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Abstract: RF sensing offers an unobtrusive, user-friendly, and privacy-preserving method for de-
tecting accidental falls and recognizing human activities. Contemporary RF-based HAR systems
generally employ a single monostatic radar to recognize human activities. However, a single monos-
tatic radar cannot detect the motion of a target, e.g., a moving person, orthogonal to the boresight axis
of the radar. Owing to this inherent physical limitation, a single monostatic radar fails to efficiently
recognize orientation-independent human activities. In this work, we present a complementary
RF sensing approach that overcomes the limitation of existing single monostatic radar-based HAR
systems to robustly recognize orientation-independent human activities and falls. Our approach
used a distributed mmWave MIMO radar system that was set up as two separate monostatic radars
placed orthogonal to each other in an indoor environment. These two radars illuminated the moving
person from two different aspect angles and consequently produced two time-variant micro-Doppler
signatures. We first computed the mean Doppler shifts (MDSs) from the micro-Doppler signatures
and then extracted statistical and time- and frequency-domain features. We adopted feature-level
fusion techniques to fuse the extracted features and a support vector machine to classify orientation-
independent human activities. To evaluate our approach, we used an orientation-independent human
activity dataset, which was collected from six volunteers. The dataset consisted of more than 1350 ac-
tivity trials of five different activities that were performed in different orientations. The proposed
complementary RF sensing approach achieved an overall classification accuracy ranging from 98.31
to 98.54%. It overcame the inherent limitations of a conventional single monostatic radar-based HAR
and outperformed it by 6%.

Keywords: activity recognition; data fusion; distributed mmWave MIMO radar; fall detection; feature
extraction; micro-Doppler signature; mean Doppler shift; support vector machine

1. Introduction

The world is undergoing a demographic shift, with the elderly population rapidly
increasing in almost every country. By 2050, nearly 2.1 billion people will be over the age
of 60 [1]. People of an older age are generally considered frail and often characterized by
geriatric syndromes. Therefore, there is a growing need to develop new ambient intelligent
spaces and AAL technologies to ensure that the elderly can safely age in their homes for
as long as possible. Apart from making elderly people’s lives easier, these technologies
also make them self-supporting in performing their ADLs without seeking help from
other people and thus alleviating the high costs associated with elderly care. To facilitate
self-dependency, AAL systems rely on decision support systems to proactively ascertain
the context through the user’s behavior, activities, and interactions with the environment.
Fall detection and prevention is another key aspect of AAL systems, because frail elderly
people are at an increased risk of falling and injuring themselves. Therefore, HAR and fall
detection systems are the essential building blocks of any robust AAL system. In addition,
robust HAR is important for properly monitoring and quantifying physical activities, which
can contribute to various smart-health [2] and wellbeing applications [3,4].
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The existing HAR systems can be classified into three main categories: wearable sensor-
based, vision-based, and RF-based systems. Wearable sensor-based HAR systems generally
use different types of on-body sensors such as PLIMUs [5], surface electromyography
(sEMG) electrodes [6], and/or pressure sensors [7] to collect dynamic body data, which are
then used to recognize human activities. PLIMUs are the most widely used on-body sensors
for wearable sensor-based HAR systems, because they are small in size, cost-effective,
lightweight, and readily available through smartphones or smartwatches. There also exist
other types of on-body sensors, which are usually embedded in wearable textiles [7,8].
In addition, wearable HAR systems are known to be quite accurate. Despite all these
strengths, wearable sensor-based HAR systems suffer from several drawbacks that limit
their practicality, affect their ease of use, and reduce their data quality [9]. For example,
they are invasive, and users must carry on-body sensors at all times for continuous HAR.
Moreover, the performance of wearable sensor-based HAR systems is highly compromised
if the sensors are not placed correctly on the human body according to the system provider’s
guidelines. Vision-based HAR systems, on the other hand, use cameras and computer
vision techniques to recognize human activities [10–12]. Such systems generally perform
very well and, in some scenarios, they can efficiently recognize and monitor the activities
of multiple persons [13]. That being said, the performance of vision-based HAR systems is
highly affected by the environmental settings, such as the lighting and cluttered or dynamic
background conditions [10,12]. Moreover, vision sensors are understood as a threat to
user privacy due to security issues that often stem from the operational design of vision
sensors [14].

RF-based HAR systems use RF devices to emit electromagnetic waves and exploit
the characteristics of the received signals reflected by the user’s body to recognize their
activities. In recent years, RF-based approaches for HAR have attracted a lot of research
interest due to their advantages over wearable sensor- or vision-based approaches for
HAR. For example, they offer high environmental adaptability and can recognize hu-
man activities without risking privacy and comfort [15]. Wi-Fi [2,16–19] and mmWave
radar [15,20–25] are the most widely used sensing technologies within the context of RF-
based HAR systems. Note that the term mmWave radar is generally used to refer to radars
that use short-wavelength electromagnetic waves. Wi-Fi, as an RF sensing technology,
offers low sensitivity and low spatial resolution compared to mmWave radar technology.
Consequently, the performance of Wi-Fi-based HAR systems is generally lower than that
of mmWave radar-based HAR systems. Therefore, mmWave radars have become the de
facto choice for RF-based HAR research in recent years. Like wearable and vision-based
HAR systems, the performance of mmWave radar-based HAR system also suffers from
various environmental factors and hardware limitations. Usually, mmWave radar-based
HAR systems use the output of the radar (i.e., the micro-Doppler signature or 3D point
cloud) that is computed from the received RF signals to classify human activities. These
outputs are highly sensitive to the aspect angle between the boresight of the radar and the
person’s direction of motion. This means that the micro-Doppler signature of an activity
changes as the aspect angle between the boresight of the radar and the person’s direction
of motion changes. As a result, the micro-Doppler signatures of an activity performed
at 0° and 90° aspect angles are quite different from each other and resolve into highly
uncorrelated intraclass features from a machine (deep) learning perspective. Therefore,
the current state-of-the-art mmWave radar-based HAR systems that use a single monostatic
radar struggle to recognize orientation-independent human activities [26,27].

In this work, we propose a complementary RF-sensing approach to realize orientation-
independent HAR tasks. Our approach uses a distributed MIMO radar system that was
configured to comprise of two separate monostatic radars operating in a TDMA scheme.
These radars are placed orthogonal to each other in the environment to illuminate the target
from 0° and 90° aspect angles. Each radar provides its own micro-Doppler signature, which
complement each other such that the micro-Doppler signature of an activity obtained by
combining the outputs of both radars always remained sufficiently distinctive, regardless of
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the orientation in which the activity was performed. Thus, our proposed solution with the
following contributions advances the state of the art towards designing a high-performance
orientation-independent RF-based HAR system:

• We propose a complementary RF sensing approach to overcome the limitations of
contemporary mmWave monostatic radar-based HAR systems and robustly recognize
orientation-independent human activities.

• We systematically evaluate the performance of the proposed approach for recognizing
orientation-independent human activities.

• We extract several statistical and time- and frequency-domain features from the out-
puts of the radars that allowed the SVM to robustly classify human activities.

• We show that the fusion of the features obtained from the outputs of orthogonally
placed complementary radars enabled our HAR system to classify
orientation-independent human activities with a higher accuracy than the current
state-of-the-art models.

The rest of the paper begins by presenting the related work in Section 2. Section 3
introduces the proposed orientation-independent HAR system. Section 4 provides an
insight into the distributed mmWave MIMO radar system and the processing of the re-
ceived signals. The details of the experimental setup and methodology for collecting
the orientation-independent data are presented in Section 5. Section 6 systematically de-
scribes our approach for processing the collected orientation-independent human activity
data. Section 7 presents the supervised learning setup, feature extraction, feature fusion,
and in-depth analysis and discussion of the results. Finally, Section 8 concludes the paper.

2. Related Work

In recent years, the use of mmWave radar as an RF sensing technology has increased
in various human-centric applications, such as HAR [15,20–22,24,25]; gesture recogni-
tion [28–30]; gait recognition [31,32]; human step counting [4]; fall detection [23,33];
and sign language gesture recognition [34]. In general, the tasks of recognizing hu-
man activities, (sign language) gestures, and detecting accidental falls using mmWave
radar follow similar steps. At first, the reflected RF signals collected using the mmWave
radar are processed to compute different types of radar outputs (e.g., the Doppler profile,
range profile, and 3D point cloud), which are then used to classify human activities using
learning techniques.

In [20], micro-Doppler spectrogram images and a CNN were used to classify tar-
gets and human activities including “running, walking, walking while holding a stick,
crawling, boxing while moving forward, boxing while standing in place, and sitting still”.
The proposed approach was able to classify human activities with 90.9% accuracy and
distinguish humans from dogs, horses, and cars with 97.6% accuracy. In [21], the authors
experimented with LSTM networks and their bidirectional variants, known as Bi-LSTM
networks, to classify human activities using micro-Doppler and time-range profiles. The Bi-
LSTM network together with the micro-Doppler information was able to classify six human
activities with over 90% accuracy, whereas the time-range profile achieved nearly 76%
accuracy. A novel 3D point-cloud-based non-invasive HAR system was presented in [22]
that used an enhanced voxelization approach to create spatial-temporal point clouds and
a dual-view CNN to classify the activities. The proposed approach could classify seven
activities with 98% accuracy and detect falls with 97.61% accuracy. Another work [15] fused
the features extracted from the point cloud and the range-Doppler information to classify
six different human activities, i.e., “boxing, jumping, squatting, walking in place, high knee
lifting, and circling in place”. They used a CNN-LSTM network to extract features from 3D
point cloud data and a CNN network to extract features from the range-Doppler profile.
Finally, both feature maps were fed into a fusion network consisting of a concatenation
layer and fully connected layers that first concatenated the feature maps of both net-
works and then classified the human activities. The proposed fusion network classified
the six aforementioned human activities with an overall recognition accuracy of 97.26%.
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Moreover, the findings of this work suggested that the classification accuracy for human
activities based on fused feature maps was slightly better than the classification accuracy
achieved using any of the isolated feature maps.

The performance of RF-based HAR systems depends on various environmental factors
that have been superficially addressed in the literature, such as the effect of different
environments and the aspect angle between the radar and the person performing the
activities. In [25], the performance of an RF-based HAR system was evaluated across
environments. The results of this work suggested that the micro-Doppler signatures
of human activities do not change significantly in different environments. Moreover,
in the literature, the performance of RF-based HAR systems has usually been assessed
with respect to a 0° aspect angle for the target (i.e., the person performing the activities),
which yields the best recognition accuracy. From a realistic perspective, a user should be
able to perform activities freely in any direction and at any location within the radar’s
range. However, activities performed at different aspect angles produce different micro-
Doppler signatures [35], which significantly downgrades the performance of RF-based
HAR systems [26,27]. The authors of [36] employed a C-band FMCW and a K-band CW
radar system in individual and cooperative mode to classify human activities and falls
using the SVM classifier. In the cooperative mode, the SVM classifier was able to classify
basic human activities with 89% accuracy compared to 70% and 75% accuracies when
both radars were used in the individual mode. The solution proposed in this work did
not resolve the orientation-independence problem of RF-based HAR systems, because
both radars were placed at a 0°aspect angle. However, this work provides a substantial
evidence that the fusion of the features extracted from the micro-Doppler signatures of
multiple radars improved the overall classification accuracy of the system. In contrast to
this previous work [36], our complementary RF sensing approach not only improved the
overall classification accuracy but also overcame the orientation-dependency problem of
contemporary monostatic radar-based HAR systems.

3. System Overview

Our approach to designing an orientation-independent non-invasive HAR system
mainly comprises of complementary RF sensing and supervised machine learning steps.
The complementary RF sensing step uses two monostatic mmWave radar systems, namely:
Radar I and Radar II (see Figure 1), which collect RF data in an indoor environment. Both
radars are placed orthogonal to each other in the environment to illuminate the target from
two different aspect angles, as shown in the system overview diagram.

The radars emit RF signals via their transmission antennas Ti
x (i = 1, 2) using TDMA.

While propagating in a lossy environment, the transmitted RF signals interact with sta-
tionary objects (e.g., the walls and furniture) and non-stationary objects (e.g., a moving
person) that are present within the radars’ range. Owing to the Doppler shift phenomenon,
the propagating RF signals experience changes in their frequencies as they reflect-off of the
moving objects. The receiving antennas Ri

x (i = 1, 2) of Radar I and Radar II receive the
Doppler-frequency-shifted radar echoes. As we know, the different segments of a person’s
body move differently depending on the type of activity. Therefore, each activity leaves
behind a distinct Doppler shift pattern. We employ radar signal processing techniques (see
Section 4) to compute the micro-Doppler signature from the raw IQ data recorded by each
radar. The micro-Doppler signature is sensitive to the aspect angle between the boresight of
a radar and the direction of motion of the target. Therefore, a single monostatic radar cannot
consistently output unique micro-Doppler signatures for the same activity performed at
different aspect angles. Our complementary RF sensing approach overcame this physical
limitation of single monostatic radars by combining the micro-Doppler information from
two monostatic radars. To achieve this, we first estimate the MDS from the micro-Doppler
signatures of Radar I and Radar II. In the machine learning phase, we separately extract
statistical and time- and frequency-domain features. Thereafter, feature-level fusion is
performed to fuse these features together. Finally, the fused feature set are used to train a
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supervised machine learning model that could robustly classify orientation-independent
human activities.
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Figure 1. Complementary RF sensing approach for orientation-independent non-invasive HAR and
fall detection.

4. Distributed mmWave MIMO Radar System

In this article, we utilized an off-the-shelf K-band FMCW MIMO radar (Ancortek SDR-
KIT 2400T2R4) as the RF sensor. Within the context of this paper, we will use the shortened
term SDR-KIT to refer to the Ancortek SDR-KIT 2400T2R4. This radar system operates in the
24–26 GHz frequency range and consists of two transmission and four receiving (2× 4) RF
chains; each transmission and receiving antenna is equipped with an external horn antenna.
Thus, the SDR-KIT provides the flexibility to easily distribute Tx and Rx antennas in indoor
environments to illuminate the target (moving person) from two different perspectives. We
set up the SDR-KIT in a 2× 2 MIMO configuration. Thus, two transmission Ti

x (i = 1, 2) and
two receiving Ri

x (i = 1, 2) antennas were used to transmit and receive RF signals. The Ti
x

and Ri
x antennas were distributed in pairs in the environment, and each pair of antennas

consisted of one collocated Tx and Rx antenna. This setup allows a single distributed
mmWave MIMO radar to be used as two separate monostatic mmWave radar subsystems,
i.e., Radar I and Radar II. Both radars emit identical chirp waveforms sTx (t

′) as RF signals
through their Ti

x antennas in distinct time slots according to the TDMA scheme. For the
two transmitters of the 2× 2 MIMO radar system, the time slots are defined as the intervals
(2n + i− 1)Tsw ≤ t′ < (2n + i)Tsw, where n = 0, 1, . . . and i = 1, 2; the symbol t′ denotes
the fast time, and Tsw is the chirp’s sweep time. As the signal preprocessing chains of
Radar I and Radar II are identical, we will first formulate the expressions corresponding
to a single radar. Later in the section, we will provide an expression corresponding to the
MDS of the 2× 2 MIMO radar system. Within the chirp’s sweep time Tsw, the transmitter Tx
emit chirp signals sTx (t

′) of the form [37]

sTx (t
′) = exp

[
j2π
(

f0t′ +
γ

2
t′2
)]

, 0 ≤ t′ < Tsw, (1)

where f0 and γ are the start frequency and chirp slope, respectively. The transmitted
signal sTx (t

′) reflects back to the radar receiver from stationary and non-stationary scatterers
that are present in the environment. For a scatterer with the radar range R, the transmitted
signal sTx (t

′) encounters a propagation delay τ = 2R/c, where c denotes to the speed of
light. Note that the signal reflected from the scatterer underwent an RF mixer stage that
downconverted the RF signal to the baseband signal. An ADC then digitized the baseband
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signal. The baseband signal of an FMCW radar is commonly referred to as the beat signal
sb(t′), given as [38]

sb(t′) = a exp[j(2π f ′bt′ + φ)] (2)

where a, f ′b, and φ are the amplitude, beat frequency, and phase of the baseband signal,
respectively. Let the symbol n denote the number of fast-time samples in a chirp and m
denote the number of chirps in the CPI [39,40] of the radar. Then, for the radar’s CPI,
the samples of the digitized baseband signal sb(t′) can be arranged in the fast-time t′

and slow-time t directions in the rows and columns of a raw data matrix of order n×m,
respectively. Thus, the baseband signal sb(t′) becomes a function of the fast time t′ and
slow time t, and will be referred to as sb(t, t′). We could now compute the beat frequency
profile Sb( fb, t) using the expression [4]

Sb( fb, t) =
Tsw∫

0

sb(t, t′) exp[−j2π fbt′]dt′. (3)

A rectangular window function Wr(·) was then applied to the beat frequency profile
Sb( fb, t) to obtain the STFT with respect to the slow time t, i.e.,

X( fb, f , t) =
∞∫

−∞

Sb( fb, t′′)Wr(t′′ − t) exp[−j2π f t′′]dt′′ (4)

where f and t′′ are the Doppler frequency and running time, respectively. The TV micro-
Doppler signature S( f , t) is then obtained as [41]

S( f , t) =
∣∣∣

fb,max∫

0

X( fb, f , t)d fb

∣∣∣
2

(5)

where fb,max is the radar’s maximum resolvable beat frequency [42]. For a single radar, we

can finally compute the TV MDS B(1)
f (t) from the TV micro-Doppler signature S( f , t) using

B(1)
f (t) =

∞∫
−∞

f S( f , t)d f

∞∫
−∞

S( f , t)d f
. (6)

Similarly, for the 2× 2 MIMO radar system, the TV MDS B(1)
Ti

x Ri
x
(t) can be obtained as

B(1)
Ti

x Ri
x
(t) =

∞∫
−∞

f STi
x Ri

x
( f , t)d f

∞∫
−∞

STi
x Ri

x
( f , t)d f

(7)

where STi
x Ri

x
( f , t) is the TV micro-Doppler signature of the wireless link between the

transmitter antenna Ti
x and receiver antenna Ri

x. The TV MDS B(1)
Ti

x Ri
x
(t) in (7) is the final

and main output of the MIMO radar signal preprocessor from which we derive several
features, as described in Section 7.1.

5. Experimental Setup and Data Collection

As described in Section 4, the SDR-KIT used in this work was set up to subsist as
two monostatic radar subsystems, denoted as Radar I and Radar II, which operated in a
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TDMA mode. We deployed the SDR-KIT in an indoor environment to collect orientation-
independent human activity data. In this case, T1

x and R1
x horn antennas (see Figure 2) are

the transmission and receiving antennas of Radar I, and T2
x and R2

x are the transmission
and receiving antennas of Radar II, respectively. To avoid interference between radar
subsystems (Radar I and Radar II), we used RF cables of different lengths for each pair
of collocated antennas of Radar I and Radar II [43,44]. A complete list of the system
parameters of the SDR-KIT and the lengths of the RF cables used in the experimental setup
are provided in Table 1. To illuminate the environment from two different perspectives, we
placed the antennas of Radar I and Radar II orthogonal to each other in the environment
(see Figure 2). For ease of placement, we mounted the SDR-KIT and the collocated antenna
pair of each radar on a separate tripod. All antennas were mounted at a height of 110 cm
above the floor. First, we identified the activity region, which was an approximately 4 m2

common area covered by the FOV of the Ti
x and Ri

x antennas of Radar I and Radar II.

Figure 2. Experimental setup for orientation-independent indoor human activity recognition.

Table 1. Radar system parameters for the experimental setup.

Parameter Symbol Value

Carrier frequency fc 24.125 GHz
Bandwidth B 250 MHz
Sweep time Tsw 500 µs

Pulse repetition frequency PRF 1 KHz
RF cable lengths (Radar I) (T1

x , R1
x) (0.3, 0.3) m

RF cable lengths (Radar II) (T2
x , R2

x) (7.0, 7.0) m

As shown in Figure 2, the activity region was divided into a 3× 3 grid. We collected
human activity data from six volunteers. The volunteers performed the following five
activities: normal walking, sitting on a chair from a standing position, standing up from a
chair from a sitting position, picking up an object from the floor from a standing position,
and falling onto a mattress placed on the floor from a standing position. As shown in
Figure 2, the volunteers repeated each of the above activities multiple times in different
grid cells in three different directions denoted as Direction I (facing towards the x-axis),
Direction II (facing towards the y-axis), and Direction III (facing along the diagonal line
passing through the x-axis and y-axis). The demographics of the volunteers and the number
of trials per activity performed by each volunteer are presented in Table 2. We divided the
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volunteers into two groups based on the extent of their consent. The volunteers of Group
A agreed to participate in an extensive data collection campaign, whereas the volunteers
of Group B consented to participate in a limited data collection campaign. Furthermore,
volunteers 5 and 6 opted out of performing the falling activity due to the associated risk
of injuries.

Table 2. Demographics of volunteers and tabular representation of the collected data.

Group Volunteer Gender
(Male/Female)

Age
(Years)

Activity Trials

Fall Walk Stand Sit Pick

A 1 m 35 60 80 105 105 105
2 m 34 60 80 105 105 105

B

3 m 27 18 40 27 27 27
4 m 36 18 40 27 27 27
5 f 33 – 24 27 27 27
6 m 30 – 24 27 27 27

The single grid cell of the activity region was relatively small for performing the
walk or fall activities; therefore, these activities spanned multiple grid cells. For example,
the volunteers in Group A performed walking activity trials by walking from (x1, y1) to
(x3, y3) and vice versa; from (x1, y1) to (x3, y1) and vice versa; from (x1, y1) to (x1, y3) and
vice versa; from (x1, y2) to (x3, y2); and finally from (x2, y1) to (x2, y3) and vice versa. The
falling activity trials of the volunteers in Group A were recorded in several directions
in different grid cells. For example, we first placed the mattress at the location (x1, y2),
and then the volunteer fell onto the mattress following the direction from (x3, y2) to (x1, y2).
Similarly, we placed the mattress at locations (x3, y2); (x2, y1); (x2, y3); (x1, y1); and (x3, y3).
The volunteers fell on the mattress in the following directions: from (x1, y2) to (x3, y2);
from (x2, y3) to (x2, y1); from (x2, y1) to (x2, y3); from (x3, y3) to (x1, y1); and finally from
(x1, y1) to (x3, y3), respectively. Finally, the volunteers in Group A performed three more
activities: sitting on a chair, standing up from the chair, and picking up an object from the
floor. These were repeated in each direction in all grid cells except grid cell (x1, y3), because
the micro-Doppler signature at location (x1, y3) turned out to be quite similar to the micro-
Doppler signature at location (x2, y3). The volunteers in Group B performed similar walking
and falling activities as those in Group A, but they performed fewer trials. The volunteers
in Group B performed 3 trials of each of the sitting, standing, and picking up an object
activities at only three locations, namely (x1, y2); (x2, y2); and (x2, y1). All in all, we recorded
1398 activity trials of the five activities (walking, falling, sitting, standing, and picking up
an object from the floor). The volunteers were told to stay still in their initial pose and wait
until they heard a beep indicating that Radar I and Radar II were in the recording mode.
Thereafter, the volunteer had to perform the desired activity within 10 s and stay still in
their final pose upon completing the activity. The radars were set to automatically stop
recording data after 10 s. The recorded raw IQ data of each activity trial were stored
in a separate file, which was labeled according to a naming convention for the ease of
data management.

6. Data Processing

As described earlier in Section 5, each activity trial in our dataset was 10 s long,
including active and idle time periods. In this work, an active time period is considered
as a 2.5–5 s interval during which a volunteer performed an activity. The duration of
an active time period differed across activity trials, because it depended on the type of
activity and the speed at which the volunteer performed the activity. In contrast, the time
periods during which the volunteer stood still are defined as idle time periods. In each
activity trial of our dataset, the idle time periods occurred before and after the activity
time period. We used the variance-based thresholding method (referred to herein as
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VTM) [45] to automatically determine the start and end of an active time period in the
recorded raw IQ data. The VTM takes in the high-pass filtered in-phase component of
the raw IQ data. Then, the VTM computes the moving variance of the input data and
compares the variance values with a predefined threshold level. The VTM marks the
start and end of an active time period when the variance rises above and drops below a
threshold level, respectively. Once all active time periods are marked, we chose the one that
is larger than 1.25 s. This allowed the VTM to prune the small segments that might have
resulted from noise or small movements of body segments during the idle time periods.
Finally, the start and end time stamps of the identified active time period are used to
segment the activity from the raw IQ data. It is important to note that the segmented
raw activity data are still in the form of the complex baseband domain. The segmented
raw activity data are then passed to the radar signal processing module (see Section 4),
which first rearranges the beat signal sb(t′) with respect to the slow time t and fast time
t′, producing sb(t, t′), and then computes the beat frequency profile Sb( fb, t) according
to (3), followed by the micro-Doppler signature S( f , t) introduced in (5) and the MDS
B(1)

f (t) as defined in (6). The micro-Doppler signatures and the MDS patterns of the falling
and walking activities are presented in Figures 3 and 4.Version June 12, 2023 submitted to Sensors x of xxiv
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Figure 4. Micro-Doppler signatures (spectrograms) and MDS patterns (red dashed lines) of the
walking activity performed in three different directions with respect to Radar I and Radar II as
described in Section 5 and shown Figure 2.

To keep this section concise and for the completeness of the article, the micro-Doppler
signatures and the MDS patterns of the activities of sitting on a chair, standing up from a chair,
and picking up an object from the floor are provided in Appendix B (see Figures A1–A3).
We can observe that the MDS patterns (or micro-Doppler signatures) produced by Radar I
and Radar II for the falling activity performed in Direction I from location (x1, y2) to (x3, y2)
were significantly different from each other (see Figure 3a,b). Since Radar I and Radar
II were placed orthogonal to each other in our experimental setup, the trajectory of the
falling activity performed in Direction I was along a 0° aspect angle with respect to Radar I
and along a 90° angle with respect to Radar II. Similarly, the falling activity performed in
Direction II from location (x2, y1) to (x2, y3) was seen at a 0° aspect angle by Radar II and a
90° aspect angle by Radar I (see Figure 3c,d). Therefore, the MDS patterns in Figure 3a,d
and in Figure 3b,c appeared similar to each other. In Direction III (i.e., from location (x1, y1)
to (x3, y3)), the trajectory of the falling activity makes approximately similar aspect angles
with Radar I and Radar II. Thus, the MDS patterns produced by both radars turned out
to be quite similar to each other. Furthermore, by comparing only the outputs of Radar I
(see Figure 3a,c,e) or Radar II (see Figure 3b,d,f), we can observe how the micro-Doppler
signature of an activity deteriorated as the aspect angle changed from 0° (Direction I)
through 45° (Direction III) to 90° (Direction II). Similar observations can also be noted from
the MDS patterns of the walking (see Figure 4a–f), sitting (see Figure A1a–f), standing
(see Figure A2a–f), and picking (see Figure A3a–f) activities. The data processing modules
processed each recorded activity trial. While processing the data, we found that 34 activity
trials resulted into incomplete MDS patterns or micro-Doppler signatures. This occurred
in situations where the volunteers either performed an activity trial before hearing the beep
or could not keep track of time after hearing the beep and performed the activity trial in the
last moments of the 10 s activity recording interval. We discarded such incomplete activity
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trials. From each of the remaining 1364 activity trials, we extracted the MDS patterns
corresponding to Radar I and Radar II.

7. Classifying Human Activities

Within the context of this work, we used the supervised learning setup to classify
human activities into the following K = 5 classes: walking, falling, sitting, standing,
and picking up an object from the floor. To achieve this, first, we prepared the labeled
dataset D=

{
(xi, yi) | xi ∈ RP, yi ∈ {1, 2, . . . , K}

}N
i=1 consisting of N elements, where N is

the total number of processed activity trials. We denote as xi = (x1
i , x2

i , . . . , xP
i ) the P-

dimensional feature vector that was extracted from the ith processed activity trial, and yi is
the label (or the class) of that activity trial.

7.1. Feature Extraction and Fusion

As described in Section 5, every volunteer performed several trials of each activity.
We processed each activity trial as described in Section 6, which resulted in MDS pat-
tern corresponding to Radar I and Radar II. These MDS patterns represent the average
Doppler signature of the performed activity trial with respect to Radar I and Radar II.
We extracted a total of 40 statistical and time- and frequency-domain features separately
from the MDS pattern corresponding to each radar. The explanation of these features
is provided in Table A1 of Appendix A. We used these feature vectors to prepare three
labelled feature sets D1, D2, and D3. We refer to these feature sets as the Radar I, Radar II,
and complementary feature sets. The Radar I feature set contained only those feature
vectors that were extracted from the MDS patterns corresponding to Radar I. Similarly,
the Radar II feature set contained only the feature vectors that were extracted from the
MDS patterns corresponding to Radar II. We labelled each feature vector of the Radar I and
Radar II feature sets according to the type of activity. Finally, the complementary feature
set was obtained by serially concatenating the feature vectors of the same activity trials of
the Radar I and Radar II feature sets.

7.2. Classification Using SVM

In this work, we used an SVM [46] to classify human activities. An SVM is a supervised
learning model that classifies data into positive and negative classes. In this work, the terms
classifier and model are used interchangeably. To achieve this, an SVM classifier uses
labeled training data DTR =

{
(xi, yi) | xi ∈ RP, yi ∈ {+1,−1}

}N
i=1 to find an optimal high-

dimensional hyperplaneH that has a maximum distance (or margin) to the nearest data
points of both classes. The hyperplaneH is parameterized by a weight vector w ∈ RP and
a bias b ∈ R such that each training example xi in DTR can be described by yi(wTxi + b) ≥
1− ξi. Here, (·)T denotes the transpose operator, and the symbol ξi ≥ 0 is called the slack
variable, which penalizes those training samples that are either misclassified or fall within
the margin boundary. This facilitates the construction of a margin that allows for some
misclassifications. To construct such a maximum margin hyperplaneH, the SVM finds the
weight vector w and the bias b by solving the following convex minimization problem:

min
w,b,ξ

1
2

wTw + C
N

∑
i=1

ξi s.t. yi(wTxi + b) + ξi − 1 ≥ 0, ξi ≥ 0 ∀i (8)

where the symbol C denotes a regularization constant that controls the strength of the
penalty. The method of Lagrange multipliers was used to cater to the constraints of the
objective function presented in (8), which led to the following Lagrangian function:

L =
1
2

wTw + C
N

∑
i=1

ξi −
N

∑
i=1

αi(yi(wTxi + b) + ξi − 1)−
N

∑
i=1

βiξi. (9)
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We transformed (9) into a dual Lagrangian formulation. This could be achieved by
differentiating (9) with respect to w, b, and ξi and then equating the derivatives with zeros,
resulting in w = ∑N

i=1 αiyixi, ∑N
i=1 αiyi = 0, and C = αi + βi. Back-substituting these results

in (9) produced a dual Lagrangian formulation LD that depended on α, which we aimed to
maximize:

LD =
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjK(xi, xj) s.t. 0 ≤ αi ≤ C ∀i,
N

∑
i=1

αiyi = 0. (10)

The dual Lagrangian formulation LD is a QP problem. A QP solver returned α, which
was used to compute w and b following the KKT conditions. This SVM model could be
trained on linearly inseparable training data. However, the performance of the SVM model
could be further improved using the kernel trick K(xi, xj), as presented in (10), which simply
mapped the low-dimensional feature space onto a high-dimensional feature space. In this
way, the non-linear relationships between the features apparently became quite linear [47].
Finally, the trained SVM model could be used to predict the label (or class) ypred of a
previously unseen example xTest as follows:

ypred = sign(wTxTest + b). (11)

7.3. Training and Testing the Classifier

Recall that we extracted Radar I, Radar II, and complementary feature sets from the
human activity data (see Section 7.1). Each feature set Di was used to train and test a
multi-class svm classifier. Before training and testing the classifier, each feature set Di
was normalized first and then partitioned into training and test sets. The training set
consisted of labelled feature vectors that were used to train the classifier. Once the classifier
was trained, the test set was used to assess how accurately the trained classifier could
predict the classes of the unseen feature vectors of the test set. We used two different
approaches to split each feature setDi. In the first approach, we randomly split each feature
set Di into a training set Di,Train and a test set Di,Test, such that Di,Train ∩ Di,Test = ∅ and
Di,Train ∪Di,Test = Di, where ∅ denotes an empty set. Moreover, the Di,Train and Di,Test sets
consisted of 70% and 30% of the samples of the Di feature set, respectively. In this case,
the Di,Train set was used to train an SVM classifier and the Di,Test set was used to evaluate
the performance of the trained classifier. Conversely, in the second approach, each feature
set Di was divided into Di,A and Di,B subsets according to the groups A and B as described
in Table 2, such that Di,A ∩ Di,B = ∅ and Di,A ∩ Di,B = Di. The group-wise division of
feature sets ensured that the feature vectors in the training and test sets strictly belonged to
different users. In this case, we used Di,A as a training set to train an SVM classifier and
Di,B as a test set to evaluate the performance of the classifier.

Given a pair of training and test sets, a five-fold gridsearchCV technique was applied
to train the SVM classifiers. With gridsearchCV, we aimed to find the optimal parameters of
the classifier (i.e., the regularization constant C, the type of kernel function, and the kernel
parameters) that resulted in the best cross-validation accuracy of the classifier. As is known,
the SVM is limited by default to binary-class problems, where the data can be classified into
two classes, i.e., K = 2. However, in this work, we were interested in classifying human
activities into five classes. Therefore, we used the OvO training strategy that enables binary
classifiers to cater to multi-class-problems, where K > 2. The OvO approach [48] trains
K(K− 1)/2 binary classifiers in the training phase, each for every possible pair of classes.
In the testing phase, each trained classifier predicts the class of every example of the test set,
and the class predicted by the majority of classifiers is considered the final class of that test
example. We report the performance of each classifier on a test set in terms of the following
performance metrics:
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Recall =
TP

TP + FN
× 100% (12)

Precision =
TP

TP + FP
× 100% (13)

Accuracy =
TN + TP

TN + FN + TP + FP
× 100%. (14)

In (12)–(14), the terms TP, FP, TN , and FN stand for true positive, false positive, true
negative, and false negative, respectively.

7.4. Results and Discussion

Remember that there were three feature sets, i.e., Radar I, Radar II, and complementary.
We used each of these feature sets to train and evaluate an SVM classifier. For simplicity
and consistency, we named the SVM classifiers after the feature groups. For example,
the SVM classifier trained and evaluated using the training and test subsets of the Radar I
feature set was named the Radar I classifier. By analogy, we named the other two classifiers
the Radar II classifier and the complementary classifier. The performances of each classifier
are visually described in the confusion matrices below, organized such that the first five
columns and first five rows indicate the actual and predicted classes of the test samples
in the test set. The last column and the last row of the confusion matrices provide the
precision and recall of each class, respectively. Moreover, the diagonal entries shown in
green represent the counts of correctly classified test samples (i.e., TP and TN) with respect
to each class. Conversely, the off-diagonal entries in red provide the counts of misclassified
test samples (i.e., FP and FN). Finally, the overall accuracy of the classifier and the total
number of test samples are provided in the orange cells.

7.4.1. Results of the Radar I and Radar II Classifiers

The results of the Radar I and Radar II classifiers are presented in Figures 5 and 6,
respectively. Individually Radar I or Radar II represents a scenario in which a person
performs activities in different orientations in front of only a single monostatic radar that
was placed in the environment. In Figure 5a, we can observe that the overall recognition
accuracy of the Radar I classifier was 92.44% when the training and test sets were generated
by randomly splitting the Radar I feature set. Whereas, the overall recognition accuracy
of the Radar I classifier decreased to 91.31% when it was trained and evaluated with the
training and test sets obtained by the group-wise partitioning of the Radar I feature set.
This slight degradation in overall accuracy was to be expected owing to the fact that the
group-wise splitting ensured that training and test sets strictly consisted of data from
different volunteers, thus providing a highly realistic evaluation of the classifier. Moreover,
we can notice that the Radar I classifier was able to classify each activity with reasonable
precision and recall, irrespective of the strategy used to split the Radar I feature vectors
into training and test sets. However, comparing the results of the Radar I classifier with
other existing works on mmWave radar-based HAR [15,20–25], it can be argued that the
recognition accuracy of the Radar I classifier is at the lower end. This is due to the fact
that the Radar I classifier attempted to recognize orientation-independent activities, unlike
other approaches that recognized activities performed along the 0° aspect angle.

Presumably, one could argue that the Radar I and Radar II classifiers should have
reported similar classification results. However, this is not the case when we compare the
confusion matrices in Figures 5a and 6a or in Figures 5b and 6b. We find that the classifica-
tion accuracy of the Radar II classifier is approximately 10% lower than that of the Radar I
classifier. This problem is related to the SDR-KIT that we used in this work. The SDR-KIT
suffers from the problem of inter-channel interference. To reduce the effect of inter-channel
interference, we opted for the solution proposed in [43,44], which required the use of RF
delay lines for different subchannels. As proposed in [43,44], we used RF cables of different



Sensors 2023, 23, 5810 14 of 22

lengths for Radar I and Radar II to connect the Ti
x and Ri

x antennas. As shown in Table 1,
the T2

x and R2
x antennas of Radar II were connected to the SDR-KIT using 7 m long RF cables,

and each of these RF cables were constructed by splicing together three 2 m and one 1 m long
RF cables. Consequently, this attenuated the power of the transmitted RF signal of Radar II.
Therefore, the micro-Doppler signatures and the MDS patterns computed using the RF
signals received by the Radar II were nosier (see Figures 3, 4, A1, A2, and A3), resulting in
the lower classification accuracy of the Radar II classifier.
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Figure 5. Confusion matrices of the Radar I classifier obtained by the (a) random and (b) group-wise
splitting of the Radar I feature set.
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Figure 6. Confusion matrices of the Radar II classifier obtained by the (a) random and (b) group-wise
splitting of the Radar II feature set.

7.4.2. Results of the Complementary Classifier

The results of the complementary classifier are presented in Figure 7. Note that the
complementary classifier was trained and evaluated using the complementary feature
set, which was obtained by fusing the Radar I and Radar II feature sets. In Figure 7a,
we can observe that the complementary classifier could classify orientation-independent
human activities with 98.54% accuracy using the training and test sets that were obtained
by randomly splitting the complementary feature set. Whereas, the complementary clas-
sifier achieved 98.31% classification accuracy when it was trained and tested using the
group-wise partitioned training and test sets (see Figure 7b). In addition, the complemen-
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tary classifier predicted fall, walk, sit, and stand activities with 100% precision. On the
other hand, the recall for each of the fall, walk, and pick activities was 100%. Evidently,
the complementary classifier made significantly fewer classification errors. For instance,
the complementary classifier misclassified only eight test samples (see Figure 7b) compared
to the 41 and 86 classifications errors made by the Radar I (see Figure 5b) and Radar II
(see Figure 6b) classifiers, respectively. Four of these eight misclassified test samples be-
longed to the standing activity and the remaining four to the sitting activity. Thus, the
precision of the pick activity was 93%, and the recall of the stand and sit activities was
96.30% and 98.88%, respectively. A comparison of the results of the complementary (see
Figure 7b), Radar I, and Radar II classifiers (see Figures 5b and 6b, respectively) provides
a strong evidence that using multiple monostatic radars to illuminate an environment
from multiple perspectives not only improves the overall classification accuracy but also
allows orientation-independent human activities to be recognized with high accuracy.
Furthermore, by comparing these results with those of related works (see Section 2), we
argue that our complementary RF sensing-based HAR approach outperformed previous
methods [15,20–22,25] in terms of overall classification accuracy.
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Figure 7. Confusion matrices of the complementary classifier obtained by the (a) random and
(b) group-wise partitioning of the complementary feature set.

The proposed complementary RF sensing approach is flexible and adaptable so that
it can be scaled to meet the complexity of orientation-independent activities and gesture
recognition tasks by adding more radars. In addition, this complementary RF sensing
approach will serve as the basis for developing orientation-independent multi-person
HAR systems. However, it should be noted that the complementary RF sensing tech-
nique for HAR is computationally more expensive compared to the existing RF-based
HAR approaches.

8. Conclusions

The existing radar-based HAR systems in the literature generally employ a single
monostatic radar to recognize human activities. These existing solutions work very well
in recognizing human activities performed along the boresight (0° aspect angle) of the
radar. However, their recognition accuracy gradually starts decreasing as the aspect
angle between the radar and the target’s direction of motion increases. Therefore, the ex-
isting solutions generally struggle to recognize orientation-independent human activi-
ties. This is because activities performed at different aspect angles in front of a single
monostatic radar produce different micro-Doppler signatures. In this article, we pro-
posed a complementary RF sensing approach to resolve the limitations of contempo-
rary radar-based HAR systems and recognize orientation-independent human activities.
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Our approach mainly consisted of RF sensing and machine learning phases. In the RF
sensing phase, we used an Ancortek SDR-KIT 2400T2R4, which was configured as two
monostatic radars that were placed orthogonal to each other to illuminate the target
(i.e., moving person) from two different aspect angles. We used this setup to collect an
orientation-independent dataset from six volunteers. We collectively recorded more than
1350 trials of five different activities that were performed in different orientations and
locations within the FOV of both radars. We processed the raw IQ data of both radars to
obtain the micro-Doppler signatures. Subsequently, we used the micro-Doppler signatures
to compute the MDS patterns. In the machine learning phase, we first extracted various
features from the MDS patterns of both radars and then fused them together. We organized
these features into three sets, namely the Radar I, Radar II, and complementary feature sets.
We used each feature set to train and test an SVM classifier in random and group-wise split
scenarios. Our results showed that the complementary SVM classifier achieved overall
classification accuracies of 98.54% and 98.31% in random and group-wise split scenarios,
respectively, whereas the Radar I classifier achieved classification accuracies of 92.44% and
91.31% and the Radar II classifier achieved classification accuracies of 83.41% and 81.78% in
random and group-wise split scenarios, respectively. Despite the fact that Radar II under-
performed in our experiments due to hardware-related technical challenges, the two radars
complemented each other well enough that the classifier trained and evaluated using their
combined bi-perspective information (i.e., the complementary feature set) outperformed
the classifiers that were trained and evaluated using an individual radar’s uni-perspective
information (the Radar I and Radar II feature sets). Our experimental results and the
scalability of the proposed system suggest that complementary RF sensing has significant
potential for realizing highly accurate, non-invasive, user-friendly, and privacy-preserving
complex HAR systems. In future work, we will employ different feature selection methods
(e.g., information gain, chi-square test, forward feature selection, and backwards and recur-
sive feature elimination) to further improve the performance of proposed complementary
RF-based HAR system. In addition we will also compare the performance of different
machine and deep learning algorithms such as decision trees, random forests, deep CNN,
and LSTM models.
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Abbreviations
The following abbreviations are used in this manuscript:

FMCW frequency-modulated continuous wave
CPI coherent processing interval
TV time-variant
ADC analog-to-digital converter
FM frequency-modulated
WHO World Health Organization
FFT fast Fourier transform
FD fall detection
SISO single-input signle-output
MIMO multiple-input multiple-output
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HAR human activity recognition
AAL active assisted living
CTF channel transfer function
CSI channel state information
IMU inertial measurement unit
RSSI received signal strength indicator
RF radio frequency
MDS mean Doppler shift
NIC network interface card
SVM support vector machine
SIMO single-input multiple-output
CFO carrier frequency offset
SFO sampling frequency offset
PCA principal component analysis
RMS root mean square
OFDM orthogonal frequency-division multiplexing
STFT short-time Fourier transform
LOESS locally estimated scatterplot smoothing
LOSO leave-one-subject-out
VTM variance-based thresholding method
MAV mean absolute value
EMAV enhanced mean absolute value
EWL enhanced waveform length
WMAVI weighted mean absolute value I
WMAVII weighted mean absolute value II
MAC mean amplitude change
DASDV difference absolute standard deviation
SSI simple squared integral
SSC slope sign change
MFL maximum fractal length
OvO one-versus-one
OvA one-versus-all
ADL activities of daily living
CNN convolutional neural network
TUG timed up and go
CGA comprehensive geriatric assessment
WLPCA widely linear PCA
WLCKPCA widely linear complex kernel PCA
mmWave millimeter-wave
SDR software-defined radio
FOV field of view
KKT Karush–Kuhn–Tucker
QP quadratic programming
GridsearchCV grid search cross-validation
TDMA time division multiple access
IQ in-phase and quadrature
LSTM long short-term memory
CW continuous wave
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Appendix A. A Description of Features Extracted from Mean Doppler Shift Patterns

Table A1. A description of features extracted from the MDS pattern.

Feature Description

Mean Computes the sample mean of the MDS.
Median Computes the median of the MDS.
Variance Computes the variance of the MDS.
Skewness Computes the asymmetric spread of the MDS about its mean.
Kurtosis Computes the fourth standardized moment of the MDS.
Minimum value Returns the minimum value of the MDS.
Maximum value Returns the maximum value of the MDS.
Inter-quartile range Measures the dispersion of the MDS by computing the difference in the 75th and 25th percentiles of the MDS.
Mean absolute deviation Measures the variability in the MDS by computing the average distance between each sample in the MDS

and the sample mean of the MDS.
Slope Computes the slope of the MDS by fitting a linear equation to the samples of the MDS.
Entropy Computes the randomness of the MDS using Shanon entropy.
Total energy Computes the power of the MDS at a given time.
Signal distance Computes the distance traveled by the MDS using the hypotenuse between two samples of the MDS.
Mean difference Computes the mean of the differences in samples of the MDS.
Absolute energy Computes the absolute energy of the MDS.
Temporal centroid Computes the center of gravity of the energy envelop of the MDS.
Median difference Computes the median of the differences in samples of the MDS.
Zero crossing rate Computes the rate at which the MDS crosses the zero axis.
Area under the curve Computes the area under the curve of the MDS using the trapezoid rule.
Peak-to-peak distance Computes the absolute difference between the maximum and minimum values of the MDS.
Negative turning points Computes the number of negative turning points in the MDS.
Positive turning points Computes the number of positive turning points in the MDS.
Mean absolute difference Computes the mean of the absolute differences in samples of the MDS.
Sum of absolute difference Computes the sum of the absolute differences in samples of the MDS.
Median absolute difference Computes the median of the differences in samples of the MDS.
Spectral slope Computes the decrease in the spectral amplitude of the MDS.
Spectral spread Computes the spectral standard deviation of the MDS around its spectral centroid.
Spectral roll-off Computes the spectral roll-off frequency point of the MDS, where 95% of its magnitude is contained

below this frequency point.
Spectral entropy Computes the spectral power distribution of the MDS.
Spectral distance Computes the distance of the cumulative sum of the FFT components of the MDS with respective

linear regression.
Spectral centroid Computes the "center of gravity" of the MDS spectrum.
Spectral decrease Computes the decrease in the spectral amplitude of the MDS, focusing on lower frequencies.
Spectral kurtosis Computes the flatness of the spectrum of the MDS around its mean value.
Spectral variance Computes how quickly the power spectrum of the MDS varies.
Power bandwidth Computes the width of the frequency band in which 95% of the power of the MDS is located.
Spectral skewness Computes the spectral asymmetry of the MDS around its mean value.
Fundamental frequency Computes the fundamental frequency of the MDS.
Maximum power spectrum Computes the maximum value of the power spectrum density of the MDS.
Spectral positive turning points Computes the number of positive turning points in the magnitude of the FFT of the MDS.

Appendix B. Activity Signatures

This appendix provides the micro-Doppler signatures for the activities of sitting on a
chair, standing up from a chair, and picking up an object from the floor.
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Appendix B. Activity signatures 703

This appendix provides the micro-Doppler signatures of sitting on a chair, standing 704

up from a chair, and picking up an object from the floor activities. 705
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Figure B1. Micro-Doppler signatures (spectrogram) and MDS (red dashed line) of the sitting activity
performed in three different directions with respect to Radar I and Radar II (see Section 5 and
Figure 2).

Figure A1. Micro-Doppler signatures (spectrograms) and MDS patterns (red dashed lines) of the
sitting activity performed in three different directions with respect to Radar I and Radar II (see
Section 5 and Figure 2).

Version June 12, 2023 submitted to Sensors xxiii of xxiv

Standing up form sitting position
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Figure B2. Micro-Doppler signatures (spectrogram) and MDS (red dashed line) of the standing up
form chair activity performed in three different directions with respect to Radar I and Radar II (see
Section 5 and Figure 2).

Figure A2. Micro-Doppler signatures (spectrograms) and MDS patterns (red dashed lines) of the
standing up from a chair activity performed in three different directions with respect to Radar I and
Radar II (see Section 5 and Figure 2).
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Picking up an object from the floor from a standing position
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Figure B3. Micro-Doppler signatures (spectrogram) and MDS (red dashed line) of the picking up an
object from the floor from a standing position activity performed in three different directions with
respect to Radar I and Radar II (see Section 5 and Figure 2).

Figure A3. Micro-Doppler signatures (spectrograms) and MDS patterns (red dashed lines) of the
picking up an object from the floor from a standing position activity performed in three different
directions with respect to Radar I and Radar II (see Section 5 and Figure 2).
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