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ABSTRACT In this work, we present a simple framework to synthesize human motion. Our main goal
is to propose a methodology tailored for inexperienced users to initiate their research in human motion
simulation and human motion trajectory optimization. The novelties of the work include the following. First,
trigonometric splines are used instead of traditional B-splines to discretize the generalized coordinates and
velocities. Second, useful identities for trigonometric splines are derived. Third, this work is intended to
be an example, so that even non-skilled users, such as undergraduate students, can perform human motion
analysis using a high-level programming language such as MATLAB. Four simulations of human motion
are generated: walking, sitting and standing, side-step, and jump. The results of the walking simulation are
validated by experiments. Simulation and experimental results are presented and discussed.

INDEX TERMS Human motion synthesis, nonlinear programming problem, trigonometric splines,
trajectory optimization.

I. INTRODUCTION
A thorough and deep understanding of biomechanics is
essential for healthcare and clinical examination, imple-
mentation of safety measures, sports industry, biomedical
research, human-robot interaction area, human psychology,
space exploration, animation, graphics, gaming industries,
and many other fields. Additionally, it seems that humans
also accept robots in a society based on how they display
elegant behavior [1]. As a result, we still study, investigate
and research the nature of human motion.

Human motion research can be broadly divided into
experimental and simulation-based research. In experimental
research, human subjects perform various activities while
their movements are recorded. Motion recording can be
performed with numerous motion capture systems, such as
the inertial sensor-based XSENS [2], [3], and Rokoko [4],
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or the visual motion capture systems such as Qualisys [5] and
Vicon [6]. The main advantage of the experimental motion
recording is the accuracy of the 3D measurements. However,
this is mainly true for optical systems, while inertial systems
often experience drift in sensor measurements. Experiments
are associated with certain disadvantages. One of them
is that motion capture experiments are time and resource
consuming. Human subjects and their consent are needed to
conduct them. Moreover, costly experimental equipment is
required to obtain accurate measurements. Another drawback
is the noise that is present in any sensor measurement. This
in turn requires data post-processing, such as applying filters,
smoothing data, removing corrupt data, etc., to extract the
required information. The above factors form a bottleneck
that impedes the collection of high-quality human motion
data.

The advantages of simulation include reduced time,
increased data transparency, higher accuracy, absence of
noise, and ease of post-processing [7], [8]. Compared to
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experimental data, more information can be extracted from
simulation data. For instance, it is possible to obtain the knee
or ankle torque from simulated motion, but it is difficult
or impossible to measure them directly in the experiments.
The simulation requires only computational resources and
is therefore considered cost-effective. Simulations of human
motion can be beneficial in the following: improving the
design of prosthetic joints, assisting in surgical procedures to
correct gait pathologies, ability to predict novel movement
patterns for robots and/or animation characters, increase
the robustness to damage and reducing its effects, and
synthesis of appropriate gaits for older or younger characters.
Simulations of human motion also allow capturing the
micro-Doppler signatures of a person for activity recognition
and monitoring [9]. Simulation of human motion has also
drawbacks. The first one is the reliability of simulation
results. Obtaining reliable human body motion simulations
is a challenging task due to the multiple degree-of-freedom
(DOF) human body model, coupled and nonlinear dynamics,
and the complex nature of interactions with the environ-
ment. Another drawback is that considerable knowledge
(of physics, contact forces, constraints, etc.) and manual
efforts are required to obtain good quality simulations. Yet
another issue is about the need for a human model with its
corresponding mathematical description. This, in turn, places
a burden on non-skilled users. In this work, we focus on the
simulation of human motion.

There are three ways to simulate human motion: data-
driven, optimization-based, and controller-based. Despite
significant progress in synthesizing or simulating human
motion using optimization tools, the full potential has not yet
been realized and there are numerous open questions [10].
For example, problems such as generating personalized
subject-specific models, automated synthesis of complex
human behaviors, defining good objective functions for
optimization problems, and reducing the computational
complexity of motion synthesis remain challenging and
unsolved [11], [12], [13]. Other challenges includemodel val-
idation and verification, incorporation of simulation results
in the medical industry, increasing simulation accuracy,
and accurate computation of muscle forces. Computational
human dynamics still lags behind numerical tools used in
other industries such as computational fluid dynamics or
electromagnetism [8]. Due to the amount of material and
sources, and the numerous numerical packages and tools
developed for solving optimization problems, it is not easy
for beginners to get an overview and initiate their research.
Moreover, there are no clear rules or guiding principles
for choosing the right numerical tool. This issue is further
complicated by the fact that some of the numerical tools
(such as SNOPT) are not open source. It often necessitates
the integration of open-source packages designed for specific
applications to obtain a valid and fully functional framework
for human motion synthesis. The reported various human
motion synthesis tools are application- and implementation-
dependent. These challenges are the reason for the high

‘‘entry cost’’ into the field of computational human dynamics.
They require knowledge from different domains to synthesize
human motions. Our goal is to provide guidance that will
allow inexperienced users to quickly and easily synthesize
realistic human motion with minimal training. A good
summary of the current state of the art in human motion
simulation methods can be found in [13]. In this work,
we focus on fully synthetic human motion simulations
using optimization methods, a powerful approach for the
generation of human motion with a minimal amount of input
information.

In optimization-based simulations, the polynomial
B-splines are commonly used as basis functions to represent
unknown variables. The advantages of spline methods
include stability, smoothness, continuity, differentiability,
and local control [14], [15]. B-splines were used to synthesize
the gait motion of an 18-DOF lower human body model
in [16], leap, swing, monkey-bar motion of a 22-DOF full
human body model in [17], and dynamic break-dancing
maneuvers in [12]. Instead of traditional polynomial
B-splines, we utilize trigonometric spline basis functions for
discretization. We justify it by assuming that human motion
is mostly periodic, and so trigonometric functions might be
better suited for trajectory representation than B-spline basis
functions. As a result, we have developed a technique to
synthesize a human motion using the trigonometric spline
method. We show in this work that the trigonometric spline
method can simulate human motion as efficiently as the
B-spline method.

The major contributions of this paper are:
• Trigonometric spline method is used to discretize the
generalized coordinates and velocities. New expressions
for time derivatives of the trigonometric splines are
derived. To the best knowledge of the authors, this is the
first time trigonometric splines are utilized for human
motion synthesis.

• We demonstrate that human motion can be synthesized
using robust and high-level programming languages
such as MATLAB, which is easy to code and debug, but
were previously considered rather slow. This is possible
thanks to efficient sensitivity analysis algorithms.

• This work is aimed to be an example of human motion
synthesis problem with the intent to lower the entry
barrier for others into this research field.

The paper is organized as follows. Section II provides
a review of the existing literature on human motion simu-
lations. The nonlinear programming problem, its objective
function and constraints are described in Sec. III, IV, and
V, respectively. Four simulation examples are presented in
Sec. VI, while the performed experiments are described in
Sec. VII. The results of both simulations and experiments are
discussed in Sec. VIII.

II. RELATED WORKS
In data-driven human motion simulations, the recorded
human motion is either visualized or modified to generate
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a new motion using blending, optimization, or interpolation
techniques. The resulting problems are also called tracking
problems in the optimization community, where the aim
is to obtain the simulated motion as close as possible
to the experimentally recorded motion. With the advent
of reinforced learning techniques (neural networks), great
advances have been made in data-driven simulations of
human motion. Examples include synthesis of human motion
from a large set of training data without manual preprocessing
or human intervention [18], a hierarchical control framework
for environment-aware locomotion based on limited training
data [19], a physics-based framework for animating figures
that combines goal-directed reinforcement learning with
data [20]. Optimization methods are also used in synthesizing
human motion from experimental data. For example, various
dynamic human motions were generated from reference
animations using optimizationmethods and empirical models
for the behavior of human limbs’ momentum [21]. Opti-
mal feedback control was developed to simulate reference
human motions subject to disturbances and environmental
changes [22]. Other examples of data-driven motion control
include the use of feedback error learning [23], support
vector machines [24], curriculum learning [25], and motion
synthesis from textual descriptions [26] and audio [27].
Context-specific locomotion steps were synthesized using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
and the full-body inverse kinematics in [28]. A new and
interesting extension in this direction was the utilization of
videos to capture human motion, i.e., human 3D trajectories
were inferred from videos [29]. A human dynamic model
with 48 DOF was used to visualize and simulate human
motion based on experimental motion capture data [30].
Multi-character simulations were also obtained from motion
capture data using reinforcement learning [31], [32] and
hierarchical reinforcement learning [33]. Data-driven human
motion simulations are popular in computer graphics,
gaming, and the machine learning community, which can
be explained in part by the presence of model-free deep
reinforcement learning techniques [19]. In other words, there
are data-driven human motion simulation methods that do
not require a human model. However, this group of methods
have drawbacks, such as lacking or limited predictive power
(compared to optimization problems, since most motion
editing tools try to preserve the original motion), producing
erroneous, i.e., physically incorrect and jerky motions, and
the inability to accurately model force interactions with
the environment [34]. However, recent developments in
reinforcement learning and deep reinforcement learning
based motion synthesis, which does not require motion
capture data, are very promising [35]. Our work can be
considered as complementary to their work.

Multibody dynamics is categorized as forward dynamics
(kinematic variables are unknowns) and inverse dynamics
(force/torque variables are unknowns). In reality, neither
forces/torques nor positions and velocities are available

before performing a simulation of the human body motion.
Therefore, these problems fall into the optimization problem
category. The problems in this category are called predictive
dynamics problems [7] (also called trajectory optimization,
motion synthesis or motion control in different engineering
fields). The first application of the optimization problem to
synthesize human motion was presented in [36]. Multiple
techniques are available for solving an optimization prob-
lem [37], [38]. The optimal control methods employed to
model a human motion are summarized in [39] and [10].
Mathematical parameterization of the biomechanical exper-
imental human walking data was used to develop a human
walking model [40]. In essence, the experimental kinematic
data of human joints without dynamic equations were used to
construct the dynamic humanmodel. Awalking simulation of
the human lower body musculoskeletal model with 23 DOF
was presented in [41]. In [42], a model for generating style-
and subject-specific human motion was presented based on
optimizing the parameters of the physical model (human
model with 35 DOF) and their subsequent synthesis. The
synthesis of the walkingmotion of a biped robot with 13 DOF
and a lower human body skeletal model with 18 DOF were
presented in [16] and [43], respectively. Gait simulation
for a full-body skeletal model was synthesized in [44].
Human gait was generated using fatigue as a cost function
in the optimization problem for a 9 DOF model [45]. Other
types of human motion synthesized using optimization tools
include jumping [46], [47], [48], lifting [7], pedaling [49],
standing up, headspin, handspin, push-ups and crawling [12].
An interesting contact-invariant optimization method that
optimizes both the contact events and the motion trajectory
was presented in [50]. In this work, the optimization problem
is solved directly for the contact points instead of manually
specifying the contact information or solving it indirectly.
However, to achieve a favorable trade-off between physical
realism and the optimization efficiency, a simplified human
model was utilized. A framework for the generation of
locomotion strategies for bipedal creatures was proposed
in [51]. Different dynamic behaviors using the 41 DOF
human body model and a combination of simple objective
functions were synthesized in [12]. The novelty of this work
was the utilization of optimization windows: a full trajectory
optimization would be prohibitively expensive, so the authors
divided the simulation time into multiple windows and
performed the optimization sequentially over each window.
The advantages of the optimization-based motion synthesis
include minimum required input (no experimental data),
full flexibility (new and unique motions can be predicted),
and variability (different types of motion can be generated).
However, its weaknesses are the need for a mathematical
model of a human body and its interaction with the
environment.

While earlywork focused primarily on the offline synthesis
of simple (and mostly cyclic) human motions within a short
period of time, such as a phase of walking or jumping, later
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research focused more on the online synthesis of interactive
and/or more complex motions over a longer period of time.
These methods can also be referred to as controller-based
human motion synthesis, where the task is to design a
controller that allows a human avatar (model) to simulate a
specific motion in real time. The obtained interactive motion
synthesis is often used in character animation. One common
feature of these controller-based methods is that they often
rely on a simplified human model (inverted pendulum)
and use offline reference motion generators. A physics-
based interactive framework for human motion synthesis was
presented in [52]. The advantages of the method include
minimal physical parameter tuning and an adaptive controller
for an arbitrary character model. However, the proposed
optimization problem does not enforce dynamics at the joints
or joint torque constraints, and the naturalness of the resulting
motion is achieved by enforcing a slow change in joint torques
in time. In [53], a control strategy for humanoid walking
movements was presented that can be generalized across gait
parameters, movement styles, and character proportions. The
control strategy is based on a simplified inverted pendulum
model. A low-dimensional spring-loaded inverted pendulum
model and a two-stage optimization process were used to
simplify the synthesis of the highly-dynamic human gait
[11], [54]. In the first (step) optimization stage, the simplified
pendulum model is used to calculate the step length and
heading. While in the second (torque) optimization stage,
the optimal torque values are found for a full 37 DOF
human model. Human gait was generated by considering the
influence of leg mechanics on human motor control, which
is another form of state feedback control [55]. However,
as the authors note, this method lacks predictive power and
can be used to generate mostly repetitive motions such as
gait. Walking patterns at different speeds for a human body
model with 30 DOF were generated in [56]. The authors
proposed a novel, biologically inspired state feedback control
in which muscle excitation is based on the muscle force and
length, and other state values. In other words, joint torques
depend on the system state. A sampling-based algorithm
was used to generate collision-free and balanced whole-
body trajectories for a 38 DOF NASA Valkyrie robot [57].
Interestingly, the inverse kinematics calculations dominated
over 95% of the computation time. Reinforcement learning
was used to generate diverse terrain traversing motions of
the 28DOF humanoidmodel in [58]. It was demonstrated that
simple and generic reward functions combined with training
over a wide range of environmental conditions can lead to
the development of non-trivial locomotion skills. Interesting
work was presented in [34], where for a given sequence
of high-level tasks, a human motion was synthesized from
motion primitives using linear temporal logic specifications.
However, the proposed method is efficient at generating
complex motions if motion primitives are available, but it
cannot generate motion primitives themselves. The main
shortcomings of controller-based methods are the following.
They often use a simplified human model (especially for

foot placement calculations). Moreover, these methods rely
on forward dynamics simulators, such as Open Dynamics
Engine.

III. OPTIMAL CONTROL AND NONLINEAR
PROGRAMMING PROBLEMS
In this work, we will not specify the dynamics of the
human body, because there are numerous formulations
(Newton-Euler, Lagrangian, Hamiltonian, spatial notation,
Kane’s equations, etc.). Instead, we leave the reader freedom
to choose the specific formulation and describe a model-free
optimization. However, for clarity, we introduce the inverse
dynamics equations of an arbitrary mechanical system with
nq DOF as follows

M (q)q̈ + K (q, q̇) +W (q) = Q, (1)

where q = [q1 q2 . . . qnq ]
T

∈ Rnq and q̇ = [q̇1 q̇2 . . . q̇nq ]
T

∈

Rnq are the vectors of the generalized coordinates and
generalized velocities, respectively; M (q) ∈ Rnq×nq is the
inertia matrix; K (q, q̇) ∈ Rnq is the vector of the Coriolis
and normal inertial forces; W (q) ∈ Rnq is the vector of
gravitational forces, and Q = [Q1 Q2 . . .Qnq ]

T
∈ Rnq

is the vector of the generalized forces. The superscript ()T

means the transpose operator. The 43-DOF human model
with 20 links is used to generate the human motion in this
work, see Fig. 1. The global coordinate system has unit
vectors x0-y0-z0. We emphasize that the specific kinematic
and dynamic descriptions, as well as the sensitivity analysis
of the model, are not given so that the paper and the reader do
not depend or rely on them.

The synthesis of human motion is a trajectory optimization
problem and can be solved by either an optimal control
problem or a nonlinear programming problem. The optimal
control problem (OCP) is formulated as follows

min
x,u

J (x,u)

s.t. G(x,u) ≤ 0

H(x,u) = 0

ẋ = F(x,u). (2)

where J is the objective function, also called the cost
function, which is a scalar function that needs to be
minimized. G is a set of nonlinear inequality constraints,
H is a set of nonlinear equality constraints, F is the state
equation that describes the dynamics of the system as a set
of first-order nonlinear differential equations, while x and
u are the state and control vectors, respectively. Usually,
x = [qT q̇T ]T ∈ R2nq and u = Q from (1). Solving
the OCP is a tedious task, especially for complex systems
in real life. Roughly speaking, there are two methods to
solve the OCP: analytical and numerical [59]. Numeric
methods can be further divided into direct and indirect
methods1 [38], [61], [62]. Indirect methods are based on

1There is also a dynamic programming method, but it is not practical for
systems with many DOFs [60].
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FIGURE 1. Schematic diagram of a humanoid model with 43 DOF and
20 links. The green dot is the origin of the global frame of reference
x0-y0-z0, the red dot is the pelvis point, black dots are joints.

the Pontryagin minimum principle and convert the OCP into
a two-point boundary value problem. Indirect methods can
also be referred to as ‘‘optimization then discretization’’
methods [63]. Direct methods are based on the Karush-
Kuhn-Tucker conditions and convert the OCP into an NLP.
Direct methods are also referred to as ‘‘discretization then
optimization’’ methods. The OCP can be considered as an
infinite-dimensional optimization problem, while the NLP is
the finite-dimensional version of the OCP [38]. The NLP can
be defined as

min
y
J (y)

s.t. G(y) ≤ 0

H(y) = 0. (3)

For the NLP, y is the vector of decision variables that
is different from the vector of state variables x in the
OCP (2). There are three ways to convert the OCP into
the NLP: numerical integration, collocation, and differential
inclusion [37], [64]. In the numerical integration methods,
the control input vector u is discretized and selected as
a decision variable vector y, while the state vector x is
found by integrating the dynamic equations [46]. In the
collocation methods, both the state vector x and the control
input vector u are discretized and chosen as the decision
variables [49]. In the differential inclusion methods, the
discretized state vector x is used as the decision variable
vector y, while the control input vector u is found by imposing
the dynamic equations (1), [44]. It should be noted that
the shooting methods, which involve the integration of the
dynamic equations of motion, are in general more costly than
the collocation or the differential inclusion methods [48].
Since we use inverse dynamics in this work, the differential
inclusion method is chosen for the NLP. An efficient solution
of the optimization problem with gradient-based methods
depends largely on the objective function and constraint
gradient information. The fast calculation of gradients makes
the solution of optimization problems feasible even for the
large-DOF systems.

A. DISCRETIZATION
To convert the OCP into an NLP using the differential inclu-
sion method, we must discretize the generalized coordinates

and its time derivatives. This is accomplished by using the
spline basis functions Nl,γ (t) of degree γ as

qi(tj) =

N∑
l=0

Nl,γ (tj)yi,l, q̇i(tj) =

N∑
l=0

Ṅl,γ (tj)yi,l

q̈i(tj) =

N∑
l=0

N̈l,γ (tj)yi,l, (4)

where yi,l (l = 0, . . . ,N ) are control points used to discretize
the generalized coordinate i; N + 1 is the number of control
points per DOF (this is also equal to the number of basis
functions), and tj is the specific time step. Ṅl,γ (tj) and
N̈l,γ (tj) are, respectively, the first and the second-order time
derivatives of the spline basis function (dNl,γ (t)/dt and
d2Nl,γ (t)/dt2) evaluated at tj. The so-called knot vector is
formed from the sampling time steps tj, j = 0, . . . , nt , where
nt is the number of sampling intervals. Some of the terms of
the knot vector might have a multiplicity higher than 1. The
total number of control points for the entire dynamic system
is nq(N+1). The control points are the optimization variables.
There is a relation between the number of control points, the
degree of basis functions and the dimension of the knot vector
lkv: lkv − 2 = N + γ . Please note that lkv ̸= nt + 1. If the
simulation duration is tsim and the discretization is uniform
with the number of sampling intervals nt , then 1t = tsim/nt
and tj = j1t , j = 0, . . . , nt .

B. TRIGONOMETRIC SPLINES
Trigonometric splines were introduced in [65] and later useful
identities for them were derived [66], [67]. The difference
between the B-splines and the trigonometric splines is that in
the former the basis functions are polynomials, while in the
latter the basis functions are trigonometric functions. Human
motion is mostly a periodic motion. Therefore, we assume
that use of the trigonometric splines is more suitable than
polynomial B-splines for the discretization of human motion.

Trigonometric splines are defined similarly to polynomial
splines by recursive Cox-de Boor relations as

Nl,0(t) =

{
1 for tl ≤ t < tl+1

0 otherwise

Nl,γ (t) =
sin (t − tl)

sin (tl+γ − tl)
Nl,γ−1(t)

+
sin (tl+γ+1 − t)

sin (tl+γ+1 − tl+1)
Nl+1,γ−1(t) (5)

with the restriction that t < π . In case t ≥ π , t can always
be re-scaled to satisfy this condition. In special cases, the
following conditions are applied

Nl,γ (t)

=


sin (tl+γ+1−t)

sin (tl+γ+1−tl+1)
Nl+1,γ−1(t) if sin (tl+γ − tl) = 0

sin (t−tl )
sin (tl+γ −tl )

Nl,γ−1(t) if sin (tl+γ+1 − tl+1) = 0

0 if both denominators are 0.
(6)

VOLUME 11, 2023 14297



A. Zhakatayev et al.: Human Motion Synthesis Using Trigonometric Splines

Time derivatives of basis spline functions can also be found
by recursive relations

Ṅl,γ (t) = γ
( cos (t − tl)
sin (tl+γ − tl)

Nl,γ−1(t)

−
cos (tl+γ+1 − t)

sin (tl+γ+1 − tl+1)
Nl+1,γ−1(t)

)
. (7)

N̈l,γ (t) = − γ
( sin (t − tl)
sin (tl+γ − tl)

Nl,γ−1(t)

+
sin (tl+γ+1 − t)

sin (tl+γ+1 − tl+1)
Nl+1,γ−1(t)

)
+ γ (γ − 1)

( cos2 (t − tl)
sin (tl+γ − tl) sin (tl+γ−1 − tl)

× Nl,γ−2(t)

−
cos (t − tl) cos (tl+γ − t)

sin (tl+γ − tl) sin (tl+γ − tl+1)
Nl+1,γ−2(t)

−
cos (t − tl+1) cos (tl+γ+1 − t)

sin (tl+γ − tl+1) sin (tl+γ+1−tl+1)
Nl+1,γ−2(t)

+
cos2 (tl+γ+1 − t)

sin (tl+γ+1 − tl+1) sin (tl+γ+1 − tl+2)

× Nl+2,γ−2(t)
)
. (8)

If any of the denominators in (7) and (8) is zero, then the
corresponding term is assigned to be zero. The examples
of the trigonometric basis spline functions of a different
degree and their time derivatives, defined over the knot vector
[0 1 . . . 8] ,2 are shown in Fig. 2. The equations (5)-(8) are
substituted into (4) to compute the generalized coordinates,
velocities, and accelerations, which in turn are then sub-
stituted into (1) to transform a set of nonlinear differential
equations into a set of nonlinear algebraic equations.

C. GRADIENT AND JACOBIAN MATRICES
For further analysis we will need the Jacobian matrices of
the generalized coordinates Jq,y ∈ Rnq×nq(N+1) with respect
to the optimization variables evaluated at specific time steps.
Each entry of the Jacobian matrix is Jq,y(i, j) =

∂qi
∂yk,l

, where
the indexes k and l satisfy the following identity (k − 1)(N +

1) + l + 1 = j.

Jq,y(tj) =


n 0 . . . 0
0 n . . . 0

. . .

0 0 . . . n

 , (9)

where n = [N0,γ (tj) N1,γ (tj) . . .NN ,γ (tj)] ∈ R1×(N+1) is the
vector of the basis function values at a specific time, while
0 = [0 0 . . . 0] ∈ R1×(N+1). Similarly, Jq̇,y ∈ Rnq×nq(N+1)

and Jq̈,y ∈ Rnq×nq(N+1) define the Jacobian matrices of the
generalized velocities and accelerations with respect to the
optimization variables, correspondingly. These matrices are

2The knot vector was scaled to satisfy the t < π condition.

FIGURE 2. Trigonometric spline basis functions and their time derivatives
for different degrees γ = 0, 1, 2, 3 and over the knot vector [0 1 . . . 8].

constructed as

Jq̇,y(tj) =


v 0 . . . 0
0 v . . . 0

. . .

0 0 . . . v

 , Jq̈,y(tj) =


a 0 . . . 0
0 a . . . 0

. . .

0 0 . . . a

 , (10)

where the vector v = [Ṅ0,γ (tj) Ṅ1,γ (tj) . . . ṄN ,γ (tj)] ∈

R1×(N+1) and the vector a = [N̈0,γ (tj) N̈1,γ (tj) . . .
N̈N ,γ (tj)] ∈ R1×(N+1). These matrices will be helpful to
evaluate the gradients of the objective and the constraint
functions. Additionally, these Jacobian matrices can be used
to rewrite (4) in the following form

q(tj) = Jq,y(tj)y, q̇(tj) = Jq̇,y(tj)y, q̈(tj) = Jq̈,y(tj)y, (11)

where q(tj) is the vector of the generalized coordinates
evaluated at time tj, while y = [y1,0 y1,2 . . . y1,N y2,0 y2,1 . . .

y2,N . . . ynq,N ]
T

∈ Rnq(N+1)×1 is the vector of the optimiza-
tion variables.

Given an arbitrary scalar function of the generalized coor-
dinates, velocities and accelerations f (q, q̇, q̈), its gradient
matrices are

Jf ,q =
∂f
∂q

, Jf ,q̇ =
∂f
∂q̇

, Jf ,q̈ =
∂f
∂q̈

, all ∈ R1×nq . (12)

The derivative with respect to an optimization variable yk,l
can be found as

∂f
∂yk,l

=

nq∑
i=1

∂f
∂qi

∂qi
∂yk,l

+
∂f
∂ q̇i

∂ q̇i
∂yk,l

+
∂f
∂ q̈i

∂ q̈i
∂yk,l

. (13)
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The corresponding gradient Jf ,y ∈ R1×nq(N+1) can be found
as

Jf ,y = Jf ,qJq,y + Jf ,q̇Jq̇,y + Jf ,q̈Jq̈,y. (14)

Similarly, the Jacobian matrix of an arbitrary vector-valued
function f is found from (14).

IV. OBJECTIVE FUNCTION
As the objective function in (3), we have chosen the
commonly used dynamic effort, which is time integral of all
joint torques (1) squared

J (y) =

nt∑
j=0

1
Q2
max

Q(tj)TWQ(tj), (15)

where W ∈ Rnq×nq is the diagonal weight matrix; Qmax ∈

R is the maximum value of the generalized force vector,
and Q(tj) is the torque vector (1) evaluated at time tj.
Since the torques depend on the generalized coordinates,
velocities, and accelerations, which in turn depend on the
optimization variables (4), the cost function is a function
of y. Recently, it has been shown that even the arbitrary
whole-body movements are chosen based on minimizing
energy cost [68]. The gradient of the cost function at each
sampling time is calculated as

JJ ,y = JJ ,Q(JQ,qJq,y + JQ,q̇Jq̇,y + JQ,q̈Jq̈,y). (16)

V. CONSTRAINTS
There are two types of constraints: equality and inequality
constraints. The constraints used in (3) will be described
below.

A. INITIAL AND FINAL CONDITIONS
As mentioned above, our optimization variables are the
control points yi,l , i = 1, . . . , nq, l = 0, . . . ,N . While
the generalized coordinates and velocities are the variables
in (1). Therefore, the initial and final conditions for the NLP
variables y are taken from the values of the vectors q and q̇ at
the initial (q(0) and q̇(0)) and final times (q(tsim) and q̇(tsim))
by solving the following equations

q(0) = Jq,y(0)y, q̇(0) = Jq̇,y(0)y
q(tsim) = Jq,y(tsim)y, q̇(tsim) = Jq̇,y(tsim)y. (17)

B. CONSTRAINTS ON GENERALIZED COORDINATES AND
VELOCITIES
Another type of constraint is imposed on the generalized
coordinates and velocities. These constraints can be written
as

ql ≤ q ≤ qu, q̇l ≤ q̇ ≤ q̇u, (18)

where ql (qu) and q̇l (q̇u) are the corresponding lower (upper)
boundaries of the generalized coordinates and velocities. The
constraints (18) are imposed at the arbitrary time tj, and the
lower and upper boundary vectors can also vary with time.

C. CONSTRAINTS ON TORQUES
The constraints on the torques are the following

Ql ≤ Q ≤ Qu, (19)

whereQl andQu are the lower and upper boundaries imposed
on the torque vector.Qu can be used asQmax in the objective
function (15).

D. PELVIS VELOCITY CONSTRAINT
The global translational velocity of the pelvis is defined as
pvg ∈ R3×1 and is equivalent to the translational velocity of
the human body as a whole. Given the step length lstep and the
step time tstep; its modulus can be found as |

pvg| = lstep/tstep.
The constraint on the pelvis velocity is the following

pvg,l ≤ |
pvg| ≤

p vg,u, (20)

here pvg,l and pvg,u are, respectively, the lower and upper
boundaries of the pelvis velocity.

E. FOOT-GROUND PENETRATION CONSTRAINT
An important aspect of human motion synthesis is the
foot-ground interaction modeling. Foot-ground interaction
is responsible for ensuring and restoring the dynamic
balance, keeping the translational motion of the body, and its
stability [43]. The simplest model for foot-ground interaction
is to model a condition where a flat foot touches the
ground with its entire surface. However, this model does
not capture the actual dynamics of foot-ground interaction.
More complex models exist, like spring-damper models and
foot contact points. The foot-ground interaction in [43] was
not modeled by contact points, but by using conditions
for generalized coordinates. Sometimes the foot-ground
interaction is modeled by a spring-damper system [41], [45],
[47], [48], other times it is modeled by diverse friction
models, such as the Coulomb friction model [17], [52]. In this
work, we use a simple, yet powerful foot-ground interaction
model based on the foot contact point (FCP) and the
foot-ground interaction matrix. We note that when a human
motion is simulated, then a foot-ground interaction model is
required. However, when a humanmotion is synthesized, then
a foot-ground interaction is imposed through constraints.

Let the number of FCPs per foot be denoted as nf , then
their total number for the human model is 2nf . For instance,
nf = 1 in [42], nf = 3 in [30], nf = 4 in [29], nf = 5 in [47],
nf = 8 in [48], nf = 10 in [45]. In our model nf = 6,
as shown in Fig. 3. The position vectors of the FCP, denoted
as orj ∈ R3×1, j = 1, . . . , nf , are selected in the local frame
of reference of the foot. The contact points j = 1, . . . , 4 are
located in the local coordinate system of the right and left
foots. The remaining contact points j = 5, 6 are in the local
reference frame of the right and left toes. Also, the FCPs 1-2
describe the heel of the foot, the points 3-4 depict the joint
between foot and toes, and finally the points 5-6 denote the
toes.

The global z coordinates of the FCPs are denoted as
ozg,j ∈ R, j = 1, . . . , nf . The no-ground penetration
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FIGURE 3. Location of the foot contact points.

constraint, which imposes the condition that the FCPs cannot
penetrate the ground, can be written as

0 ≤ Zg, (21)

where Zg = [ozg,1, . . . ,o zg,nf ]
T

∈ Rnf ×1.

F. FOOT CONTACT CONSTRAINT
The constraints which impose the specific positions of the
FCP on the ground (where the foot touches the ground)
need to be specified. Let us denote the local and the global
positions of the FCP as orj ∈ R3×1 and org,j ∈ R3×1,
j = 1, . . . , nf , respectively. Then, these constraints can be
defined as

Rg = Rn
g, (22)

where Rg = [org,1 . . .o rg,nf ] ∈ R3×nf is the matrix
containing the radius vectors of the FCP in the global frame,
whileRn

g ∈ R3×nf is thematrix specifying the numeric values
of the points where the foot touches the ground. Similar
constraints apply to the time derivatives of the FCPs as

Vg = 0, (23)

where Vg = [ovg,1 . . .o vg,nf ] ∈ R3×nf is the translational
velocity of the foot contact points in the global frame.
Equation (23) imposes the no-slip boundary condition on the
FCPs with the ground.

Conditions (22) and (23) are valid for all FCPs (for each
foot) and are applied at every sampling time. However, these
constraints cannot describe the situations where only a subset
of FCPs is touching the ground. For example, when a heel
touches the ground, or a toe lifts off the ground. To describe
these situations, we introduce the foot contact constraint
matrix 3 ∈ Rnf ×nt : 3(i, j) = 1 if a foot contact point i
touches the ground at sampling time tj, otherwise the element
is zero. For each foot there is a single matrix 3, so for a
human model, there are two foot contact matrices. Using 3,
more complex situations of the foot-ground interaction can
be modeled. Specifically, if at the current sampling time tj
the foot contact point i has a contact with the ground, then
the ground contact (22) and no-slip (23) boundary conditions
are applied for that point.

G. ZERO-MOMENT POINT CONSTRAINT
The next constraint that we consider is the zero moment
point constraint. This constraint is widely used in humanoid
and biped robot motion control, stabilization, and planning
applications. The zero-moment point (ZMP) is the point on

the ground around which the component of the net reaction
torque acting on the body along one of the horizontal axes is
zero. In short, this is the center of pressure of the footprints.
This point is responsible for the dynamic stability of the
movement. If it is located within the foot support region,
then the human posture and movement are stable, otherwise,
the body could fall. We decided to use the ZMP calculation
from [44].

Firstly, we need to find the global generalized forces at the
pelvis. Let us denote the global force and torque at the pelvis
with respect to the global coordinate system as Fp ∈ R3×1

and Tp ∈ R3×1, respectively. Secondly, the global forces
Fo ∈ R3×1 and torques To ∈ R3×1 at the origin can be found
by transferring the global forces and torques from the pelvis
to the origin asFo = −Fp and To = −Tp−(prg×Fp), where
prg ∈ R3×1 is the global position of the pelvis, and × is the
cross product. Finally, the ZMP position zmprg in the global
frame can be found as

zmprg = [−
To[2]
Fo[3]

To[1]
Fo[3]

0]T . (24)

This equation expresses the condition that the x0 and
y0 components of the global reaction torque acting on the
human model are zero. The condition that the ZMP is located
within the foot support polygon can be expressed as

ε
(
(zmprg −

o rg,i) × (org,j −o rg,i)
)

· z0 ≤ 0, i = 1, . . . , np

(25)

where zmprg −
o rg,i is the difference between the ZMP

position vector and the FCP position vector, while org,j−org,i
is the difference vector between two consecutive FCPs j and
i which define a support polygon; ε = ±1 is a constant,
and np is the number of sides of the foot support polygon.
The dot product is expressed as (·). In the general case, the
foot support polygon is convex-shaped, but in the simplest
case, it is a rectangle or a parallelogram. We assume that
the foot support polygon is always quadrilateral, which is
equivalent to the assumption that np = 4. A double support
stance means that both feet touch the ground, while a single
support stance means that only one foot touches the ground.
It is assumed that there are only three cases of foot support
polygons (Fig. 4). The first case, the double support stance,
describes a large step (wide stride): the heel position of the
front leg is in front of the toe position of the back leg (Fig. 4a).
The second case, also the double support stance, describes
a small step (short stride): the heel position of the front leg
is behind the toe position of the back leg (Fig. 4b). The last
case, the single support stance, is valid when a single foot
touches the ground (Fig. 4c). There can also be variations in
the third case, for example, when the foot support polygon
covers the area from the heel to the joint between the foot
and toes. In this case, the foot support polygon would be
spanned by points 1-2-4-3. However, for simplicity, we ignore
this configuration of the foot support polygon. Also, you can
notice that in the second case we ignore the small region
spanned by the inside toe of the front leg and the inside heel
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FIGURE 4. Schematic drawing of the foot support polygon (gray area).
a) Double support phase: heel position of one foot being in front of the
toe position of another foot (top - right foot in front, bottom - left foot in
front). b) Double support phase: heel position of one foot being behind
the toe position of another foot (top - right foot in front, center - left foot
in front, bottom - both feet are on a line). c) Single support phase. d) ZMP
should be within the gray area.

of the back leg. The sign ε in (25) depends on whether the
dot product in it has a negative or positive value, which in
turn depends on the order of FCPs chosen to construct the
foot support polygon (Fig. 4d). For example, if in Fig. 4d
the order of the FCPs is clockwise 1-2-6-5, then ε = −1,
j = 2, i = 1. If, on the other hand, the order of the FCPs
is counterclockwise 1-5-6-2, then ε = 1, j = 5, i = 1.
Alternatively, there are different formulations of the ZMP
condition [43].

H. ARM-LEG MOTION COUPLING
This constraint imposes the condition that during walking the
arm and leg motions are synchronized so that they swing in
anti-phase. For instance, when the right leg moves forward,
the right arm moves backward. This happens naturally to
preserve the angular momentum of the body along the vertical
z0 axis. The constraint can be written as

(rarm · m̂)(rleg · m̂) ≤ 0, (26)

where rarm ∈ R3×1 is the difference between the global
positions of the hand and the shoulder. Similarly, rleg is the
difference between the global positions of the toe and the hip.
The direction of the human body’s forward motion is given as
m̂. (26) imposes the anti-phase oscillatory motion of the arm
and leg on each side of the body during walking. Thus, for a
human model, there are two conditions (26): one for the right
arm-leg coupling and another for the left arm-leg coupling.

I. KNEE MID-SWING CONSTRAINT
The final constraint is imposed on the knee angle flexion qknee
during the mid-swing of the leg. This constraint is simply

qknee ≥
π

3
. (27)

The aforementioned constraints are imposed on the human
body. The initial and final conditions and foot contact
constraints are equality constraints in their nature. While the
remaining constraints are inequality constraints. However,
inequality constraints are more general than equality con-
straints because any equality constraint H(y) = 0 from (3)
can be converted into two inequality constraints H(y) − ϵ ≤

0 and −H(y) − ϵ ≤ 0. If the tolerance variable ϵ = 0, then
we restore the original equality constraint.

VI. SIMULATIONS
To check the proposed approach, we decided to simulate
four different motions: still-walk-still, sit-stand, side-step,
and jump.

A. STILL-WALK-STILL
In this scenario, the human model makes three steps forward
and then stops: the first half-step is with the right leg, the
second (third) full step is with the left (right) leg, and the
last half-step is with the left leg again. The simulation time
is set to tsim = 3 s with the discretization sampling time
1t = 0.5 s and nt = 7. It is assumed that the human model
is at rest and at its neutral position at the initial and final
times. This corresponds to the initial and the final values
of the generalized coordinates and velocities being set to
zero, except for the final value of the generalized coordinate
corresponding to the global displacement along the forward
y0 axis: q2(tsim) = 3L fstep, where L

f
step = 0.4 m is the forward

step length. The foot contact constraint matrix is specified
as 3 = [1 1 1 1 0 1 1] ∈ R6×7 for the right foot and
3 = [1 1 0 1 1 1 1] ∈ R6×7 for the left foot, where 1 and
0 are the column vectors of the appropriate dimension. All
constraints are active. The total number of the optimization
variables is 430 and the number of constraints is 2812.

B. SIT-STAND
This scenario corresponds to the human model standing up
from the initial sitting position. For this scenario tsim = 1 s
and 1t = 0.2 s. It is assumed that the human model is at rest
at the initial and final times. This corresponds to the initial
values for some of the generalized coordinates being set to
the following: q1(0) = −0.44 m, q9(0) = −

π
2 , q10(0) =

π
2 ,

q17(0) = −
π
2 , q18(0) =

π
2 , q28(0) = −

π
2 , q37(0) = −

π
2 .

The final values for the generalized coordinate are: q2(tsim) =

0.44 m and zero for all others. The initial and final values
for all the generalized velocities are zero. All elements of
the two foot contact constraint matrices 3 ∈ R6×6 are set
to 1, because in this motion the feet are always in contact
with the ground. The constraints on the pelvis velocity, the
arm-leg motion coupling, and the knee mid-swing magnitude
are deactivated. In this case, the number of the optimization
variables and the number of constraints are 387 and 2508,
respectively.

C. SIDE STEP
In this scenario, the human model does a sidestep towards
its right side, tsim = 1 s and 1t = 0.2 s. It is also
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assumed that the human model is at rest and at its neutral
position at the initial and final times. Like the first case, this
corresponds to the initial and final values for the generalized
coordinates and velocities being set to zero, except for the
final value of the generalized coordinate corresponding to the
global displacement along the right x0 axis: q3(tsim) = Lsstep,
where Lsstep = 0.3 m is the sidestep length. The foot contact
constraint matrices are specified as 3 = [1 0 1 1 1 1] ∈ R6×6

for the right foot and 3 = [1 1 1 1 0 1] ∈ R6×6 for the left
foot. For this scenario, the arm-leg motion coupling and the
kneemid-swingmagnitude constraints are deactivated. In this
scenario, the number of optimization variables is 387 and the
number of constraints is 2372.

D. JUMP
This scenario describes the human model motion before the
jump, with tsim = 0.6 s and 1t = 0.2 s. The objective
function was extended by a term describing the jump height
of the pelvis point as

J̃ (y) = J (y) − η(prz,g +

pv2z,g
2g

), (28)

where J̃ (y) is themodified cost function;J (y) is from (15); η
is the weight coefficient that describes the relative importance
of the jump height. We assumed that η = 104 to prioritize the
jump height. The z coordinates of the pelvis point position
and velocity in the global frame are denoted as prz,g and pvz,g,
respectively. The initial and final values for all the generalized
coordinates and velocities are zero. The only exception is the
final value of the vertical speed of the pelvis point, which is
set to 2 m/s. This value is lower than the measured average
take-off speed for vertical jumps [69], [70]. All elements of
the two foot contact constraint matrices 3 ∈ R6×5 are set
to 1. The constraints for the pelvis velocity, arm-leg motion
coupling, and knee mid-swing magnitude are disabled. The
number of optimization variables is 301 and the number of
constraints is 1816.

The knot vector [0 0 0 0 t1 . . . tsim tsim tsim tsim], where the
multiplicity of the first and the last element is 4, is used for
the discretization using the trigonometric splines for all cases.
This is necessary to have nonzero values for the generalized
coordinates, velocities, and accelerations at the initial and
final times. The boundary conditions (18) on the generalized
coordinates are fixed for all cases as follows: ql,1:3 =

[−0.05 0 − 0.05] m (lower) and qu,1:3 = [0.05 2 0.05] m
(upper) constraints on the global pelvis displacement, ql,10 =

ql,18 = 0 (lower) and qu,28 = qu,37 = 0 (upper)
constraint on the knee bending, ql,28 = ql,37 = −

2π
3

lower constraint on the elbow bending. These limits are
adjusted accordingly for the sidestep and sit-stand cases. All
other lower and upper joint limits are set to ±

π
3 rad. All

lower and upper bounds on the generalized velocities are
set to ±5 rad/s, respectively. The limits on all torques (19)
are set to Ql = −Qu = −200 Nm, except for the
bound on the global force along the z0 axis, which is set to

1.4mtotalg. Here mtotal = 77.5 kg is the total mass of the
body and g = 9.81 m/s2. The numeric values of physical
parameters (link lengths and masses) of the model were
taken from [7]. We intentionally do not provide these values
here, so that our description does not depend on a specific
model. The torque constraints are rough limits, and obviously
most human joints cannot generate this amount of torque.
Imposing real torque limits would of course lead to more
realistic movements. Additionally, imposing state-dependent
torque limits was shown to provide better solutions [71].
However, our goal is to have a valid solution with minimum
input. Therefore, the torque limits are not set to reflect the
physical limitations of joints, but to facilitate the search for
a local minimum in the NLP. In addition, the torques in the
obtained solutions are on the order of 5-10 Nm or less for
most of the joints, which is within reasonable range. The
NLP was solved using fmincon solver of MATLAB, which
is considered rather slow compared to other NLP solvers.
However, the main advantages of using MATLAB are related
to its widespread use and the simplicity of its programming
language. Gradients of both the objective function and the
constraint functions are specified. Next, we briefly describe
some practical tips. The interior-point, sqp, and
active-set algorithms were used for the NLP. Our
approach is to first try the interior-point algorithm,
if that fails, switch to sqp, and finally, if that also fails,
try active-set. Also, it might be helpful to activate the
constraints gradually. For example, one could activate only
a subset of the constraints on the first run and then use
the obtained feasible solution as the initial condition for
the next run, where more constraints are activated. It was
found that running two NLPs consecutively in this manner
sometimes takes less time than running a single NLP with
all constraints active. To obtain the initial feasible solution,
it might be better to impose a constant or zero objective
function first. With the constant objective function, the NLP
tries to find any feasible solution. After that, the obtained
feasible solution can be used as an initial condition with a true
objective function. Constraint tolerance and step tolerance
settings were set to 4 · 10−2 and 10−9, respectively. The
simulations were performed on a ThinkPad notebook with an
Intel Core i5-10310U CPU processor and 16 GB RAM. The
NLP problem solution results are given below.

VII. EXPERIMENTS
Experiments were performed to confirm the validity of
the proposed model. To this end, we track human motion
with an optical motion capture (MOCAP) system. We use
the Qualisys MOCAP system that works with six Miqus
M3 MOCAP cameras and the Qualisys Track Manager
(QTM) software. Miqus M3 cameras are dual-mode cameras
that use two MP sensors (340 records per second) to
capture fast-moving objects with high accuracy [72]. The
Qualisys MOCAP system allowed us to record the position,
rotation, and pose of rigid bodies with 6 DOF. In our
measurement campaign, we recorded human walking activity
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FIGURE 5. Trajectories for: a) vertical, b) forward horizontal, c) lateral
displacements of the pelvis point in the global reference frame, d) knee
joint angle as a function of the gait cycle. (black curve: simulation, red
curve: from literature, green curve: experiment). Still-walk-still motion.

FIGURE 6. Trajectories for: a) vertical, b) forward horizontal, c) lateral
displacements of the pelvis point in the global reference frame, d) knee
joint angle. Sit-stand motion.

FIGURE 7. Trajectories for: a) vertical, b) forward horizontal, c) lateral
displacements of the pelvis point in the global reference frame, d) knee
joint angle. Side step motion.

with automatic identification markers (AIM) to identify and
label the trajectories of human body segments. As an AIM
model, we implemented a Qualisys animation marker set
with 42 reflecting markers, where a 38 years old healthy
male participant with a height of 1.75 m and a weight
of 90 kg performed five trials of four-step level walks.
Each reflecting marker was placed on the actor’s body
segments according to the animation marker set guide. Our
experiments with the human walk scenario were conducted
in accordance with accepted ethical standards and guidelines
for the use of research participants to protect their rights and
welfare.

VIII. RESULTS
The NLP for the still-walk-still motion was solved in three
stages. In the first stage, the NLP with the zero objective
function and constraints (17)-(21) was solved in 85 seconds
using the active-set algorithm and the initial conditions

FIGURE 8. Trajectories for displacements and speeds of the pelvis point
in vertical (a and e), forward horizontal (b and f), and lateral directions
(c and g) in the global reference frame. Knee angles and velocity (d and
h). Jump motion.

given in Sec. VI-A. At this stage, the attempt to solve
the NLP with the interior-point and sqp algorithms
did not produce the desired results. In the second stage,
the objective function (15) and the remaining constraints
were enforced, and the resulting NLP was solved using the
interior-point in 15 hours and 39 minutes. In the final
stage, the NLPwas solved using the sqp algorithm in 3 hours
and 22 minutes. In the second and third stages, the initial
conditions for the NLP were taken from the corresponding
solutions of the previous stage. Even though the time to solve
the NLP is several hours, it is compatible with the reported
solution times. For instance, an OCP for a lifting motion of a
simpler 17DOF two-dimensional humanmodel was solved in
4 to 8 hours [73]. The snapshots of the obtained NLP solution
are shown in Fig. 9 for the walking motion. The human
body qualitatively performs the intended motion. The leg
motions correspond to the imposed foot contact conditions.
There are also discrepancies with real human motion. For
example, the human body tilts both arms backwards. This
could be explained by the low numerical values of the
arm-leg motion coupling constraints. We employed the same
weights for all constraints. Better results would be achieved
if weighted constraints were used instead (high weighting
for important constraints and vice versa). Different solutions
were identified to test the dependence of the time required to
solve the NLP on the imposed constraints and the objective
function. However, no clear pattern emerged in finding the
correct solution. This could be due to the highly nonlinear
nature of the objective function, where the performance of
the NLP depends not only on the initial condition, but also
on the solution path (how and in what order constraints and
objective functions are applied). The shifts of the pelvis point
with respect to its initial position in the global reference
frame are shown in Fig. 5. The forward y0 displacement of
the pelvis point is uniform, while the lateral x0 and vertical
z0 displacements are negligible. Also shown is the knee
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FIGURE 9. Frames of the walking movement: Top row: global view, middle row: sagittal plane view, bottom row: transverse plane view. (Origin of the
global reference frame: green dot, pelvic point: red dot).

FIGURE 10. Frames of the sit-stand movement: Top row: global view, middle row: sagittal plane view, bottom row: transverse plane view. (Origin of the
global reference frame: green dot, pelvic point: red dot).

angle as a function of the gait (Fig. 5d). The black solid
line shows the simulation results for the right knee. The
red dotted line and red area are the average and standard
deviation of the measured right knee angle during level
walking of Subject 6, obtained from open-source data [74].
The data has 11 trials. The green dotted line and green areas
are the average and standard deviation of the knee angle
measured in our lab. It can be observed that the simulated
knee angle qualitatively matches the experimental knee angle
trajectories, indicating that further simulations are valid. The
discrepancy between the simulation and experiments can
be attributed to differences between the human model and
real subjects, simple foot-ground interaction constraints, and
the specified initial and final conditions. For example, the
simulated knee angle is not periodic because the motion
consists of only a single stride (two steps) with the right leg
and then the human model comes to rest due to the imposed
final condition. Additionally, the dynamic analysis is very

sensitive to the values of the human segment parameters [75].
There are also discrepancies between the two experiments
due to different human subjects.

The results for the sit-stand motion are shown as snapshots
in Fig. 10. The NLP was solved in 9 minutes using the
interior-point algorithm in fmincon. A difference
from the real human motion can be seen in the frames t =

0.2, 0.4 s, in which the human model leans slightly backward
during the stand-up motion instead of leaning forward. The
motion viewed in the sagittal plane is symmetric. The z, y,
and x components of the displacement of the pelvis point
with respect to its initial position in the global reference
frame are shown in Fig. 6. As expected, both the vertical
(z0) and the forward horizontal (y0) displacements of the
pelvis are equal to the distance between the knee joint and
the hip joint. This shows that during stand-up movement, the
vertical displacement of the pelvis point is compensated by
its horizontal displacement. The lateral (x0) displacement of
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FIGURE 11. Frames of the side step movement: Top row: global view, middle row: sagittal plane view, bottom row: transverse plane view. (Origin of the
global reference frame: green dot, pelvic point: red dot).

FIGURE 12. Frames of the jump movement: Top row: global view, middle row: sagittal plane view, bottom row: transverse
plane view. (Origin of the global reference frame: green dot, pelvic point: red dot).

the pelvis point is negligible. The right knee joint angle is also
shown in Fig. 6d. The knee angle decreases from an initial 90◦

to 0◦. However, the discrepancy with the experimental knee
joint angles is also observed. The measured knee joint angle
gradually decreases during the stand-up movement [76],
whereas in our simulation there is a small increase at the end
of the movement, Fig. 6d.

The results for the sidestep motion are shown in Fig. 11.
The NLP was solved in an impressive 9 seconds using
the interior-point algorithm. Here, the motion looks
qualitatively correct: during the sidestep, the knees bend,
the elbows also bend upward, and the head tilts slightly
forward. The three components of the vector of the pelvis

point displacement and the knee joint angle are shown in
Fig. 7. As expected, both the vertical and horizontal forward
displacement of the pelvis point are negligible. Themaximum
vertical displacement is 1.6 cm, which is within the range of
the experimental vertical displacement of the pelvis center
of gravity [77]. The knee angle flexion does not vary as
much as during the standing-up and walking movements.
The experimental knee flexion angle during sidestep (also
called side cut) motion is a concave function (when plotted
as a function of a cut cycle) as reported in [78]. In our
simulation, the cut cycle starts at 0.4 s and ends at 1 s.
Therefore, the simulated knee angle qualitatively matches the
experimental trajectory starting only from 0.6 s, Fig. 7d).
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The lateral x0 displacement is uniform and corresponds to the
given sidestep length.

The results for the jump motion are shown in Fig. 12.
The human model sits correctly before jumping vertically
upwards. The trajectories of the pelvis point and the right
knee angle are shown together with their corresponding
velocities in Fig. 8. The obtained knee joint flexion is
in qualitative agreement with the experimental knee joint
trajectory during the jumpmotion [79]. We also point out that
the knee flexion phase is longer than the knee extension phase
(see Fig. 8d), which is also confirmed by the experiments
reported in [79]. The vertical jump speed is 1.8 m/s, which
results in a jump height of 16 cm for the pelvis point. In this
case, the NLP was solved in 1 hour and 25 minutes using the
interior-point algorithm.

One limitation of the proposed method is that it does not
calculate the true joint torques. To do that, the generalized
forces corresponding to the global DOF should be used
to recalculate the joint torques as in [7]. However, this
would require additional complex computations without
any significant impact on the full-body human dynamics.
First, these additional calculations would essentially dis-
tribute the global forces only to weight-bearing joints (to
joints in weight-bearing kinematic branches, e.g., the legs).
Second, accurate joint torque estimates are necessary for
rehabilitation medicine and other related fields, but our
project is concerned with the determination of dynamically
valid motions. However, it is straightforward to extend
the proposed method to output the correct joint torques.
The simple objective function and constraints used in the
NLP may be a cause of discrepancy between obtained
simulation results and experiments. More realistic motions
can be synthesized if multiple objectives are combined
and/or more constraints are imposed, as in [12] and [50].
Another reason for the discrepancy could be the simple
human skeletal model. Considering that using a more
advanced human musculoskeletal model with a linearized
Hill muscle model leads to unrealistic results [80], our
results look promising. Achieving valid and realistic human
motions is a trade-off between computational power, manual
effort, and the quality of the solution. The proposed human
motion synthesis method uses simple objective functions and
constraints, an elementary foot-ground interaction model,
and the simplest human skeletal model, thus trading off
solution quality for computational efficiency and labor. This
partially explains the discrepancy between the simulation
results obtained and the experiments. It is hoped that the
work will help advance computational human dynamics by
inspiring others to initiate research in this area.

IX. CONCLUSION
The human motion synthesis framework, which can be easily
implemented in a user-friendly MATLAB environment,
is proposed in this work. We use MATLAB because it is easy
for debugging and many engineering students are familiar
with it. In contrast to the commonly used B-splines, the

generalized coordinates and velocities are discretized with
trigonometric splines. Human motion synthesis is achieved
through the optimization method. Four simulations of the
human motion were synthesized: walking, sit-stand, sidestep,
and jump. Level walking experiments were performed
to validate the obtained walking simulation results. The
obtained results and the NLP solution time were presented
and discussed. The results indicate that trigonometric splines
can be used to synthesize human motion. However, the
synthesis of human motion is still a challenging problem,
and further work is needed to refine and improve its quality.
Judging by the recent trends, human motion synthesis now
is mostly achieved through deep learning, reinforcement
learning, or other machine learning techniques. It might
be that breakthroughs in human motion synthesis happen
through these techniques. Nonetheless, other methods to
achieve human motion synthesis should still be explored.
The final goal of human motion synthesis is to bring to
the level that even non-skilled users can generate valid and
physically plausible motions with less effort. We hope that in
the future computational human dynamics will play a similar
role as computational fluid dynamics or computational
electrodynamics.

A promising extension of this work could be the devel-
opment of interactive motion synthesis from basic motion
primitives or templates. Another direction for future work
is to develop a framework for automatically estimating
human model parameters based on experimental motion data.
Automatic adjustment of lower and upper boundaries of
the constraints to generate more realistic human motion is
another area for future research.
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