with modeling and identification of
vertical dynamics of the ground vehicle equipped with two active
anti-roll torsion bars. A series of field tests of a full-scale drive
have been performed, from which multiple displacement and
acceleration data of the unsprung and sprung masses have been
collected for each vehicle corner. The standard full vertical vehicle
model is extended by the developed model of an active anti-
roll torsion bar and valve-controlled semi-active shock absorbing
damper. Along with the three-dimensional damping map, the
nonlinear progressive stiffness of the elastomer-based decoupling
unit are identified from the available data. The multi-channel
and multi-state linearized dynamic system model is also obtained.
Several MIMO transfer characteristics are exemplary shown for
comparing the measured frequency response functions and those
estimated from the input-output behavior of the full model. The
vehicle setup with the anti-roll bars and performed field tests are
described along with the drive trajectories and road excitation
conditions.

Index Terms—Vehicle dynamics, Modeling, System identifica-
tion, Nonlinear curve fitting, State-space model, MIMO

I. INTRODUCTION

Increasing ride comfort while keeping the desirable vehicle

handling and, above all, safety require in particular a detailed

analysis of the vertical dynamics, including the behavior

of embedded active and/or semi-active components of the

vehicle suspension system. Even though active damping in

road vehicle suspension systems fell since long into the focus

of intensive research, see e.g. [1], and reached nowadays a

certain maturity, it is also well-known that the spring and

damper characteristics required for good handling on a vehicle

are not the same as those required for good ride comfort

[2]. Thanks to a continuing increase in the efficiency and

compatibility of integrated and embedded mechatronic systems

in automotive, see e.g. [3], more and more innovative and

original technologies emerged as available for design of active

and semi-active suspension systems. The development of such

innovative components almost always appears hand in hand

with the suspension control, at higher-level for the vertical and

correspondingly anti-roll dynamics, and at lower-level for the

integrated active elements like controlling valves and motors.

For an overview of state of the art in active and semi-active

suspension control systems we refer e.g. to [4].

One of such mechatronic components used for stabilizing

and improving the vertical dynamics is an active anti-roll

bar, commercially available and used in the car industry,

see e.g. [5]. Apart from passive anti-roll bars, various active

counterparts have been proposed along with different actuator

and control solutions, like for example one with servo-valve

hydraulic actuators [6]. Another, compact solution with a

geared-motor has been proposed in [7], where a torsion-bar-

based active roll control constitutes a key functionality, see e.g.

[8], for drive comfort and safety. Only few works dedicated to

a virtual (simulator-based) and laboratory testing can be found

on that, like for example [9], while a field-based identification

and validation of the associated dynamic models remain in

focus of the ongoing research. A dynamics-faithful modeling

has to be also compatible with the full vertical vehicle models,

while for the single corner (so-called quarter-vehicle model) an

elaborated approach has been recently proposed in [10]. It is

also worth noting that despite the full vertical vehicle models

have been well established and accommodated in the standard

automotive literature, see e.g. [11], the inherent limitations of

different vehicle models, especially for the roll dynamics, have

to be taken into account when incorporating the active anti-roll

components [12].

This paper reports the modeling and experimental analysis

of vertical dynamics of the vehicle with active anti-roll bar,

based on the field experiments of the full-scale drive. The

vehicle model is based on the state of the art standard passive

vertical dynamic full-vehicle model [11], with defined vehicle

geometry and standard quarter-car suspension on each chassis

corner. The entire vertical vehicle modeling is extended by

capturing the principal dynamics of the active anti-roll torsion

bar and the nonlinear semi-active damper. Two dedicated

nonlinear mapping functions of the stiffness and adjustable

damping components are proposed and accurately fitted on

the available system data. The required linearizing step is

also made towards the MIMO (multiple-input-multiple-output)

system approximation, which then allows for a frequency

response analysis of the real measured data compared with

the different channels transfer function. The rest of the pa-

per is organized as follows. The principle hardware and

instrumentation setup of the vehicle are briefly explained in

section II. The full vertical dynamics modeling, including

kinematics, active elements, and all nonlinear components are

provided in section III. The accomplished field experiments

are summarized in section IV, while the performed system

identification is described in detail in section V. The paper is
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concluded by section VI.

II. VEHICLE SETUP

The test vehicle used in this study was a sport utility vehicle

(SUV) equipped with an Active Roll Control (eARC) [7] as

presented in Fig. 1a. The suspension technology in this vehicle

comprises a double wishbone on the front axle and a multi-

link on the rear axle, each corner equipped with an semi-active

air spring damper.

The electro-mechanical actuator (see Fig. 1b), consisting of

a brushless (BLDC) motor, three-stage planetary gearbox, two

torsion bar segments with elastic decoupling unit, and torque

sensor, provides highly dynamic response. The operation on

a single axle includes controlling two main functions – the

disturbance decoupling and anti-roll support [8], [13].

(a)

Motor

Torque
sensor

Gearbox

Elastomer

Bearing
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Fig. 1: eARC: (a) integrated in front axle of a SUV [9]; (b)

section of actuator assembly ([8]).

The 48 V powered BLDC motor can peak electrical loads

at 1.5 kW per axle, corresponding to a maximum actuation

torque of 1200 Nm [13]. The torsional load given by the

relative rotation between the two stabilizer halves is decoupled

from the geared-motor by an elastic decoupling unit [8]. This

elastomer, whose rotational rigidity is lower than the rotational

rigidity of the stabilizer halves, permits angular displacement

between the two halves without appreciable rotation at the

intermediately connected slewing motor. Therefore, the system

exhibits nonlinear torsional characteristics, mainly due to

elastic decoupling unit, between the overall torque Ma of the

bar and overall angular displacement θa of the actuator. The

following chain of components connected in series constitute

the actuator assembly: left halve torsion bar, the elastomer

decoupling unit, three-stages planetary gearbox, BLDC motor,

torque sensor and the right halve torsion bar. The whole

actuator assembly is allowed to rotate, guided by two bearings

that house each halve torsion shaft into the chassis. Each

torsion bar end then is fixed to the corresponding suspension

strut. The generated motor torque Mm compensates the vehicle

roll (θ) through the binary of equal and symmetric actuator

forces Fa transmitted to the two suspension rods on each side

of the axle.
The test vehicle was instrumented for further system iden-

tification based on the field test measurements. Multiple

accelerometers from TE connectivity (models 4604-010 and

4604-050) were placed for measuring the wheels (unsprung

masses) and chassis (sprung mass) accelerations as follows:

4 placed in each wheel (Z coordinate), 4 placed on each

corner on the bottom side of the rockers of the chassis (XYZ

coordinate), and in addition 4 accelerometers were installed

in the frame of the driver’s seat. Displacement laser sensors

(ELAG Optimess MC 400) were placed on each bumper

corner for measurement of the absolute displacement between

chassis and the road. Two current transducers (LEM AT50B10)

measure the currents for each BLDC motor of eARC, i.e.

on each axle. Two additional current transducers measure the

solenoid currents for semi-active damper valves (both on front

and rear). The placement of the sensors is shown in Fig. 2. A

(a) (b) (c)

Fig. 2: Vehicle instrumentation: (a) accelerometer on unsprung

mass; (b) displacement sensor on the front bumper; (c) current

sensor around power input wires.

GPS module was installed on the rooftop for measurement of

vehicle trajectory (latitude and longitude) and vehicle velocity.

Two synchronization PROSIG units with a total of 32 analog

channels were used for data acquisition, with sampling rates

of 2.5 kHz for accelerometers, 20 kHz for currents and 20 Hz

for GPS signals.

III. MODELING

In the following, the full-order vertical vehicle model with

integrated anti-roll bar and semi-active suspension is given.

Subscript indexes i and j are used to indicate the correspond-

ing axle (or corner) of the vehicle, with i = {f, r} for the

front and rear, and j = {l, r} for the left and right.

A. Anti-roll bar
The dynamics of the electrical circuit of BLDC motor are

assumed to be much faster compared with dynamic behavior

of mechanical parts. Therefore, the angular motion equation

for the motor can be written as

Jmθ̈m = Mm −Mfri − Ma

kg
, (1)
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where Jm is the moment of inertia of the motor, θm is

the angular displacement of the motor shaft, and kg is the

three-stage gearbox ratio. The generated motor torque Mm is

proportional to the controlled motor current

Mm = Kmia, (2)

with the motor torque constant Km. The overall torsional

actuator torque Ma is given by the nonlinear characteristics

Ma = f(θa), (3)

and the viscous actuator damping as

Mfri = bmθ̇m, (4)

where bm is the linear damping coefficient. For each axle

i = {f, r}, the overall actuator angle θa is given as a

superposition of the bounded angular motor displacement

min(θm) < θm < max(θm) and the relative angle between

both torsion bar halves as

θa =
θm
kg

− (θtil − θtir ), (5)

where θtij is the torsion angle for each halve torsion bar rela-

tive to their initial angular position. By replacing the variables

defined in eqs. (2)-(5) into the angular motion equation defined

in eq. (1), the dynamics of eARC can be the written, for each

axle i, as

θ̈mi
=

1

Jm
[Kmiai

− bm]−
1

Jm

[
θ̇mi

− f(θai
)

(
1

kg
θmf

− (θtil − θtir )

)]
.

(6)

The binary of equal and symmetric actuator forces Fail
=

−Fair
transmitted to the two suspension struts on each side

of the axle are given by

Faij =
Ma

la
, (7)

where la is the length of each half of the torsion bar.

B. Full vehicle model

A full vertical vehicle model with eARC extension is

derived for the assumed three degrees of freedom: roll θ,

pitch φ, and heave zs of the chassis, which constitutes the

sprung mass ms. The corresponding diagram free-cut bodies

is shown in Fig. 3. The following modeling assumptions have

been made: kinematic effects due to suspension geometry are

ignored, i.e. the suspensions only provide vertical forces to

the chassis; the vehicle chassis plane is parallel to the road;

spring initial deflections are due to equilibrium of ms gravity

components [11]. The chassis dynamics are given by

msz̈s =− Fsfl
− Fsfr

− Fsrl − Fsrr ,

Ixxθ̈ =(Fsrl − Fsrr+Farl
− Farr

) tr+(
Fsfl

− Fsfr
+Fafl

− Fafr

)
tf +Mdx

,

Iyyφ̈ =(Fsrl + Fsrr+Farl
+ Farr

) lr−(
Fsfl

+ Fsfr
+Fafl

+ Fafr

)
lf +Mdy ,

(8)

zusfl

zrfl

zsfl

btf

ktf

musfl

zusfr

zrfr

zsfr

musfr

ys

xs

zs

θ

φ
lf

tf

θtfl

θtfr

ksf

btf

ktf

bsf

ksf
bsf

lr

Fig. 3: Front section of the full vehicle model.

where ms is the sprung mass with inertias Ixx and Iyy ,

Mdx is the moment about xs-axis (coming from steering) and

Mdy is the moment about ys-axis (coming from accelerating

and breaking), cf. Fig. 3. Vehicle geometry is defined by the

distances (along xs-axis) between the center of mass (COM)

and the front and rear axles lf and lr, and the distances (along

ys-axis) between the COM and the front and rear corners tf
and tr. The dynamics of each (corner) unsprung mass musij

are given by

musij z̈usij = Fsij − Ftij+Faij
, (9)

where zusij is the vertical displacement and zrij is the road

input at each corner. The vertical tire and suspension forces,

Ftij and Fsij correspondingly, are defined as

Ftij = kti(zusij − zrij ) + bti(żusij − żrij ),

Fsij = ksi(zsij − zusij ) + Fd(ż, idi
, pm(idi

)).
(10)

Here kt is tire elastic stiffness, bt is tire damping coefficient,

and ks is passive spring coefficient. The semi-active damper

force, with the control valve current idi
, is denoted by Fd and

further described in section V-C. The kinematic relationships

between the COM, with coordinate zs, and the connection

points of each corner strut are given by
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zsfl
= zs + lf sinφ− tf sin θ,

zsfr
= zs + lf sinφ+ tf sin θ,

zsrl = zs − lr sinφ− tr sin θ,

zsrr = zs − lr sinφ+ tr sin θ,

żsfl
= żs + φ̇lf cosφ− θ̇tf cos θ,

żsfr
= żs + φ̇lf cosφ+ θ̇tf cos θ,

żsrl = żs − φ̇lr cosφ− θ̇tr cos θ,

żsrr = żs − φ̇lr cosφ+ θ̇tr cos θ.

(11)

The kinematic cross-coupling between the vehicle model and

that of eARC is given by

θil − θir = sin−1

(
zsif − zusif

la

)
−

sin−1

(
zsif − zusif

la

)
.

(12)

IV. FIELD EXPERIMENTS

The field experiments were conducted at a proving ground

with dedicated tracks for comfort and handling. Experiments

were performed by driving on different sections from the

comfort track and ride track. These tracks have a sufficient

combined length, replicating several public road surfaces from

different countries. The road conditions vary from slightly

indiscrete to very severe, making it appropriate for durability

verification and assessing the vehicle suspension. The vehicle

is driven with a steady-state velocity, according to the speed

limit for each section. The GPS signals were used for identi-

fying the different road sections and, afterwards, to segment

the recorded data. A segment of time domain measurements

from one of the road sections is exemplary shown in Fig. 4.
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Fig. 4: Time response for a segment with phased-bumps in the

end of road section.

Other relevant field-tests were conducted in a large asphalt

circle with a diameter of 330 m used for vehicle handling

tests under safe conditions. Constant radius cornering (CRC)

tests consist in driving around a constant radius trajectory

(diameter = 100 m) with a linear speed increase until reaching

the handling limit of the vehicle, to see the effects of roll

angle and lateral acceleration. Start-and-stop tests were also

conducted for squat/dive evaluation. All field tests have been

accomplished at the dedicated commercial test facilities for

the ground vehicles. Further details are omitted here due to

the customer specific industrial developments.

V. IDENTIFICATION

Identification of the derived vehicle model parameters is

limited in this work to determining the lumped parameters and

nonlinear characteristics from the available and experimen-

tal data. In addition, exemplary frequency response function

measurements are shown for several channels to highlight the

coupling effects of the complex vehicle dynamics.

A. Available lumped parameters

Lumped parameters listed in Table I have been taken over

from the available technical documentations or determined

from the nominal parameters of the anti-roll system and

vehicle [8], [9], [13]. The mass and geometry quantities were

measured during the vehicle setup.

TABLE I: Available lumped parameters
Parameter Value Units
ms Sprung mass 2495 kg
mus Unsprung mass 516.25 kg
tf Length from COM to corner (ys-axis) 0.66 m
tr Length from COM to corner (ys-axis) 0.70 m
lf Length from COM and front (xs-axis) 1.6092 m
lr Length from COM and rear (xs-axis) 1.3708 m
Km Torque constant 0.893 Nm/A
bm Viscous friction constant 10 Ns/m
Jm Rotor moment of inertia 0.01 kg m2

kt Tire elastic coefficient 250000 N/m
ks Spring elastic coefficient 76139.21 N/m
bt Tire damping coefficient 850 Ns/m
kg Gearbox transmission ratio 43 -
la Lever length 0.300 m
Ixx Moment of Inertia x-axis 250 kg m2

Iyy Moment of Inertia y-axis 2200 kg m2

B. Nonlinear elastomer and torsion bar

The progressive nonlinear rigidity curve is mainly due

to the elastomer-based decoupling unit, see [7], [8]. The

elastomer decoupling unit is clearance-free flanged into the

overall torsion bar assembly so that the lumped nonlinear

torsion-torque characteristics in (θa,Ma)-coordinates can be

assumed. The integrated torque sensor, used for an embedded

low-level actuator torque control, provides the current torque

value of the entire torsion bar. The static torsion-torque data

are obtained from [8] and shown in Fig. 5 by the single data

points (in green). The data points were extracted from the

available curves [8] using a digitizing graph data toolbox, and

an average was used as the data set for curve fitting.
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Fig. 5: Fitten nonlinear stiffness model versus available data

Based on stiffening properties of elastomers and data

analysis of the torsion-torque characteristics, cf. Fig. 5, the

progressive polynomial odd function

Ma =
∑
n

αn(βnθa)
n, (13)

with geometric power series of the cubic stiffness n = 3γ with

γ = {1, 2, 3}, is originally proposed in this work. The abscissa

and ordinate scaling parameters are βn and αn correspond-

ingly. That way the smooth analytic mapping θa �→ f(θa) to

the restoring (or actuator) torque is provided for the entire

system modeling. An accurately fitted nonlinear stiffness map

(13) is shown in Fig. 5 over the used identification data.

C. Nonlinear semi-active damper

Semi-active damping systems comprise a shock absorber

capable of variable damping, typically with an actuation

bandwidth up to 20-30 Hz [11]. Such damping variation

is achieved by an integrated electro-actuated solenoid valve.

Then a system-specific force-velocity map becomes a func-

tion of the valve electronic command. Therefore, the shock

absorber damping characteristics

Fd(ż, id) = f(ż, id, ξ(id)), (14)

depend simultaneously, in addition to a linear viscous damp-

ing, on the rod velocity ż and valve current id. The nonlinear

mapping (14) includes the set of parameters ξ to be determined

from the available data set obtained experimentally in addi-

tional laboratory testing. Shock absorbers were experimentally

tested in a test bench for different rod velocities and current

valve openings. Based on the data analysis, the following

nonlinear map

Fd = ξ1 atan (ξ2(ż + ξ3)) + ξ4ż + ξ5 (15)

is proposed, while the following polynomial coefficients pm:

ξ1 = p1i
3
d + p2i

2
d + p3id + p4,

ξ2 = p5i
4
d + p6i

3
d + p7i

2
d + p8id + p9,

ξ3 = p10id + p11,

ξ4 = p12id + p13,

(16)

are assigned as best fitting the current-dependent parameters

ξn, for n = 1, . . . , 4. The total set of the above polyno-

mial coefficients is fitted on the available experimental data,

depicted as single points in Fig. 6. The identified smooth

nonlinear damping map (15) is equally shown in Fig. 6

over the data. Considering the absolute error of the data fit

e = |Fdfitted
− Fdmeasured

|, the fitted parameters were obtained

with the mean value ē = 557.04 and the standard deviation

σ(e) = 419.87.

Fig. 6: Fitted nonlinear damping model versus available data

D. Linearized model

Model linearization towards a uniform MIMO (multiple-

input-multiple-output) system description is made in order to

allow for analysis of the frequency response characteristics

and complex multi-dimensional system dynamics at large. The

system described by eqs. (1)-(12) can be written in a general

linear state-space representation [14]

ẋ = Ax+Bu,

y = Cx+Du,
(17)

with the system matrix A, input and output coupling matrices

B and C respectively, and feed-through matrix D. The derived

coefficients of the above matrices are omitted here, due to

the high dimensions and space limits, while the obtained

numerical model (17) has been verified in simulations with

the full nonlinear model given by (1)-(12). Notwithstanding,

it is worth noting the components of the state vector x ∈ R
18,

input vector u ∈ R
14 and output vector y ∈ R

12 given by

x =[żs, zs, θ̇, θ, φ̇, φ, żusfl
, zusfl

, żusfr
, zusfr

, żusrl ,

zusrl , żusrr , zusrr , θ̇mf
, θmf

, θ̇mr
, θmr

]T ,
(18)

u =[zrfl
, zrfr

, zrrl , zrrr , żrfl
, żrfr

, żrrl , żrrr , idf
, idr ,

iaf
, iar

,Mdx,Mdy]
T ,

(19)

y =[z̈usfl
, z̈usfr

, z̈usrl , z̈usrr , z̈sfl
, z̈sfr

, z̈srl , z̈srr ,

(zs − zr)fl, (zs − zr)fr, (zs − zr)rl, (zs − zr)rr]
T ,

(20)

correspondingly.
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Small-angle approximation truncated Taylor series [15]

was used for the linearization of the trigonometric functions

sin θ ≈ θ, cos θ ≈ 1 and sin−1 θ ≈ θ for the kinematic

equations given in (11) and coupling (12). Note that the

relative error of this approximation is less than 1% for θ < 8°.

The progressive polynomial odd function (13) is linearizated

as by an equivalent stiffness coefficient

Ma ≈ kaθa, (21)

with kα determined according to the actuator torque Ma range.

The 3-dimensional map of the semi-active damper, see Fig. 6,

was linearized as

Fdij ≈ kβv (żs − żus)ij + kβcidi , (22)

with the corresponding coefficients kβv and kβc , which are

equally subject to adjustments depending on the velocity and

current operation range.

E. MIMO transfer characteristics

The linearized state-space model of the vertical dynamics,

provided above in section V-D, constitutes the basis for MIMO

reformulation and its further use for frequency analysis of

the transfer characteristics between different input and output

channels of interest. The obtained transfer function matrix

G(s) = Y(s)/U(s) contains all coupling elements between

the input vector U and output vector Y, and dim(G) =
12 × 14. By convention s is the Laplace variable, while for

the measured frequency response functions the jω argument is

used, with ω to be the angular frequency and j imaginary unit

of the complex numbers. Note that additional rearrangement of

the input-output pairs is also possible, based on the similarity

transformations, see e.g. [16], of the initial state-space model

(17). This is, however, not performed in the present work since

a thorough and more detailed analysis of the MIMO system is

first required in order to detect and distinguish between strong

(main) and weak cross-couplings.

The below frequency response functions (FRFs) are those

obtained from the measured real-time data, collected during

the field tests cf. sections II and IV, and estimated from the

input-output channels of the full model described in section III.

Note that the model input data are taken from the same mea-

sured experimental data set. In the following we demonstrate

the frequency characteristics of one exemplary taken output of

interest, z̈srr , and that for three different inputs idr , iar , and

Mdx. Here, a drive experiment with constant cornering and

increasing lateral acceleration is taken into consideration. Note

that at those drive conditions, the momentum Mdx provides

a persistent excitation while both control values idr
and iar

on the rear axle are equally subject to an intensive dynamic

behavior owing to the anti-roll support in operation. The

transfer function estimate is computed, in a standard way, as

the ratio of the output Fourier transform to the input Fourier

transform of the time series. A slightly smoothing effect, for

the sake of a better visualization, is obtained by additionally

applying a high-dimension Hamming window to the Fourier

transformed data.
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Fig. 7: Measured frequency response characteristics, z̈srr/idr

in (a), z̈srr/iar
in (b), and z̈srr/Mdx in (c).

All three frequency responses, for the measured data of

drive experiments and for the full model of vertical dynamics

given in eqs. (1)-(12), are shown in Fig. 7. Since these

transfer characteristics have all the input and output quantities

equivalent to the generalized forces, no free differentiator

or integrator behavior can be consequently expected and

observed. The most pronounced resonance peak is visible in

the z̈srr/iar
transfer characteristics, and appears reasonable

due to the stiffness of torsion bar. Several distortions in the

amplitude response point on the coupling effects of multi-

body dynamics and relatively high level of both the process

6



and measurement noise. At the same time, a relatively high

overlapping of both, measured and model estimated, FRFs can

be seen over the whole frequency range of about 1000 Hz.

Another set of drive experiments was also evaluated on

dedicated sections of the straight road, aiming to replicate

driving in standard public roads with typical driving conditions

(e.g. vehicle velocity). Here not so much influence from high

lateral momentum Mdx is present, but rather the contribution

of the semi-active damper and active torsion bar which operate

to filter out the road disturbances. For another selected output

of interest z̈sfl
, the estimated frequency response character-

istics, from the measured experiments and simulated model

eqs. (1)-(12), are exemplary shown in Fig. 8 for the inputs

idf
and iaf

. Certain discrepancies in the resonance peaks

range are observed, which can be reasonably attributed to:

the conditioned information and measurements of the road

excitation, cross-coupling effects, and measurement noise and

uncertainties of the fitted model parameters.
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Fig. 8: Measured frequency response characteristics, z̈sfl
/idf

in (a) and z̈sfl
/iaf

in (b).

VI. CONCLUSIONS

In this paper, we derived the full vertical vehicle model

with the integrated anti-roll bar and semi-active suspension.

The obtained model is nonlinear and can be seen as full-

scale since capturing all main sources and internal terms of the

coupled multi-body system dynamics. Also the corresponding

linearized MIMO model is obtained which is, however, sub-

ject to further studies and refinements concerning the cross-

coupling and linearization by-effects. Two analytic forms of

nonlinear mapping used for the key components of the active

anti-roll suspension system have been proposed and accurately

fitted with experimental data. The series of accomplished field-

experiments of a full-scale drive has been described along with

the vehicle setup, instrumentation, and measurements. The

demonstrated comparison between the measured and model-

estimated frequency response characteristics, for different mul-

tiple input-output channels, disclose the sufficient generality

and fidelity of the whole model, that over a relatively large

frequency range.
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